Science.gov

Sample records for zircon u-pb age

  1. Signatures of mountain building: Detrital zircon U/Pb ages from northeast Tibet

    USGS Publications Warehouse

    Lease, Richard O.; Burbank, Douglas W.; Gehrels, George E.; Wang, Zhicai; Yuan, Daoyang

    2007-01-01

    Although detrital zircon has proven to be a powerful tool for determining provenance, past work has focused primarily on delimiting regional source terranes. Here we explore the limits of spatial resolution and stratigraphic sensitivity of detrital zircon in ascertaining provenance, and we demonstrate its ability to detect source changes for terranes separated by only a few tens of kilometers. For such an analysis to succeed for a given mountain, discrete intrarange source terranes must have unique U/Pb zircon age signatures and sediments eroded from the range must have well-defined depositional ages. Here we use ∼1400 single-grain U/Pb zircon ages from northeastern Tibet to identify and analyze an area that satisfies these conditions. This analysis shows that the edges of intermontane basins are stratigraphically sensitive to discrete, punctuated changes in local source terranes. By tracking eroding rock units chronologically through the stratigraphic record, this sensitivity permits the detection of the differential rock uplift and progressive erosion that began ca. 8 Ma in the Laji Shan, a 10-25-km-wide range in northeastern Tibet with a unique U/Pb age signature.

  2. Complex Histories of Two Lunar Zircons as Evidenced by their Internal Structures and U-Pb Ages

    NASA Technical Reports Server (NTRS)

    Pidgeon, R. T.; Nemchin, A. A.; Meyer, Charles

    2006-01-01

    The U-Pb dating of lunar zircon by ion-microprobe provides a robust technique for investigating the timing of lunar events [1,2]. However, we have now identified two cases where the U-Pb systems in a single zircon show more than one age. These complex zircons provide new opportunities for extending our knowledge on the timing of events in the early history of the Moon.

  3. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  4. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    Refined U-Pb dating techniques, applying an empirical chemical abrasion treatment prior to analysis [1], and using a precisely calibrated double isotope Pb, U EARTHTIME tracer solution, have led to an unprecedented <0.1% precision and accuracy of obtained 206Pb/238U dates of single zircon crystals or fragments. Results very often range over 10e4 to 10e6 years and cannot be treated as statistically singular age populations. The interpretation of precise zircon U-Pb ages is biased by two problems: (A) Post-crystallization Pb loss from decay damaged areas is considered to be mitigated by applying chemical abrasion techniques. The success of such treatment can, however, not be assumed a priori. The following examples demonstrate that youngest zircons are not biased by lead loss but represent close-to-youngest zircon growth: (i) coincidence of youngest zircon dates with co-magmatic titanite in tonalite; (ii) coincidence with statistically equivalent clusters of 206Pb/238U dates from zircon in residual melts of cogenetic mafic magmas; (iii) youngest zircons in ash beds of sedimentary sequences do not violate the stratigraphic superposition, whereas conventional statistical interpretation (mean or median values) does; (iv) results of published inter-laboratory cross-calibration tests using chemical abrasion on natural zircon crystals of the same sample arrive at the same 206Pb/238U result within <0.1% (e.g., [2]); (v) Youngest crystals coincide in age with the astronomical age of hosting cyclic sediments. Residual lead loss may, however, still be identified in the case of single, significantly younger dates (>3 sigma), and are common in many pre-Triassic and hydrothermally altered rocks. (B) Pre-eruptive/pre-intrusive growth is found to be the main reason for scattered zircon ages in igneous rocks. Zircons crystallizing from the final magma batch are called autocrystic [3]. Autocrystic growth will happen in a moving or stagnant magma shortly before or after the

  5. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia

    NASA Astrophysics Data System (ADS)

    Howard, Amanda L.; Farmer, G. Lang; Amato, Jeffrey M.; Fedo, Christopher M.

    2015-12-01

    Combined U-Pb ages and Hf isotopic data from 1.0 Ga to 1.3 Ga (Grenvillian) detrital zircon in Neoproterozoic and Cambrian siliciclastic sedimentary rocks in southwest North America, and from igneous zircon in potential Mesoproterozoic source rocks, are used to better assess the provenance of detrital zircon potentially transported across Laurentia in major river systems originating in the Grenville orogenic highlands. High-precision hafnium isotopic analyses of individual ∼1.1 Ga detrital zircon from Neoproterozoic siliciclastic sedimentary rocks in Sonora, northern Mexico, reveal that these zircons have low εHf (0) (-22 to -26) and were most likely derived from ∼1.1 Ga granitic rocks embedded in local Mojave Province Paleoproterozoic crust. In contrast, Grenvillian detrital zircons in Cambrian sedimentary rocks in Sonora, the Great Basin, and the Mojave Desert, have generally higher εHf (0) (-15 to -21) as demonstrated both by high precision solution-based, and by lower precision laser ablation, ICPMS data and were likely derived from more distal sources further to the east/southeast in Laurentia. Comparison to new and existing zircon U-Pb geochronology and Hf isotopic data from Grenvillian crystalline rocks from the Appalachian Mountains, central and west Texas, and from Paleoproterozoic terranes throughout southwest North America reveals that zircon in Cambrian sandstones need not entirely represent detritus transported across the continent from Grenville province rocks in the vicinity of the present-day southern Appalachian Mountains. Instead, these zircons could have been derived from more proximal, high εHf (0), ∼1.1 Ga, crystalline rocks such as those exposed today in the Llano Uplift in central Texas and in the Franklin Mountains of west Texas. Regardless of the exact source(s) of the Grenvillian detrital zircon, new and existing whole-rock Nd isotopic data from Neoproterozoic to Cambrian siliciclastic sedimentary rocks in the Mojave Desert

  6. New U-Pb zircon ages and the duration and division of Devonian time

    USGS Publications Warehouse

    Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.

    1998-01-01

    Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.

  7. Provenance from zircon U-Pb age distributions in crustally contaminated granitoids

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Berndt, Jasper

    2016-05-01

    The basement of sedimentary basins is often entirely covered by a potentially multi-stage basin fill and therefore removed from direct observation and sampling. Melts intruding through the basin stratigraphy at a subsequent stage in the geological evolution of a region may assimilate significant volumes of country rocks. This component may be preserved in the intrusive body either as xenoliths or it may be reflected only by the age spectrum of incorporated zircons. Here we present the case of an Ordovician calc-alkaline intrusive belt in NW Argentina named the "Faja Eruptiva de la Puna Oriental" (Faja Eruptiva), which in the course of intrusion sampled the unexposed and unknown basement of the Ordovician basin in this region, and parts of the basin stratigraphy. We present new LA-ICP-MS U-Pb ages on zircons from 9 granodiorites and granites of the Faja Eruptiva. The main part of the Faja Eruptiva intruded c. 445 Ma in the Late Ordovician. The zircon ages obtained from the intrusive rocks have a large spread between 2683.5 ± 21.6 and 440.0 ± 4.9 Ma and reflect the underlying crust and may be interpreted in several ways. The inherited zircons may have been derived from the oldest known unit in the region, the thick siliciclastic turbidite successions of the upper Neoproterozoic-lower Cambrian Puncoviscana Formation, which is inferred to represent the basement of the NW Argentina. The basement to the Puncoviscana Formation is not known. Alternatively, the inherited zircons may reflect the geochronological structure of the entire unexposed Early Paleozoic crust underlying this region of which the Puncoviscana Formation was only one component. This crust likely contained rocks pertaining to and detritus derived from earlier orogenic cycles of the southwestern Amazonia craton, including sources of Early Meso- and Paleoproterozoic age. Detritus derived, in turn, from the Faja Eruptiva intrusive belt reflects the origin of the granitoids as well as the inherited

  8. Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges

    USGS Publications Warehouse

    McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.

    2011-01-01

    Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper

  9. U-Pb SHRIMP II age and origin of zircon from lhertzolite of the bug Paleoarchean complex, Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Lobach-Zhuchenko, S. B.; Baltybaev, Sh. K.; Glebovitsky, V. A.; Sergeev, S. A.; Lokhov, K. O.; Egorova, Yu. S.; Balagansky, V. V.; Skublov, S. G.; Galankina, O. L.; Stepanyuk, L. M.

    2017-12-01

    Complex study of the U-Pb and Lu-Hf systems of zircon from a lhertzolite lens of Archean gneiss enderbites of the Bug complex, Ukrainian Shield, showed that ultramafic magma was contaminated by the material of the country gneiss enderbites. The age of the zircons of 2.81 ± 0.05 Ga corresponds to the period of ultramafic magmatism within the Bug complex. Previously, this peak of endogenic activity was considered the stage of manifestation of metamorphism and magmatism of mafic composition.

  10. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    USGS Publications Warehouse

    Coble, Matthew A.; Burgess, Seth; Klemetti, Erik W.

    2017-01-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to

  11. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    NASA Astrophysics Data System (ADS)

    Coble, Matthew A.; Burgess, Seth D.; Klemetti, Erik W.

    2017-09-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to accurate

  12. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  13. Age and origin of the Merrimack terrane, southeastern New England: A detrital zircon U-Pb geochronology study

    NASA Astrophysics Data System (ADS)

    Sorota, Kristin

    Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ˜1.0 to ˜1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases.

  14. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the

  15. U-Pb ID-TIMS zircon ages of TTG gneisses of the Aravalli Craton of India

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Kaulina, Tatiana; Bayanova, Tamara; Ahmad, Talat

    2015-04-01

    The crystalline basement of the Aravalli Craton is a heterogeneous assemblage dominated by granitic gneisses and granites with sporadic occurrences of amphibolites and dismembered sedimentary enclaves (Upadhyaya et al., 1992). This assemblage is known to have experienced multiple deformation and metamorphic events followed by emplacement of voluminous granites and basaltic dykes. Based on Sm-Nd whole rock data on the basement Mewar orthogneisses of Jhamarkotra region (Gopalan et al., 1990) and Pb/Pb ages of zircon from Gingla Granites which intrudes the basement (Wiedenbeck et al., 1996), it has been inferred that the whole magmatic episode leading to the formation of the basement spanned from 3300 to 2400 Ma and that the Aravalli cratonic block had broadly stabilized by 2500 Ma on which the younger Aravalli and Delhi Supergroup unconformably deposited. However, no comprehensive age data on the basement gneisses from the study area spanning the entire magmatic episode is available. This work attempts to provide a time frame work for evolution of the basement gneisses of the Aravalli Craton. We present here U-Pb zircon ages from the Precambrian basement TTG gneisses of the Aravalli Craton of north western India. Pb and U were measured on multicollector Finnigan-MAT 262 mass spectrometer. The temperatures of measurements were 1300°C for Pb and 1500°C for U. Pb isotope ratios were corrected for mass fractionation with a factor of 0.10% per amu, based on repeat analyses of the standard NBS SRM 982. The U analyses were corrected for mass fractionation with a factor of 0.003% per amu, based on repeat analyses of the NBS U 500 standard. Reproducibility of the U-Pb ratios was determined from the repeated analysis of standard zircon IGFM-87 (Ukraine) and taken as 0.5% for 207Pb/235U and 206Pb/238U ratios, respectively, at 95% confidence level. All calculations were done using the programs PBDAT and ISOPLOT (Ludwig 1991, 2008). Four zircon fractions corresponding to four

  16. Arc-continent collision of the Coastal Range in Taiwan: Geochronological constraints from U-Pb ages of zircons

    NASA Astrophysics Data System (ADS)

    Geng, Wei; Zhang, Xun-Hua; Huang, Long

    2018-04-01

    The oblique arc-continent collision between the Luzon arc and the southeastern margin of the Eurasian continent caused the uplift of Taiwan. The Coastal Range in eastern Taiwan is the northern section of the Luzon arc in the collision zone and thus records important information about the arc-continent collision. In this paper, we determine and analyze the U-Pb ages of magmatic zircons from the volcanic arc and clastic zircons from the fore-arc basin in the Coastal Range. For the volcanic arc in the Coastal Range, the eruption ages range from 16.8-5 Ma. Given that the initial subduction of the South China Sea oceanic crust (17 Ma) occurred before the Luzon arc formed, we conclude that the volcanic activity of the Coastal Range began at 16.8 ± 1.3 Ma; it was most active from 14 to 8 Ma and continued until approximately 5 Ma. The U-Pb chronology also indicates that the initial stage of arc-continent collision of the Coastal Range started at approximately 5 Ma, when the northern section of the Luzon arc moved away from the magmatic chamber because of the kinematics of the Philippine Sea Plate.

  17. Zircon U-Pb age and Hf-O isotopes of felsic rocks from the Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Liu, C. Z.; Zhang, W. Q.

    2017-12-01

    Hole U1473A was drilled to 790 meters below seafloor on the Atlantis Bank, an oceanic core complex in the Southwest Indian Ridge, where the upper crust has been removed by detachment faulting. The recovered core consists dominantly of olivine gabbro, with subordinate gabbro, gabbro with varying Fe-Ti oxide concentrations. Felsic veins intermittently occur throughout the whole core section. Zircons separated from twenty-four felsic samples have been conducted for U-Pb dating and O isotope analyses on the Cameca 1280 and Lu-Hf isotopes by laser ablation coupled with a MC-ICPMS. The zircons have highly variable contents of U (12-2078 ppm) and Th (5-801 ppm), yielding Th/U ratios of 0.33-0.81. They are typical oceanic zircons as defined by the trace element discrimination plots of Grimes et al. (2015). The weighted mean 206Pb/238U ages of the analyzed zircons vary from 11.29 to 12.57 Ma. Age differences between felsic veins throughout the whole core are not resolved within analytical uncertainty of the SIMS measurements. All felsic samples have similar zircon Hf isotope compositions, with initial 176Hf/177Hf ratios of 0.283126-0.283197 and ɛHf values of 12.76-15.27. Zircons from all felsic samples but one have mantle-like δ18O values of 5.14-5.50‰. Zircons from one sample show partial resorption or total recrystallization; in comparison, they have lower δ18O values of 4.81±0.21‰. Such characteristics provide clear evidence for hydrothermal alteration after magmatic intrusion.

  18. Proterozoic tectonostratigraphy and paleogeography of central Madagascar derived from detrital zircon U-Pb age populations

    USGS Publications Warehouse

    Cox, R.; Coleman, D.S.; Chokel, C.B.; DeOreo, S.B.; Wooden, Joseph L.; Collins, A.S.; De Waele, B.; Kroner, A.

    2004-01-01

    Detrital zircon U‐Pb ages determined by SHRIMP distinguish two clastic sequences among Proterozoic metasedimentary rocks from central Madagascar. The Itremo Group is older: zircon data, stromatolite characteristics, and carbon isotope data all point to a depositional age around 1500–1700 Ma. The Molo Group is younger, deposited between ∼620 Ma (the age of the youngest zircon) and ∼560 Ma (the age of metamorphic overgrowths on detrital cores). Geochronologic provenance analysis of the Itremo Group points to sources in East Africa as well as local sources in central and southern Madagascar but provides no evidence for a detrital contribution from northern and eastern Madagascar nor from southern India. Detrital zircon and sedimentologic similarities between rocks of the Itremo Group and the Zambian Muva Supergroup suggest a lithostratigraphic correlation between the two. The Molo Group has a strong 1000–1100 Ma detrital signature that also indicates an east African provenance and suggests a Neoproterozoic geographic connection with Sri Lanka but shows no indication of input from the Dharwar craton and eastern Madagascar. Central Madagascar was probably juxtaposed with the Tanzanian craton in the Paleo‐ and Mesoproterozoic, whereas northern and eastern Madagascar were connected to India. Internal assembly of Madagascar postdates Neoproterozoic Molo Group sedimentation and is likely to have occurred at about 560 Ma.

  19. Geology and U-Pb Zircon ages of the Kavacik Leucogranite in the Bornova Flysch Zone (Western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Güngör, Talip; Hasözbek, Altuǧ; Akal, Cüneyt; Mertz-Kraus, Regina; Peştemalci Üregel, Reyhan

    2016-04-01

    The Bornova Flysch Zone comprises an olistostrome-melange situated NE-SW direction between the Izmir Ankara Suture Zone and the Menderes Massif. The Bornova Flysch Zone is mainly composed of slightly deformed Late Cretaceous to Paleocene sandstone and shale with Mesozoic limestone and oceanic crustal associations. These large-scale blocks in the matrix of the Bornova Flysch Zone are mostly defined as limestone, basalt, serpentinite and radiolarian cherts. In this study, granitic bodies, situated in the Bornova Flysch Zone, named as Kavacik leucogranite is examined for the first time, in terms its geological features and its U-Pb zircon crystallization ages. Kavacik leucogranite displays a typical granitic texture and its composition indicates ranging between granitic to granodioritic in composition with lack of mafic minerals. The geochemical features of the granite indicate the I-type and subalkaline nature of the granitic body. The geochemical signatures of the Kavacik granite points out Volcanic Arc Granitoids as similarly seen in Karaburun granite. U-Pb zircon LA ages were also obtained from the Kavacik granite ranging between 224.5 ± 2.0 Ma and 230.0 ± 2.8 Ma. Early Triassic zircon ages are also previously observed in the Karaburun Peninsula (Karaburun Granite) and the Menderes Massif (Odemis-Kiraz Submassif). The initial geological boundary relation of the Kavacik Leucogranite is not clear in the field and likely displays tectonic boundary features in the matrix of the Bornova Flysch Zone. Overall, the geochemical features of the Kavacik leucogranite and similar leucomagmatic bodies in the Western Anatolia points out the subduction-related tectonic setting is favorable during the Triassic time.

  20. A Late Silurian U-Pb zircon age for Linville metadiabase, Grandfather Mountain window, North Carolina

    SciTech Connect

    Fetter, A.H.; Goldberg, S.A.

    1993-03-01

    Linville metadiabase intrudes both Precambrian basement within the Grandfather Mountain window and nonconformably overlying Grandfather Mountain Formation. It occurs as sill-like and dike-like bodies, and is apparently not recognized outside of the window. Major element data classify the composition of the rock as tholeiitic basalt. Zircon was separated from a metadiabase body intruding metasiltstone of the Grandfather Mountain Formation west of Cranberry Knob. Zircon are clear, euhedral, with a l/w ratio of 3:1. Two abraded fractions (75-150 and < 75 [mu]m, both NM-2[degree]) yield concordant ages, which the authors report as 415 [plus minus] 3 Ma (2[sigma]), a weighted meanmore » of the two [sup 207]Pb/[sup 206]Pb ages. This Late Silurian (Ludlow) age is interpreted as the time of crystallization. Previously, similarities in mode of occurrence and major element composition have been used to correlate Linville metadiabase with late Precambrian mafic rocks within and outside of the window, as field relations do not constrain its age. Linville metadiabase thus is an unlikely candidate for feeders to the Montezuma metabasalt, which occurs as a flow immediately above metarhyolite dated as 742 [plus minus] 2 Ma (2[sigma]). Linville metadiabase may be one component of a magmatic pulse spanning 10-20 m.y. associated with the Acadian orogeny. The new zircon age places constraints on the timing of metamorphism and deformation, as Linville metadiabase is foliated, containing metamorphic assemblages from the biotite zone of the greenschist facies. The age and fabric relations are permissive evidence of post-Taconic, Acadian or Alleghanian orogeny.« less

  1. Pan-Africa/Pan-Brazilian detrital zircons in Lower Palaeozoic schists of SW Norway - enigmatic detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Zimmermann, Udo; Bjørheim, Maren; Clark, Chris

    2013-04-01

    We present Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon age data from metasedimentary rocks (schists and quartzites) located in the town of Stavanger (SW Norway). The metasedimentary sequence is composed of schists, medium grained quartz-rich metawackes and quartzites. Quartzites and meta-quartz-wackes exhibit a mylonitic fabric with newly grown fine-grained muscovite defining the fabric. Accessory minerals are zircon, allanite, detrital apatite, monazite, ilmenite, rutile and zircon. The schists are dark and dominated by quartz and feldspar in a fine chloritic and silica-rich matrix and represent the dominant lithology of the region. While quartzites and metawackes show typical geochemical characteristics for strongly reworked rocks, the schists have very low Zr/Sc and Th/Sc ratios below 0.9 and point together with other trace element ratios (La/Sc, Ti/Zr) to the strong influence of less fractionated, mafic, sources in the detritus, possibly arc derived. U-Pb ages of detrital zircon from quartzites range between 740 to 1800 Ma. There is a defined population at 1135 and 1010 Ma tentatively correlated with the Sveconorwegian orogeny. A second population at ~1450 Ma that can be related to a tectono-magmatic event during the Earliest Mesoproterozoic, also recorded in Oslo, southern Sweden and Bornholm, mapped along the proposed southern margin of Baltica. Other detrital zircons record ages between 1586 - 1664 Ma that are not related to the latter event. The oldest U-Pb detrital zircon grain age was 1796 Ma and is potentially associated with the terminal phase of the Svecofennian orogeny. Detrital zircons from the associated schists do show a similar abundance of main age clusters but the oldest found zircons dates to 2013 Ma while the maximum depositional age could be determined by grains of Cambrian to even Ordovician ages with a large 1 sigma error, as such that we rather propose a Cambrian maximum depositional age. It is possible to speculate that

  2. U-Pb zircon age data for selected sedimentary, metasedimentary, and igneous rocks from northern and central Alaska

    USGS Publications Warehouse

    Moore, Thomas E.

    2014-01-01

    Data from two studies are included in this report. The first study, by Dumoulin and others (2013), reported the detrital zircon U-Pb age analysis of a single sample from the Upper Mississippian Ikalukrok unit of the Kuna Formation (table 1). The second study is that of Moore and others (in press), which focuses on the Upper Jurassic and Lower Cretaceous part of the Brookian sequence in the western Brooks Range (17 samples; table 2). For the latter study, samples were analyzed from the following units (1) the Upper Jurassic unit, Jw, of Curtis and others (1984), (2) the Lower Cretaceous Igrarok Hills unit of Moore and others (2002), (3) the Upper Jurassic and Lower Cretaceous Okpikruak Formation, (4) the Lower Cretaceous lower Brookian shale of Mull (1995), (5) the Lower Cretaceous Mount Kelly Graywacke Tongue of the Fortress Mountain Formation, (6) and the upper Lower Cretaceous Nanushuk Formation as redefined by Mull and others (2003). The results for each study are reported in separate Excel files, with individual samples in each study being shown as separate sheets within the files. The analyses of individual zircons are listed separately on the sheet according to the filtering schemes of the study and by the type of mass spectrometer used.

  3. Isotope U-Pb age on single zircon and REE distribution in rocks and zircon from paleoproterozoic Kandalaksha-Kolvitsa complex Baltic shield

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Drogobuzhskaya, Svetlana; Lyalina, Ludmila; Serov, Pavel; Chashchin, Viktor; Elizarov, Dmitriy

    2017-04-01

    Kandalaksha-Kolvitsa paleoproterozoic complex located in the N-E part of Baltic shield and consists of three zones. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate and anorthositic metamorphism. Age of magmatic crystallization of the massif was determined for the first time, using the U-Pb isotope method for single zircon grains. Three fractions of single zircons from anorthosite of the Kandalaksha massif gave precise U-Pb age of 2435.5 ± 4.8 Ma. For the first time REE concentration (WR) was determined using a quadrupole mass spectrometer (Agilent 7500 ce ICP-MS) in the main varieties of rocks of the Kandalaksha-Kolvitsa paleoproterozoic complex. Anorthosite and leucocratic metagabbros (main zone) are characterized by a flat spectrum distribution of HREE, which were normalized by [1]. The REE pattern is characterized by significant positive anomalies of Eu ((Eu / Eu *)n = 3.72-3.91) in anorthosite and leucogabbros and 7.26 - in ortoamfibolitah. General content of individual elements that are common for this type of rocks: Cen = 5.82-8.54, Ybn = 1.54-1.58, which indicates that the process of crystallization of the rock occurred with predominant accumulation of plagioclase. According to geochemical and Nd-Sr isotopic data (ISr=0.702 - 0.706, ɛNd(T) = +1 - (-3)) Kandalaksha Kolvitsa complex, appear to have a general plume source with Paleoproterozoic layered intrusions of the Baltic Shield [2] Distribution of REE (ELAN-9000 ICP-MS) in zircon have a typical magmatic species: a positive Ce, negative Eu anomaly and HREE flat spectrum. Titanium content in zircons were measured for the calculation of their crystallization temperature with 8350C. These data are evidence of magmatic origin of zircon [3]. The scientific researches are supported by RFBR (projects № 15-35-20501, № 16

  4. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  5. U-pb zircon age of metafelsite from the pinney hollow formation: Implications for the development of the vermont Appalachians

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.

    1999-01-01

    The Pinney Hollow Formation of central Vermont is part of a rift-clastic to drift-stage sequence of cover rocks deposited on the Laurentian margin during the development of the Iapetan passive margin in Late Proterozoic to Cambrian time. Conventional U-Pb zircon data indicate an age of 571 ?? 5 Ma for a metafelsite from the Pinney Hollow Formation. Geochemical data indicate that the protolith for the metafelsite, now a quartz-albite gneiss or granofels, was rhyolite from a source that was transitional between a witnin-plate granite and ocean-ridge granite setting and probably came through partially distended continental crust The transitional setting is consistent with previous data from metabasalts in the Pinney Hollow Formation and supports the idea that the source magma came through continental crust on the rifted margin of the Laurentian craton. The 571 ?? 5 Ma age provides the first geochronologic age from the rift-clastic cover sequence in New England and establishes a Late Proterozoic age for the Pinney Hollow Formation. The Late Proterozoic age of the Pinney Hollow confirms the presence of a significant mapped thrust fault between the autochthonous and para-autochthonous rocks of the cover sequence. These findings support the interpretation that the Taconic root zone is located in the hinterland of the Vermont Appalachians on the eastern side of the Green Mountain massif.

  6. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping

    2018-02-01

    Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.

  7. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California

    NASA Astrophysics Data System (ADS)

    Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.

    2008-04-01

    The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.

  8. The Paleogene California River: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons

    USGS Publications Warehouse

    Davis, S.J.; Dickinson, W.R.; Gehrels, G.E.; Spencer, J.E.; Lawton, T.F.; Carroll, A.R.

    2010-01-01

    U-Pb age spectra of detrital zircons in samples from the Paleogene Colton Formation in the Uinta Basin of northeastern Utah and the Late Cretaceous McCoy Mountains Formation of southwestern Arizona (United States) are statistically indistinguishable. This finding refutes previous inferences that arkosic detritus of the Colton was derived from cratonic basement exposed by Laramide tectonism, and instead establishes the Cordilleran magmatic arc (which also provided sediment to the McCoy Mountains Formation) as the primary source. Given the existence of a north-south-trending drainage divide in eastern Nevada and the north-northeast direction of Laramide paleoflow throughout Arizona and southern Utah, we infer that a large river system headed in the arc of the Mojave region flowed northeast ~700 km to the Uinta Basin. Named after its source area, this Paleogene California River would have been equal in scale but opposite in direction to the modern Green River-Colorado River system, and the timing and causes of the subsequent drainage reversal are important constraints on the tectonic evolution of the Cordillera and the Colorado Plateau. ?? 2010 Geological Society of America.

  9. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  10. Sedimentary provenance of Trinity Peninsula Group, Antarctic Peninsula: petrography, geochemistry and SHRIMP U-Pb zircon age constraints.

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Lacassie, J. P.; Hervé, F.; Fanning, C. M.

    2009-04-01

    The Trinity Peninsula Group (TPG) crops out in northern Graham Land and consists of a mostly non-fossiliferous metasedimentary succession of Permo-Triassic(?) age, which was accreted prior to the initiation of the Gondwana breakup. This succession has been sub-divided, from north to south, into five formations, namely: Hope Bay (HBF), View Point (VPF), Legoupil (LgF), Charlotte Bay (ChBF) and Paradise Harbour (PHF) formations. However, there are still large areas with unknown stratigraphic allocation, age and extension. Twenty TPG samples (12 sandstones and 8 mudstones) were collected from four localities in the Antarctic Peninsula, including Hope Bay; Paradise Harbour, Cape Legoupil and Charlotte Bay. Twelve sandstones were selected for modal analysis and 15 samples (7 sandstones and 8 mudstones) for whole rock chemical analysis. The geochemical data of the TPG samples was compared with the geochemical data of other sedimentary successions of different provenance and tectonic setting, by using unsupervised artificial neural networks. The modal composition of the sandstones is dominated by quartz and, in similar but smaller proportions by feldspar, and according to the discrimination scheme of Dickinson et al. (1983) is consistent with the product of erosion of the plutonic roots of a magmatic arc. The chemical data suggest a relatively evolved source, with a composition similar to a typical granodioritic continental magmatic arc. The deposition of the detritus is most likely to have occurred within an active continental margin. Three sandstone samples from the HBF, LgF and PHF were selected for U-Pb dating of detrital zircons by SHRIMP. For the HBF and PHF samples, the major age component is Permian (270-280 Ma). Only the sample from LgF has two important peaks at ~270 and ~470 Ma. In all cases, the youngest dated zircon is Permian (~257 Ma). These results show that there are strong chemical and chronological similarities between the TPG, the Duque de York Complex

  11. Zircon U-Pb ages and Hf-O isotopic composition of migmatites from the Zanjan-Takab complex, NW Iran: Constraints on partial melting of metasediments

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Stern, Robert J.; Ghorbani, Ghasem; Bakhshizad, Farzaneh

    2016-01-01

    We study migmatites and other metamorphic rocks in the Zanjan-Takab region of NW Iran and use these results to report the first evidence of Oligocene core complex formation in Iran. Four samples of migmatites associated with paragneisses, including leucosomes and associated para-amphibolite melanosomes were selected for U-Pb dating and Hf-O isotopic analysis. Zircon cores - interpreted as originally detrital zircons - have variable ages that peak at ca. 100-110 Ma, but their sedimentation age - indicated by the youngest 206Pb/238U ages - is ca. 35-40 Ma. New zircons associated with incipient melting occur as overgrowths around zircon cores and/or as newly grown grains. Morphologies and internal structures suggest that rim growth and formation of new zircons were associated with partial melting. All four samples contain zircons with rims that yield 206Pb/238U ages of 28-25 Ma, indicating that partial melting occurred in Late Oligocene time. δ18O values for zircon rims vary between 8.2 and 12.3‰, significantly higher than expected for mantle inputs (δ18O 6‰) and consistent with equilibrium with surface materials. Zircon rims yield εHf(t) between 2.2 and 12.4 and two-stage Hf model ages of 448-562 Ma, indicating that the region is underlain by Cadomian-Caledonian crust. According to the Hf-O isotopic values, the main mechanism forming zircon rims was dissolution of pre-existing detrital zircons with reprecipitation of new zircon shortly thereafter. Oligocene ages indicate that partial melting accompanied core complex formation in the Zanjan-Takab region. Extension, melting, and core complex formation in south-central Iran are Eocene in age, but younger ages of Oligocene-Miocene in NW Iran and Turkey indicate that extension was distributed throughout the region during Cenozoic time.

  12. Micrometer-scale U-Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body

    NASA Astrophysics Data System (ADS)

    Hopkins, M. D.; Mojzsis, S. J.; Bottke, W. F.; Abramov, O.

    2015-01-01

    Meteoritic zircons are rare, but some are documented to occur in asteroidal meteorites, including those of the howardite-eucrite-diogenite (HED) achondrite clan (Rubin, A. [1997]. Meteorit. Planet. Sci. 32, 231-247). The HEDs are widely considered to originate from the Asteroid 4 Vesta. Vesta and the other large main belt asteroids record an early bombardment history. To explore this record, we describe sub-micrometer distributions of trace elements (U, Th) and 235,238U-207,206Pb ages from four zircons (>7-40 μm ∅) separated from bulk samples of the brecciated eucrite Millbillillie. Ultra-high resolution (∼100 nm) ion microprobe depth profiles reveal different zircon age domains correlative to mineral chemistry and to possible impact scenarios. Our new U-Pb zircon geochronology shows that Vesta's crust solidified within a few million years of Solar System formation (4561 ± 13 Ma), in good agreement with previous work (e.g. Carlson, R.W., Lugmair, G.W. [2000]. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 25-44). Younger zircon age domains (ca. 4530 Ma) also record crustal processes, but these are interpreted to be exogenous because they are well after the effective extinction of 26Al (t1/2 = 0.72 Myr). An origin via impact-resetting was evaluated with a suite of analytical impact models. Output shows that if a single impactor was responsible for the ca. 4530 Ma zircon ages, it had to have been ⩾10 km in diameter and at high enough velocity (>5 km s-1) to account for the thermal field required to re-set U-Pb ages. Such an impact would have penetrated at least 10 km into Vesta's crust. Later events at ca. 4200 Ma are documented in HED apatite 235,238U-207,206Pb ages (Zhou, Q. et al. [2011]. Early basaltic volcanism and Late Heavy Bombardment on Vesta: U-Pb ages of small zircons and phosphates in

  13. Zircon U-Th and U-Pb Ages From Quaternary Silicic Volcanic and Plutonic Rocks, and Their Bearing on Granitoid Batholiths

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2007-12-01

    In the ten years since publication of M. Reid et al.'s seminal paper on zircon ages from rhyolites (EPSL 150:2-39, 1997) >20 papers have appeared on SIMS 238U-230Th and 238U-206Pb geochronology of zircon from silicic volcanic rocks, plutonic xenoliths, and young intrusions. In some cases, as well as for U-Pb studies of Tertiary granitoids, plutonic samples are interpreted in the context of related volcanism. These geochronologic data have advanced conceptual models of silicic magma genesis and pluton construction. Of fundamental importance are discoveries that zircons in volcanic rocks typically pre-date eruption by 10's to 100's of kyr and that multiple zircon populations are common; these crystals are "antecrysts" recycled from intrusive rocks or crystal mush of the system that vented. Resolving such age differences is possible with U-Th at <300 ka but is challenging with U-Pb, where SIMS precision limits resolution of differences on the order of 100 kyr for Pleistocene-Miocene zircons. Cathodoluminescence (CL) imaging of polished crystals guides beam placement but leads to sampling bias that favors high-U regions. Thus, although model-age histograms and relative probability plots identify zircon age populations, they are unlikely to accurately define relative abundances of age groups. Microbeam analysis collects data for the entire volume sampled but only SIMS depth-profiling into crystal faces can spatially resolve fine zones. ID-TIMS analysis of CL-imaged zircon fragments can improve U-Pb precision. SIMS complements geochronology with trace element fingerprints of zircon growth environments and enables Ti-in-zircon thermometry. Literature examples illustrate recent findings: (1) rhyodacite lava at Crater Lake contains zircons derived from late Pleistocene granodiorite represented by blocks ejected in the caldera-forming eruption; (2) zircons in Mount St. Helens dacites grew at sub-eruption temperatures and pre-date eruptions by up to 250 kyr; (3) Miocene

  14. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaya, Asri; Nishikawa, Osamu; Hayasaka, Yasutaka

    2017-11-01

    The zircon U-Pb and muscovite K-Ar age from the Bantimala, Barru and Biru basement complexes in the South Arm of Sulawesi, Indonesia provide new information regarding the timing of magmatism, metamorphism and sedimentation in this region and have implications for the origin and evolution of the study area. The study area is at the juncture between the southeast margin of Sundaland and Bird's Head-Australia. The age of both the zircon U-Pb of detrital materials in the Bantimala Complex and the muscovite K-Ar of amphibolite in the Biru Complex fall in the Late Early Cretaceous (between 109 and 115 Ma), which is a similar age range to previous data for both the sedimentary and metamorphic rocks. The youngest detrital zircon in the schist samples from the Barru Complex fall into the Triassic in age (between 243 and 247 Ma). These age data indicate that the protolith of all three basement complexes were involved in the subduction system and metamorphosed in the late Early Cretaceous, but there are several differences in their deposition environment under and out of the influence of the late Early Cretaceous magmatism in the Bantimala and Barru Complexes, respectively. Felsic igneous activities are confirmed in the Late Cretaceous and the Eocene by the zircon U-Pb age of igneous rocks intruding or included as detrital fragments in three basement complexes. These dates are similar to those reported from the Meratus Complex of South Kalimantan. The detrital zircon age distributions of the basement rocks in the South Arm of Sulawesi display predominant Mesozoic (Cretaceous and Triassic) and Paleozoic populations with a small population of Proterozoic ages supporting the hypothesis that the West Sulawesi block originated from the region of the circum Bird's Head-Australian, namely the Inner Banda block. The absence of Jurassic zircon age population in the South Arm of Sulawesi suggests the division of the South Arm of Sulawesi from the Inner Banda block in early stage of

  15. Zircon U-Pb ages and geochemistry of migmatites and granites in the Foping dome: Evidence for Late Triassic crustal evolution in South Qinling, China

    NASA Astrophysics Data System (ADS)

    Zhang, He; Li, Shuang-Qing; Fang, Bo-Wen; He, Jian-Feng; Xue, Ying-Yu; Siebel, Wolfgang; Chen, Fukun

    2018-01-01

    Migmatites provide a record of melt formation and crustal rheology. In this study we present zircon U-Pb ages and geochemical composition of migmatites from the Foping dome and granites from the Wulong pluton. U-Pb results from migmatite zircons indicate two episodes of partial melting. Rim domains from a leucosome in the Longcaoping area yield an age of ca. 209 Ma. Migmatites collected from the Foping dome yield U-Pb zircon ages of 2910 to 190 Ma, suggesting the involvement of meta-sedimentary source components. Rim domains of the zircons with low Th/U ratios (< 0.1) give ages of 225-190 Ma and the youngest age domains (ca. 195 Ma) are characterized by low contents of heavy rare earth elements, which is related to crystallization of garnet. Magmatic rocks from the Wulong pluton can be subdivided into high Sr/Y and low Sr/Y granites. U-Pb zircon ages vary from 219 to 214 Ma for the high Sr/Y granites and from 214 to 192 Ma for the low Sr/Y granites. High Sr/Y granites have higher Na2O and Sr contents than the low Sr/Y granites. They also lack negative Eu anomalies and are depleted in HREE compared to the low Sr/Y granites. Initial 87Sr/86Sr ratios and εNd values of all the samples roughly overlap with those of Neoproterozoic basement rocks exposed in South Qinling. Including previous studies, we propose that the high and low Sr/Y granites formed by melting of thickened and normal crust, respectively. Close temporal-spatial relationship of the high and low Sr/Y granites with the two-stage migmatization events implies variation of crustal thickness and thermal overprints of the orogenic crust in post-collisional collapse. Following the collision of South Qinling and the Yangtze block prior to 219 Ma, partial melting of the deep crust occurred. The melts migrated upwards to form the high Sr/Y granites. This process occurred rapidly and caused collapse of the thickened crust and carried heat upwards, leading to further partial melting within the shallower crust and

  16. Post-caldera volcanism: In situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera

    USGS Publications Warehouse

    Bindeman, I.N.; Valley, J.W.; Wooden, J.L.; Persing, H.M.

    2001-01-01

    The Yellowstone Plateau volcanic field, the site of some of the largest known silicic volcanic eruptions, is the present location of NE-migrating hotspot volcanic activity. Most volcanic rocks in the Yellowstone caldera (0.6 Ma), which formed in response to the climactic eruption of 1000 km3 of Lava Creek Tuff (LCT), have unusually low oxygen isotope ratios. Ion microprobe analysis of both U-Pb age and ??18O in zircons from these low-??18O lavas reveals evidence of complex inheritance and remelting. A majority of analyzed zircons from low-??18O lavas erupted inside the Yellowstone caldera have cores that range in age from 2.4 to 0.7 Ma, significantly older than their eruption ages (0.5-0.4 Ma). These ages and the high-??18O cores indicate that these lavas are largely derived from nearly total remelting of normal-??18O Huckleberry Ridge Tuff (HRT) and other pre-LCT volcanic rocks. A post-HRT low-??18O lava shows similar inheritance of HRT-age zircons. The recycling of volcanic rocks by shallow remelting can change the water content and eruptive potential of magma. This newly proposed mechanism of intracaldera volcanism is best studied by combining in situ analysis of oxygen and U-Pb isotope ratios of individual crystals. ?? 2001 Elsevier Science B.V. All rights reserved.

  17. Subduction Initiation Existed Along the Ancient Continent Margins? Evidence of U-Pb ages of zircons from the Bonin Trench, Japan

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Pearce, J. A.; Ryan, J. G.; Li, X. H.; Haraguchi, S.; Iizuka, T.; Kon, Y.; Yamamoto, S.; Sawaki, Y.; Ishii, T.; Maruyama, S.

    2017-12-01

    Although it is not cleanly known when and where the subduction initiation began on the Paleo-Izu-Bonin-Mariana (IBM) Trench, Jurassic and Cretaceous plutonic rocks, such as gabbroic, granitic and metamorphic rocks had been sampled from the Amami Plateau-Daito Ridge-Okidaito Ridge (ADO) in the Philippine Sea Plate. Furthermore, Mesozonic to Paleozonic ages zircons were obtained from volcaniclastic sandstones collected from northern Izu-Bonin forarc (Tani et al., 2012). We present U-Pb ages, Hf-O isotopes and trace element compositions of zircon grains separated from sediment, volcanic rock, dolerite and gabbro, collected from Chichijima Island and Bonin forearc seafloor (KH03-3, KT04-28 cruise of the University of Tokyo, IODP Leg 352). In the zircon age histogram, several age groups were identified. The age peaks are 0-3 Ma and 13 Ma (Hahajima Seamount: soft mud and volcanic tuff); 38 Ma (Oomachi Seamount: sandstone); 45 Ma (Chichijima Island: volcanic rock); 40 Ma, 48 Ma and 52 Ma (Hahajima Seamount: dolerite and gabbro); 45 Ma and 164-165 Ma (IODP Leg 352: volcanic rock), respectively. Zircon U-Pb ages ranging 0-52 Ma correspond well to the multi-stages of magmatism in the IBM. However, 164-165 Ma maybe represent the ages of zircon xenocryst including in forearc volcanic rock , which pre-existing in ancient continent crustal materials (SE China Continent Crust?) as the basement of Paleo-IBM. It seems reasonable to suppose that the subduction initiation of IBM existed along the ancient SE China Continent margins. The initiation of subduction zone is a consequence of lateral compositional buoyancy contrast within the lithosphere, that advocated by Niu et al. (2003, 2016).

  18. Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite {40Ar }/{39Ar } age constraints on tectonic evolution of Southwestern Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Dalziel, Ian W. D.

    1996-11-01

    Zircon U-Pb and muscovite {40Ar }/{39Ar } isotopic ages have been determined on rocks from the southernmost Andes and South Georgia Island, North Scotia Ridge, to provide absolute time constraints on the kinematic evolution of southwestern Gondwanaland, until now known mainly from stratigraphic relations. The U-Pb systematics of four zircon fractions from one sample show that proto-marginal basin magmatism in the northern Scotia arc, creating the peraluminous Darwin granite suite and submarine rhyolite sequences of the Tobifera Formation, had begun by the Middle Jurassic (164.1 ± 1.7 Ma). Seven zircon fractions from two other Darwin granites are discordant with non-linear patterns, suggesting a complex history of inheritances and Pb loss. Reference lines drawn through these points on concordia diagrams give upper intercept ages of ca. 1500 Ma, interpreted as a minimum age for the inherited zircon component. This component is believed to have been derived from sedimentary rocks in the Gondwanaland margin accretionary wedge that forms the basement of the region, or else directly from the cratonic "back stop" of that wedge. Ophiolitic remnants of the Rocas Verdes marginal basin preserved in the Larsen Harbour complex on South Georgia yield the first clear evidence that Gondwanaland fragmentation had resulted in the formation of oceanic crust in the Weddell Sea region by the Late Jurassic (150 ± 1 Ma). The geographic pattern in the observed age range of 8 to 13 million years in these ophiolitic materials, while not definitive, is in keeping with propagation of the marginal basin floor northwestward from South Georgia Island to the Sarmiento Complex in southern Chile. Rocks of the Beagle granite suite, emplaced post-tectonically within the uplifted marginal basin floor, have complex zircon U-Pb systematics with gross discordances dominated by inheritances in some samples and Pb loss in others. Of eleven samples processed, only two had sufficient amounts of zircon for

  19. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  20. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    correlation between internal zircon structures, chemistry, U-Pb isotope ratios and mylonitic fabric. U-Pb data return highly discordant and variable ages: in particular, the 206Pb/238U ages range from Carboniferous to Triassic within the same zircon grain. The youngest 206Pb/238U data derive from narrow axial stripes oriented parallel or at low angle with respect to the foliation planes. These stripes are characterized by an overall HREE, Y, U and Th enrichment possibly reflecting deformation of the grain in presence of interstitial fluid phases, likely related to a concomitant magmatic activity. Deformation related structures (cracks and fractures) within zircon grains acted as fast-diffusion pathways allowing fluids to modify the geochemistry and isotopic systems of zircon. Our results suggest that fluid-assisted brittle-ductile deformation can severely modify the trace elements and isotopic composition of zircon with unexpected patterns constrained by stress regime. In similar cases, our observations suggest that, for a more appropriate interpretation of the petrologic evolution and age variability, a direct characterization of the internal structures of zircons still placed in their microtextural site is highly recommended.

  1. Contrasting sources of Late Paleozoic rhyolite magma in the Polish Lowlands: evidence from U-Pb ages and Hf and O isotope composition in zircon

    NASA Astrophysics Data System (ADS)

    Słodczyk, Elżbieta; Pietranik, Anna; Glynn, Sarah; Wiedenbeck, Michael; Breitkreuz, Christoph; Dhuime, Bruno

    2018-02-01

    The Polish Lowlands, located southwest of the Teisseyre-Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly rhyolitic, magmatism during the Late Paleozoic. Thanks to the inherited zircon they contain, these rhyolitic rocks provide a direct source of information about the pre-Permian rocks underlying the Polish Lowland. This paper presents zircon U-Pb geochronology and Hf and O isotopic results from five drill core samples representing four rhyolites and one granite. Based on the ratio of inherited vs. autocrystic zircon, the rhyolites can be divided into two groups: northern rhyolites, where autocrystic zircon is more abundant and southern rhyolites, where inherited zircon dominates. We suggest that the magma sources and the processes responsible for generating high silica magmas differ between the northern and southern rhyolites. Isotopically distinct sources were available during formation of northern rhyolites, as the Hf and O isotopes in magmatic zircon differ between the two analysed localities of northern rhyolites. A mixing between magmas formed from Baltica-derived mudstone-siltstone sediments and Avalonian basement or mantle can explain the diversity between the zircon compositions from the northern localities Daszewo and Wysoka Kamieńska. Conversely, the southern rhyolites from our two localities contain zircon with similar compositions, and these units can be further correlated with results from the North East German Basin, suggesting uniform source rocks over this larger region. Based on the ages of inherited zircon and the isotopic composition of magmatic ones, we suggest that the dominant source of the southern rhyolites is Variscan foreland sediments mixed with Baltica/Avalonia-derived sediments.

  2. Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho

    2018-02-01

    The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize

  3. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  4. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  5. Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U-Pb SIMS ages and tectonic setting

    NASA Astrophysics Data System (ADS)

    Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas

    2018-04-01

    Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.

  6. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  7. Detrital Zircon U-Pb and Hf-isotope Constrains on Basement Ages, Granitic Magmatism, and Sediment Provenance in the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Clements, Benjamin; Hall, Robert; Belousova, Elena; Pearson, Norman; Griffin, William

    2010-05-01

    The Malay Peninsula forms the western part of central Sundaland in SE Asia. Sundaland comprises Indochina, the Thai-Malay Peninsula, Sumatra, Java, Borneo, and the shallow shelf between these landmasses. It is a composite region of continental crustal fragments that are separated by sutures that represent remnant ocean basins and volcanic arcs. The Malay Peninsula includes two of these fragments - East Malaya and Sibumasu - separated by the Bentong-Raub Suture Zone. The latter is a Palaeo-Tethyan ocean remnant. Granitoids of the Malay Peninsula are the major sources of detrital zircon in Sundaland. East Malaya is intruded by Permian-Triassic Eastern Province granitoids interpreted as products of Palaeozoic subduction of oceanic crust beneath the East Malaya Volcanic Arc. Sibumasu is intruded by Triassic Main Range Province granitoids interpreted as syn- to post-collisional magmatism following suturing to East Malaya. Locally, there are minor Late Cretaceous plutons. Basements of Sibumasu and East Malaya are not exposed and their ages are poorly constrained. The exact timing of the collision between these fragments is also contentious. In order to resolve these uncertainties, 752 U-Pb analyses from 9 samples were carried out on detrital zircons from modern rivers draining the Malay Peninsula and, of these, 243 grains from 6 samples were selected for Hf-isotope analyses. U-Pb zircon ages show that small numbers of Neoarchean-Proterozoic grains are consistently present in all samples, but do not form prominent populations. Permian-Triassic populations are dominant. Only one sample contains a small Jurassic population probably sourced from the area of Thailand and most likely recycled from fluvial-alluvial Mesozoic 'red-beds'. Late Cretaceous populations are locally abundant. Hf-isotope crustal model ages suggest that basement beneath the Malay Peninsula is heterogeneous. Some basement may be Neoarchean but there is no evidence for basement older than 2.8 Ga beneath

  8. Zircon U-Pb dating, Hf analysis from the Horoman perdiotite -age constraint for lithospheric process, and tectonic juxtaposition of collision root zone-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Yi, K.; Wang, K. L.; Chung, S. L.

    2017-12-01

    Hidaka metamorphic belt, Hokkaido, Japan is known as youngest arc-arc collision in the world. It ncludes the youngest granulite and the Horoman peridotite complex in the highest grade zone. Age of these rocks have been determined by various methods (K-Ar, U-Pb, Rb-Sr). However, the age of Horoman peridotite complex has not been determined yet. Only Yoshikawa et al 1993) reported the cooling age of the complex as 23 Ma according to whole rock Rb-Sr isochron. This study has performed U-Pb dating of zircons from the Horoman peridotite, and from the paragneiss surrounding the peridotite complex in order to determine the intrusive age of the Horoman peridotite complex into the lower crustal conditions. Several zircon grains were separated from the peridotite. All zircons are homogeneous exhibiting different age group; 267-278 Ma, 33-40 Ma and 18-20 Ma. Hf isotope analysis indicates that the 267-278 Ma is juvenile age and other two are recycled. As a result of this measurement, rims of the zircons from the gneisses show that 238U-206Pb ages are 20 Ma and detrital cores are ranging from 580-510 Ma, 60-50 Ma, 46-40 Ma and 27 Ma. The rim ages are from the gneiss suffered amphibolite facies and granulite faices, and there is a consistancy with zircon rim ages (19 Ma) from the granulite (Kemp et al 2007, Usuki et al 2006 and so on). That is, granulite faices metamorphism was coeval to regional metamorphism in the lower crust at 20 Ma. The zircon ages from the peridotite was probably related to local hydration related to precipitation of phlogopite at 20 Ma, I type magma infiltration at 40 Ma and lithosphere formation at 270 Ma. It is considered that the Horoman peridotite complex was part of the lithosphere at 270 Ma, and the joined as subarc mantle prior to I type magma activity at 40 Ma, aud suffered local hydration and regional metamorphism at 20 Ma. Ref. Kemp, A.I.S., et al., 2007, Geology, 35, 807-810; Usuki, T. et al, 2006, Island Arc, 14, 503-516.

  9. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  10. Zircon U-Pb Ages from an Ultra-High Temperature Metapelite, Rauer Group, East Antarctica: Implications for Overprints by Grenvillian and Pan-African Events

    USGS Publications Warehouse

    Wang, Yanbin; Tong, Laixi; Liu, Dunyi

    2007-01-01

    SHRIMP U-Pb dating of zircon from an ultra-high temperature (UHT, ~1000 °C) granulite-facies metapelite from the Rauer Group, Mather Peninsula, east Antarctica, has yielded evidence for two episodes of metamorphic zircon growth, at ~1.00 Ga and ~530 Ma, and two episodes of magmatism in the source region for the protolith sediment, at ~2.53 and ~2.65 Ga, were identified from the zircon cores. Successive zircon growth at ~1.00 Ga and ~530 Ma records a sequence of distinct, widely spaced high-temperature metamorphic and/or anatectic events related to Grenvillian and Pan-African orogenesis. This study presents the first robust geochronological evidence for the timing of UHT metamorphism of the Rauer Group, supporting arguments that the peak UHT metamorphic event occurred at ~1.00 Ga and was overprinted by a separate high-grade event at ~530 Ma. The new age data indicate that the UHT granulites of the Rauer Group experienced a complex, multi-stage tectonothermal history, which cannot simply be explained via a single Pan-African (~500 Ma) high-grade tectonic event. This is critical in understanding the role of the eastern Prydz Bay region during the assembly of the east Gondwana supercontinent, and the newly recognized inherited Archaean ages (~2.53 and ~2.65 Ga) suggest a close tectonic relationship between the Rauer Group and the adjacent Archaean of the Vestfold Hills

  11. Zircon U-Pb ages, Hf isotope data, and tectonic implications of Early-Middle Triassic granitoids in the Ailaoshan high-grade metamorphic belt of Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Chen, Xiaoyu; Zhang, Lisheng

    2017-04-01

    The Ailaoshan tectonic belt, where the effects of the Paleo-Tethyan ocean evolution and Indian-Eurasian plate collision are superimposed, is one of the most significant geological discontinuities in western Yunnan province of southeast Tibet. An Ailaoshan micro-block within the belt is bounded by the Ailaoshan suture zone to the west and the Red River Fault to the east, and consists of low- and high-grade metamorphic belts. Late Permian-Middle Triassic granitoids that are widely distributed to the west of the Ailaoshan suture zone and within the Ailaoshan micro-block may yield significant information on the Tethyan tectonic evolution of the Ailaoshan tectonic belt. This study reports new LA-ICP-MS zircon U-Pb geochronology and Hf isotope data of four granitoids from the Ailaoshan high-grade metamorphic belt. Zircon grains from the Yinjie granitoid do not have inherited cores and yield a weighted mean U-Pb age of 247.1 ± 2.0 Ma. The zircon ɛ Hf( t) values range from 7.8 to 12.1, and Hf model ages from 775 to 546 Ma, indicating that the granitoid was derived from juvenile crust. The rims of zircons from the Majie and Yuanjiang granitoids yield weighted mean U-Pb ages of 239.5 ± 1.8 and 237.9 ± 2.6 Ma, respectively, whereas the cores yield ages of 1608-352 Ma. The ɛ Hf( t) values of zircon rims range from -20.4 to -5.3, yielding Hf model ages from 2557 to 1606 Ma and suggesting that the source magma of the Majie and Yuanjiang granitoids was derived from ancient crust. An additional granitoid located near the Majie Village yields a zircon U-Pb age of 241.2 ± 1.0 Ma. Based on our geochronological and geochemical data, combined with geological observations, we propose that the Ailaoshan micro-block was derived from the western margin of the Yangtze block, and is comparable to the Zhongzan and Nam Co micro-blocks. The presence of late Permian mafic rocks with rift-related geochemical characteristics within the Ailaoshan micro-block, together with granitoids derived

  12. Timing of the Late Paleozoic Ice Age: A Review of the Status Quo and New U-Pb Zircon Ages From Southern Gondwana

    NASA Astrophysics Data System (ADS)

    Mundil, R.; Griffis, N. P.; Keller, C. B.; Fedorchuk, N.; Montanez, I. P.; Isbell, J.; Vesely, F.; Iannuzzi, R.

    2017-12-01

    Throughout the Carboniferous and Permian Late Paleozoic Ice Age (LPIA), glaciations in southern Gondwana exerted a profound influence on global climate and environment, ocean chemistry, and the nature of sedimentary processes. The LPIA is widely regarded as an analogue for Pleistocene glaciations. Our understanding of the latter, as well as the validity of predictions for the future global climate and environment, depends therefore on our ability to reconstruct the LPIA. A robust chronostratigraphic framework built on high precision/high accuracy geochronology is crucial for the reconstruction of events and processes that occurred during the LPIA, particularly in the absence of high-resolution terrestrial biostratigraphic constraints that apply to both near- and far-field proxy records. The occurrence of volcaniclastic layers containing primary volcanic zircon at many levels throughout southern Gondwana makes such a reconstruction feasible, but complications inevitably arise due to the mixing of older age components with primary volcanic crystals, as well as the potential of unrecognized open system behavior to produce spurious younger ages. These pitfalls cause age dispersion that may be difficult to interpret, or is unrecognized if low precision geochronological techniques are used, resulting in inaccurate radioisotopic ages. Our current efforts in the Parana Basin (Southern Brazil) and the Karoo Basin (South Africa/Namibia) concentrate on building a robust and exportable chronostratigraphic framework based on U-Pb zircon CA-TIMS ages with sub-permil level precision combined with Bayesian approaches for resolving the eruption age of dispersed age spectra to facilitate the reconstruction of glaciogenic processes through the Carboniferous-Permian transition, as well as their implications for global sea level, atmospheric pCO2 and ocean chemistry. We will also review currently available geochronological data from contemporaneous Australian successions and their

  13. The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river sediments

    USGS Publications Warehouse

    Goldstein, S.L.; Arndt, N.T.; Stallard, R.F.

    1997-01-01

    We report SHRIMP U-Pb ages of 49 zircons from a sand sample from the lower Orinoco River, Venezuela, and Nd model ages of the fine sediment load from the main river and tributaries. The U-Pb ages reflect individual magmatic or metamorphic events, the Sm-Nd model ages reflect average crustal-residence ages of the sediment sources. Together they allow delineation of the crust-formation history of the basement precursors of the sediments. The U-Pb ages range from 2.83 to 0.15 Ga, and most are concordant or nearly so. Discrete age groupings occur at ??? 2.8, ??? 2.1, and ??? 1.1 Ga. The oldest group contains only three samples but is isolated from its closest neighbors by a ??? 600 Ma age gap. Larger age groupings at ??? 2.1 and ??? 1.1 Ga make up about a third and a quarter of the total number of analyses, respectively. The remaining analyses scatter along concordia, and most are younger than 1.6 Ga. The ??? 2.8 and ??? 2.1 Ga ages correspond to periods of crust formation of the Imataca and Trans-Amazonian provinces of the Guyana Shield, respectively, and record intervals of short but intensive continental growth. These ages coincide with ??? 2.9 and ??? 2.1 Ga Nd model ages of sediments from tributaries draining the Archean and Proterozoic provinces of the Guyana Shield, respectively, indicating that the U-Pb ages record the geological history of the crystalline basement of the Orinoco basin. Zircons with ages corresponding to the major orogenies of the North Atlantic continents (the Superior at ??? 2.7 Ga and Hudsonian at 1.7-1.9 Ga) were not found in the Orinoco sample. The age distribution may indicate that South and North America were separated throughout their history. Nd model ages of sediments from the lower Orinoco River and Andean tributaries are ??? 1.9 Ga, broadly within the range displayed by major rivers and dusts. This age does not coincide with known thermal events in the region and reflects mixing of sources with different crust-formation ages. The

  14. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  15. New zircon U-Pb LA-ICP-MS ages and Hf isotope data from the Central Pontides (Turkey): Geological and geodynamic constraints

    NASA Astrophysics Data System (ADS)

    Çimen, Okay; Göncüoğlu, M. Cemal; Simonetti, Antonio; Sayit, Kaan

    2018-05-01

    The Central Pontides in northern Anatolia is located on the accretionary complex formed by the closure of Neotethyan Intra-Pontide Ocean between the southern Eurasian margin (Istanbul-Zonguldak Terrane) and the Cimmerian Sakarya Composite Terrane. Among other components of the oceanic lithosphere, it comprises not yet well-dated felsic igneous rocks formed in arc-basin as well as continent margin settings. In-situ U-Pb age results for zircons from the arc-basin system (öangaldağ Metamorphic Complex) and the continental arc (Devrekani Metadiorite and Granitoid) yield ages of 176 ± 6 Ma, 163 ± 9 Ma and 165 ± 3 Ma, respectively. Corresponding in-situ average (initial) 176Hf/177Hf initial ratios are 0.28261 ± 0.00003, 0.28267 ± 0.00002 and 0.28290 ± 0.00004 for these units and indicative of a subduction-modified mantle source. The new U-Pb ages and Hf isotope data from these oceanic and continental arc units together with regional geological constraints support the presence of a multiple subduction system within the Intra-Pontide Ocean during the Middle Jurassic.

  16. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    USGS Publications Warehouse

    Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T.

    2015-01-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff. Tephra from the Lava Creek eruption is a key Quaternary chronostratigraphic marker, in particular for dating the deposition of mid Pleistocene glacial and pluvial deposits in western North America. To resolve the timing of eruption and crystallization history for the Lava Creek magma, we performed (1) 40Ar/39Ar dating of single sanidine crystals to delimit eruption age and (2) ion microprobe U-Pb and trace-element analyses of the crystal faces and interiors of single zircons to date the interval of zircon crystallization and characterize magmatic evolution. Sanidines from the two informal members composing Lava Creek Tuff yield a preferred 40Ar/39Ar isochron date of 631.3 ± 4.3 ka. Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 626.5 ± 5.8 ka, and have trace element concentrations that vary with the eruptive stratigraphy. Zircon interiors yield a mean 206Pb/238U date of 659.8 ± 5.5 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high U concentration cores that likely grew from highly evolved melt. The occurrence of distal Lava Creek tephra in stratigraphic sequences marking the Marine Isotope Stage 16–15 transition supports the apparent eruption age of ∼631 ka. The combined results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103−104 year interval before eruption.

  17. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    NASA Astrophysics Data System (ADS)

    Maas, Roland; McCulloch, Malcolm T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3000 to 3700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. The association of the near-shore/fluviatile clastic association studied here with extensive turbiditic and chemical sedimentary sequences indicates these sources formed part of a (rifted ?) cratonic margin ca. 3 Ga ago. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. ɛNd( TDep) values in Jack Hills metasediments vary widely (+5 to -12) but have a smaller range in the Mt. Narryer belt (-5 to -9). The lowest ɛNd values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger (≥ 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons (≈3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.

  18. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    SciTech Connect

    Maas, R.; McCulloch, M.T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3,000 to 3,700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneissmore » terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. {epsilon}{sub Nd}(T{sub Dep}) values in Jack Hills metasediments vary widely (+5 to {minus}12) but have a smaller range in the Mt. Narryer belt ({minus}5 to {minus}9). The lowest {epsilon}{sub Nd} values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger ({ge} 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons ({approx}3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.« less

  19. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Gilotti, Jane A.; Nutman, Allen P.; Brueckner, Hannes K.

    2004-10-01

    /U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.

  20. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  1. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  2. Maximum depositional ages and evolving provenance of Franciscan metagraywackes, NW California: LA-ICPMS zircon U-Pb data

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Dumitru, T. A.; Tsujimori, T.; McLaughlin, R. J.; Makishima, A.; Nakamura, E.

    2012-12-01

    In the Cape Mendocino-Garberville-Covelo area, the Franciscan Complex comprises an imbricate stack of east-rooting allochthons. Five structurally higher to lower thrust sheets crop out from east to west: Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; and Coastal Belt King Range/False Cape terranes. We analyzed detrital zircons from 11 rocks: 2 Eastern Belt; 5 Central Belt; 4 King Range/False Cape terrane. Combined with earlier analyses of 3 Yager terrane and 3 Coastal terrane zircon suites (Dumitru et al., in review), 17 rocks were investigated. Maximum ages of sedimentation and inferred ultimate sources of these units as follows. Eastern Belt (Yolla Bolly): 98-120 Ma Sierran batholith, 140- 230 Ma Andean arc, minor 1300-1400 Ma Mazatzal granites, minor 1800 Ma Yavapai basement, trace >2.5 Ga Archean craton. Central Belt: minor 62-80 Ma Idaho batholith, 85-200 Ma Sierran batholith-Andean arc, 1300-1400 Ma Mazatzal granites, minor 1600-1750 Ma Mazatzal-Yavapai basement. Yager terrane: 50-75 Ma Idaho batholith, 85-120 Ma Sierran batholith, minor 160-200 Ma Andean arc. Coastal terrane: 30-50 Ma, Cascade + Challis volcanics, 55-80 Ma Idaho batholith, 100 Ma Sierran batholith, 1300-1400 Ma, Mazatzal granites. King Range/False Cape terrane: 22-50 Ma Cascade + Challis Idaho batholith, 100-180 Ma Sierran batholith-Andean arc, minor 1400 Ma Mazatzal-Yavapai granites. Depositional ages of Franciscan imbricate thrust sheets young westward from the mid Cretaceous Eastern Belt through the end-of-Cretaceous Central Belt, to the Paleogene Coastal Belt. Over time, the Franciscan received greater proportions of younger clastics derived from more northerly sources. Although mostly arc-derived, some recycled 1400 and 1700-1800 Ma ± 2.5 Ga arc zircons probably were supplied to the Franciscan Complex by erosion and westward transport of detrital grains from Lower Paleozoic miogeoclinal strata covering the cratonal edge. Except

  3. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  4. Permian U-Pb (CA-TIMS) zircon ages from Australia and China: Constraining the time scale of environmental and biotic change

    NASA Astrophysics Data System (ADS)

    Denyszyn, S. W.; Mundil, R.; Metcalfe, I.; He, B.

    2010-12-01

    In eastern Australia, the interconnected Bowen and Sydney Basins are filled with terrestrial sediments of late Paleozoic to early Mesozoic age. These sedimentary units record significant evolutionary events of eastern Gondwana during the time interval between two major mass extinctions (end Middle Permian and Permian-Triassic), and also provide lithological evidence for the Carboniferous-Permian Late Paleozoic Ice Age of southern Pangea, considered to be divisible into up to seven discrete glaciation events in Australia [e.g., 1]. These glaciations are currently assigned ages that indicate that the last of the glaciations predate the end Middle Permian mass extinction at ca. 260 Ma. However, the estimates for the time and durations are largely based on biostratigraphy and lithostratigraphy that, in the absence of robust and precise radioisotopic ages, are unacceptably fragile for providing an accurate high-resolution framework. Interbedded with the sediments are numerous tuff layers that contain zircon, many of which are associated with extensive coal measures in the Sydney and Bowen Basins. Published SHRIMP U-Pb zircon ages [2, 3] have been shown to be less precise and inaccurate when compared to ages applying the CA-TIMS method to the same horizons. Also within the late Middle Permian, the eruption of the Emeishan flood basalts in SW China has been proposed to have caused the end Middle Permian mass extinction [e.g., 4], though a causal link between these events demands a rigorous test that can only be provided by high-resolution geochronology. We present new U-Pb (CA-TIMS) zircon ages on tuff layers from the Sydney and Bowen Basins, with the purpose of generating a timescale for the Upper Permian of Australia to allow correlation with different parts of the world. Initial results, with permil precision, date a tuff layer within the uppermost Bandanna Fm. to ca. 252 Ma, a tuff within the Moranbah Coal Measures to ca. 256 Ma, and a tuff within the Ingelara Fm. to

  5. Temporal and spatial distribution of Paleozoic metamorphism in the southern Appalachian Blue Ridge and Inner Piedmont delimited by ion microprobe U-Pb ages of metamorphic zircon

    USGS Publications Warehouse

    Merschat, Arthur J.; Bream, Brendan R.; Huebner, Matthew T.; Hatcher, Robert D.; Miller, Calvin F.

    2017-01-01

    Ion microprobe U-Pb zircon rim ages from 39 samples from across the accreted terranes of the central Blue Ridge, eastward across the Inner Piedmont, delimit the timing and spatial extent of superposed metamorphism in the southern Appalachian orogen. Metamorphic zircon rims are 10–40 µm wide, mostly unzoned, and dark gray to black or bright white in cathodoluminescence, and truncate and/or embay interior oscillatory zoning. Black unzoned and rounded or ovoid-shaped metamorphic zircon morphologies also occur. Th/U values range from 0.01 to 1.4, with the majority of ratios less than 0.1. Results of 206Pb/238U ages, ±2% discordant, range from 481 to 305 Ma. Clustering within these data reveals that the Blue Ridge and Inner Piedmont terranes were affected by three tectonothermal events: (1) 462–448 Ma (Taconic); (2) 395–340 Ma (Acadian and Neoacadian); and (3) 335–322 Ma, related to the early phase of the Alleghanian orogeny. By combining zircon rim ages with metamorphic isograds and other published isotopic ages, we identify the thermal architecture of the southern Appalachian orogen: juxtaposed and superposed metamorphic domains have younger ages to the east related to the marginward addition of terranes, and these domains can serve as a proxy to delimit terrane accretion. Most 462–448 Ma ages occur in the western and central Blue Ridge and define a continuous progression from greenschist to granulite facies that identifies the intact Taconic core. The extent of 462–448 Ma metamorphism indicates that the central Blue Ridge and Tugaloo terranes were accreted to the western Blue Ridge during the Taconic orogeny. Zircon rim ages in the Inner Piedmont span almost 100 m.y., with peaks at 395–385, 376–340, and 335–322 Ma, and delimit the Acadian-Neoacadian and Alleghanian metamorphic core. The timing and distribution of metamorphism in the Inner Piedmont are consistent with the Devonian to Mississippian oblique collision of the Carolina superterrane

  6. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees

    USGS Publications Warehouse

    Martinez, F.J.; Iriondo, A.; Dietsch, C.; Aleinikoff, J.N.; Peucat, J.J.; Cires, J.; Reche, J.; Capdevila, R.

    2011-01-01

    The ages of orthogneisses exposed in massifs of the Variscan chain can determine whether they are part of a pre-Neoproterozoic basement, a Neoproterozoic, Panafrican arc, or are, in fact, lower Paleozoic, and their isotopic compositions can be used to probe the nature of their source rocks, adding to the understanding of the types, distribution, and tectonic evolution of peri-Gondwanan crystalline basement. Using SHRIMP U-Pb zircon geochronology and Nd isotopic analysis, pre-Variscan metaigneous rocks from the N??ria massif in the Eastern Pyrenean axial zone and the Guilleries massif, 70km to the south, have been dated and their Nd signatures characterized. All dated orthogneisses from the N??ria massif have the same age within error, ~457Ma, including the Ribes granophyre, interpreted as a subvolcanic unit within Caradocian sediments contemporaneous with granitic magmas intruded into Cambro-Ordovician sediments at deeper levels. Orthogneisses in the Guilleries massif record essentially continuous magmatic activity during the Ordovician, beginning at the Cambro-Ordovician boundary (488??3Ma) and reaching a peak in the volume of magma in the early Late Ordovician (~460Ma). Metavolcanic rocks in the Guilleries massif were extruded at 452??4Ma and appear to have their intrusive equivalent in thin, deformed veins of granitic gneiss (451??7Ma) within metasedimentary rocks. In orthogneisses from both massifs, the cores of some zircons yield Neoproterozoic ages between ~520 and 900Ma. The age of deposition of a pre-Late Ordovician metapelite in the Guilleries massif is bracketed by the weighted average age of the youngest detrital zircon population, 582??11Ma, and the age of cross-cutting granitic veins, 451??7Ma. Older detrital zircons populations in this metapelite include Neoproterozoic (749-610Ma; n=10), Neo- to Mesoproterozoic (1.04-0.86Ga; n=7), Paleoproterozoic (2.02-1.59Ga; n=5), and Neoarchean (2.74-2.58Ga; n=3). Nd isotopic analyses of the N??ria and Guilleries

  7. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Matthews, N. E.; Calvert, A. T.

    2015-12-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). Tephra from the eruption blanketed much of the western United States, and is a key Quaternary chronostratigraphic marker, in particular for dating deposition of mid-Pleistocene glacial and pluvial deposits in western North America. We performed 40Ar/39Ar dating of single sanidines to delimit eruption age, and ion microprobe U-Pb and trace-element analyses of crystal faces on single zircons to characterize magmatic evolution and date near-eruption crystallization, as well as analyses of crystal interiors to date the interval of zircon crystallization. Sanidines from the two LCT members A and B yield an 40Ar/39Ar isochron date of 631 ± 4 ka (2σ). Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 627 ± 6 ka (2σ) and have trace element concentrations that vary with eruptive stratigraphy. Zircon interiors yield a weighted mean 206Pb/238U date of 660 ± 6 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high-U concentrations and dark cathodoluminescence (CL) cores. These crystals with high-U cores are possibly sourced from 'defrosting' of melt-impregnated margins of the growing subvolcanic reservoir. LCT sanidines mirror the variation of zircon composition within the eruptive stratigraphy, with crystals from upper LCT-A and basal LCT-B having bright-CL rims with high Ba concentrations, suggesting late crystallization after addition of less evolved silicic magma. The occurrence of distal LCT in stratigraphic sequences marking the Marine Isotope Stage 16-15 transition supports the apparent eruption age of ca. 631 ka. These results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103-104 year interval

  8. Integrated U-Pb zircon and palynological/palaeofloristic age determinations of a Bashkirian palaeofjord fill, Quebrada Grande (Western Argentina)

    NASA Astrophysics Data System (ADS)

    Valdez Buso, Victoria; di Pasquo, Mercedes; Milana, Juan Pablo; Kneller, Benjamin; Fallgatter, Claus; Junior, Farid Chemale; Gomes Paim, Paulo Sérgio

    2017-01-01

    This work presents a new age framework for the main Bashkirian glacio-eustatic transgression in Argentina, including the first absolute age for the Jejenes Formation, San Juan Province, based on radiometric dating of a crystal-rich tuff, supported by palynological and palaeofloristic studies, and presented within a revised palaeogeographic setting. The Jejenes Formation represents the glacial to postglacial fill of the Quebrada Grande palaeofjord carved in the Eastern Precordillera. The succession has been subdivided into five stages, the youngest of which suggests a previously unrecognised glacial event for this locality. Six productive levels for palynology were found within proglacial strata, and in the base and top of the succeeding interglacial stage. Palynoassemblages are characterized by poorly preserved trilete spores and monosaccate pollen grains along with a large amount of terrestrial phytoclasts. Main species indicating the Raistrickia densa-Convolutispora muriornata SubZone (DMa SZ) are Vallatisporites ciliaris, Cristatisporites rollerii, C. stellatus, C. chacoparanensis, C. inconstans and monosaccates such as Circumplicatipollis plicatus. This DMa SZ is estimated as Serpukhovian/Bashkirian and characterizes the glacial-related Guandacol Formation and equivalents units of the western Paganzo Basin. A tuffaceous level in the proglacial unit, bearing platyspermic seeds, plant remains and palynomorphs, yielded first-cycle volcanic zircons that were analysed by SHRIMP. An absolute age of 321.3 ± 5.3 Ma confirms a Bashkirian age for the main postglacial transgression in the Paganzo Basin, and offers a novel calibration for the palynoassemblages of DMa SZ that occurs elsewhere in Western Argentina.

  9. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains

    NASA Astrophysics Data System (ADS)

    Holden, Peter; Lanc, Peter; Ireland, Trevor R.; Harrison, T. Mark; Foster, John J.; Bruce, Zane

    2009-09-01

    The identification and retrieval of a large population of ancient zircons (>4 Ga; Hadean) is of utmost priority if models of the early evolution of Earth are to be rigorously tested. We have developed a rapid and accurate U-Pb zircon age determination protocol utilizing a fully automated multi-collector ion microprobe, the ANU SHRIMP II, to screen and date these zircons. Unattended data acquisition relies on the calibration of a digitized sample map to the Sensitive High Resolution Ion MicroProbe (SHRIMP) sample-stage co-ordinate system. High precision positioning of individual grains can be produced through optical image processing of a specified mount location. The focal position of the mount can be optimized through a correlation between secondary-ion steering and the spot position on the target. For the Hadean zircon project, sample mounts are photographed and sample locations (normally grain centers) are determined off-line. The sample is loaded, reference points calibrated, and the target positions are then visited sequentially. In SHRIMP II multiple-collector mode, zircons are initially screened (ca. 5 s data acquisition) through their 204Pb corrected 207Pb/206Pb ratio; suitable candidates are then analyzed in a longer routine to obtain better measurement statistics, U/Pb, and concentration data. In SHRIMP I and SHRIMP RG, we have incorporated the automated analysis protocol to single-collector measurements. These routines have been used to analyze over 100,000 zircons from the Jack Hills quartzite. Of these, ca. 7%, have an age greater than 3.8 Ga, the oldest grain being 4372 +/- 6 Ma (2[sigma]), and this age is part of a group of analyses around 4350 Ma which we interpret as the age when continental crust first began to coalesce in this region. In multi-collector mode, the analytical time taken for a single mount with 400 zircons is approximately 6 h; whereas in single-collector mode, the analytical time is ca. 17 h. With this productivity, we can produce

  10. The tectonic evolution of the Irtysh tectonic belt: New zircon U-Pb ages of arc-related and collisional granitoids in the Kalaxiangar tectonic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Klemd, Reiner; Gao, Jun; Xiang, Peng; Xu, Xing-Wang; You, Jun; Wang, Xin-Shui; Wu, Chu; Li, Hao; Ke, Qiang

    2017-02-01

    Precise geochronological constraints of the Irtysh tectonic belt situated between the Saur Island Arc and the Altay Terrane are crucial to a better understanding of the tectonic evolution of the Central Asian Orogenic Belt (CAOB). Recently, we discovered repeatedly deformed arc-related and collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh tectonic belt. In this study, we report new whole-rock geochemical, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our data reveal that 1) arc-related granodioritic porphyries formed at ca. 382-374 Ma. Recrystallized zircon grains from a (ultra-)mylonitic granodiorite of the Laoshankou zone in the southern KTB display a U-Pb age of ca. 360 Ma; 2) syn-collisional granodioritic porphyries, which distribute along faults and parallel to the cleavage, were emplaced at ca. 367-356 Ma, with εHf(t) values varying from + 7.8 to + 14.2 and Hf model ages from 873 to 459 Ma; 3) a post-collisional A-type granodioritic porphyry, which crosscuts the NW-NNW trending schistosity of the metasedimentary country rocks at a low angle, has an age of ca. 324-320 Ma, while the εHf(t) values range from + 7.6 to + 14.4 with Hf model ages from 850 to 416 Ma; 4) post-collisional strike-slip A-type granite dykes, exposed along strike-slip faults, gave ages between 287 and 279 Ma, whereas the εHf(t) values range from + 4.9 to + 12.7 and the Hf model ages from 995 to 500 Ma; and 5) A-type biotite granite dykes, which intruded along conjugate tension joints, have ages of 274-271 Ma, and εHf(t) values from + 1.5 to + 13.2 with Hf model ages from 1196 to 454 Ma. Consequently, we propose that the collision between the Saur Island Arc and the Altay Terrane occurred in the Early Carboniferous (ca. 367-356 Ma) and the subsequent post-collisional tectonic process continued to the Late Carboniferous (ca. 324-320 Ma). It is further suggested that the Irtysh tectonic belt

  11. Zircon Trace Element Contents and Refined U-Pb Crystallization Ages for the Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.

    2008-12-01

    The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants

  12. U Pb ages of angrites

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri

    2008-01-01

    Precise U-Pb ages, determined with double spike ( 202Pb- 205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D'Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D'Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/ 204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D'Orbigny. Blank-corrected 206Pb/ 204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb ∗/ 206Pb ∗ dates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D'Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of "slowly cooled" angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn- 53Cr "absolute" ages by 0.7 Ma. Third, a precise age of D'Orbigny allows consistent linking of the 53Mn- 53Cr and 26Al- 26Mg extinct nuclide chronometers to the absolute lime scale.

  13. Rhyacian A-type tholeiitic granites in southern Brazil: Geochemistry, U-Pb zircon ages and Nd model ages

    NASA Astrophysics Data System (ADS)

    Mesquita, Maria José; Bitencourt, Maria de Fátima; Nardi, Lauro Stoll; Picanço, Jefferson; Chemale, Farid, Jr.; Pimenta, Vanessa de Almeida

    2017-04-01

    In the southern South American platform, 2.5 to 2.0 Ga terranes, probably related to the Atlantica supercontinent, occur mainly as minor reworked inliers within Neoproterozoic, Brasiliano/Pan-African orogenic belts, as the Ribeira Belt in southern Brazil. The dispersion of such fragments has generated uncertainties about their geotectonic reconstruction, and their study has been supported mainly by elemental and isotope geochemistry. The southern Ribeira Belt lies between the Paranapanema and Luiz Alves cratons and contains reworked Neoarquean and Paleoproterozoic terranes which outcrop as basement nuclei in supracrustal sequences, as the Setuva Complex. The Água Comprida Suite, situated in the northern part of the Setuva Complex, consists of Amphibole-Biotite Syenogranite (ABS), Porphyritic Biotite Syenogranite (PBS), and Equigranular Biotite Syenogranite (EBS). All granites are foliated and intensively deformed. The oldest foliation (Sn) is marked by augen feldspars set in a recrystallized matrix, followed by a crenulation cleavage (Sn + 1) which evolves to discrete shear zones. ABS is a metaluminous, reduced A-type granite with FeOt / (FeOt + MgO) > 0.9, with high HFSE and REE contents, corresponding to magmas related to continental medium to high-K tholeiitic series. PBS and specially EBS are highly differentiated, metaluminous to peraluminous (EBS), oxidized granites. The increase of Al2O3 and Rb, and decrease of HFS and RE elements relative to ABS indicate their evolution from tholeiitic magmas. The Água Comprida Suite granites are cogenetic rocks evolved from a within-plate mantle source, marked by high Nb, Ta, and Y. The influence of previously metasomatised mantle sources is evidenced by negative Nb, Ti, and P anomalies. The age of ABS is 2187 ± 26 Ma, and that of PBS is between 2180 ± 13 to 2186 ± 22 Ma. The Nd model age of 2.4 Ga, and εNd(2.18 Ga) between - 0.23 and - 0.27 support the interpretation of ABS being formed from juvenile material with a

  14. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling

  15. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt?

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.

    1982-08-01

    U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.

  16. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest

    NASA Astrophysics Data System (ADS)

    Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny

    2018-04-01

    The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

  17. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited, and detrital zircon

    USGS Publications Warehouse

    Dusel-Bacon, C.; Williams, I.S.

    2009-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses of igneous zircons from the Lake George assemblage in the eastern Yukon-Tanana Upland (Tanacross quadrangle) indicate both Late Devonian (???370 Ma) and Early Mississippian (???350 Ma) magmatic pulses. The zircons occur in four textural variants of granitic orthogneiss from a large area of muscovite-biotite augen gneiss. Granitic orthogneiss from the nearby Fiftymile batholith, which straddles the Alaska-Yukon border, yielded a similar range in zircon U-Pb ages, suggesting that both the Fiftymile batholith and the Tanacross orthogneiss body consist of multiple intrusions. We interpret the overall tectonic setting for the Late Devonian and Early Mississippian magmatism as an extending continental margin (broad back-arc region) inboard of a northeast-dipping (present coordinates) subduction zone. New SHRIMP U-Pb ages of inherited zircon cores in the Tanacross orthogneisses and of detrital zircons from quartzite from the Jarvis belt in the Alaska Range (Mount Hayes quadrangle) include major 2.0-1.7 Ga clusters and lesser 2.7-2.3 Ga clusters, with subordinate 3.2, 1.4, and 1.1 Ga clusters in some orthogneiss samples. For the most part, these inherited and core U-Pb ages match those of basement provinces of the western Canadian Shield and indicate widespread potential sources within western Laurentia for most grain populations; these ages also match the detrital zircon reference for the northern North American miogeocline and support a correlation between the two areas.

  18. The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U-Pb ages: an example from high-grade basement in Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Fornelli, A.; Langone, A.; Micheletti, F.; Pascazio, A.; Piccarreta, G.

    2014-03-01

    The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U-Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U-Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core-overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327-320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core

  19. Recent exhumational pattern across the Lhasa Terrain: Revealed by detrital zircon fission track and U/Pb ages from modern fluvial sediments along Yarlung-Tsangpo, South Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Yi; Chen, Yue-Gau; Liu, Tsung-Kwei; Cao, Zhongquan

    2010-05-01

    Detrital samples from the foreland basin and so forth depositional environments archive the evolutional phases of adjacent orogens. Modern fluvial sediments, similarly, provide the integrated information of exposed bedrocks in the studied drainages where sometimes few access is allowed to get the in situ samples. However, the nature of the dispersed detrital ages has long hampered our interpretation in thermal evolution and surface processes of the studied terrain, mainly spatial-wise. With suitable thermo-chronometers, multiple dated single-grain ages can shed a light on the provenance of studied grains and limit the uncertainties of plausible source areas. In this study, we present the detrital zircon fission track (ZFT) and U/Pb ages from the modern fluvial sediments collected along the Yarlung-Tsangpo and its two tributaries, Lhasa River and Nyang River. The sample collected from Lhasa River (LS) shows its ZFT age population peaks as: 1.5 Ma (2.1%), 6.8 Ma (44.5%), 11.3 Ma (34.1%), and 32.5 Ma (19.3%) while the sample collected from Nyang River ( BY) shows the age peaks as: 6.2 Ma (10.3%), 22.8 Ma (36.3%), and 51.6 Ma (53.4%). The ZFT ages are much younger than the bedrock strata of Lhasa terrain (Proterozoic to Mesozoic) and most of the intrusive Gangdese belt (Mesozoic to Mid-Miocene). So far, our U/Pb ages from LS has corresponded to published Gangdese intrusion ages and further confirm that the majority of analyzed grains exhibit consistent young ZFT ages, indicating a significant exhumational phase in the Lhasa Terrain from 15-6 Ma. However, the occurrence of this recent exhumation may not be contemporary and the magnitude must be diverse across the Lhasa Terrain. Evidently, we observe a dramatic decrease of younger ZFT age population (grain ages younger than 15 Ma) descending from ~78% in the Lhasa River drainage down to less than 15% in the Nyang River drainage. On the other hand, the older population (grain ages > 15 Ma) shifts from ~20% (Lhasa River

  20. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  1. Zircon U-Pb ages and Sr-Nd isotope ratios for the Sirstan granitoid body, NE Iraq: Evidence of magmatic activity in the Middle Cretaceous Period

    NASA Astrophysics Data System (ADS)

    Abdulzahra, Imad Kadhim; Hadi, Ayten; Azizi, Hossein; Asahara, Yoshihiro; Yamamoto, Koshi

    2017-03-01

    The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair Valley area, in the northeastern part of Iraq within the Sanandaj-Sirjan Zone (SSZ) of the Zagros Orogenic Belt. The U-Pb zircon dating of the SG rocks has revealed a concordia age of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during the Middle Cretaceous. The whole-rock Rb-Sr isochron data shows an age of 52.4 ± 9.4 Ma (MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these rocks over the subduction zone in an active continental margin regime. The SG rocks are hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values of ɛNd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and isotope compositions show that the SG body originated from the metasomatic mantle without a major role for continental contamination. Our findings show that the granitoid bodies distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.

  2. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with

  3. Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa

    NASA Astrophysics Data System (ADS)

    Midende, Gilbert; Boulvais, Philippe; Tack, Luc; Melcher, Frank; Gerdes, Axel; Dewaele, Stijn; Demaiffe, Daniel; Decrée, Sophie

    2014-12-01

    the carbonatite can directly be related to the carbonatite evolution. They have been dated at 705.5 ± 4.5 Ma (U-Pb concordant age, LA-ICP-MS). Similar zircon megacrysts of the Lueshe carbonatite (DRCongo) have been dated and give a concordant age at 798.5 ± 4.9 Ma (U-Pb, LA-ICP-MS). Considering that an extensional tectonic regime occured at that time in Central Africa - what remains debated - both ages could relate to different stages of Rodinia breakup, with uprise of mantle-derived magmas along Palaeoproterozoic lithospheric zones of weakness.

  4. The origin of zircon and the significance of U-Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France)

    NASA Astrophysics Data System (ADS)

    Skrzypek, E.; Štípská, P.; Cocherie, A.

    2012-12-01

    U-Pb zircon dating is combined with petrology, Zr-in-rutile thermometry and mineral equilibria modelling to discuss zircon petrogenesis and the age of metamorphism in three units of the Variscan Vosges Mountains (NE France). The monotonous gneiss unit shows results at 700-500 Ma, but no Variscan ages. The varied gneiss unit preserves ages between 600 and 460 Ma and a Variscan group at 340-335 Ma. Zircon analyses from the felsic granulite unit define a continuous array of ages between 500 and 340 Ma. In varied gneiss samples, zoned garnet includes kyanite and rutile and is surrounded by matrix sillimanite and cordierite. In a pseudosection, it points to peak conditions of ~16 kbar/850 °C followed by isothermal decompression to 8-10 kbar/820-860 °C. In felsic granulite samples, the assemblage K-feldspar-garnet-kyanite-Zr-rich rutile is replaced by sillimanite and Zr-poor rutile. Modelling these assemblages supports minimum conditions of ~13 kbar/925 °C, and a subsequent P-T decrease to 6.5-8.5 kbar/800-820 °C. The internal structure and chemistry of zircons, and modelling of zircon dissolution/growth along the inferred P-T paths are used to discuss the significance of the U-Pb ages. In the monotonous unit, inherited zircon ages of 700-500 Ma point to sedimentation during the Late Cambrian, while medium-grade metamorphism did not allow the formation of Variscan zircon domains. In both the varied gneiss and felsic granulite units, zircons with a blurred oscillatory-zoned pattern could reflect solid-state recrystallization of older grains during HT metamorphism, whereas zircons with a dark cathodoluminescence pattern are thought to derive from crystallization of an anatectic melt during cooling at middle pressure conditions. The present work proposes that U-Pb zircon ages of ca. 340 Ma probably reflect the end of a widespread HT metamorphic event at middle crustal level.

  5. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  6. Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, Da; Xiong, Guangqiang; Zhao, Hongtao; Di, Yongjun; Wang, Zhong; Zhou, Zhiguang

    2016-04-01

    Late Paleozoic was a critical period for the tectonic evolution of the northern margin of the Alxa-North China craton, but the evolutionary history is not well constrained. The Carboniferous intrusions in the Langshan area in the western part of the northern margin of the Alxa-North China craton are mainly composed of tonalite, quartz diorite, olivine gabbro and pyroxene peridotite. Zircon LA-ICP-MS U-Pb dating indicates that the Langshan Carboniferous intrusions were emplaced at ca. 338-324 Ma. The quartz diorites are characterized by high amounts of compatible trace elements (Cr, Ni and V) and high Mg# values, which may suggest a significant mantle source. The positive Pb and negative Nb-Ta-Ti anomalies, the variable εHf(t) (-6.9 to 2.0) values and the old Hf model ages (1218-1783 Ma) imply some involvement of ancient continental materials in its petrogenesis. The tonalite has relatively high Sr/Y ratios, low Mg#, Yb and Y contents, features of adakite-like rocks, negative εHf(t) values (-9.8 to -0.1) and older Hf model ages (1344-1953 Ma), which suggest significant involvement of ancient crust materials and mantle-derived basaltic component in its petrogenesis. The high Mg# values, high Cr and Ni contents, and low Zr and Hf contents of the mafic-ultramafic rocks show evidence of a mantle source, and the relatively low zircon εHf(t) values (-5.9 to 3.2) might point to an enriched mantle. The trace element characteristics indicate the influence of subducted sediments and slab-derived fluids. In the tectonic discrimination diagrams, all the rocks plot in subduction-related environment, such as volcanic arc and continental arc. Considering the regional geology, we suggest that the Carboniferous intrusions in the Langshan area were likely emplaced during the late stage of the southward subduction of the Paleo-Asian Ocean plate, which formed a continental arc along the northern margin of the Alxa-North China craton.

  7. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology

    USGS Publications Warehouse

    Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K. R.; Blissett, A.H.

    1988-01-01

    Through the application of both conventional U-Pb zircon analyses and small-sample U-Pb isotopic analyses, the nature and timing of tectonic events leading to the formation of the Gawler Craton have been defined more precisely. Constraints on deposition of Early Proterozoic iron formation-bearing sediments have been narrowed down to the period 1960-1847 Ma. Deformed acid volcanics, including the economically important Moonta Porphyry, have zircon ages of ??? 1790 and 1740 Ma. The voluminous acid Gawler Range Volcanics and correlatives to the east were erupted over a short interval at 1592 ?? 2 Ma, and were intruded by anorogenic granites at ??? 1575 Ma. Small-sample zircon analyses proved to be an extremely valuable adjunct to conventional analyses, generally yielding more-concordant data which forced a curved discordia through an upper intercept slightly younger than from a conventional straight-line discordia. ?? 1988.

  8. A New age Constraint on Sturtian Glaciation: SHRIMP U-Pb zircon geochronology of Neoproterozoic Altungol Formation in Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, J.; Li, W.; Wang, H.

    2013-12-01

    Neoproterozoic glaciations with a wide distribution, punctuated the largely ice-free Precambrian world within tropical latitudes, interpreted as evidence record the cold paleoclimate intervals which made a Snowball Earth with the frozen ocean. More recently, Quruqtagh of Northeast Tarim Basin, Northwest China, catches the increasing eyes, not only because of its three or four Neoproterzoic glacial periods in China, but also its tectonic significance for breakup of Rodinia supercontinent. There are many Neoproterozoic glaciation strata exposures in Quruqtagh. The Nanhua System is divided into the Bayisi, Zhaobishan (absent in south aera), Altungol and Tereeken formations. Thick tillites were found in Bayisi, Tereeken and Hankalchough formations, while minor was found in Altungol Formation. After the field investigation of the south Yaerdang Mountain in the South aera, it is suggested that the Altungol Formation in the South aera differs from that the North aera. In the North, it is a set of littoral-neritic clastic facies sediment with few volcanic rocks and marine tillites in the bottom. In South Quruqtagh, it consists of 45m-thick gray-green tillites in the bottom with different size and complex components gravels, volcanic interbed near the top of tillites, overlying strata is cap dolomite of 15m thickness, with abundant drop-stones, the upper is black shales and gray to black thin-interbeded siliceous rock. The reported ages without Altungol glaciation age are all focused on the north Quruqtagh and conversely in South Quruqtagh without reported glaciation age. Based on field investigation of Nanhua System (Cryogenian) in NE Tarim Basin, we offer the first set of Sturtian glaciation age 729.4×6.6Ma, in the form of SHRIMP(sensitive high-resolution ion microprobe) U-Pb zircon age dating of volcanic interbedded near the top of Altungol Formation tillites, South Quruqtagh, which provides a new constraint on the Sturtian glaciation from global perspective. It is a

  9. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  10. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40/39Ar age determinations, Fuerteventura, Canary Islands

    USGS Publications Warehouse

    Allibon, James; Ovtcharova, Maria; Bussy, Francois; Cosca, Michael; Schaltegger, Urs; Bussien, Denise; Lewin, Eric

    2011-01-01

    High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520,000 to 800,000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope δ18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

  11. Permian single crystal U-Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia)

    NASA Astrophysics Data System (ADS)

    Vozárová, Anna; Šmelko, Miloš; Paderin, Ilya

    2009-12-01

    Zircon populations from the Rožňava Formation volcanic rock complex have been analysed. Euhedral zircons from the 1st volcanogenic horizon with fine oscillatory growth zoning, typical of magmatic origin, gave the average concordia age of 273.3 ± 2.8 Ma, with Th/U ratios in the range of 0.44-0.73. The Permian ages ranging from 266 to 284 Ma were identified in the wider, zoned or unzoned, central zircon parts, as well as in their fine-zoned oscillatory rims. The average concordia age of 275.3 ± 2.9 was obtained from the euhedral zircon population of the 2nd volcanogenic horizon of the Rožňava Formation. The analyses were performed on zoned magmatic zircons in the age interval from 267 to 287 Ma, with Th/U ratios in the range of 0.39-0.75. In the later zircon population two inherited zircon grains were dated giving the age of 842 ± 12 Ma (Neoproterozoic) and 456 ± 7 Ma (Late Ordovician). The magmatic zircon ages document the Kungurian age of Permian volcanic activity and contemporaneous establishment of the south-Gemeric basin. The time span of volcanic activity corresponds to the collapse of the Western Carpathian Variscan foreland which expanded southward.

  12. U-Pb isotopic results for single shocked and polycrystalline zircons record 550-65.5-Ma ages for a K-T target site and 2700-1850-Ma ages for the Sudbury impact event

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1992-01-01

    The refractory mineral zircon develops distinct morphological features during shock metamorphism and retains these features under conditions that would anneal them in other minerals. In addition, weakly shocked zircon grains give primary ages for the impact site, while highly reconstituted (polycrystalline) single grains give ages that approach the age of the impact event. Data for a series of originally coeval grains will define a mixing line that gives both of these ages providing that no subsequent geological disturbances have overprinted the isotopic systematics. In this study, we have shown that the three zircon grain types described by Bohor, from both K-T distal ejecta (Fireball layer, Raton Basin, Colorado) and the Onaping Formation, represent a progressive increase in impact-related morphological change that coincides with a progressive increase in isotopic resetting in zircons from the ejecta and basement rocks. Unshocked grains are least affected by isotopic resetting while polycrystalline grains are most affected. U-Pb isotopic results for 12 of 14 single zircon grains from the Fireball layer plot on or close to a line recording a primary age of 550 +/- 10 Ma and a secondary age of 65.5 +/- 3 Ma. Data for the least and most shocked grains plot closest to the primary and secondary ages respectively. The two other grains each give ages between 300 and 350 Ma. This implies that the target ejecta was dominated by 550-Ma rocks and that the recrystallization features of the zircon were superimposed during the impact event at 65.5 Ma. A predominant age of 550 Ma for zircons from the Fireball layer provides an excellent opportunity to identify the impact site and to test the hypothesis that multiple impacts occurred at this time. A volcanic origin for the Fireball layer is ruled out by shock-related morphological changes in zircon and the fact that the least shocked grains are old. Basement Levack gneisses north of the Sudbury structure have a primary age of

  13. Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian-Cambrian Transition Levels) and the Tectonic Nature of Teya-Chapa Depression (Northeastern Yenisei Ridge)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. B.; Priyatkina, N. S.; Rud'ko, S. V.; Shatsillo, A. V.; Collins, W. J.; Romanyuk, T. V.

    2018-03-01

    The main results are presented on U/Pb-isotope dating of 100 detrital zircons and, selectively, on the Lu/Hf-isotope system of 43 grains from sandstones of the Lopatinskii formation (the lower stratigraphic level of the Chingasan group). Ages from 896 ± 51 to 2925 ± 38 Ma were obtained with a pronounced maximum of 1890 Ma in the curve of probability density, along with ɛHf estimates from +8.4 to-15.1, which allow one to throw doubt upon the molasse nature of the Lopatinskii formation.

  14. Zircon U-Pb Age Distributions in Cogenetic Crystal-Rich Dacitic and Crystal-Poor Rhyolitic Members of Zoned Ignimbrites in the Southern Rocky Mountains by Chemical Abrasion Inductively-Coupled-Plasma Mass Spectrometry (CA-LA-ICP-MS).

    NASA Astrophysics Data System (ADS)

    Sliwinski, J.; Zimmerer, M. J.; Guillong, M.; Bachmann, O.; Lipman, P. W.

    2015-12-01

    The San Juan locus of the Southern Rocky Mountain Volcanic Field (SRMVF) in SW Colorado represents an erosional remnant of a mid-Tertiary (~37-23 Ma) ignimbrite flare up that produced some of the most voluminous ignimbrites on Earth. A key feature of many SRMVF ignimbrites is compositional zonation, with many volcanic units comprising both dacitic and rhyolitic horizons. Geochemical, field and petrographic evidence suggests that dacites and rhyolites are cogenetic. Here, we report U-Pb zircon ages by chemical abrasion inductively-coupled-plasma mass spectrometry (CA-LA-ICPMS) for rhyolitic and dacitic components in four units: the Bonanza, Rat Creek, Carpenter Ridge and Nelson Mountain Tuffs. All units show zircon age spectra that are either within analytical uncertainty of Ar/Ar ages or are appreciably older, indicating prolonged magma residence times (~500 ka) prior to eruption. Anomalously young Pb-loss zones in zircon have been largely removed by chemical abrasion. Older, inherited zircons and zircon cores (60-2000 Ma) are rare in all samples, suggesting limited assimilation of upper crustal Precambrian country rock or complete resorption during recharge events and magma chamber growth.

  15. New U-Pb zircon age data on polyphase plutono-metamorphic complex in western Enderby Land (East Antarctica) and its implications for Neoproterozoic amalgamation of the Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mikhalskii, Evgenii; Krylov, Dmitriy; Rodionov, Nikolay

    2017-04-01

    Western Enderby Land occupies a key position on Gondwanaland reconstructions near India - Sri Lanka - Antarctica junction and eastwards the Lützow-Holm Bay metamorphic complex commonly identified as a Cambrian suture zone. We present U-Pb zircon isotopic age determinations with SHRIMP II obtained on tonalite- to granite-gneiss samples from the Thala Hills and the Polkanova Hills. In the Thala Hills three high-temperature tectonomagmatic episodes may be distinguished at ca 980-970 Ma, ca 780-720 Ma, and ca 545-530 Ma. All of them included sin-kinematic granitic orthogneiss protolith emplacements and high-grade metamorphism. In the Polkanova Hills tonalitic to granodioritic orthogneisses, intercalated with prevailing amphibolites, were emplaced during ca 980-950 Ma episode (or at both of these ages) and subsequently metamorphosed under amphibolite facies accompanied by migmatization at ca 600-530 Ma. The ca 980-950 Ma event corresponds to the Rayner Structural Episode which affected much of East Antarctica, including Sør Rondane Mountains to the west and Kemp Land to the east of study area. The Polkanova Hills area is underlain by basic amphibolites and tonalitic to granodioritic orthogneisses characterized by LILE enrichment and Nb-Ta troughs in a primitive mantle normalized spiderdiagram suggestive of derivation in arc-related convergent palaeotectonic environments. Co-eval orthogneisses in the Thala Hills are characterized by granitic compositions and occur in intercalation with paragneisses, which points out to more in-land palaeotectonic environments. The ca 780-720 Ma episode included two events at ca 780 Ma (high-grade anatexis) and 720 Ma (sin-tectonic granitoid emplacement) and was roughly co-eval with magmatic and/or metamorphic events in Dronning Maud Land of East Antarctica as well as in other Gondwanaland regions, like Madagascar, Sri Lanka and eastern Africa. The ca 780-720 Ma episode (Thala Episode) may be correlated with the East African Orogeny

  16. U-Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Klötzli, Urs

    2015-07-01

    Loess sediments in Austria deposited ca. 30-20 ka ago yield different zircon age signatures for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels (halfway between the Bohemian Massif and the Eastern Alps; sample A16). Cathodoluminescence (CL) imaging reveals both old, multistage zircons with complex growth histories and inherited cores, and young, first-cycle magmatic zircons. Paleoproterozoic ages between 2,200 and 1,800 Ma (K23 and S1), an age gap of 1,800-1,000 Ma for S1 and abundant Cadomian grains, indicate NW African/North Gondwanan derivation of these zircons. Also, A16 yields ages between 630 and 600 Ma that can be attributed to "Pan-African" orogenic processes. Significant differences are seen for the <500 Ma part of the age spectra with major age peaks at 493-494 and 344-335 Ma (K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ɛHf signatures (-25 to -10, except one grain with +9.4) implying zircon crystallization from magmas derived by recycling of older continental crust. Hf isotopic compositions of 330- to 320-Ma-old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and intermediate granitoids. Rather, all the data suggest strong contributions of eroded local rocks (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif (K23 and S1) and sourcing of zircons from sediment donor regions in the Eastern Alps for loess at Wels (A16). We tentatively infer primary fluvial transport and secondary eolian reworking and re-deposition of detritus from western/southwestern directions. Finally, our data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than Paleowind directions.

  17. Integrated in situ U-Pb Age and Hf-O Analyses of Zircon from the Northern Yangtze Block: New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block

    NASA Astrophysics Data System (ADS)

    Yang, Y. N.; Wang, X. C.; Li, Q. L.; Li, X. H.

    2015-12-01

    The oxygen isotopic composition of Neoproterozoic magmas from the northern Yangtze Block holds a key for the origin of large-scale 18O depletion in the HP and UHP metamorphic rocks in the Dabie-Sulu orogenic belt, northern margin of the South China Block. We report here the integrated in situ U-Pb dating and O-Hf isotope analyses of zircon grains from sedimentary and volcanic rocks of the late Neoproterozoic Suixian Group (SG) from the northern Yangtze Block. Detrital zircon grains display age peaks of 0.73-0.74 Ga, 0.79 Ga, and 2.0 Ga. Zircon U-Pb ages together with Hf-O isotopic composition indicate provenance of SG dominantly from proximal Neoproterozoic igneous rock and likely hidden Paleoproterozoic basement along the northern margin of the Yangtze Block. The zircon δ18O values from SG range from 10.5‰ to 1.3‰. Zircon grains with negative δ18O value, typical result of magma-ice interaction, were not identified in this study. The major phase of low-δ18O (< 4‰) magmas initiated at ca. 780 Ma, long before the first glaciation event (< 715 Ma) in the South China Block. Thus caution should be taken when using low-δ18O zircon grains to infer cold climate. Low-δ18O zircon grains have large ranges of ɛHf(t) values, varying from -15.5 to 10.7, concentrating on negative ɛHf(t). This strongly argues against the possibility that the low-δ18O magma was produced by partial melting of high-temperature hydrothermally altered oceanic crust because this model predicted MORB-like Hf isotopes for the resultant low-δ18O magmas. This study emphasizes that high-T water-rock interaction and continental rifting tectonic setting are essential to generate abundant low-δ18O magmas. The important application of our study is to confirm that most of negative-δ18O zircons identified in HP and UHP metamorphic rocks may not have been inherited from their Neoproterozoic protoliths.

  18. Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.

    2004-12-01

    Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.

  19. The multistage crystallization of zircon in calc-alkaline granitoids: U-Pb age constraints on the timing of Variscan tectonic activity in SW Iberia

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Chichorro, M.; Moita, P.; Santos, J. F.; Solá, A. M. R.; Williams, I. S.; Silva, J. B.; Armstrong, R. A.

    2015-07-01

    CL imaging and U-Th-Pb data for a population of zircons from two of the Évora Massif granitoids (Ossa-Morena Zone, SW Iberia) show that both calc-alkaline granitoids have zircon populations dominated by grains with cores and rims either showing or not showing differences in Th/U ratio, and having ages in the range ca. 350-335 Ma (Early Carboniferous). Multistage crystallization of zircon is revealed in two main growth stages (ca. 344-342 Ma and ca. 336-335 Ma), well represented by morphologically complex zircons with cores and rims with different ages and different Th/U ratios that can be explained by: (1) crystallization from melts with different compositions (felsic peraluminous to felsic-intermediate metaluminous; 0.001 < Th/U ratio < 0.5) and (2) transient temperature fluctuations in a system where anatectic felsic melts periodically underwent injection of more mafic magmas at higher temperatures. The two studied calc-alkaline granitoids do not include inherited zircons (pre-Carboniferous), probably because they were formed at the highest grade of metamorphism ( T > 837 °C; granulite facies) and/or because they were derived from inheritance-poor felsic and mafic rocks from a previous cycle, as suggested by the internal structures of zircon cores. These Variscan magmatic rocks with crystallization ages estimated at ca. 336-335 Ma are spatially and temporally related to high-temperature metamorphism, anatexis, processes of interaction between crustal- and mantle-derived magmas and intra-orogenic extension that acted in SW Iberia during the Early Carboniferous.

  20. Radiometric ages of the Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian, Duckmantian]: A comparison of U-Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages

    USGS Publications Warehouse

    Lyons, P.C.; Krogh, T.E.; Kwok, Y.Y.; Davis, D.W.; Outerbridge, W.F.; Evans, H.T.

    2006-01-01

    The Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian Series, Duckmantian Stage]-a kaolinized, volcanic-ash deposit occurring in Kentucky, West Virginia, Tennessee, and Virginia-is the most widespread bed in the Middle Pennsylvanian of the central Appalachian basin, USA. A concordant single-crystal U-Pb zircon datum for this tonstein gives a 206Pb/238U age of 314.6 ?? 0.9 Ma (2??). This age is in approximate agreement with a mean sanidine plateau age of 311.5 ?? 1.3 Ma (1??, n = 11) for the Fire Clay tonstein. The difference between the two ages may be due to bias between the 40K and 238U decay constants and other factors. The age of the Fire Clay tonstein has important implications for Duckmantian Stage (Westphalian Series) sedimentation rates, correlations with the Westphalian Series of Europe, Middle Pennsylvanian volcanic events, and the late Paleozoic time scale. ?? 2006 Elsevier B.V. All rights reserved.

  1. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin

    NASA Astrophysics Data System (ADS)

    Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.

    2015-12-01

    The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests

  2. New Zircon U-Pb Age Constrain of the Origin of Devil's River Uplift (SW Texas) and Insights into the Late Proterozoic and Paleozoic Evolution of the Southern Margin of Laurentia

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.

    2017-12-01

    The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show

  3. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra

    NASA Astrophysics Data System (ADS)

    Shang, Yuan; Prins, Maarten A.; Beets, Christiaan J.; Kaakinen, Anu; Lahaye, Yann; Dijkstra, Noortje; Rits, Daniël S.; Wang, Bin; Zheng, Hongbo; van Balen, Ronald T.

    2018-02-01

    The thick loess-palaeosol sequences in the Mangshan Loess Plateau (MLP; central China) along the south bank of the lower reach of the Yellow River provide high-resolution records of Quaternary climate change. In addition, substantial increases in grain-size and accumulation rate have been inferred in the upper part of the loess sequence, above palaeosol layer S2. This study investigates the sources of the long-term dust supply to the MLP and explores the mechanism behind the sudden increase in sediment delivery and coarsening of the loess deposits since S2 (∼240 ka) by using end member modelling of the loess grain-size dataset and single-grain zircon U-Pb dating. Our results indicate that the lower Yellow River floodplain, directly north of the MLP, served as a major dust supply for the plateau at least since the deposition of loess unit L9 and indirectly suggest that the integration of the Yellow River and the disappearance of the Sanmen palaeolake took place before L9 (∼900 ka). The sudden change in sedimentology of the Mangshan sequence above palaeosol unit S2 may result from an increased fluvial sediment flux being transported to the lower reaches of the Yellow River because of tectonic movements (initiated) in the Weihe Basin around 240 ka. Furthermore, sediment coarsening can be explained by the gradual southward migration of the lower Yellow River floodplain towards the MLP since the deposition of palaeosol S2. The migration is evidenced by the formation of an impressive scarp, and is likely caused by tectonic tilting of the floodplain area.

  4. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    USGS Publications Warehouse

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.

    2012-01-01

    The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships

  5. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C.

    2003-01-01

    The role of the standard is critical to the derivation of reliable U-Pb zircon ages by micro-beam analysis. For maximum reliability, it is critically important that the utilised standard be homogeneous at all scales of analysis. It is equally important that the standard has been precisely and accurately dated by an independent technique. This study reports the emergence of a new zircon standard that meets those criteria, as demonstrated by Sensitive High Resolution Ion MicroProbe (SHRIMP), isotope dilution thermal ionisation mass-spectrometry (IDTIMS) and excimer laser ablation- inductively coupled plasma-mass-spectrometry (ELA-ICP-MS) documentation. The TEMORA 1 zircon standard derives from the Middledale Gabbroic Diorite, a high-level mafic stock within the Palaeozoic Lachlan Orogen of eastern Australia. Its 206Pb/238U IDTIMS age has been determined to be 416.75??0.24 Ma (95% confidence limits), based on measurement errors alone. Spike-calibration uncertainty limits the accuracy to 416.8??1.1 Ma for U-Pb intercomparisons between different laboratories that do not use a common spike. ?? 2003 Published by Elsevier Science B.V. All rights reserved.

  6. U Pb zircon age, geochemical and Sr Nd Pb Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Hu, Ruizhong; Gao, Shan; Feng, Caixia; Qi, Youqiang; Wang, Tao; Feng, Guangying; Coulson, Ian M.

    2008-12-01

    Post-orogenic alkaline intrusions and associated mafic dikes from the Sulu orogenic belt of eastern China consist of quartz monzonites, A-type granites and associated mafic dikes. We report here U-Pb zircon ages, geochemical data and Sr-Nd-Pb-Hf isotopic data for these rocks. The SHRIMP U-Pb zircon analyses yield consistent ages ranging from 120.3 ± 2.1 Ma to 126.9 ± 1.9 Ma for five samples from the felsic rocks, and two crystallization ages of 119.0 ± 1.7 Ma and 120.2 ± 1.9 Ma for the mafic dikes. The felsic rocks and mafic dikes are characterized by high ( 87Sr/ 86Sr) i ranging from 0.7079 to 0.7089, low ɛNd( t) values from - 15.3 to - 19.2, 206Pb/ 204Pb = 16.54-17.25, 207Pb/ 204Pb = 15.38-15.63, 208Pb/ 204Pb = 37.15-38.45, and relatively uniform ɛHf( t) values of between - 21.6 ± 0.6 and - 23.7 ± 1.0, for the magmatic zircons. The results suggest that they were derived from a common enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials before magma generation. Geochemical and isotopic characteristics imply that the primary magma to these rocks originated through partial melting of ancient lithospheric mantle that was variably hybridized by melts derived from foundered lower crustal eclogite. The mafic dikes may have been generated by subsequent fractionation of clinopyroxene, whereas the felsic rocks resulted from fractionation of potassium feldspar, plagioclase and ilmenite or rutile. Both were not affected by crustal contamination. Combined with previous studies, these findings provide new evidence that the intense lithospheric thinning beneath the Sulu belt of eastern China occurred between 119 and 127 Ma, and that this was caused by the removal of the lower lithosphere (mantle and lower crust).

  7. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  8. Tectonic Recycling in the Paleozoic Ouachita Assemblage from U-Pb Detrital Zircon Studies

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Gehrels, G. E.; Finney, S. C.

    2001-05-01

    The Paleozoic Ouachita deep-marine clastic sedimentary assemblage records a complex provenance over the course of its 200 m.y. history, with evidence for mixed sources and multiple dispersal paths. Combined neodymium and U-Pb detrital zircon work has established that most of the assemblage in Arkansas and Oklahoma is derived from Laurentian sources, meaning that regardless of the multiple pathways by which sediment was delivered to Ouachita seafloor, the material had its ultimate origin on the North American continent. More detailed work is in progress to elucidate specific dispersal paths, in particular for the middle to late Ordovician when a major change in provenance is recorded, and during the Carboniferous when voluminous turbidites entered the basin. We sampled three formations for U-Pb detrital zircon studies: the lower Middle Ordovician Blakely Sandstone, the Upper Ordovician/Lower Silurian Blaylock Sandstone, and the Pennsylvanian Jackfork Group. Individual zircon ages from these units document a major change in provenance between deposition of the Blakely Sandstone and Blaylock Sandstone, which is also reflected in the neodymium isotopic signature. Both units have a large population of Grenvillian-age zircons (1.0-1.2 Ga), and a less abundant population of 1.3-1.4 Ga zircons likely derived from sources in the mid-continent region. The Blakely Sandstone also contains abundant Archean zircons (2.5-2.7 Ga, likely derived from the Superior Province), and one grain apparently derived from the Penokean orogen (1.9 Ga). Zircon morphology (highly rounded, spherical), combined with the pure quartz sandstone lithology of the Blakely Sandstone, indicates very mature sedimentary sources. We conclude that zircons from this source were recycled ultimately from source terranes in the North American craton. This is reinforced by neodymium isotopes (eNd = -15), paleocurrents (from the north) and olistoliths (1.3 Ga granites), the latter indicating that Blakely turbidites

  9. Coordinated U-Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons

    NASA Astrophysics Data System (ADS)

    Crow, Carolyn A.; McKeegan, Kevin D.; Moser, Desmond E.

    2017-04-01

    We present the results of a coordinated SIMS U-Pb, trace element, Ti-in-zircon thermometry, and microstructural study of 155 lunar zircons separated from Apollo 14, 15, and 17 breccia and soil samples that help resolve discrepancies between the zircon data, the lunar whole rock history and lunar magma ocean crystallization models. The majority of lunar grains are detrital fragments, some nearly 1 mm in length, of large parent crystals suggesting that they crystallized in highly enriched KREEP magmas. The zircon age distributions for all three landing sites exhibit an abundance of ages at ∼4.33 Ga, however they differ in that only Apollo 14 samples have a population of zircons with ages between 4.1 and 3.9 Ga. These younger grains comprise only 10% of all dated lunar zircons and are usually small and highly shocked making them more susceptible to Pb-loss. These observations suggest that the majority of zircons crystallized before 4.1 Ga and that KREEP magmatism had predominantly ceased by this time. We also observed that trace element analyses are easily affected by contributions from inclusions (typically injected impact melt) within SIMS analyses spots. After filtering for these effects, rare-earth element (REE) abundances of pristine zircon are consistent with one pattern characterized by a negative Eu anomaly and no positive Ce anomaly, implying that the zircons formed in a reducing environment. This inference is consistent with crystallization temperatures based on measured Ti concentrations and new estimates of oxide activities which imply temperatures ranging between 958 ± 57 and 1321 ± 100 °C, suggesting that zircon parent magmas were anhydrous. Together, the lunar zircon ages and trace elements are consistent with a ⩽300 My duration of KREEP magmatism under anhydrous, reducing conditions. We also report two granular texture zircons that contain baddeleyite cores, which both yield 207Pb-206Pb ages of 4.33 Ga. These grains are our best constraints on

  10. SHRIMP U-Pb zircon dating from eclogite lenses in marble, Dabie-Sulu UHP terrane: restriction on the prograde, UHP and retrograde metamorphic ages

    NASA Astrophysics Data System (ADS)

    Liu, F.; Gerdes, A.; Xue, H.; Liang, F.

    2006-12-01

    Eclogite as lenses in impure marbles from Dabie-Sulu UHP terrane, represent parts of deeply subducted meta- sedimentary rocks. To constrain the age of metamorphism during subduction and exhumation, zircons from 2 eclogite samples in Dabie-Sulu impure marbles have been investigated. Beside Inherited (detrital) grains, 3 different metamorphic zircon domains have been identified based on distribution of mineral inclusion, trace elements and cathodoluminescence (CL) imaging: 1. Dark-luminescent rounded cores with quartz eclogite- facies mineral inclusions suggest formation at high-pressure (HP) metamorphic conditions. 2. White- luminescent zircon, either surrounding domain 1 or as rounded to spindly cores with index coesite eclogite- facies mineral inclusions indicates formation at UHP conditions. 3. Grey-luminescent rims around domain 2 with low-pressure mineral inclusions suggest formation during late regional amphibolite-facies retrogression. The three distinct zircon domains were dated by SHRIMP and yielded three discrete and meaningful age groups: 245±4 Ma for prograde HP metamorphism, 235±3 Ma for UHP metamorphism and 215±6 Ma for late amphibolite-facies retrogression from Dabie-Sulu eclogite. This data suggests that subduction and exhumation took place in about 10-11 Myr and 19-20 Myr, respectively. Continental materials was subducted from surface to the deep mantle depth at rates of 10 km/Myr, and subsequently exhumed from the mantle to the base of the crust at rates of 7 km/Myr. Ultrafast exhumation of the Dabie-Sulu UHP terrane from depth of 160 to 30 km was probably driven by buoyancy forces after UHP slab break-off at deep mantle depths.

  11. U-Pb ages of detrital zircon from Cenozoic sediments in the southwestern Tarim Basin, NW China: Implications for Eocene-Pliocene source-to-sink relations and new insights into Cretaceous-Paleogene magmatic sources

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Fu, Ling; Wu, Chaodong; Song, Yan; Jiang, Zhenxue; Luo, Qun; Zhang, Ziya; Zhang, Chen; Zhu, Bei

    2018-05-01

    A detailed investigation of potential provenance is still lacking in the southwestern Tarim Basin, which restricts our complete understanding of Cenozoic source-to-sink relations between the basin interior and the Pamir salient - western Kunlun Mountain Range. Debate also exists concerning the potential sources of the Paleogene and Cretaceous igneous detritus present in the Cenozoic sedimentary sequences. Here, we present U-Pb (LA-ICP-MS) ages of detrital zircons from the continuous Eocene-Pliocene sediment series in the well-exposed Aertashi section to investigate changes in sediment provenance through time. The U-Pb detrital zircon ages range widely from 45 to 3204 Ma and can be divided into seven main groups: 45-65 Ma (sub-peak at 49 Ma), 67-103 Ma (sub-peak at 95 Ma), 196-251 Ma (sub-peak at 208 Ma), 252-416 Ma (sub-peak at 296 Ma), 417-540 Ma (sub-peak at 446 Ma), 550-1429 Ma (sub-peaks at 614 Ma, 828 Ma and 942 Ma) and 1345-3204 Ma (sub-peaks at 1773 Ma and 2480 Ma). These zircons were mainly derived from the western Kunlun Mountain Range and northern Pamir salient to the west and south. The evolution of the provenance and source-to-sink relationship patterns in the southwestern Tarim Basin can be divided into three stages: (1) The Middle Eocene to Lower Oligocene sediments display a wide variety of detrital zircon ages, suggesting that the source area was extensive. (2) A major change in provenance occurred during the Late Oligocene to Early Miocene and was characterized by an abrupt increase in the proportion of Triassic and Lower Paleozoic igneous components, implying a significant adjustment in topography induced by the initial uplift and exhumation of the western Kunlun Mountain Range and northern Pamir salient. (3) In the Late Miocene, the source-to-sink system transformed again, and contributions of Triassic to Lower Paleozoic material weakened substantially due to the sufficient indentation of the Pamir salient. Our integrated analyses of zircon

  12. Concordant ages for the Lava Creek Tuff from high-spatial-resolution U-Pb dating of zircon rim faces and single-crystal sanidine 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Vazquez, J. A.; Calvert, A. T.

    2013-12-01

    The last great explosive supereruption from the Yellowstone Plateau formed present-day Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). The LCT eruption blanketed much of the western United States in ash, and consequently is a key chronostratigraphic marker bed for delimiting Quaternary uplift rates, the age of middle Pleistocene glacial and pluvial deposits, and tephra correlation in North America. Previous 40Ar/39Ar dating of the two mineralogically distinct LCT members (A & B) yield ages ranging from ca. 600 ka (Gansecki et al., 1998) to ca. 640 ka (Lanphere et al., 2002). To resolve the timing of eruption and crystallization timescale for the LCT magma, we dated both LCT members using a dual-method approach as follows: (1) ion microprobe (SHRIMP-RG) U-Pb dating and trace-element characterization of the final few micrometers of zircon crystallization by analysis of unpolished rims on indium-mounted crystals, and dating of the onset of zircon crystallization by traditional analysis of sectioned crystal interiors, and (2) laser-fusion 40Ar/39Ar dating of single sanidine crystals from bulk LCT ignimbrite and pumice. The unpolished rims of zircon from LCT members A & B yield indistinguishable ages, with a mean age of 621.8 × 2.5 ka (1σ) after correction for initial 230Th disequilibrium as constrained by ion-probe analyses of LCT melt inclusions. Single sanidine crystals from LCT-B yield a mean age of 624.9 × 2.6 ka (FCT=28.17 Ma) that is indistinguishable from the zircon rim ages for both members. These results indicate that LCT members A & B erupted over a geologically brief interval, which is supported by the direct and gradational contact of their equivalent fallout in distal lacustrine deposits and a lack of field evidence for a significant time-break between the LCT A & B in proximal deposits (Christiansen, 2001), but contrasts with older Yellowstone ignimbrite (e.g., Huckleberry Ridge) that may have erupted

  13. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan

    2016-02-01

    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  14. The Eocene Thermal Maximum 2 (ETM-2) in a terrestrial section of the High Arctic: identification by U-Pb zircon ages of volcanic ashes and carbon isotope records of coal and amber (Stenkul Fiord, Ellesmere Island, Canada)

    NASA Astrophysics Data System (ADS)

    Reinhardt, Lutz; von Gosen, Werner; Piepjohn, Karsten; Lückge, Andreas; Schmitz, Mark

    2017-04-01

    The Stenkul Fiord section on southern Ellesmere Island reveals largely fluvial clastic sediments with intercalated coal seams of the Margaret Formation of Late Paleocene/Early Eocene age according to palynology and vertebrate remains. Field studies in recent years and interpretative mapping of a high-resolution satellite image of the area southeast of Stenkul Fiord revealed that the clastic deposits consist of at least four sedimentary units (Units 1 to 4) separated by unconformities. Several centimeter-thin volcanic ash layers, recognized within coal layers and preserved as crandallite group minerals (Ca-bearing goyazite), suggest an intense volcanic ash fall activity. Based on new U-Pb zircon ages (ID-TIMS) of three ash layers, the volcanic ash fall took place at 53.7 Ma in the Early Eocene, i.e. within the Eocene Thermal Maximum 2 (ETM-2) hyperthermal. The ETM-2 is bracketed further by discrete negative excursions of carbon isotope records of both bulk coal and amber droplets collected from individual coal layers of the section. The identification of the ETM-2 hyperthermal provides a stratigraphic tie-point in the terrestrial Margaret Formation sediments enabling assignment of the lowermost sedimentary Unit 1 to the Late Paleocene-earliest Eocene, Unit 2 to the Early Eocene, whereas Unit 3 and 4 might be Early to Middle Eocene in age. Thus the timing of syn-sedimentary movements of the Eurekan deformation causal for the observed unconformities in the section can be studied and the positions of further hyperthermals like the PETM or the ETM-3 in the section can be identified in the future. The integration of structural studies, new U-Pb zircon ages, and different carbon isotope records provides a new stratigraphic framework for further examination of the unique Early Eocene flora and fauna preserved in this high-latitude outcrop.

  15. High-precision ID-TIMS zircon U-Pb geochronology using new 1013 Ohm resistors

    NASA Astrophysics Data System (ADS)

    Von Quadt, A.; Buret, Y.; Large, S.; Peytcheva, I.; Trinquier, A.; Wotzlaw, J. F.

    2015-12-01

    Faraday cups equipped with high gain amplifiers provide a means to measure small ion beams in static mode without the limited linear range of ion counting systems. We tested the application of newly available 1013 Ohm resistors to ID-TIMS zircon U-Pb geochronology using a range of natural and synthetic reference materials. The TritonPlus-RPQ at the Institute of Geochemistry and Petrology, ETH Zurich, is equipped with five new 1013 Ohm resistors and one MasCom secondary electron multiplier, allowing to measure the 202-204-205-206-207-208Pb masses in static mode. U is measured subsequently as U-oxide (265-267-270UO2) during a second step, also in static Faraday mode. The gain calibration of the 1013 Ohm resistors was performed using the procedure of Trinquier (2014), with 144Nd-146Nd being measured using 1011 Ohm resistor and 142-143-145-148-150Nd being measured using 1013 Ohm resitors (Trinquier, 2014; Koornneef et al., 2014). Standard deviations of the noise in all five new 1013 Ohm resistors are lower than 5.0 x 10-6 over a 6 month period, with no shift occurring over this time interval. This new detector set-up was tested by analyzing natural zircon standard materials and synthetic U/Pb solutions (www.earthime.org), ranging in age from ~2 Ma to ~600 Ma. All natural zircon standards were chemically abraded (Mattinson, 2005) and all samples were spiked with the ET2535 tracer solution. U-Pb dates obtained using the static measurement routine are compared to measurements employing dynamic peak jumping routines on the MasCom multiplier. This study illustrates the benefits and current limitations of using high gain amplifiers to measure small ion beams for zircon U-Pb geochronology compared to conventional dynamic ion counting techniques. Mattinson, J.M. (2005) Chemical Geology 220:47-66; Trinquier, A. (2014) Application Note 30281; Koornneef, J. et al (2014) Analytica Chimica Acta 819:49-55.

  16. Sandstone provenance and U-Pb ages of detrital zircons from Permian-Triassic forearc sediments within the Sukhothai Arc, northern Thailand: Record of volcanic-arc evolution in response to Paleo-Tethys subduction

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Miyake, Yoshihiro; Hisada, Ken-ichiro; Kamata, Yoshihito; Ueno, Katsumi; Kon, Yoshiaki; Kurihara, Toshiyuki; Ueda, Hayato; Assavapatchara, San; Treerotchananon, Anuwat; Charoentitirat, Thasinee; Charusiri, Punya

    2017-09-01

    Provenance analysis and U-Pb dating of detrital zircons in Permian-Triassic forearc sediments from the Sukhothai Arc in northern Thailand clarify the evolution of a missing arc system associated with Paleo-Tethys subduction. The turbidite-dominant formations within the forearc sediments include the Permian Ngao Group (Kiu Lom, Pha Huat, and Huai Thak formations), the Early to earliest Late Triassic Lampang Group (Phra That and Hong Hoi formations), and the Late Triassic Song Group (Pha Daeng and Wang Chin formations). The sandstones are quartzose in the Pha Huat, Huai Thak, and Wang Chin formations, and lithic wacke in the Kiu Lom, Phra That, Hong Hoi and Pha Daeng formations. The quartzose sandstones contain abundant quartz, felsic volcanic and plutonic fragments, whereas the lithic sandstones contain mainly basaltic to felsic volcanic fragments. The youngest single-grain (YSG) zircon U-Pb age generally approximates the depositional age in the study area, but in the case of the limestone-dominant Pha Huat Formation the YSG age is clearly older. On the other hand, the youngest cluster U-Pb age (YC1σ) represents the peak of igneous activity in the source area. Geological evidence, geochemical signatures, and the YC1σ ages of the sandstones have allowed us to reconstruct the Sukhothai arc evolution. The initial Sukhothai Arc (Late Carboniferous-Early Permian) developed as a continental island arc. Subsequently, there was general magmatic quiescence with minor I-type granitic activity during the Middle to early Late Permian. In the latest Permian to early Late Triassic, the Sukhothai Arc developed in tandem with Early to Middle Triassic I-type granitic activity, Middle to Late Triassic volcanism, evolution of an accretionary complex, and an abundant supply of sediments from the volcanic rocks to the trench through a forearc basin. Subsequently, the Sukhothai Arc became quiescent as the Paleo-Tethys closed after the Late Triassic. In addition, parts of sediments of

  17. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  18. Cenozoic exhumation and tectonic evolution of the Qimen Tagh Range, northern Tibetan Plateau: Insights from the heavy mineral compositions, detrital zircon U-Pb ages and seismic interpretations

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.

    2017-12-01

    The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of

  19. Mineral equilibria and zircon, garnet and titanite U-Pb ages constraining the PTt path of granite-related hydrothermal systems at the Big Bell gold deposit, Western Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas G.; McNaughton, Neal J.

    2018-01-01

    The Big Bell deposit (75 t gold) is located in a narrow spur of the Meekatharra greenstone belt, Yilgarn Craton, Western Australia. Two ore bodies are located in a calcic-potassic contact alteration zone overprinting lineated granodiorite dykes and amphibolite: almandine-cummingtonite-hornblende skarn (1-3 g/t Au, 1700 g/t As, 330 g/t W) and the muscovite-microcline gneiss (3-5 g/t Au, 580 g/t Sb, 620 g/t W) of the Main Lode. Genetic models vary from pre- to post-metamorphic replacement. Hornblende-plagioclase pairs in amphibolite constrain peak metamorphic temperature to 670 ± 50 °C. In contrast, garnet-biotite thermometry provides estimates of 578 ± 50 and 608 ± 50 °C for garnet-cordierite-biotite schist bordering the skarn and enveloping the Main Lode. Garnet-cordierite and garnet-hornblende pairs extend the range of fluid temperature to 540 ± 65 °C, well below peak metamorphic temperature. At 540-600 °C, the alteration assemblage andalusite + sillimanite constrains pressure to 300-400 MPa corresponding to 11-14 km crustal depth. Published U-Pb ages indicate that metamorphism took place in the aureole of the southeast granodiorite-tonalite batholith (2740-2700 Ma), followed by gold mineralization at 2662 ± 5 Ma and by the emplacement of biotite granite and Sn-Ta-Nb granite-pegmatite dykes at 2625-2610 Ma. Amphibolite xenoliths in granite northwest of the deposit record the lowest temperature (628 ± 50 °C), suggesting it lacks a metamorphic aureole. The rare metal dykes are spatially associated with epidote-albite and andradite-diopside skarns (≤1.5 g/t Au), mined where enriched in the weathered zone. We analysed hydrothermal zircon intergrown with andradite. Concordant U-Pb ages of 2612 ± 7 and 2609 ± 10 Ma confirm the presence of a second granite-related system. The zircons display oscillatory zoning and have low Th/U ratios (0.05-0.08). Low-Th titanite from an albite granite dyke has a concordant but reset U-Pb age of 2577 ± 7 Ma.

  20. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.

    2002-07-01

    Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.

  1. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada

    USGS Publications Warehouse

    Watts, Kathryn E.; Coble, Matthew A.; Vazquez, Jorge A.; Henry, Christopher D.; Colgan, Joseph P.; John, David A.

    2016-01-01

    Zircon geochronology is a critical tool for establishing geologic ages and time scales of processes in the Earth's crust. However, for zircons compromised by open system behavior, achieving robust dates can be difficult. Chemical abrasion (CA) is a routine step prior to thermal ionization mass spectrometry (TIMS) dating of zircon to remove radiation-damaged parts of grains that may have experienced open system behavior and loss of radiogenic Pb. While this technique has been shown to improve the accuracy and precision of TIMS dating, its application to high-spatial resolution dating methods, such as secondary ion mass spectrometry (SIMS), is relatively uncommon. In our efforts to U-Pb date zircons from the late Eocene Caetano caldera by SIMS (SHRIMP-RG: sensitive high resolution ion microprobe, reverse geometry), some grains yielded anomalously young U-Pb ages that implicated Pb-loss and motivated us to investigate with a comparative CA and non-CA dating study. We present CA and non-CA 206Pb/238U ages and trace elements determined by SHRIMP-RG for zircons from three Caetano samples (Caetano Tuff, Redrock Canyon porphyry, and a silicic ring-fracture intrusion) and for R33 and TEMORA-2 reference zircons. We find that non-CA Caetano zircons have weighted mean or bimodal U-Pb ages that are 2–4% younger than CA zircons for the same samples. CA Caetano zircons have mean U-Pb ages that are 0.4–0.6 Myr older than the 40Ar/39Ar sanidine eruption age (34.00 ± 0.03 Ma; error-weighted mean, 2σ), whereas non-CA zircons have ages that are 0.7–1.3 Myr younger. U-Pb ages do not correlate with U (~ 100–800 ppm), Th (~ 50–300 ppm) or any other measured zircon trace elements (Y, Hf, REE), and CA and non-CA Caetano zircons define identical trace element ranges. No statistically significant difference in U-Pb age is observed for CA versus non-CA R33 or TEMORA-2 zircons. Optical profiler measurements of ion microprobe pits demonstrate consistent depths of ~ 1.6

  2. Using U-Pb Detrital Zircon Geochronology to Study Ice Streams in the Weddell Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Agrios, L.; Licht, K.; Hemming, S. R.; Williams, T.

    2016-12-01

    Till from major ice streams of the Weddell Sea Embayment contain detrital zircons with distinct U-Pb age populations that can be used as a provenance tool to better understand ice stream dynamics. The ice streams in this study include the Foundation Ice Stream, and Academy, Slessor, and Recovery glaciers, all of which drain ice from the continent's interior into the Weddell Sea. Characterizing the U-Pb detrital zircon ages in till and rocks will (1) provide the zircon provenance signatures of the material carried by the ice stream - when these signatures are found in LGM and older deposits downstream they can enable interpretation of past ice flow history; and (2) constrain ice-covered upstream bedrock geology that supplies the till carried by ice streams and glaciers. U-Pb ages of detrital zircons were measured in 21 samples of onshore till, erratics, and bedrock of potential source rocks. Grains were analyzed by LA-ICPMS at the University of Arizona (n=300). Relative probability U-Pb age density plots of till in moraines along the Foundation Ice Stream and Academy Glacier show prominent peaks at 500-530 and 615-650 Ma, which overlap with the timing of the Ross and Pan-African orogenies. Zircon ages of 1000-1095 Ma are also present. Local bedrock in the Patuxent Range has the most prominent peak at 510 Ma, suggesting the till is predominantly derived from local Patuxent Formation. However, local bedrock also has fewer grains at 1030 Ma which suggests that this age population is carried in the till as well. Prominent peaks in U-Pb ages from till transported by the Recovery Glacier are 530, 635, 1610 and 1770 Ma. Bedrock of this area contains similar age peaks, with the exception of the 635 Ma peak, suggesting that this ice stream is carrying a signature from an unexposed source of this age completely buried by ice. The Slessor Glacier carries zircons with prominent populations at 1710 and 2260-2420 Ma, which overlap with a high-grade metamorphic event in the

  3. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late

  4. Permian arc evolution associated with Panthalassa subduction along the eastern margin of the South China block, based on sandstone provenance and U-Pb detrital zircon ages of the Kurosegawa belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Hirano, Miho; Kurihara, Toshiyuki; Takahashi, Toshiro; Ueda, Hayato

    2018-01-01

    We have studied the petrography, geochemistry, and detrital zircon U-Pb ages of sandstones from shallow-marine forearc sediments, accretionary complexes (ACs), and metamorphosed accretionary complexes (Meta-ACs) within the Kurosegawa belt of Southwest Japan. Those rocks formed in a forearc region of a Permian island arc associated with subduction of the Panthalassa oceanic crust along the eastern margin of the South China block (Yangtze block). The provenance of the shallow-marine sediments was dominated by basaltic to andesitic volcanic rocks and minor granitic rocks during the late Middle to Late Permian. The ACs were derived from felsic to andesitic volcanic rocks during the Late Permian. The provenance of Meta-ACs was dominated by andesitic volcanic rocks in the Middle Permian. The provenance, source rock compositions, and zircon age distribution for the forearc sediments, ACs and Meta-ACs have allowed us to reconstruct the geological history of the Permian arc system of the Kurosegawa belt. During the Middle Permian, the ACs were accreted along the eastern margin of the South China block. The Middle Permian arc was an immature oceanic island arc consisting of andesitic volcanic rocks. During the Late Permian, the ACs formed in a mature arc, producing voluminous felsic to andesitic volcanic rocks. A forearc basin developed during the late Middle to Late Permian. Subsequently, the Middle Permian ACs and part of the Late Permian AC underwent low-grade metamorphism in the Late to Early Jurassic, presenting the Meta-ACs.

  5. Refined depositional history and dating of the Tongaporutuan reference section, north Taranaki, New Zealand: new volcanic ash U-Pb zircon ages, biostratigraphy and sedimentation rates

    USGS Publications Warehouse

    Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.

    2016-01-01

    This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.

  6. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U Pb and TDM ages and host-rock affinity from detrital zircons

    NASA Astrophysics Data System (ADS)

    Veevers, J. J.; Saeed, A.

    2007-12-01

    In conjugate SE Africa and Antarctica, Early Permian sandstones of the Swartrant Formation of the Ellisras Basin, Vryheid Formation of the Karoo Basin, and Amelang Plateau Formation of Dronning Maud Land (DML) were deposited after Gondwanan glaciation on a westward paleoslope. We analysed detrital zircons for U-Pb ages by a laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) and attached age significance only to clusters of three or more overlapping analyses. We analysed Hf-isotope compositions by a multi-collector spectrometer (LAM-MC-ICPMS) and trace elements by electron microprobe (EMP) and ICPMS. These analyses indicate the rock type and source (whether crustal or juvenile mantle) of the host magma, and a "crustal" model age ( TDMC). The integrated analysis gives a more distinctive, and more easily interpreted, picture of crustal evolution in the provenance area than age data alone. Zircons from the Ellisras Basin are aged 2700-2540 Ma with minor populations about 2815 Ma and 2040 Ma, which correspond with the ages of the upslope parts of the proximal Kaapvaal Craton and Limpopo Belt. Mafic rock is the dominant host rock, and it reflects the Archean granite-greenstone terrane of the Kaapvaal Craton. The three Karoo Basin samples and the two DML samples have zircons with these common properties: (1) 1160-880 Ma, host magma mafic granitoid (< 65% SiO 2) derived from juvenile depleted mantle sources ( ɛHf positive) at 1.65 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga; (2) 760 to 480 Ma, host magma granitoid and low-heavy rare earth element rock (?alkaline rock-carbonatite), derived from mixed crustal and juvenile depleted mantle sources ( ɛHf positive and negative) at 1.50 Ga and 1.35 Ga, with TDMC of 2.0-0.9 Ga. Together with similar detrital zircons in Triassic sandstone of SE Australia, these properties reflect those in upslope central Antarctica, indicating a provenance of ˜ 1000 Ma (Grenville) cratons embedded in 700-500 Ma (Pan

  7. Cretaceous crust beneath SW Borneo: U-Pb dating of zircons from metamorphic and granitic rocks

    NASA Astrophysics Data System (ADS)

    Davies, L.; Hall, R.; Armstrong, R.

    2012-12-01

    Metamorphic basement rocks from SW Borneo are undated but have been suggested to be Palaeozoic. This study shows they record low pressure 'Buchan-type' metamorphism and U-Pb SHRIMP dating of zircons indicates a mid-Cretaceous (volcaniclastic) protolith. SW Borneo is the southeast promontory of Sundaland, the continental core of SE Asia. It has no sedimentary cover and the exposed basement has been widely assumed to be a crustal fragment from the Indochina-China margin. Metamorphic rocks of the Pinoh Group in Kalimantan (Indonesian Borneo) are intruded by granitoid rocks of Jurassic-Cretaceous age, based on K-Ar dating, suggesting emplacement mainly between 130 and 80 Ma. The Pinoh metamorphic rocks have been described as a suite of pelitic schists, slates, phyllites, and hornfelses, and have not been dated, although they have been correlated with rocks elsewhere in Borneo of supposed Palaeozoic age. Pelitic schists contain biotite, chlorite, cordierite, andalusite, quartz, plagioclase and in some cases high-Mn almandine-rich garnet. Many have a shear fabric associated with biotite and fibrolite intergrowth. Contact metamorphism due to intrusion of the granitoid rocks produced hornfelses with abundant andalusite and cordierite porphyroblasts. Granitoids range from alkali-granite to tonalite and contain abundant hornblende and biotite, with rare white mica. Zircons from granitoid rocks exhibit sector- and concentric- zoning; some have xenocrystic cores mantled by magmatic zircon. There are four important age populations at c. 112, 98, 84 and 84 Ma broadly confirming earlier dating studies. There is a single granite body with a Jurassic age (186 ± 2.3 Ma). Zircons from pelitic metamorphic rocks are typically euhedral, with no evidence of rounding or resorbing of grains; a few preserve volcanic textures. They record older ages than those from igneous rocks; U-Pb ages are Cretaceous with a major population between 134 and 110 Ma. A single sample contains Proterozoic

  8. New U Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, I. T.; De Waal, S. A.; Armstrong, R. A.

    2005-12-01

    The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050-2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.

  9. Provenance of sediments from Sumatra, Indonesia - Insights from detrital U-Pb zircon geochronology, heavy mineral analyses and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liebermann, C.; Hall, R.; Gough, A.

    2017-12-01

    The island of Sumatra is situated at the southwestern margin of the Indonesian archipelago. Although it is the sixth largest island in the world, the geology of the Sumatra sedimentary basins and their underlying basement is relatively poorly understood in terms of their provenance. This work is a multi-proxy provenance study utilizing U-Pb detrital zircon dating by LA-ICP-MS combined with optical and Raman spectroscopy-based heavy mineral analysis. It will help to unravel the stratigraphy of Sumatra, contribute to paleogeographic reconstruction of western SE Asia, and aid a wider understanding of Sumatran petroleum plays. Thin section analyses, heavy mineral assemblages, and >3500 concordant U-Pb zircon ages, from samples acquired during two fieldwork seasons indicate a mixed provenance for Cenozoic sedimentary formations, including both local igneous sources and mature basement rocks. Characteristic Precambrian zircon age spectra are found in all analysed Cenozoic sedimentary strata. These can be correlated with zircon age populations found in Sumatran basement rocks; Neoproterozoic and Mesoproterozoic age groups are dominant (c. 500-600 Ma, c. 850-1000 Ma, c. 1050-1200 Ma). Paleoproterozoic to Archaean zircons occur as minor populations. The Phanerozoic age spectra of the Cenozoic formations are characterised by distinct Carboniferous, Permo-Triassic, and Jurassic-Cretaceous zircon populations. Permo-Triassic zircons are interpreted to come from granitoids in the Malay peninsula or Sumatra itself. Eocene to Lower Miocene strata are characterised by ultrastable heavy minerals such as zircon, tourmaline, and rutile, which together with garnet, suggest the principal sources were igneous and metamorphic basement rocks. Cenozoic zircons appear only from the Middle Miocene onwards. This change is interpreted to indicate a new contribution from a local volcanic arc, and is supported by the occurrence of unstable heavy minerals such as apatite and clinopyroxene, and the

  10. Zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Bagas, Leon; Hu, Peng; Han, Ning; Chen, Chun-Liang; Liu, Yuan; Kang, Huan

    2016-09-01

    The Shamai tungsten deposit is located in the eastern part of the Central Asian Orogenic Belt (CAOB). Tungsten mineralization is closely related to the emplacement of fine- to medium-grained biotite monzogranite (G1) and porphyritic biotite monzogranite (G2) in the Shamai Granite. NW-trending joints and faults host orebodies in the Shamai Granite and Devonian hornfels. The mineralization is characterized by a basal veinlet zone progressing upwards to a thick vein zone followed by a mixed zone, a veinlet zone, and a thread vein zone at the top. The ore-related alteration typically consists of muscovite, greisen, and hornfels. In order to constrain the timing of the Shamai mineralization and discuss the ore genesis, muscovite Ar-Ar, molybdenite Re-Os, and zircon U-Pb geochronological, geochemical, and Sr-Nd-Hf isotopic studies were completed on the deposit. The U-Pb zircon dating yielded weighted mean ages of 153 ± 1 Ma for G1 and 146 ± 1 Ma for G2. Muscovite from a wolframite-bearing quartz vein yielded an Ar-Ar plateau age of 140 ± 1 Ma, whereas two molybdenite samples yielded identical Re-Os model ages of 137 ± 2 Ma. These two ages are younger than the two monzogranites, suggesting a prolonged magmatic-hydrothermal interaction during tungsten mineralization. Major and trace element geochemistry shows that both G1 and G2 are characterized by high SiO2 and K2O contents, high A/CNK values (1.08-1.40), a spectacular tetrad effect in their REE distribution patterns, and non-CHARAC (charge-and-radius-controlled) trace element behavior. This suggests that both G1 and G2 are highly differentiated peraluminous rocks with strong hydrothermal interaction. The Nd-Hf isotope data for the Shamai Granite (εNd(t) between - 1.9 and + 7.4, ɛHf(t) from 5.2 to 12.8) are largely compatible with the general scenario for much of the Phanerozoic granite emplaced in the CAOB. It is here suggested that the Shamai Granite originated from partial melting of a juvenile lower crust with

  11. Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses

    NASA Astrophysics Data System (ADS)

    Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.

    2011-12-01

    The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite

  12. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    PubMed

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  13. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton

    NASA Astrophysics Data System (ADS)

    Shan, Houxiang; Zhai, Mingguo; Wang, Fang; Zhou, Yanyan; Santosh, M.; Zhu, Xiyan; Zhang, Huafeng; Wang, Wei

    2015-02-01

    The Precambrian basement in the Jiaobei terrane is largely composed of Tonalite-Trondhjemite-Granodiorite (TTG) suite of rocks and offers important insights into the crustal evolution history of the North China Craton (NCC). The LA-ICP-MS zircon U-Pb age data presented in this study show that the magmatic protoliths of the TTG gneisses formed during 2508-2547 Ma and recorded the Paleoproterozoic metamorphism (∼1905 Ma). The rocks are enriched in LILE (Rb, Ba and Sr) and depleted in HFSE (Nb, Ta, Zr and Hf). They are characterized by high Sr contents (406-2906 ppm), Sr/Y ratios (31.3-355) and subchondritic Nb/Ta ratios (18.5-68.9). The TTGs show relatively high ΣREE contents (72.0-266 ppm) with strongly enriched LREE ((La/Yb)N = 11.5-121) and positive or negligible negative Eu anomalies (Eu/Eu∗ = 0.84-1.89). These geochemical features suggest that the magma source might have been rutile-bearing amphibole eclogite. Their high Mg# numbers (42-56) and high Cr (153-285 ppm) and Ni contents (22.2-74.5 ppm) indicate interaction with the mantle wedge during magma ascent. The whole rock εNd (t) values (+2.6 to +3.8) and most of the magmatic zircon εHf (t) values (+1.3 to +7.6) suggest juvenile to evolved isotopic signatures. All these lines of evidence suggest that the TTG rocks in this study formed through partial melting of subducted oceanic slab in a continental arc environment. The drill holes in the Jiaobei terrane are dominated by ∼2.5 Ga TTG gneisses, suggesting that the TTG magma at ∼2.5 Ga is more widely distributed deep underground than that of ∼2.7-2.9 Ga, at least within the approachable depth range of our research. Some zircon grains from Jiaobei TTGs give high εHf (t) values plotting above the curve of 0.75 ∗ εHf of DM, and their TCDM ages are very close to the time of the zircon crystallization. However, the majority of the εHf (t) values fall below the curve of 0.75 ∗ εHf of DM and their TCDM ages are concentrated between ∼2.7-2.9 Ga

  14. Sands of West Gondwana: An archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages

    NASA Astrophysics Data System (ADS)

    Linnemann, Ulf; Ouzegane, Khadidja; Drareni, Amar; Hofmann, Mandy; Becker, Sindy; Gärtner, Andreas; Sagawe, Anja

    2011-04-01

    Enormous masses of highly mature quartz sands were deposited in Western Gondwana during the Cambrian-Ordovician time, and provide a wide range of information concerning magmatic events through time, provenance, paleoclimate, and basin history. We present a provenance study based on 630 U-Pb (LA-ICP-MS) ages of detrital zircon from the latest Cambrian to Ordovician siliciclastic rocks of the Tassili Ouan Ahaggar basin situated in the Algerian Sahara. Most authors suggest local sources only for the sandstones. Instead, we demonstrate that the detritus is derived from different cratons and terranes which contributed to the deposition of a Cambrian-Ordovician overstep sequence covering western and northern Africa. Most zircon ages (61.0%) fall in the range of ~ 540 to 740 Ma and are interpreted to have been derived from Pan-African orogenic belts such as the Trans-Saharan Belt of NW Africa and previously from the Brazila belt of South America. Other potential sources for this zircon population are terranes of Cadomian affinity situated marginal to West Africa. The second-largest zircon population (20.2%) is 2.0 to 2.2 Ga, and is attributed to sources in the West African craton, such as the Birimian basement and the Eburnean orogenic belt, with possible partial input from the Amazonian craton. A zircon population of 7.1% yields Mesoproterozoic and early Paleoproterozoic ages in the range of ~ 1.3 to ~ 1.8 Ga and was probably derived from source rocks outside of the West African basement, the Tuareg shield and other adjoining areas. The Amazonian craton is a potential source region. A population of 6.7% of all zircon ages scatter from ~ 750 Ma to ~ 980 Ma and may reflect input from latest stages of the formation of Rodinia and its subsequent dispersal. A smaller population (3.2%) of zircon ages lie between ~ 2.3 and 2.65 Ga, and may be derived from late Paleoproterozoic to early Archaean rocks from the West African craton and possibly from Amazonia. Less than 1% of all

  15. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Ma, Changqian; Zhang, Chao; Wang, Shiming; She, Zhenbing; Liu, Lei; Xu, Haijin

    2013-09-01

    This work presents an integrated study of zircon U-Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic-felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093-0.7127, low ɛNd(t) values ranging from -5.6 to -5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have ɛHf(t) values ranging from -2.7 to 2.6 and model ages of 951-1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053-0.7058, ɛNd(t) values of 0.2-1.6 and corresponding T2DM of 1.0-1.1 Ga. Their zircon grains have ɛHf(t) values ranging from 3.2 to 6.1 and model ages of 774-911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065-0.7117, ɛNd(t) values from -5.7 to -1.9 and Nd model ages of 1.3-1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled

  16. Investigating sources of ignimbrites in the Altiplano-Puna Volcanic Complex using U-Pb dating of zircons

    NASA Astrophysics Data System (ADS)

    Kern, J. M.; de Silva, S. L.; Schmitt, A. K.

    2011-12-01

    Large silicic volcanic fields (LSVFs) are thought to represent the surface expression of upper crustal batholith emplacement, with the spatiotemporal distribution of the vents and eruptions representing the development of the system. The Altiplano-Puna Volcanic Complex (APVC) in the Central Andes is a LSVF active from 11-1 Ma that erupted over 13,000 km3 of magma from large, multicyclic caldera centers and smaller ignimbrite shields during 3 distinct pulses of volcanism at 8.4, 5.5, and 4.0 Ma. Links to the magmatic system beneath are being pursued through U-Pb zircon dating of APVC ignimbrites. Initial results comprise 61 238U/206Pb zircon ages of mostly marginal crystal domains from five APVC ignimbrites-the 0.98 ± 0.03 Ma Purico, 3.96 ± 0.08 Ma Atana, 4.0 ± 0.9 Ma Toconao, 4.09 ± 0.02 Ma Puripicar, and 8.33 ± 0.06 Ma Sifon ignimbrites-dated by high-resolution secondary ionization mass spectrometry (SIMS). Each zircon analyzed was less than 350 μm in length and cathodoluminescence images reveal zonations within individual zircons, though significant core-rim age differences are rare. The ~1 Ma Purico ignimbrite displays multiple zircon age populations significantly predating the 40Ar/39Ar eruption age, but younger than ages from the nearby large-volume Atana ignimbrite erupted from La Pacana caldera. Some peaks do, however, coincide with later resurgent activity within La Pacana as expressed by the 2.7 Ma Cerro Bola dome. Zircon ages in the Atana ignimbrite are indistinguishable from its eruption, while those from the 4.0 Ma Toconao ignimbrite-the volatile-rich cap of the Atana magma chamber-contains three populations of xenocrystic zircons from the Proterozoic-Ordivician, ~13 Ma, and ~9 Ma. The ~9 Ma zircons correlate with K-Ar ages from an underlying ignimbrite, whereas the 13 Ma xenocrysts likely have a plutonic source. The Purico ignimbrite thus provides direct evidence of zircon inheritance from previous eruption cycles, while the Toconao records a

  17. U-Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: Evidence for impact at 546 Ma?

    NASA Astrophysics Data System (ADS)

    Kalleson, E.; Corfu, F.; Dypvik, H.

    2009-05-01

    Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed

  18. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is

  19. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks

    NASA Technical Reports Server (NTRS)

    Mclelland, J. M.

    1988-01-01

    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  20. U-Pb ages and geochemistry of zircon from Proterozoic plutons of the Sawatch and Mosquito ranges, Colorado, U.S.A.: Implications for crustal growth of the central Colorado province

    USGS Publications Warehouse

    Moscati, Richard J.; Premo, Wayne R.; Dewitt, Ed; Wooden, Joseph L.

    2017-01-01

    A broad study of zircons from plutonic rocks of the Sawatch and Mosquito ranges of west-central Colorado (U.S.A.) was undertaken to significantly refine the magmatic chronology and chemistry of this under-studied region of the Colorado province. This region was chosen because it lies just to the north of the suspected arc-related Gunnison-Salida volcano-plutonic terrane, which has been the subject of many recent investigations—and whose origin is still debated. Our new results provide important insights into the processes active during Proterozoic crustal evolution in this region, and they have important ramifications for broader-scope crustal evolution models for southwestern North America.Twenty-four new U-Pb ages and sequentially acquired rare-earth element (REE), U, Th, and Hf contents of zircon have been determined using the sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG). These zircon geochemistry data, in conjunction with whole-rock major- and trace-element data, provide important insights into zircon crystallization and melt fractionation, and they help to further constrain the tectonic environment of magma generation.Our detailed zircon and whole-rock data support the following three interpretations:(1) The Roosevelt Granite in the southern Sawatch Range was the oldest rock dated at 1,766 ± 7 Ma, and it intruded various metavolcanic and metasedimentary rocks. Geochemistry of both whole-rock and zircon supports the contention that this granite was produced in a magmatic arc environment and, therefore, is likely an extension of the older Dubois Greenstone Belt of the Gunnison Igneous Complex (GIC) and the Needle Mountains (1,770–1,755 Ma). Rocks of the younger Cochetopa succession of the GIC, the Salida Greenstone Belt, and the Sangre de Cristo Mountains (1,740–1,725 Ma) were not found in the Sawatch and Mosquito ranges. This observation strongly suggests that the northern edge of the Gunnison-Salida arc terrane underlies the

  1. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area

    USGS Publications Warehouse

    Booth, A.L.; Zeitler, P.K.; Kidd, W.S.F.; Wooden, J.; Liu, Yajing; Idleman, B.; Hren, M.; Chamberlain, C.P.

    2004-01-01

    The eastern syntaxis of the Himalayas is expressed in the crust as a pronounced southward bend in the orogen. The change in strike of geologic features coincides with the high topography of the Namche Barwa region, the exposure of granulite-grade metamorphic rocks, and a 180-degree bend in the Yalu Tsangpo. We have conducted a geochronologic and geochemical investigation of several suites of granitoids collected from the Namche Barwa massif and subjacent terranes of southeastern Tibet, ranging from cm-scale dikes and sills to larger, outcrop-scale intrusions. U-Pb SHRIMP-RG zircon ages establish at least five magmatic episodes: ???400 to 500 Ma, ???120 Ma, 40 to 70 Ma, 18 to 25 Ma, and 3 to 10 Ma. These episodes broadly correlate to spatial patterns in sample localities, as follows: 400 to 500 Ma ages occur in zircon cores collected from within the massif proper; ???120 Ma granites, related to early Gangdese arc plutonism, are primarily located northeast of Namche Barwa; later (40-70 Ma) Gangdese activity is expressed in granites west of Namche Barwa. 18 to 25 Ma granites occur both along the suture zone west of Gyala Peri, and directly north of Namche Barwa along the area of the Jiali fault zone, and are attributed both to shearing within the Jiali fault zone and to an early Miocene Gangdese Thrust event. Exceptionally young (<10 Ma) zircon ages are clustered near the core of the massif, along the Yalu Tsangpo gorge. Trace-element geochemical data indicates the presence of both fluid-present and fluid absent melts, with a fluid-absent (decompression) melting regime dominating near the core of Namche Barwa.

  2. Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anupam; Chatterjee, Amitava; Das, Kaushik; Sarkar, Arindam

    2017-10-01

    The Gavilgarh-Tan Shear Zone (GTSZ) is a crustal-scale shear/fault zone that dissects the unclassified basement gneisses separating two major supracrustal belts, viz. the Paleo- to Mesoproterozoic (≥1.5 Ga) Betul Belt and the Neoproterozoic (∼1.0 Ga) Sausar Belt, of the Central Indian Tectonic Zone (CITZ). The GTSZ extends for more than 300 km strike length, partly covered by the Deccan Trap flows. Granitoid rocks ranging from syenogranite to granodiorite in composition, sheared at temperatures corresponding to the amphibolite facies metamorphic condition, define the GTSZ in the Kanhan River Valley. Earlier geological studies have suggested that the GTSZ underwent a sinistral-sense partitioned transpression in response to an oblique collision between two continental fragments, possibly related to crustal thickening and high-pressure granulite metamorphism (the Ramakona-Katangi granulite: RKG) in the northern part of the Sausar Belt. LA-ICP-MS U-Pb dating of zircon and EPMA U-Th-total Pb dating of monazite grains from four different types of syn-tectonic granitoids of the GTSZ carried out in the present study show that granitoids intruded the basement gneisses between 1.2 Ga and 0.95 Ga, given the error limit of the calculated ages. The age of transpression and mylonitization is more definitely bracketed between 1.0 Ga and 0.95 Ga, which correlates well with the published ages of deformation and metamorphism in the Sausar Belt. This age data strongly supports the suggested collisional tectonic model involving the GTSZ and the RKG granulites of the Sausar Belt and underlines a Grenvillian-age tectonic history for the southern part of the Central Indian Tectonic Zone (CITZ), which possibly culminated in the crustal assembly of the Neoproterozoic supercontinent Rodinia.

  3. Implications of Late Cretaceous U-Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochthon in SE Anatolia (Helete area, Kahramanmaraş Region, SE Turkey)

    NASA Astrophysics Data System (ADS)

    Nurlu, Nusret; Parlak, Osman; Robertson, Alastair; von Quadt, Albrecht

    2016-01-01

    An assemblage of NE-SW-trending, imbricate thrust slices (c. 26 km E-W long × 6.3 km N-S) of granitic rocks, basic-felsic volcanogenic rocks (Helete volcanics), ophiolitic rocks (Meydan ophiolite) and melange (Meydan melange) is exposed near the Tauride thrust front in SE Anatolia. The volcanogenic rocks were previously assumed to be Eocene because of associated Nummulitic limestones. However, ion probe U-Pb dating of zircons extracted from the intrusive granitic rocks yielded ages of 92.9 ± 2.2-83.1 ± 1.5 Ma (Cenomanian-Campanian). The Helete volcanic unit and the overlying Meydan ophiolitic rocks both are intruded by granitic rocks of similar age and composition. Structurally underlying ophiolite-related melange includes similar-aged, but fragmented granitic intrusions. Major, trace element and rare earth element analyses coupled with electron microprobe analysis of the granitic rocks show that they are metaluminus to peraluminus and calc-alkaline in composition. A magmatic arc setting is inferred from a combination of tectonomagmatic discrimination, ocean ridge granite-normalized multi-element patterns and biotite geochemistry. Sr-Nd-Pb isotope data further suggest that the granitoid rocks were derived from variably mixed mantle and crustal sources. Granitic rocks cutting the intrusive rocks are inferred to have crystallized at ~5-16 km depth. The volcanogenic rocks and granitic rocks originated in a supra-subduction zone setting that was widely developed throughout SE Anatolia. Initial tectonic assembly took place during the Late Cretaceous probably related to northward subduction and accretion beneath the Tauride continent (Keban and Malatya platforms). Initial tectonic assembly was followed by exhumation and then transgression by shelf-depth Nummulitic limestones during Mid-Eocene, as documented in several key outcrops. Final emplacement onto the Arabian continental margin took place during the Early Miocene.

  4. Small Volume Isotopic Analysis of Zircon Using LA-MC-ICP-MS U-Pb and Lu-Hf and Sub-ng Amounts of Hf in Solution

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Horstwood, M. S.

    2016-12-01

    Crust-mantle evolution studies are greatly informed by zircon U-Pb and Lu-Hf isotopic datasets and the ease with which these data can now be acquired has seen their application become commonplace. In order to deconvolute geochemical change and interpret geologic variation in complexly zoned zircons, this information is most ideally obtained on the smallest volume of zircon by successive SIMS U-Pb and LA-MC-ICP-MS Lu-Hf isotopic analyses. However, due to variations in zircon growth zone geometry at depth, the Lu-Hf analysis may not relate to the lower volume U-Pb analysis, potentially causing inaccuracy of the resultant age-corrected Hf isotope signature. Laser ablation split-stream methods are applied to be certain that U-Pb and Lu-Hf data represent the same volume of zircon, however, the sampling volume remains relatively large at 40x30µm1. Coupled ID-TIMS U-Pb and solution MC-ICP-MS Lu-Hf work traditionally utilize whole-zircon dissolution ( 10-50ng Hf), which has the potential to homogenize different zones of geologic significance within an analysis. Conversely, modern ID-TIMS U-Pb methods utilize microsampling of zircon grains, often providing < 5ng Hf, thereby challenging conventional Lu-Hf acquisition protocols to achieve the required precision. In order to obtain usable precision on minimal zircon volumes, we developed laser ablation methods using successive 25um spot U-Pb and Lu-Hf ablation pits with a combined depth of 18um, and low-volume solution introduction methods without Hf-REE separation utilizing Hf amounts as low as 0.4ng, while retaining an uncertainty level of ca. 1 ɛHf for both methods. We investigated methods of Yb interference correction and the potential for matrix effects, with a particular focus on the accurate quantification of 176Lu/177Hf. These improvements reduce the minimum amount of material required for U-Pb and Hf isotopic analysis of zircon by about an order of magnitude. 1Ibanez-Mejia et al (2015). PreRes, 267, 285-310.

  5. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  6. Geochemical indications and Detrital Zircon U-Pb ages of net-like laterite from Youjiang terrace, Bose Basin, southwestern China: new evidence of proximal provenance for laterite sediments

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Hong, H.; Li, C.; Ye, H.; Yang, H.

    2015-12-01

    The net-like laterite sediments is widely spread over the terraces and high lands of the river valley in southern China during mid-Pleistocene, although whose origin is still debated. The Xiaomei laterite sediments on the terraces of Youjiang River, Guangxi Zhuang Autonomous Region, southern China, was dominated by the intermittently uplift of the Tibetan Plateau for the mechanism during the Quaternary times. Compared to the loess-paleosol deposits in Chinese Loess Plateau (CLP), the upper continental crust (UCC) and the post-Archean Australian average shale (PAAS), the sediments show notable depletion of the relative mobile compositions like CaO, MgO, Na2O, K2O, Sr, Ba and the accumulation of TiO2, Al2O3, Fe2O3(t), Zr, but similar with other laterite sediments (the Xuancheng and Jiujiang laterite profiles) in the middle to lower reaches of Yangtze River, southern China. The relatively uniform La/Th ratio, U/Pb vs. Th/Pb ratio and chondrite-normalized REE distribution pattern of Xiaomei samples are similar with the loess-paleosol deposits and UCC values, which suggesting the sediments have experienced well-mixing prior to deposition and intense superficial weathering. The low ɛNd(t) values and uniform 147Sm/144Nd ratios with the 87Sr/86Sr vs. Rb/Sr ratios show the notable differences with loess-paleosol deposits and the recycling function of the old fluvial sediments which are similar with the Pearl River sediments. The stable zircon age distribution pattern with three age groups of 240-300Ma, 420-480Ma and 900-1000Ma for Xiaomei laterite samples are different with the loess-paleosol deposits and its source regions. The zircons are mainly derived from a source of the Upper Permian to Middle Triassic clastic rocks in Youjiang Basin, superordinate tectonic unit of Bose Basin, and their potential source areas like the Emeishan Large Igneous Province (Emeishan LIP) and the southeastern area of south China Craton (SCC). For the basis of these data, we suggest that that

  7. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    NASA Astrophysics Data System (ADS)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI < 1; Alkalinity index, AI < 0). The initial magma was mildly metaluminous which evolved to strongly peralkaline as result of fractional crystallization (plagioclase effect) controlled differentiation between quartz-monzonite and granite. Both rock types have high content of Na2O (5.1-6.3 wt.%), Ba (350-2589 ppm) and Sr (264-1036 ppm); low content of Y (8.7-17 ppm) and Yb (0.96-1.69 ppm); elevated ratios of La/Yb (11-46) and Sr/Y (46-69) and are depleted in Ti, with a positive Sr anomaly suggesting an adakite-like composition and

  8. A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana

    NASA Astrophysics Data System (ADS)

    Ottone, Eduardo G.; Monti, Mariana; Marsicano, Claudia A.; de la Fuente, Marcelo S.; Naipauer, Maximiliano; Armstrong, Richard; Mancuso, Adriana C.

    2014-12-01

    The Puesto Viejo Group crops out in the San Rafael Block, southwest Mendoza, at approximately 35° S and 68°20‧ W. It consists of the basal mainly grayish Quebrada de los Fósiles Formation (QF) overlying by the reddish Río Seco de la Quebrada Formation (RSQ). The basal unit includes both plant remains (pleuromeians and sphenopsids) and vertebrates (scattered fish scales, dicynodont synapsids and remains of an archosauriform). In contrast, the RSQ beds have yielded only tetrapods, although a more diverse fauna. The latter includes cynodonts as Cynognathus, Pascualognathus and Diademodon, and also dicynodonts (Vinceria and Kannemeyeria). Based on the assemblage of tetrapod taxa the bearing levels were correlated to the Cynognathus AZ of South Africa and thus referred to the Middle Triassic (Anisian). We obtained a SHRIMP 238U/206Pb age of 235.8 ± 2.0 Ma from a rhyolitic ignimbrite interdigitated between the QF and RSQ formations at the Quebrada de los Fósiles section. This new radiometric date for the Puesto Viejo Group suggests that the tetrapod fauna in the RSQ beds existed, instead, during the Late Triassic (early Carnian) some 10 Ma later than the currently accepted age. Two scenarios might explain our results: first, the Cynognathus AZ of South Africa is wrongly assigned to the lower Middle Triassic (Anisan) and should be considered younger in age, Late Triassic (Carnian); second, the relative age of the Cynognathus AZ of South Africa is correct but the inferred range of Cynognathus and Diademodon is incorrect as they were present during the Late Triassic (Carnian) at least in South America. In any case, this new date pose serious doubts about the validity of biostratigraphic correlations based solely on tetrapod taxa, a common practice for Triassic continental successions across Gondwana.

  9. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  10. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages

  11. Detrital zircon U-Pb reconnaissance of the Franciscan subduction complex in northwestern California

    USGS Publications Warehouse

    Dimitru, Trevor; Ernst, W. Gary; Hourigan, Jeremy K.; McLaughlin, Robert J.

    2015-01-01

    In northwestern California, the Franciscan subduction complex has been subdivided into seven major tectonostratigraphic units. We report U-Pb ages of ≈2400 detrital zircon grains from 26 sandstone samples from 5 of these units. Here, we tabulate each unit's interpreted predominant sediment source areas and depositional age range, ordered from the oldest to the youngest unit. (1) Yolla Bolly terrane: nearby Sierra Nevada batholith (SNB); ca. 118 to 98 Ma. Rare fossils had indicated that this unit was mostly 151-137 Ma, but it is mostly much younger. (2) Central Belt: SND; ca. 103 too 53 Ma (but poorly constrained), again mostly younger than previously thought. (3) Yager terrane: distant Idaho batholith (IB); ca. 52 to 50 Ma. Much of the Yager's detritus was shed during major core complex extension and erosion in Idaho that started 53 Ma. An eocene Princeton River-Princeton submarine canyon system transported this detritus to the Great Valley forearc basin and thence to the Franciscan trench. (4) Coastal terrane: mostly IB, ±SNB, ±nearby Cascade arc, ±Nevada Cenozoic ignimbrite belt; 52 to <32 Ma. (5) King Range terrane: dominated by IB and SNB zircons; parts 16-14 Ma based on microfossils. Overall, some Franciscan units are younger than previously thought, making them more compatible with models for the growth of subduction complexes by positive accretion. From ca. 118 to 70 Ma, Franciscan sediments were sourced mainly from the nearby Sierra Nevada region and were isolated from southwestern US and Mexican sources. From 53 to 49 Ma, the Franciscan was sourced from both Idaho and the Sierra Nevada. By 37-32 Ma, input from Idaho had ceased. The influx from Idaho probably reflects major tectonism in Idaho, Oregon, and Washington, plus development of a through-going Princeton River to California, rather than radical changes in the subduction system at the Franciscan trench itself.

  12. Provenance of Modern Soils and Limestone and Chert Bedrock of Middle Tennessee Assessed Using Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Katsiaficas, N. J.; Wang, X.

    2014-12-01

    Relatively thick soils mantle limestone bedrock throughout much of middle TN. Detrital zircon U-Pb geochronology was used to test two hypotheses: 1) That soil formed by accumulation of insoluble residue during chemical weathering of "dirty" limestone bedrock. 2) That an exotic component, perhaps wind-blown loess, was deposited and weathered to form soil. Samples of soil and underlying bedrock were collected from flat surfaces at the tops of cliffs. At Site 1 the Mississippian cherty limestone of the Fort Payne Formation was collected along with the B1 and B2 horizons of the overlying ultisol. At Site 2 a composite sample of A and B horizons of an alfisol and a sample of the underlying Ordovician limestone of the Hermitage Formation were collected. Zircon was recovered from soil and limestone samples, imaged using cathodoluminescence, and analyzed for trace elements and U-Pb isotopes using a 193 nm laser and quadrupole ICP-MS. Discordant analyses were discarded and 206Pb/238U ages are reported. Trace element concentrations and ratios in zircon seem to not be useful as provenance indicators. However, comparison of U-Pb age spectra showed that soils at both sites predominantly formed by weathering of limestone, with a small exotic component. The Hermitage has significant age peaks at ~1330, 1043, 955 and 439 Ma, and its overlying soil has age peaks at 1410, 1235, 1036 and 442 Ma. The age spectra are significantly different (Kolmogorov-Smirnov probability P = 0.01 < 0.05 significance). The Fort Payne has age peaks at ~1253, 967 and 417 Ma, while the B1 has age peaks at 1440, 1182, 1012 and 450 Ma (K-S P = 0.051) and the B2 at 1240, 941, 362, 81 and 33 Ma (K-S P = 0.073). The young ages in B2 require an exotic component that may account for ~25% of the measured ages. The source of the exotic material has not yet been identified, but its zircon age spectrum does not match previously published age spectra for the regional Pleistocene Peoria loess. Bedrock age peaks

  13. Correlating rates of magmatic arc unroofing and sedimentation using detrital zircon U/Pb and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Fosdick, J. C.

    2017-12-01

    Double and triple dating of minerals using multiple geo-thermochronometers has revolutionized efforts to evaluate complex thermotectonic histories of orogens, isolate unique sedimentary sources, and quantify basin burial reheating. A persisting challenge is to distinguish volcanic sources from rapidly exhumed sources, with the simplistic premise that coincident cooling dates among high- to low-temperature thermochronometers are diagnostic of volcanic sources. Coupled zircon U/Pb and (U-Th)/He geo-thermochronometry from the Miocene Bermejo foreland basin in the southern Central Andes reveals a high temporal resolution of unroofing signatures of the Choiyoi Group, a Permian-Triassic silicic volcanic and plutonic complex, and the Pennsylvanian-Permian Colangüil batholith. Both units are important sediment sources within the High Andes for the Cenozoic east-flowing sediment routing systems. Results show fluvial sourcing of Colangüil detrital zircons with progressively greater partial loss of He (<8% to 12-23% fractional loss from 9.5 Ma to 6 Ma), as indicated by upsection younging of zircon He dates for a given U/Pb age cluster. These findings suggest erosion of increasingly deeper levels of the Colangüil arc during late Miocene development of the High Andes. This progression of higher He loss and thus younger He dates during sedimentation for a given U/Pb age cluster is analogous to the magmatic arc unroofing trend revealed by undissected to dissected arc provenance fields in sandstone petrography. Multi-method thermochronometry of detrital minerals may reveal an added level of information regarding rates of cooling, unroofing, and thermal evolution of magmatic systems as preserved in the detrital record.

  14. Capability of U-Pb dating of zircons from Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA

    NASA Astrophysics Data System (ADS)

    Krautz, Jana; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Kleber, Arno

    2018-01-01

    Two Quaternary tephras derived from the Jemez Mountains, New Mexico - the Guaje and Tsankawi tephras - are difficult to distinguish due to their similar glass-shard chemical composition. Differences in bulk chemical composition are small as well. Here we examine the feasibility to assign an age to a distal tephra layer in the La Sal Mountains, Utah, by U-Pb dating of zircons and to correlate it with one of the two Jemez eruptions. We also dated original Jemez tephras for comparison. Even though the tephras are very young, we obtained reasonable age determinations using the youngest cluster of zircon grains overlapping in age at 2σ. Thereafter, the Guaje tephra is 1.513 ± 0.021 Myr old. The La Sal Mountains tephra is correlated with the Tsankawi tephra. Three samples yielded a common age range of 1.31-1.40 Myr. All ages are in slight disagreement with published age determinations obtained by 40Ar / 39Ar dating. These findings indicate that distal Jemez tephras can be distinguished by U-Pb dating. Furthermore, we encourage giving this method a try for age assignments even of Quaternary volcanic material.

  15. Magmatic Longevity Constrained by ID-TIMS U-Pb Dating of Zircon and Titanite

    NASA Astrophysics Data System (ADS)

    Szymanowski, D.; Wotzlaw, J. F.; Ellis, B. S.; Bachmann, O.; Von Quadt, A.

    2016-12-01

    Clues about the timescales and thermal conditions associated with the growth and evacuation of large silicic magma reservoirs are frequently drawn from radiometric dating, diffusion modelling, or thermomechanical modelling. A growing amount of petrological and geochronological evidence, supported by thermal modelling, suggests that many silicic magma reservoirs may exist for some 104-106 years in the form of high-crystallinity mushes at relatively low temperatures ( 700-750°C; [1-3]). Geochronological studies addressing this issue typically utilise the U-Pb system in zircon capable of recording extended periods of crystallisation, particularly in evolved calc-alkaline systems that spend most of their lifetime zircon-saturated. In this study, we integrate U-Pb dating of zircon and titanite to investigate the longevity of the magma reservoir that produced the Kneeling Nun Tuff, a 35 Ma, >900 km3 crystal-rich rhyolitic super-eruption from the Mogollon-Datil volcanic field in New Mexico (USA). High-precision ID-TIMS U-Pb dates of single crystals of both zircon and titanite independently record a continuous crystallisation history over >400,000 years. We combine the dating of both accessory phases with textural, major, trace element and isotopic studies of single crystals, placing tight constraints on the thermal conditions of magma accumulation and storage while recording differentiation and rejuvenation processes within the magma reservoir. The results suggest a protracted `cool' upper-crustal storage of magma prior to the Kneeling Nun Tuff eruption followed by a melting event which reduced the magma crystallinity and conditioned it for eruption. [1] Bachmann & Bergantz (2004), J. Petrol. 45, 1565-1582. [2] Gelman et al. (2013), Geology 41, 759-762. [3] Cooper & Kent (2014), Nature 506, 480-483.

  16. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.

    2012-12-01

    The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono

  17. Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Suárez, Manuel; Márquez, Marcelo; De La Cruz, Rita; Navarrete, César; Fanning, Mark

    2014-03-01

    Four new SHRIMP U-Pb zircon ages older than 93 Ma from samples of the two uppermost formations accumulated in two different depocenters (Golfo de San Jorge and Cañadón Asfalto basins) of the Chubut Group in central Argentinean Patagonia, establish a pre-late Cenomanian-? early Turonian age for the group. It also confirms a coeval and comparable evolution of the two depocenters, where distal pyroclastic material was deposited together with fluvial and lacustrine facies.

  18. Detrital zircon U-Pb geochronology and provenance of the Carboniferous-Permian glaciomarine pebbly slates in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhu, D.; Zhao, Z.; Chung, S.; Li, C.; Sui, Q.; Fu, X.; Mo, X.

    2011-12-01

    Glaciomarine diamictites (including pebbly slate, pebbly siltstone, and pebbly sandstone) in the Tibetan Plateau are widely interpreted to have been associated with the deglaciation of the Indian continent. Guiding by zircon cathodoluminescence images, we determined U-Pb ages for detrital zircons from five typical Carboniferous-Permian pebbly slate samples from the Qiangtang, Lhasa, and Tethyan Himalaya of the Tibetan Plateau. The age distributions of detrital zircons from two samples (180 analyses) from Qiwu and Gangma Tso of the Qiangtang Terrane are similar, with two main age peaks ca. 579 and ca. 816 Ma and one minor age peak ca. 2490 Ma. Two samples (177 analyses) from Jiangrang and Damxung of the Lhasa Terrane define similar age distributions with two main age peaks ca. 539 and ca. 1175 Ma. Ages of detrital zircons from one sample (110 analyses) from Kangmar of the Tethyan Himalaya display main age peaks ca. 535, ca. 949, and ca. 2490 Ma. The ca. 816-Ma detrital zircons from the Qiangtang Terrane were most likely derived from the Lesser Himalaya, and the ca. 950-Ma detrital zircons from the Tethyan Himalaya might have been sourced from the High Himalaya, Eastern Ghats Province of the Indian plate and the Rayner Province of East Antarctica. The distinctive ca. 1175-Ma age population characteristic of zircons in the pebbly slates from the Lhasa Terrane is identical to the detrital zircons from the late Paleozoic sandstones (Zhu et al., 2011a) and the inherited zircons from the Mesozoic peraluminous granites (Zhu et al., 2011b) in this terrane, but significantly absent in the pebbly slates from both the Qiangtang and the Tethyan Himalayan terranes. The ca. 1175-Ma detrital zircons in the Lhasa Terrane were most likely sourced from the Albany-Fraser-Wilkes in southwestern Australia and East Antarctica. These new data obtained in this study reveal a distinct difference of detrital zircon provenance for the coeval Carboniferous-Permian glaciomarine pebbly slates

  19. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  20. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.

    PubMed

    Burda, Jolanta; Klötzli, Urs

    In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.

  1. U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite melange, southwest Japan: insights into the timing of serpentinization

    USGS Publications Warehouse

    Tsujimori, T.; Liou, J.G.; Wooden, J.; Miyamoto, T.

    2005-01-01

    Crystals of zircon up to 3 mm in length occur in jadeitite veins in the Osayama serpentinite mélange, Southwest Japan. The zircon porphyroblasts show pronounced zoning, and are characterized by both low Th/U ratios (0.2-0.8) and low Th and U abundances (Th = 1-81 ppm; U = 6-149 ppm). They contain inclusions of high-pressure minerals, including jadeite and rutile; such an occurrence indicates that the zircon crystallized during subduction-zone metamorphism. Phase equilibria and the existing fluid-inclusion data constrain P-T conditions to P > 1.2 GPa at T > 350°C for formation of the jadeitite. Most U/Pb ages obtained by SHRIMP-RG are concordant, with a weighted mean 206Pb/238U age of 472 ± 8.5 Ma (MSWD = 2.7, n = 25). Because zircon porphyroblasts contain inclusions of high-pressure minerals, the SHRIMP U-Pb age represents the timing of jadeitite formation, i.e., the timing of interaction between alkaline fluid and ultramafic rocks in a subduction zone. Although this dating does not provide a direct time constraint for serpentinization, U-Pb ages of zircon in jadeitite associated with serpentinite result in new insights into the timing of fluid-rock interaction of ultramafic rocks at a subduction zone and the minimum age for serpentinization.

  2. Zircon U-Pb ages and petrogenesis of a tonalite-trondhjemite-granodiorite (TTG) complex in the northern Sanandaj-Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Zanjefili-Beiranvand, Mina; Asahara, Yoshihiro

    2015-02-01

    The Ghalaylan Igneous Complex is located in the northern part of the Sanandaj-Sirjan zone (SSZ) in northwest Iran. At the surface, the complex is ellipsoidal or ring-shaped. The igneous rocks, which are medium- to fine-grained, were intruded into a Jurassic metamorphic complex and are cut by younger dikes. Zircon U-Pb ages indicate that the crystallization of the main body occurred from 157.9 ± 1.6 to 155.6 ± 5.6 Ma. The igneous complex includes granodiorite, tonalite, and quartz monzonite, as well as subvolcanic to volcanic rocks such as dacite and rhyolite. The rocks have high concentrations of Al2O3 (15-19 wt.%), SiO2 (65-70 wt.%), and Sr (700-1100 ppm), high (La/Yb)N ratios (15-40), and very low concentrations of MgO (< 0.83 wt.%), Ni (< 7 ppm), and Cr (usually < 50 ppm). There is a lack of negative Eu anomalies. These geochemical features show that the rocks are similar to high-silica adakites and Archaean tonalite-trondhjemite-granodiorite (TTG) rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.70430 to 0.70476 and from 0.51240 to 0.51261, respectively, values that are similar to those of primitive mantle and the bulk Earth. The chemical compositions of the igneous rocks of the complex, and their isotope ratios, differ from those of neighboring granitic bodies in the northern SSZ. Based on our results, we suggest a new geodynamic model for the development of this complex, as follows. During the generation of the Songhor-Ghorveh island arc in the Neotethys Ocean, an extensional basin, such as a back-arc, developed between the island arc and the Sanandaj-Sirjan zone (SSZ). As a consequence, basaltic magma was injected from the asthenosphere without the development of a mature oceanic crust. During arc-continent collision in the Late Jurassic, hot basaltic rocks were present beneath the SSZ at depths of 30-50 km, and the partial melting of these rocks led to the development of TTG-type magmas, forming the source of the Ghalaylan Igneous

  3. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Chen, Chun-Liang; Bagas, Leon; Liu, Yuan; Han, Ning; Kang, Huan; Wang, Ze-Hai

    2017-08-01

    The Xing-Mong Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and has experienced multiple tectonic events. The Baiyinnuoer Pb-Zn deposit may be a rare case that documents two periods of mineralization in the tectonically complex XMOB. There are two types of Pb-Zn mineralization in the deposit: (1) skarn-type ore, hosted by the skarn in the contact zone between marble and granodiorite and within the marble and (2) vein-type ore, hosted by crystal tuff and feldspar porphyry. This study revealed that the host rocks, mineral assemblages, mineralization occurrences, S-Pb isotopes, and ages between the two types of ore are notably different. Zircon U-Pb dating indicates that the granodiorite was emplaced in the Early Triassic (244 ± 1 to 242 ± 1 Ma), the crystal tuff was deposited in the Early Cretaceous (140 ± 1 to 136 ± 1 Ma), and the feldspar porphyry was intruded in the Early Cretaceous (138 ± 2 to 136 ± 2 Ma). The first skarn mineralization occurred at ∼240 Ma and the second vein-type Pb-Zn mineralization took place between 136 and 129 Ma. Thus the Triassic orebodies were overprinted by Early Cretaceous mineralization. The sphalerite and galena from the skarn mineralization have higher δ34S values (-4.7 to +0.3‰) than the sphalerite, galena and aresenopyrite from the vein-type mineralization (-7.5 to -4.2‰), indicating different sulfur sources or ore-forming processes for the two types of mineralization. The Pb isotopic compositions of the two types of ore are very similar, suggesting similar lead sources. Geochemistry and Nd-Pb-Hf isotopic systematics of the igneous rocks in the region show that the Triassic granodiorite was generated from hybridization of mafic and felsic magmas due to strong crust-mantle interaction under the collisional setting that resulted following the closure of the Paleo-Asian Ocean and the collision of North China and Siberian cratons at the end of the Permian; while the

  4. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian

    2018-01-01

    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  5. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Wei; Li, Wen-Yuan; Gao, Yong-Bao; Li, Chusi; Ripley, Edward M.; Kamo, Sandra

    2014-02-01

    The sulfide-bearing Yulonggou and Yaqu mafic intrusions are located in the southern margin of the Qilian Block, Qinghai Province, western China. They are small dike-like bodies mainly composed of gabbros and diorites. Disseminated sulfides (pyrrhotite, pentlandite, and chalcopyrite) are present as concordant lenses within the intrusions. Precise CA-ID-TIMS zircon U-Pb dating yields the crystallization ages of 443.39 ± 0.42 and 440.74 ± 0.33 Ma for the Yulonggou and Yaqu intrusions, respectively. Whole rock samples from both intrusions show light rare earth element (REE) enrichments relative to heavy REE and pronounced negative Nb-Ta anomalies relative to Th and La, which are consistent with the products of arc basaltic magmatism. The Yulonggou intrusion has negative ɛ Nd values from -5.7 to -7.7 and elevated (87Sr/86Sr) i ratios from 0.711 to 0.714. In contrast, the Yaqu intrusion has higher ɛ Nd values from -4.1 to +8.4 and lower (87Sr/86Sr) i ratios from 0.705 to 0.710. The δ34S values of sulfide separates from the Yulonggou and Yaqu deposits vary from 0.8 to 2.4 ‰ and from 2 to 4.3 ‰, respectively. The γ Os values of sulfide separates from the Yulonggou and Yaqu deposits vary between 80 and 123 and between 963 and 1,191, respectively. Higher γ Os values coupled with higher δ34S values for the Yaqu deposit relative to the Yulonggou deposit indicate that external sulfur played a bigger role in sulfide mineralization in the Yaqu intrusion than in the Yulonggou intrusion. Mixing calculations using Sr-Nd isotope data show that contamination with siliceous crustal materials is more pronounced in the Yulonggou intrusion (up to 20 wt%) than in the Yaqu intrusion (<15 wt%). The distribution of sulfides in both intrusions is consistent with multiple emplacements of sulfide-saturated magmas from depth. The Yulonggou and Yaqu sulfide deposits are not economically valuable under current market condition due to small sizes and low Ni grades, which can be explained

  6. Petrology, zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes of the Late Paleozoic gold-bearing magmatic rocks (porphyry intrusions) in Jiamante area, Northwest Tianshan: Implications for petrogenesis and mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Tongliang; Cai, Keda; Wang, Xiangsong

    2017-04-01

    A series of Cu-Au-Mo deposits distributed from east to west in the Northwestern Tianshan Orogenic Belt (NTOB), which is located in the northwestern China. The tectonic settings and associated geodynamic processes of these deposits have been disputed. This paper presents whole-rock geochemical data, in-situ U-Th-Pb ages and Sr-Nd-Hf isotopic composition for granite porphyry and quartz porphyry in the Jiamante gold deposit from the Yelimodun Basin, in the NTOB. These two type representative high potassium granitic intrusions have the LA-ICP-MS zircon U-Pb ages of 350.8±4 Ma, 351.7±3 Ma and 350.4±5 Ma, 353.9±2.5 Ma, interpreted as the crystallization ages. High contents of SiO2 ( 71.1-75.2wt.%), K2O (4.96-6.33 wt.%), Al2O3 (12.45-14.35 wt.%) and low contents of Fe2O3T (1.47-3.25 wt.%), MgO (0.3-0.5 wt.% ), and CaO (0.49-1.29wt.%), High ASI (Alumina Saturation Index, Al2O3/(CaO+Na2O+K2O)=1.37-1.80 molecular ratios) can be found in these rocks. These porphyries are enriched in both large ion lithophile and light rare earth elements, but deplet in high field strength elements and are characterized by moderately negative Eu anomalies (Eu/Eu*=0.27-0.66) and strong depletion in Ba, Nb,Ti and Sr elements. These two porphyries have negative and positive zircon ɛHf(t) (-11.6 to +6.7) values, low Mg# ratios (21.85-35.51wt%), and low Cr (3.24ppm -11.35ppm) and Ni (1.88ppm-13.41ppm) contents. The regional geological and geochemical characteristics of the Early Carboniferous rocks in the Northwestern Tianshan show that peraluminous granitoids, with hybrid Sr-Nd-Hf isotopic signatures, suggesting that their parental magmas could be derived from the subduction of Paleo-Junggar Ocean beneath the Yili Block and the sediments from the Yili Block. In combination with the compositions of the volcanic rocks and basic lavas in the region in the Early Carboniferous, we suggest that the Jiamante peraluminous granitic porphyries and quartz porphyries were generated by the interaction

  7. Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan

    USGS Publications Warehouse

    Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; Feinstein, S.

    2006-01-01

    A vast sequence of quartz-rich sandstone was deposited over North Africa and Arabia during Early Palaeozoic times, in the aftermath of Neoproterozoic Pan-African orogeny and the amalgamation of Gondwana. This rock sequence forms a relatively thin sheet (1-3 km thick) that was transported over a very gentle slope and deposited over a huge area. The sense of transport indicates unroofing of Gondwana terranes but the exact provenance of the siliciclastic deposit remains unclear. Detrital zircons from Cambrian arkoses that immediately overlie the Neoproterozoic Arabian-Nubian Shield in Israel and Jordan yielded Neoproterozoic U-Pb ages (900-530 Ma), suggesting derivation from a proximal source such as the Arabian-Nubian Shield. A minor fraction of earliest Neoproterozoic and older age zircons was also detected. Upward in the section, the proportion of old zircons increases and reaches a maximum (40%) in the Ordovician strata of Jordan. The major earliest Neoproterozoic and older age groups detected are 0.95-1.1, 1.8-1.9 and 2.65-2.7 Ga, among which the 0.95-1.1 Ga group is ubiquitous and makes up as much as 27% in the Ordovician of Jordan, indicating it is a prominent component of the detrital zircon age spectra of northeast Gondwana. The pattern of zircon ages obtained in the present work reflects progressive blanketing of the northern Arabian-Nubian Shield by Cambrian-Ordovician sediments and an increasing contribution from a more distal source, possibly south of the Arabian-Nubian Shield. The significant changes in the zircon age signal reflect many hundreds of kilometres of southward migration of the provenance. ?? 2006 Cambridge University Press.

  8. Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data

    NASA Astrophysics Data System (ADS)

    Eichhorn, Roland; Loth, Georg; Kennedy, Allen

    2001-08-01

    The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high

  9. North Qinling Terrain as a provenance of Kuanping Group: LA-ICP-MS U-Pb Geochronology of detrital zircons

    NASA Astrophysics Data System (ADS)

    Hu, B.; Li, S.; Zhai, M.; Wu, J.; Jia, X.

    2017-12-01

    Though some Neoproterozoic S-type granites in the North Qinling Terrain (NQT), China indicate the collision between the NQT and an unknown block, there are still controversial. The LA-ICP-MS U-Pb ages of detrital zircons of meta-sandstones from the Kuanping Group in Luonan area, NQT, provide sedimentology evidence to prove that the NQT and an unknown block from Rodinia supercontinent have been collided during Meso-Neoproterozoic. The U-Pb ages of detrital zircons from the Kuanping Group show that the main age peaks are at 2.58 Ga, 2.46 Ga, 2.0 Ga, 1.78 Ga, 1.6 Ga, 1.45 Ga and 1.27 Ga. The youngest age of 880 Ma indicates that the sedimentary age of the Kuanping Group is less than 880 Ma. The provenances, which provide 1.45 - 0.88 Ga sediments may come from NQT, which magmatic and metamorphic rocks during this period outcropped. Whereas provenances providing 2.6- 1.6 Ga sediments may come from an unknown block. This indicates that the Kuangping Group received both NQT and the unknown block materials. Therefore, the NQT and the unknown block may have collided before 880 Ma. 889 - 848 Ma A-type granites distributing the NQT was considered forming under a post-collisional tectonics. According the youngest detrital zircon ages of 880 Ma, it is inferred that the Kuanping Basin may also form in the same tectonic environments. Neoproterozoic Kuanping basin and 889 - 848 Ma A-type granites may be a result which NQT broken off a block of Rodinia supercontinent. Acknowledgments: This research is supported by National Key Research and Development Plan of China (2016YFC0601002), Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (310827172201, 0009-2014G1271067) and National Nature Science Foundation of China (41402042).

  10. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France)

    NASA Astrophysics Data System (ADS)

    Paquette, J.-L.; Ballèvre, M.; Peucat, J.-J.; Cornen, G.

    2017-12-01

    In the Variscan belt of Western Europe, the lifetime and evolution of the oceanic domain is poorly constrained by sparse, outdated and unreliable multigrain ID-TIMS U-Pb zircon dating. In this article, we present a complete in situ LA-ICP-MS dataset of about 300 U-Pb zircon analyses obtained on most of the ophiolitic and eclogitic outcrops of Southern Brittany, comprising new dating of previously published zircon populations and newly discovered rock samples. In situ dating and cathodo-luminescence imaging of each zircon grain yields new absolute time-constraints on the evolution of the Galicia-Moldanubian Ocean. The new results confirm that the opening of this oceanic domain is well defined at about 490 Ma. In contrast, the generally-quoted 400-410 Ma-age for the high-pressure event related to the subduction of the oceanic crust is definitely not recorded in the zircons of the eclogites. In light of these new data, we propose that the obduction of oceanic rocks occurred at about 370-380 Ma while the high-pressure event is recorded at 355 Ma in only a few zircon grains of some eclogite samples. Additionally, this large scale dating project demonstrates that the zircons from eclogites do not systematically recrystallise during the high pressure event and consequently their U-Pb systems do not record that metamorphism systematically. These zircons rather preserve the isotopic memory of the magmatic crystallization of their igneous protolith. Another example of an eclogite sample from the French Massif Central illustrates the frequent mistake in the interpretation of the ages of the early hydrothermal alteration of zircons in the oceanic crust versus partial or complete recrystallization during eclogite facies metamorphism.

  11. Igneous and tectonic evolution of the Batchawana Greenstone Belt, Superior Province: a U-Pb zircon and titanite study

    SciTech Connect

    Corfu, F.; Grunsky, E.C.

    1987-01-01

    U-Pb isotopic dating of zircon and titanite from all the major litho-tectonic units of the Batchawana belt, an Archean greenstone belt of the Abitibi Subprovince of the Superior Province in Canada, shows that the belt evolved during a period of about 60 Ma between about 2730 and 2670 Ma ago. Subsequent deformation of the supracrustal sequences produced isoclinal folding and culminated in metamorphism ranging from lower greenschist to amphibolite facies and anatexis related to the intrusion of syn- to late-tectonic plutons, four phases of which have ages of 2678 +4/-2 Ma, 2677 +/- 2 Ma, 2677 +/- 3 Ma, andmore » 2676 +/- 2 Ma. Two post-tectonic granitoid plutons in the center of the belt were intruded 2674 +/- 3 Ma and 2673 +/- 5 Ma ago and were followed by the emplacement of a composite mafic to felsic intrusion; a monzonite and a hornblendite from this intrusion yield identical ages of 2668 +/- 2 Ma. Titanite ages are identical or younger than the ages of coexisting zircons and reflect regional metamorphism and post-tectonic plutonism, but in a few cases they are younger and may record increased fluid activity along faults and the intrusion of mafic dikes. U-Pb zircon systematics, together with age and lithological relationships, suggests that the greenstone belt formed in an oceanic environment from material derived initially mainly from the mantle. Subsequent melting at the base of the thickening volcanic succession produced intermediate to felsic volcanic rocks, tonalites, and later granodioritic to granitic plutons leading to the final consolidation of the granite-greenstone terrain. 47 references.« less

  12. SHRIMP-RG U-Pb ages of provenance and metamorphism from detrital zircon populations and Pb-Sr-Nd signatures of prebatholithic metasedimentary rocks at Searl Ridge, northern Peninsular Ranges batholith, southern California: Implications for their age, origin, and tectonic setting

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Twenty-four samples were collected from prebatholithic metasedimentary rocks along Searl Ridge, the north rim of the Diamond Valley Reservoir, Domenigoni Valley, centrally located in the northern Peninsular Ranges of southern California. These rocks exhibit progressive metamorphism from west to east across fundamental structural discontinuities now referred to as a “transition zone.” Documented structural and mineralogical changes occur across this metamorphic gradient. Sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) U-Pb ages were obtained from detrital zircons from metasedimentary rocks through the transition zone. To the west, metapelitic and minor metasandstone units yielded numerous concordant 206Pb/238U ages between 210 and 240 Ma, and concordant 207Pb/206Pb ages at 1075–1125 Ma, 1375–1430 Ma, and 1615–1735 Ma, although distinct differences in provenance were noted between units. A few older 207Pb/206Pb ages obtained were ca. 2250 Ma and ca. 2800 Ma. Rocks of the eastern part of the transition zone include high-grade paragneisses that yielded numerous concordant 206Pb/238U ages between 103 and 123 Ma and between 200 and 255 Ma, and concordant 207Pb/206Pb ages at 1060–1150 Ma, 1375–1435 Ma, and 1595–1710 Ma. Some zircon results from these high-grade gneisses are marked by distinct Pb-loss discordia with lower-intercept ages of ca. 215 Ma and Paleoproterozoic upper-intercept ages. Younger ages between 100 and 105 Ma are mainly obtained from rims of some zircon grains that are characterized by low Th/U values (<0.1) and high U contents (>1000 ppm), indicating the likelihood of metamorphic zircon growth at that time. The similarity of zircon age populations between western and eastern units through the transition zone indicates that this fundamental structure probably dissects sediments of the same basin. This supposition is further supported by initial whole-rock Pb-Sr-Nd isotopic data that show similar average

  13. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  14. U-Pb zircon geochronologycal investigation on the Morro dos Seis Lagos Carbonatite Complex and associated Nb deposit (Amazonas, Brazil)

    NASA Astrophysics Data System (ADS)

    Rossoni, Marco B.; Bastos Neto, Artur C.; Souza, Valmir S.; Marques, Juliana C.; Dantas, Elton; Botelho, Nilson F.; Giovannini, Arthur L.; Pereira, Vitor P.

    2017-12-01

    We present results of U-Pb dating (by MC-ICP-MS) of zircons from samples that cover all of the known lithotypes in the Seis Lagos Carbonatite Complex and associated lateritic mineralization (the Morro dos Seis Lagos Nb deposit). The host rock (gneiss) yielded an age of 1828 ± 09 Ma interpreted as the crystallization time of this unit. The altered feldspar vein in the same gneiss yielded an age of 1839 ± 29 Ma. Carbonatite samples provided 3 groups of ages. The first group comprises inherited zircons with ages compatible with the gneissic host rock: 1819 ± 10 Ma (superior intercept), 1826 ± 5 Ma (concordant age), and 1812 ± 27 Ma (superior intercept), all from the Orosirian. The second and the third group of ages are from the same carbonatite sample: the superior intercept age of 1525 ± 21 Ma (MSWD = 0.77) and the superior intercept age of 1328 ± 58 Ma (MSWD = 1.4). The mineralogical study indicates that the ∼1.3 Ga zircons have affinity with carbonatite. It is, however, a tendence rather than a well-defined result. The data allow state that the age of 1328 ± 58 Ma represents the maximum age of the carbonatite. Without the same certainty, we consider that the data suggest that this age may be the carbonatite age, whose emplacement would have been related to the evolution of the K'Mudku belt. The best age obtained in laterite samples (a superior intercept age of 1828 ± 12 Ma) is considered the age of the main source for the inherited zircons related to the gneissic host rock.

  15. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB

  16. Testing the age calibration of the Newark-Hartford APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Late Traissic Chinle Formation in core PFNP-1A from the Petrified Forest National Park (Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Olsen, P. E.; Mundil, R.; Lepre, C. J.

    2017-12-01

    The Newark-Hartford APTS extends over 27 Myr according to cycle stratigraphy of the Norian and Rhaetian of the Late Triassic and Hettangian and Sinemurian of the Early Jurassic and an additional 6 Myr by extrapolation into the Carnian; the entire sequence is anchored by U-Pb zircon dating of CAMP activity that provides a calibration date of 201.6 Ma for Chron E23r just below the end-Triassic extinction and the earliest CAMP basalts in the Newark basin (Blackburn+2013 Science; Kent+2017 ESR). The developing APTS has been successfully used for global correlations in marine and non-marine facies but there have been ongoing suggestions that millions of years of Rhaetian time are missing in a cryptic unconformity that supposedly occurs just above E23r in the Newark Supergroup basins. Testing the continuity of the APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Chinle Formation was a prime scientific objective for core PFNP-1A. Paleomagnetic results were obtained using stepwise thermal demagnetization to 680°C from >150 samples of finer-grained red lithologies from the upper 250 m of the cored section of the Chinle (upper Sonsela, Petrified Forest including the Black Forest Bed, and lower Owl Rock Members). Characteristic directions isolated in 2/3 of the samples showed antipodal directions that were shallow with respect to reference directions (flattening factor 0.5), consistent with early acquisition of remanence. Seven polarity magnetozones produce a distinctive pattern correlated to Chrons E17r to E14r of the APTS. The Black Forest Bed at 209.93±0.26 Ma (Ramezani+2011 GSAB), confirmed by our new U-Pb dates from core PFNP-1A, occurs in a reverse polarity magnetozone correlated to E16r (209.95-210.25 Ma), which puts the U-Pb zircon date(s) in excellent agreement with the inferred APTS age. Rather than a 'missing Rhaetian', the apparent regional differences in appearances and disappearances of palynoflora, conchostracans, and other

  17. GHR1 - A new Eocene natural reference material for U-Pb and Hf isotopic measurements in zircon

    NASA Astrophysics Data System (ADS)

    Ibanez-Mejia, M.; Eddy, M. P.

    2017-12-01

    We present chemical abrasion-isotope dilution-thermal ionization (CA-ID-TIMS) U-Pb zircon geochronology and solution multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) Hf isotopic data from a proposed natural zircon reference material for use during in situ analyses of U-Pb and Hf isotopic ratios. The sample, GHR1, was collected from the rapakivi intrusive phase of the Eocene Golden Horn batholith in Washington, USA. Zircons separated from this sample range up to 250-300 μm in length and have moderate aspect ratios. A weighted mean of 15 Th-corrected 206Pb/238U zircon dates from GHR1 produced at the Massachusetts Institute of Technology is 48.132 ± 0.023 Ma (2σ analytical and tracer uncertainties only, MSWD=1.70) confirming that there is little or no inter-crystal age heterogeneity at the scale of a few 10 kyr. Solution MC-ICP-MS measurements of chemically purified aliquots give a 176Hf/177Hf weighted mean of 0.283050 ± 17 (2σ, n=10), corresponding to a ɛHf0 of ca. +9.3. The 2σ variability of these measurements is comparable to our reproducibility of the JMC-475 Hf isotopic standard 0.282160 ± 14 (n= 13), suggesting that GHR1 zircons are homogenous with respect to 176Hf/177Hf. In situ 206Pb/238U dates from collaborating secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation ICP-MS (LA-ICP-MS) laboratories are in excellent agreement with the CA-ID-TIMS date and illustrate the reproducibility and potential value of this reference zircon. The mean values of 176Hf/177Hf measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value, but show slightly greater dispersion and higher (Lu+Yb)/Hf values. We attribute this discrepancy to apatite inclusions that are high in REE and may lead to greater isobaric interferences on 176Hf. These inclusions and potential isobaric interferences from REE were removed during the chemical abrasion step prior to bulk

  18. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena V.; Agashev, Alexey M.; Zedgenizov, Dmitry A.

    2018-05-01

    The concentrations of major and trace elements in minerals, reconstructed whole-rock compositions of zircon-bearing equigranular eclogites from the V. Grib kimberlite pipe located within the Arkhangelsk Diamondiferous Province (North-Western Russia), and results of the U-Pb and Lu-Hf isotope analyses of zircon grains from eclogites and granulite xenoliths are reported. These data suggest that the equigranular eclogites could represent the fragments of mid-ocean-ridge basalt that were metamorphosed during Paleoproterozoic subduction at 1.7-1.9 Ga. The Hf isotope compositions of the eclogitic zircon display uniformity and indicate corresponding Hf-depleted mantle model ages of 2.2-2.3 Ga. The formation of zircon in eclogites could have resulted from interactions with metasomatic/subduction-related fluids just prior to, but associated with, Paleoproterozoic eclogite formation. A link between eclogitic zircon formation and continental lower-crustal rocks can be excluded based on differences in the Hf isotope compositions of eclogitic and granulitic zircon grains. The U-Pb upper intercept age of granulitic zircon of 2716 ± 61 Ma provides a new minimum age constraint for zircon crystallisation and granulite formation. The U-Pb ages obtained from granulitic zircon show two stages of Pb loss at 2.2-2.6 Ga and 1.7-2.0 Ga. The late Paleoproterozoic stage of Pb loss recorded in granulitic zircon is due to the intensive reworking of basement crustal rocks, which was caused by a tectonic process/subduction event associated with equigranular eclogite formation. Our data, along with evidence previously obtained from the V. Grib pipe coarse-granular eclogites, show at least two main subduction events in the lithospheric mantle of the Arkhangelsk region: the Archean (2.8 Ga) and Paleoproterozoic (1.7-1.9 Ga) subductions, which correspond to major magmatic and metamorphic events in the Baltic Shield.

  19. U-Pb zircon and biostratigraphic data of high-pressure/low-temperature metamorphic rocks of the Talea Ori: tracking the Paleotethys suture in central Crete, Greece

    NASA Astrophysics Data System (ADS)

    Zulauf, G.; Dörr, W.; Krahl, J.; Lahaye, Y.; Chatzaras, V.; Xypolias, P.

    2016-10-01

    Inherited deformation microfabrics of detrital quartz grains and U-Pb (Laser ablation (LA)-ICPMS and ID TIMS) ages of detrital zircons separated from the Phyllite-Quartzite Unit s.l. of the Talea Ori, central Crete, suggest strikingly different source rocks. Albite gneiss of the lower Rogdia Beds includes Cambrian and Neoproterozoic rounded zircons with main U-Pb age peaks at 628 and 988 Ma. These and minor Paleoproterozoic and Archean peaks, together with the lack of Variscan-aged and Mesoproterozoic zircons, are similar to the age spectra obtained from the Phyllite-Quartzite Unit s.str. of the Peloponnesus and eastern Crete and from the Taurides. All of these zircons should be derived from the northeastern passive margin of Gondwana (Cimmeria). Metatuffites of the uppermost Rogdia Beds and metasandstone of Bali beach, on the other hand, include euhedral detrital zircons displaying a Variscan U-Pb age spectra at ca. 300 Ma with concordia ages at 291 ± 3, 300 ± 1 Ma (Rogdia) and 286 ± 3, 300 ± 3, 313 ± 2 Ma (Bali). Both types of metasediments and their zircons are similar to those of the pre-Alpine basement and overlying Tyros Beds of eastern Crete, revealing a provenance at the southern active margin of Laurasia. Thus, in central Crete the Paleotethys suture should be situated inside the Rogdia Beds. Magmatic zircons separated from a rhyolite boulder of the lower Achlada Beds yielded a concordant U-Pb zircon age at 242 ± 2 Ma placing a maximum age for the deposition of the (meta)conglomerate from which the boulder was collected. This age is compatible with an Olenekian-early Anisian age of the underlying Vasilikon marble suggested by new findings of the foraminifera Meandrospira aff. pusilla. Both the Achlada Beds and the Vasilikon marble can be attributed to the lower Tyros Beds of eastern Crete. The Alpine deformation led to a pervasive mylonitic foliation, which is affecting most of the studied rocks. This foliation results from D2 top

  20. Provenance of the exotic Northern Sierra terrane (North American Cordillera) based on U-Pb detrital zircon data

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Girty, G.; Hanson, R. E.; Grove, M.; Miller, E. L.; Hourigan, J. K.

    2017-12-01

    Ages of detrital zircons from the Northern Sierra terrane (NST) suggest an exotic provenance with respect to NW Laurentia. We have acquired U-Pb LA-ICPMS dz ages from 16 samples collected from the uppermost NST allochthon, the Sierra City mélange, and 1 sample from the lower Culbertson Lake allochthon. Age distributions can be divided into 3 partly intersecting groups: (a) 6 mélange samples and the 1 Culbertson Lake allochthon sample are dominated by >1 Ga grains; (b)5 samples are characterized by the additional presence of Early Paleozoic and Neoproterozoic grains (520-640;680-800;840-1000Ma); (c) 9 samples, 8 feldspathic, 1—qtz-rich, can be also characterized by the presence of 360-520Ma grains. These results strengthen the non Laurentian nature of detrital sources:(1)most of the detrital age distributions possess ages in the 1.49-1.61Ga interval, the "N.American magmatic gap";(2) Ediacaran zircons cannot be linked to any igneous event within West Laurentia. Most samples possess detrital age distributions that include the 1.0-2.0 Ga peak, characteristic of Baltica rather than Laurentia. These data, supplemented by SHRIMP-RG data (353-368Ma) from stitching igneous units suggest the following model: parts of NST were located at the NE margin of Baltica in the early Paleozoic, receiving "Baltica" (1.0-2.0 Ga) and "Timanide"(Late Vendian — Early Cambrian) zircons. This crustal block was later rifted away from Baltica and by mid-Paleozoic was juxtaposed with allochthons of presumably NW Laurentia provenance. The assembled terrane was involved in a subduction zone, resulting in the emplacement of 353-368Ma igneous rocks. The U-Pb detrital zircon age distributions presented here are similar to signatures of strata in along strike exotic terranes of the North American Cordillera (such as the Yreka terrane of the Klamath Mts., the Alexander terrane of S.Alaska and the Arctic Chukotka-Alaska terrane) by having Timanian, Baltica, and Caledonian signatures. Hence, it

  1. Zircon Zoning, Trace Elements and U-Pb Dates Reveal Crustal Foundering Beneath the Pamir

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Shaffer, M. E. F.; Ratschbacher, L.; Kylander-Clark, A. R.

    2017-12-01

    Xenoliths that erupted in the SE Pamir of Tajikistan at 11.2 Ma from 1000-1050°C and 90 km depth illuminate what happens when crust founders into the mantle. The xenoliths are a broad range of crustal rock types and contain abundant xenoliths whose U-Pb isotopic ratios and trace-element contents were examined by laser-ablation split stream inductively coupled plasma mass spectrometry. Cathodoluminescence imaging of the grains shows igneous cores with oscillatory zoning overprinted by substantial recrystallization. The bulk of the U-Pb dates are concordant and range from 160 Ma to 11 Ma. The range of dates suggest that the xenoliths were likely derived from the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations that are interpreted to indicate garnet growth and minimal heating at 22-20 Ma, and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with: i) heat input due to Indian slab breakoff at 22‒20 Ma; ii) rapid thickening and foundering of the Pamir lithosphere at 14‒11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.

  2. Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Stockli, Daniel F.; Snedden, John W.

    2017-10-01

    Detrital zircon U-Pb analysis is an effective approach for investigating sediment provenance by relating crystallization age to potential crystalline source terranes. Studies of large passive margin basins, such as the Gulf of Mexico Basin, that have received sediment from multiple terranes with non-unique crystallization ages or sedimentary strata, benefit from additional constraints to better elucidate provenance interpretation. In this study, U-Pb and (U-Th)/He double dating analyses on single zircons from the lower Miocene sandstones in the northern Gulf of Mexico Basin reveal a detailed history of sediment source evolution. U-Pb age data indicate that most zircon originated from five major crystalline provinces, including the Western Cordillera Arc (<250 Ma), the Appalachian-Ouachita orogen (500-260 Ma), the Grenville (1300-950 Ma) orogen, the Mid-Continent Granite-Rhyolite (1500-1300 Ma), and the Yavapai-Mazatzal (1800-1600 Ma) terranes as well as sparse Pan-African (700-500 Ma) and Canadian Shield (>1800 Ma) terranes. Zircon (U-Th)/He ages record tectonic cooling and exhumation in the U.S. since the Mesoproterozoic related to the Grenville to Laramide Orogenies. The combined crystallization and cooling information from single zircon double dating can differentiate volcanic and plutonic zircons. Importantly, the U-Pb-He double dating approach allows for the differentiation between multiple possible crystallization-age sources on the basis of their subsequent tectonic evolution. In particular, for Grenville zircons that are present in all of lower Miocene samples, four distinct zircon U-Pb-He age combinations are recognizable that can be traced back to four different possible sources. The integrated U-Pb and (U-Th)/He data eliminate some ambiguities and improves the provenance interpretation for the lower Miocene strata in the northern Gulf of Mexico Basin and illustrate the applicability of this approach for other large-scale basins to reconstruct sediment

  3. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.

    PubMed

    Blackburn, Terrence J; Olsen, Paul E; Bowring, Samuel A; McLean, Noah M; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, E Troy; Et-Touhami, Mohammed

    2013-05-24

    The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.

  4. Precise U/Pb zircons dates of bentonites in Upper Ordovician and Lower Silurian reference sections in North America and Britain.

    NASA Astrophysics Data System (ADS)

    Suarez, S. E.; Brookfield, M. E.; Catlos, E. J.; Stockli, D. F.; Batchelor, R. A.

    2016-12-01

    The end of the Ordovician marks one of the greatest of the Earth's mass extinctions. One hypothesis explains this mass extinction as the result of a short-lived, major glaciation preceded by episodes of increased volcanism brought on by the Taconic orogeny. K-bentonites, weathered volcanic ash, provide evidence for increased volcanism. However, there is a lack of modern precise U-Pb dating of these ashes and some confusion in the biostratigraphy. The aim of this study is to obtain more precise U-Pb zircon ages from biostratigraphically constrained bentonites which will lead to better correlation of the Upper Ordovician and Lower Silurian relative time scales, as well as time the pulses of eruption. Zircon grains were extracted from the samples by heavy mineral separation and U-Pb dated using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer at the University of Texas-Austin. We report here 3 precise U-Pb zircon ages from the Trenton Group, Ontario, Canada, and Dob's Linn, Scotland. The youngest age from the top of the Kirkfield Formation in Ontario is 448.0 +/- 18 Ma, which fits with existing late Ordovician stratigraphic ages. At Dob's Linn, Scotland, the site of the Ordovician/Silurian Global Boundary Stratigraphic Section and Point (GSSP), the youngest age for DL7, a bentonite 5 meters below the GSSP is 402.0 +/- 12.0 Ma, and for DL24L, a bentonite 8 meters above the GSSP is 358.2 +/- 7.9 Ma. These are Devonian ages in current timescales - the current age for the GSSP is 443.8 +/- 1.8 Ma, based on an U/Pb dates from a bentonite 1.6 meters above the GSSP at Dob's Linn. We are confident that our techniques rule out contamination and the most likely explanation is that the small zircons we analyzed either suffered Pb loss, or grew overgrowths during low grade hydrothermal metamorphism of the sediments during the intrusion of the Southern Upland Devonian granites during the Caledonian orogeny. These Devonian ages suggest that the 443.8 +/- 1.8 Ma age

  5. Zircon morphology and U-Pb geochronology of seven metaluminous and peralkaline post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Aleinikoff, John Nicholas; Stoeser, D.B.

    1988-01-01

    The U-Pb zircon method was used to determine the ages of seven metaluminous-to-peralkaline post-orogenic granites located throughout the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of about 2-4:1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well developed prismatic faces (are pseudo-octahedral) or are anhedral. Some of the zircons from the peralkaline granites contain inherited radiogenic lead. This complicates interpretation of the isotopic data and. in many cases, may make the U-Pb method unsuitable for determining the age of a peralkaline granite. Zircons in the metaluminous granites do not contain inheritance and thus, best-fit chords calculated through the data have upper concordia intercepts that indicate the age of intrusion, and lower intercepts that indicate simple episodic lead loss. The results show that these granites were emplaced during multiple intrusive episodes from 670 to 510 Ma (Late Proterozoic to Cambrian).

  6. Textural and U-Pb systematics (CA-TIMS) of stepwise leaching in zircon from granophyres in the Archean Stillwater Complex

    NASA Astrophysics Data System (ADS)

    Wall, C. J.; Scoates, J. S.; Friedman, R. M.; Meurer, W. P.

    2011-12-01

    The chemical abrasion-TIMS method or CA-TIMS uses a high-temperature annealing treatment to remove the effects of Pb-loss from radiation damaged parts of the zircon lattice and allows for highly precise and accurate U-Pb dating [1]. Zircon with high U-Th concentrations can be strongly metamict and it is not yet clear how effective the chemical abrasion treatment is when applied to these types of grains. In this study, we evaluate the link between the textural response and U-Pb systematics of zircon during chemical leaching for a granophyric rock from the Archean Stillwater Complex in Montana. The sample was selected based on the high abundance of zircon and the high degree of metamictization of the grains. Untreated and leached zircon grains were analyzed by scanning electron microscopy (SEM) and isotope dilution thermal ionization mass spectrometry (ID-TIMS). In thin section, zircon grains are euhedral in morphology and tend to be associated with amphibole-rich zones. Under the SEM, zircon grains typically have two distinct zones, a Ca-rich amorphous zone in the core and a more intact outer shell. Five acid-leaching steps were carried out on grains with each step increasing in temperature and acid strength until the zircon residue completely dissolved (starting at a 50% strength HF/HNO3 mixture at 100°C for 4 hours and finishing at full strength acid at 170°C for 4 hours). SEM imaging was conducted on grains after each step with a noticeable change in the morphology of the grains. As the leaching progressed, the acid leach created large pathways through the crystal lattice until only grain fragments remained, in some cases even boring large holes into the centre of the zircon grain. The acid preferentially dissolved the more soluble Ca-rich zones leaving behind fragile zircon "shells". U-Pb results of untreated grains are highly discordant (37-80%) and yield a chord with an upper intercept age of 1981 ± 140 Ma, whereas leached grains are slightly less

  7. Tithonian age of dinosaur fossils in central Patagonian, Chile: U-Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Suárez, Manuel; De La Cruz, Rita; Fanning, Mark; Novas, Fernando; Salgado, Leonardo

    2016-11-01

    Three Tithonian concordant U-Pb SHRIMP zircon ages of 148.7 ± 1.4, 147.9 ± 1.5 and 147.0 ± 1.0 from tuffs intercalated in a clastic sedimentary succession with exceptional dinosaur bones including the new taxon Chilesaurus diegosuarezi gen. et sp. nov. exposed in central Chilean Patagonia (ca. 46°30'S) are reported herein. The fossiliferous beds accumulated in a synvolcanic fan delta reaching a shallow marine basin as indicated by glauconite present in some of the beds, and coeval with the beginning of the transgression of the Aysén Basin.

  8. U-Pb zircon geochronology and Zr-in-rutile thermometry of eclogites from the Dulan area, North Qaidam ultra-high pressure (UHP) terrane, western China

    NASA Astrophysics Data System (ADS)

    Hernández Uribe, D.; Stubbs, K.; Lehman, M. R.; Gilmore, V.; Kylander-Clark, A. R.; Mattinson, C. G.

    2016-12-01

    The Dulan area, in the North Qaidam terrane, exposes UHP eclogites and gneisses that experienced a 20 Myr UHP event at P-T conditions of 30 kbar and 700 °C. Two eclogites were analyzed using Zr-in-rutile thermometry and zircon U-Pb + trace element analysis to constrain the metamorphic evolution of the area. A kyanite-phengite eclogite presents a mineral assemblage of grt + omp + ph + ky + rt + zo + qz. Rutile analyses show a Zr concentration of 173-250 ppm with a mean of 207 ± 19 ppm. The calculated temperatures yielded 685-716 °C with an average of 700 ± 7°C. Zircon U-Pb analyses gave an upper intercept age of 880 ± 89 Ma. These analyses from cathodoluminiscence (CL)-dark core zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-bright rims gave a weighted mean age of 427 ± 2 Ma. These zircons show an eclogite facies trace elements pattern suggesting that the age represent the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 4.41 ± 0.25 ppm. This Ti concentration yielded a calculated temperature of 674 °C A phengite eclogite shows a mineral assemblage of grt + omp + ph + rt + zo + qz. Rutile in matrix analyses show a Zr concentration of 123-161 ppm with a mean of 139 ± 9 ppm. Calculated temperatures for these rutiles ranges from 659-680 °C with a mean temperature of 668 ± 5 °C. U-Pb analyses from CL-dark zircon cores gave a weighted mean age of 844 ± 7 Ma. These zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-grey rims gave a weighted mean age of 433 ± 4 Ma. These zircons show an eclogite facies trace elements pattern, representing the timing of the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 3.13 ± 0.34 ppm. This concentration yielded calculated temperature 647 °C. The obtained ages are in the same range as the ones obtained for the northern and southern

  9. The 3.5 Ga granulites of the Bug polymetamorphic complex, Ukraine (U-Pb SHRIMP-II zircon data)

    NASA Astrophysics Data System (ADS)

    Lobach-Zhuchenko, Svetlana; Kaulina, Tatiana; Baltybaev, Shauket; Yurchenko, Anastasija; Balagansky, Victor; Skublov, Sergei; Sukach, Vitaliji

    2014-05-01

    and Cpx). Zircon U-Pb isotopic analysis was carried out using SHRIMP II ion microprobe technique at the Isotopic Centre of VSEGEI, St.-Petersburg. Six transparent grains of the (1) group form a discordia line with Concordia intercepts at 3499+/-33 Ma (and 2638+/-240 Ma (MSWD=2.3). According to internal textures and chemical composition of zircons their formation is associated with granulite metamorphism. The 207 Pb/ 206 Pb data for 11 grains from (3) group are highly variable in age from 3330+/-5 to 2356+/-7 Ma indicating isotopic disturbance. They do not form an isochrone, thus reliable determination of their age is not yet possible. Thus, the oldest granulitic event at 3499 ± 33 Ma has been identified and justified for rocks of the Bug polymetamorphic granulite complex. Recognition of this oldest granulite metamorphism proved possible due to preserved isotopic and geochemical features of zircon. The work was financially supported by program ONZ - 6.

  10. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology

    USGS Publications Warehouse

    Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.

    2006-01-01

    To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.

  11. Provenance of the Neogene Surma Group from the Chittagong Tripura Fold Belt, southeast Bengal Basin, Bangladesh: Constraints from whole-rock geochemistry and detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Rahman, M. Julleh Jalalur; Xiao, Wenjiao; McCann, Tom; Songjian, Ao

    2017-10-01

    Miocene Surma Group from the Chittagong Tripura Fold Belt (CTFB), southeast Bengal Basin has been analyzed to evaluate their provenance, tectonic settings and paleoweathering conditions. The sandstones show moderate to high contents of SiO2 (65-80%; 75% on average), and Al2O3 (9.94% on average), with Fe2O3 (total Fe as Fe2O3) + MgO contents of 5.1%, TiO2 (0.57% on average). Compared to the upper continental crust (UCC), the sandstones are depleted in CaO (1.49%) and enriched in Al2O3, Fe2O3 and Na2O. The Neogene shales of the Surma Group are in fair concurrence when compared to the NASC (North American Shale Composite), UCC (the upper continental crust) with the exception of the low content of CaO but when compared with the PAAS (Post-Archaean Australian Shale), the Neogene shales are a little more depleted in Al2O3 content. Sandstones and shales have Eu/Eu∗ ∼0.61 and ∼0.65, (La/Lu)N ∼9.06 and ∼8.70, La/Sc- ∼3.90 and ∼2.86, Th/Sc ∼1.19 and ∼1.41, La/Co- ∼3.69 and ∼2.42, Th/Co ∼1.08 and ∼1.20 and Cr/Th ∼7.90 and ∼5.88 ratios as well as Chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate the derivation from predominantly felsic sources subjected to low to moderate chemical weathering [Chemical index of alteration (CIA) values of sandstones- 31.11-74.46, av. 60.08); shales- 43.96-73.07, av. 61.80]. Integrated geochemical and zircon U-Pb studies reveal that main sediment input might have been from the Himalaya with mixing influence from the east of the Indo-Burman Ranges in an active margin setting at the convergence of the Indian and Burmese plates.

  12. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  13. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    USGS Publications Warehouse

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  14. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  15. High-Resolution Zircon U-Pb CA-TIMS Dating of the Carboniferous—Permian Successions, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Mundil, R.; Montanez, I. P.; Isbell, J.; Fedorchuk, N.; Lopes, R.; Vesely, F.; Iannuzzi, R.

    2015-12-01

    The late Paleozoic Ice Age (LPIA) is Earth's only record of a CO2-forced climatic transition from an icehouse to greenhouse state in a vegetated world. Despite a refined framework of Gondwanan ice distribution, questions remain about the timing, volume, and synchronicity of high-latitude continental ice and the subsequent deglaciation. These questions ultimately preclude our understanding of linkages between ice volume, sea level, and high- and low-latitude climate. Poor constraints on the timing and synchronicity of glacial and interglacial transitions reflect a lack of high-resolution radioisotopic dates from high-latitude, ice-proximal Carboniferous-Permian successions. The Rio Bonito Fm in Rio Grande do Sul State of southern Brazil hosts the oldest non-glaciogenic Carboniferous- Permian deposits of the Paraná Basin, thus recording the icehouse-to-greenhouse transition. Despite a widespread effort over the last two decades to constrain these deposits in time by means of U-Pb zircon geochronology, published data sets of the Candiota and Faxinal coals of the Rio Bonito Fm host discrepancies that may reflect post- eruptive open system behavior of zircon and analytical artifacts. These discrepancies have hindered the correlation of the Candiota and Faxinal sediments within the larger Gondwanan framework. Here we present the first U-Pb ages on closed system single zircons using CA-TIMS techniques on Permo-Carboniferous ash deposits of the Paraná Basin. Preliminary results indicate two major and distinct coal-forming periods that are separated by ca 10 Ma. Our results and conclusions are not in agreement with multi- crystal U-Pb TIMS and SIMS ages that suggest coeval deposition of the Candiota and Faxinal coals. CA-TIMS analyses applied to zircons from additional ash deposits are aimed at constructing a robust chronostratigraphic framework for the Carboniferous- Permian succession of the Paraná Basin, which will facilitate a better understanding of the timing and

  16. Detrital zircon U-Pb Geochronology of the Boleo Formation of Santa RosalÍa Basin, Baja California Sur, México

    NASA Astrophysics Data System (ADS)

    Henry, M.; Alvarez Ortega, K. G.; Banes, A.; Holm-Denoma, C.; Busby, C.; Niemi, T.

    2017-12-01

    The Santa Rosalía Basin (SRB) is a rift basin related to the opening of the Gulf of California. The Boleo Formation is the oldest and dominant sedimentary fill of the SRB, with a poorly constrained age. We carried out a U-Pb detrital zircon (DZ) study of the Boleo Formation to constrain its maximum depositional age. The Boleo Formation has a basal limestone-gypsum section, overlain by an up to 250 m thick clastic sequence, with coarsening upward cycles of mudstone, sandstone, and conglomerate. Cu-Zn-Co-Mn stratiform ore deposits ("mantos") cap the conglomerate in each cycle, numbered 0, 1, 2, 3 and 4 (from top to bottom of section1). Sandstone samples were collected for U-Pb detrital zircon geochronology from four stratigraphic levels beneath a manto, including one each below mantos 1, 3 and 4, as well as two localities beneath manto 2. Additionally, one sample was collected above the gypsum. The sandstones are lithic feldspathic wackes derived from erosion of andesitic arc volcanic rocks, which generally lack zircon, so large DZ samples were collected. A field Wilfley table was constructed from local materials as a first step to concentrate heavy minerals, from 88 kg/sample to 16 kg/sample. The field-processed samples were further concentrated in the lab using standard zircon separation methods. Yields were excellent, 1,000 zircons per sample. We analyzed 315 zircons per sample by LA-ICPMS, using the Arizona LaserChron Center. DZ ages from the Boleo Formation range dominantly from Late Miocene through Early Cretaceous, with minor Paleozoic and Precambrian ages. However, the maximum depositional age of the formation is constrained by 40 Ar/39 Ar age of 9.42 +/- 0.29 Ma on underlying volcanic rocks2. Only 5 to 22 zircons per sample are less than 10 Ma, and of those, all stratigraphic levels are dominated mostly by 9 Ma zircons, except for the stratigraphically highest sample. Zircons from this form a coherent group of 3 with a TuffZirc age of 6.04 +/- 0.02 (75

  17. Age of the granitic magmatism and the W-Mo mineralization in skarns of the Seridó belt (NE Brazil) based on zircon U-Pb (SHRIMP) and molybdenite Re-Os dating

    NASA Astrophysics Data System (ADS)

    Hollanda, Maria Helena B. M. de; Souza Neto, João A.; Archanjo, Carlos J.; Stein, Holly; Maia, Ana C. S.

    2017-11-01

    Over five hundred W-Mo skarns have been reported in the Neoproterozoic Seridó belt in the northeastern Brazil. The origin of these mineralizations has been attributed to metasomatic reactions occuring after the infiltration of hydrothermal fluids that are mostly derived from the plutonic magmatic activity that ranged between approximately 600 and 525 Ma. Here we date molybdenite using N-TIMS on Re-Os analysis of three major scheelite deposits (Brejuí, Bonfim and Bodó) hosted in the skarn horizons of the metasedimentary sequence. Molybdenite is an integral part of the mineralizations that include scheelite in skarns and, in the Bonfim deposit, gold concentrate in late brittle faults. The Re-Os ages are 554 ± 2 Ma (Brejuí), 524 ± 2 Ma (Bonfim) and 510 ± 2 Ma (Bodó). The age of the Brejuí molybdenite, however, appears to be anomalous based on the local geology of the deposit, which is located next to the contact of a batholith dated ca. 575 Ma. In turn, the Bonfim molybdenite yields similar ages in replicated samples with variable high Re contents. New U-Pb SHRIMP ages of four biotite (leuco)granite plutons vary from 577 ± 5 Ma to 526 ± 8 Ma, which overlap with molybdenite crystallization. These results indicate a close connection between the W-Mo mineralizations and the plutonic activity that intruded the belt after the peak HT/LP metamorphism. The latest pulses of felsic magmatism, which were contemporaneous with the emplacement of Be-Ta-Nb-Li pegmatites, therefore constitute a potential guide in the Seridó belt for prospective W-Mo deposits.

  18. Evidence From Detrital Zircon U-Pb Analysis for Suturing of Pre-Mississippian Terranes in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Potter, C. J.; O'Sullivan, P. B.; Aleinikoff, J. N.

    2007-12-01

    Detrital zircon U-Pb ages of pre-Mississippian sandstones were determined using SHRIMP and LA-ICPMS techniques for four key geographic parts of the Arctic Alaska terrane, northern Alaska. In the northeastern Brooks Range, a sample of quartz-rich turbidites from the Proterozoic Neroukpuk Quartzite yielded zircon ages ranging from 980 Ma to 2.9 Ga with clusters at 980-1100 Ma, 1680-1850 Ma and 2220-2660 Ma. Quartz and chert-bearing sandstone in the Tulageak well from Ordovician-Silurian argillite in basement beneath the North Slope yielded a broad spectrum of ages between 1.0 to 2.1 Ga and 2.8 Ga, including peaks at 1.0-1.2 and 1.5-1.7 Ga. Paleozoic zircons cluster at 390 and 440 Ma in this sample, indicating it is Devonian. Lithic sandstone from the Silurian Iviagik Group at Cape Dyer on the Lisburne Peninsula yielded a variety of ages from 450 to 1600 Ma, with a large peak at 475-600 Ma and several grains between 1.9 and 2.5 Ga. In contrast to the broad distributions of the latter two samples, zircons in metamorphosed Proterozoic-Cambrian(?) lithic sandstone from the an unnamed metagraywacke unit near Mt. Snowden on the Dalton Highway in the southern Brooks Range are largely 600-650 Ma with lesser clusters at 1050-1200 Ma and 1600-1900 Ga. Samples of quartz-rich Mississippian sandstone at the base of the unconformably overlying Mississippian to Triassic Ellesmerian sequence near three of the pre-Mississippian sample locations were also analyzed. Mississippian sandstones from the West Dease well (near the Tulageak well) and at Cape Dyer on the Lisburne Peninsula display zircon distributions similar to those found in the underlying pre-Mississippian samples, indicating the Mississippian clastic strata are locally derived and that the observed zircon distributions are representative of a broad area. However, the Mississippian Kekiktuk Conglomerate, which rests on the Neroukpuk Quartzite in the northeastern Brooks Range, also contains a variety of ages between 560 and

  19. Allogenic and Autogenic Signals in the Detrital Zircon U-Pb Record of the Deep-Sea Bengal Fan

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Rogers, K. G.; Gleason, J. D.; Najman, Y.

    2017-12-01

    The Himalayan-sourced Ganges-Brahmaputra river system and the deep-sea Bengal Fan represent Earth's largest sediment-dispersal system. This presentation summarizes a new detrital zircon U-Pb (DZ) provenance record from the Bengal Fan from cores collected during IODP Expedition 354, with coring sites located 1350 km downdip from the shelf margin. Each of our 15 samples were collected from medium- to fine-grained turbidite sand and, based on shipboard biostratigraphic analyses, our samples are late Miocene to late Pleistocene in age. Each sample was analyzed by LA-ICPMS at the Arizona Laserchron facility, with an average of n=270 concordant U-Pb ages per sample. Our goals are to use these data to evaluate the influence of allogenic controls vs. autogenic processes on signal propagation from source-to-sink. At the first order, large-scale sediment transfer to the Bengal Fan clearly records the strong tectonic and climatic forcing associated with the Himalayas and Ganges-Brahmaputra system: after up to 2500 km of river transport, and 1350 km of transport in turbidity currents, the DZ record faithfully represents Himalayan source terrains. The sand-rich turbidite part of the record is nevertheless biased towards glacial periods when rivers extended across the shelf in response to climate-forced sea-level fall, and discharged directly to slope canyons. However, only part of the Bengal Fan DZ record represents either the Ganges or the Brahmaputra, with most samples representing varying degrees of mixing of sediments from the two systems: this mixing, or the lack thereof, represents the signal of autogenic avulsions on the delta plain that result in the two river systems delivering sediment separately to the shelf margin, or together as they do today. Within the allogenic framework established by tectonic processes, the climatic system, and global climate-forced sea-level change, the DZ U-Pb record of sediment mixing or the lack thereof provides a fingerprint of autogenic

  20. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization

    NASA Astrophysics Data System (ADS)

    Kwelwa, S. D.; Sanislav, I. V.; Dirks, P. H. G. M.; Blenkinsop, T.; Kolling, S. L.

    2018-03-01

    The Geita Greenstone Belt is a late Archean greenstone belt located in the Tanzania Craton, trending approximately E-W and can be subdivided into three NW-SE trending terrains: the Kukuluma Terrain to the east, the Central Terrain in the middle and the Nyamullilima Terrain in the west. The Kukuluma Terrain, forms a NW-SE trending zone of complexly deformed sediments, intruded by the Kukuluma Intrusive Complex which, contains an early-syntectonic diorite-monzonite suite and a late-syntectonic granodiorite suite. Three gold deposits (Matandani, Kukuluma and Area 3W) are found along the contact between the Kukuluma Intrusive Complex and the sediments. A crystal tuff layer from the Kukuluma deposits returned an age of 2717 ± 12 Ma which can be used to constrain maximum sedimentation age in the area. Two granodiorite dykes from the same deposit and a small granodiorite intrusion found along a road cut yielded zircon ages of 2667 ± 17 Ma, 2661 ± 16 Ma and 2663 ± 11 Ma respectively. One mineralized granodiorite dyke from the Matandani deposit has an age of 2651 ± 14 Ma which can be used to constrain the maximum age of the gold mineralization in the area. The 2717 Ma crystal tuff has zircon grains with suprachondritic 176Hf/177Hf ratios (0.28108-0.28111 at 2717 Ma) and positive (+1.6 to +2.6) εHf values indicating derivation from juvenile mafic crust. Two of the granodiorite samples have suprachondritic 176Hf/177Hf ratios (avg. 0.28106 and 0.28107 at 2663 and 2651 Ma respectively) and nearly chondritic εHf values (avg. -0.5 and -0.3 respectively). The other two granodiorite samples have chondritic 176Hf/177Hf ratios (avg. 0.28104 and 0.28103 at 2667 and 2661 Ma respectively) and slightly negative εHf values (avg. -1.1 and -1.5 respectively). The new zircon age and isotope data suggest that the igneous activity in the Kukuluma Terrain involves a significant juvenile component and occurred within the 2720 to 2620 Ma period which, is the main period of crustal growth

  1. Single grain U/Pb geochronology of detrital zircons from Midcontinent rift arkoses, NE Kansas: Implications for depositional history

    SciTech Connect

    Martin, M.W.; Van Schmus, W.R.; Berendsen, P.

    1993-03-01

    The Midcontinent rift system in the subsurface south of the Lake Superior region has been well imaged by magnetic, gravity and seismic surveys, however only a few wells have penetrated and recovered core from rift-basin fill in this region. Texaco's exploratory Noel Poersch well [number sign]1 in northeastern Kansas, penetrated [approximately] 2,600 m of rift-related volcanic, igneous, and arkosic sedimentary rocks from which a total of 35 m of core was taken from fourteen different horizons in the rift-related section. To determine provenance ages and to constrain better the depositional patterns of clastic sedimentary rocks within the Mid-continent rift basin,more » the authors have undertaken U/Pb geochronology of detrital zircon from arkosic horizons along the depth of recovered core from the Texaco Poersch [number sign]1 well. Preliminary analyses indicate that the stratigraphically lowest arkoses recovered in core have provenance ages that range in age from 1.7--1.8 Ga, 1.4--1.5 Ga and 1.1--1.2 Ga. These data suggest the following conclusions: (1) The arkosic sediments were primarily derived proximally from the adjacent rift margin, which is known to consist of 1.75--1.80 Ga gneissic and granitic basement intruded by 1.35--1.45 Ga granitic plutons in Nebraska and northernmost Kansas plus 1.63--1.68 Ga granitic basement intruded by 1.35--1.45 granitic plutons in most of Kansas; 1.63--1.70 detrital zircons were absent, suggesting that most of the detritus was derived from northerly directions. (2) No Archean or 1.85 to 1.90 Ga Early proterozoic detrital zircons were found, suggesting very little to no transport of detritus along the rift axis from farther north, e.g., from Penokean, Trans-Hudson, or Superior Province regions. (3) One nearly concordant zircon with a Pb-Pb age of 1.18 Ga was found, suggesting that some of the detritus was derived either from older phases of igneous rift fill or from ca. 1.2 Ga intrusions that pre-date rifting.« less

  2. Chemical evolution of Himalayan leucogranites based on an O, U-Pb and Hf study of zircon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Thomas N.; Warren, Clare J.; Harris, Nigel B. W.; Hammond, Samantha J.; Parrish, Randall R.

    2015-04-01

    Crustal melting is a characteristic process at convergent plate margins, where crustal rocks are heated and deformed. Miocene leucogranite sheets and plutons are found intruded into the high-grade metasedimentary core (the Greater Himalayan Sequence, GHS) across the Himalayan orogen. Previously-published Himalayan whole-rock data suggest that these leucogranites formed from a purely meta-sedimentary source, isotopically similar to those into which they now intrude. Bulk rock analyses carry inherent uncertainties, however: they may hide contributions from different contributing sources, and post-crystallization processes such as fluid interaction may significantly alter the original chemistry. In contrast, zircon is more able to retain precise information of the contributing sources of the melt from which it crystallises whilst its resistant nature is impervious to post-magmatic processes. This multi-isotope study of Oligocene-Miocene leucogranite zircons from the Bhutan Himalaya, seeks to differentiate between various geochemical processes that contribute to granite formation. Hf and O isotopes are used to detect discrete changes in melt source while U-Pb isotopes provide the timing of zircon crystallisation. Our data show that zircon rims of Himalayan age yield Hf-O signatures that lie within the previously reported whole-rock GHS field, confirming the absence of a discernible mantle contribution to the leucogranite source. Importantly, we document a decrease in the minimum ɛHf values during Himalayan orogenesis through time, correlating to a change in Hf model age from 1.4 Ga to 2.4 Ga. Nd model ages for the older Lesser Himalayan metasediments (LHS) that underthrust the GHS are significantly older than those for the GHS (2.4-2.9 Ga compared with 1.4-2.2 Ga), and as such even minor contributions of LHS material incorporated into a melt would significantly increase the resulting Hf model age. Hence our leucogranite data suggest either a change of source within

  3. SHRIMP U-Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Barley, M. E.; Zaw, Khin

    2009-04-01

    The Mesozoic to Tertiary tectonic evolution of Southeast Asia is the result of the convergence and collision of fragments of Gondwanaland with Eurasia culminating in the collision of India. A rapidly growing geochronological database is placing tight constraints on the timing and duration of magmatic episodes, metallogenic and tectonic events in the Himalayas, Tibet and eastern Indochina. However, there is little comparable geochronology for Myanmar. This SHRIMP U-Pb in zircon geochronology focuses on granitoids from the Mogok Metamorphic Belt (MMB, a belt of high grade metamorphic rocks at the edge of the Shan-Thai Terrane), the Myeik Archipelago (Shan-Thai Terrane) and the west Myanmar Terrane. Strongly deformed granitic orthogneisses in the MMB near Mandalay contain Jurassic (~170 Ma) zircons that have partly recrystallised during ~43 Ma high-grade metamorphism. A hornblende syenite from Mandalay also contains Jurassic zircons with evidence of Eocene metamorphism rimmed by thin zones of 30.9 ±0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma). I-type granitoids in the MMB, Myeik Archipelago and west Myanmar confirm that prior to the collision of India, an up to 200km wide magmatic belt extended along the Eurasian margin. The primitive I-type Khanza Chaung granodiorite in the Wuntho batholith in the west Myanmar terrane hosts porphyry-style mineralisation and has a magmatic age of 94  1 Ma. Triassic (~240 Ma), Jurassic (~170 Ma) and Early Cretaceous xenocryst zircons in this granitoid correspond with peaks of granitoid magmatism in the Shan-Thai terrane and establish that west Myanmar was part of the margin of Eurasia during the Mesozoic. A suite of highly fractionated metaluminous to peraluminous I-type granitoids with associated Sn-W-Ta mineralisation emplaced in the Myeik Archipelago of

  4. U Pb and Lu Hf isotope record of detrital zircon grains from the Limpopo Belt Evidence for crustal recycling at the Hadean to early-Archean transition

    NASA Astrophysics Data System (ADS)

    Zeh, Armin; Gerdes, Axel; Klemd, Reiner; Barton, J. M., Jr.

    2008-11-01

    Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/ 177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general ɛHf t increase with decreasing age from ɛHf 3.9Ga = -6.3 to ɛHf 3.3-3.1Ga = -0.2, indicating that Hadean crust older than 4.0 Ga ( TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo's hinterland is reflected by the ˜3.6 Ga zircon population, which shows ɛHf 3.6Ga between -4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps

  5. U-Pb isotopic systematics of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka

    SciTech Connect

    Baur, N.; Liew, T.C.; Todt, W.

    1991-07-01

    The authors present U-Pb zircon isotopic data from locally restricted prograde (arrested in situ charnockitization) and retrograde metamorphic transition zones, which are well exposed in Proterozoic orthogneisses tectonically interbanded with granulite facies supracrustal rocks of the Highland Group in Sri Lanka. These granitoid rocks yield apparent ages of 1942 {plus minus} 22 Ma, {approximately} 770 Ma, {approximately} 660 Ma, and {approximately} 560 Ma. All samples show severe Pb-loss some 550-560 Ma ago. The main phase of granulite-formation could not be dated unambiguously but is bracketed between {approximately} 660 Ma and {approximately} 550 Ma. The pervasive Pb-loss event around 550-560 Mamore » reflects the end of this period of high-grade metamorphism and was associated with widespread igneous activity and retrogression. This is constrained by the 550 {plus minus} 3 Ma intrusion age for a post-tectonic granite. They relate this late phase of thermal activity to crustal uplift of the Sri Lankan granulites. This data unambiguously prove the high-grade history of the Sri Lanka gneisses to be a late Precambrian event that may be related to the Pan-African evolution along the eastern part of Africa.« less

  6. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  7. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yan, Maodu; Fang, Xiaomin; Song, Chunhui; Zhang, Weilin; Zan, Jinbo; Zhang, Zhiguo; Li, Bingshuai; Yang, Yongpeng; Zhang, Dawen

    2017-10-01

    The paleo-Red River is suggested to have been a continental-scale drainage system connecting the Tibetan Plateau to the South China Sea. However, the evolution of the paleo-Red River is still under debate. This study presents new results from sedimentological analyses and detrital zircon U-Pb geochronologic data from fluvial sedimentary rocks of Paleocene to Oligocene age of the Simao Basin to constrain the nature of the paleo-drainage system of the Red River. The detrital zircon U-Pb results reveal multiple age groups at 190-240 Ma, 260-280 Ma, 450-540 Ma, 1700-1900 Ma and 2400-2600 Ma for the Paleocene to late Eocene Denghei Formation (Fm.), but only one conspicuous peak at 220-240 Ma for the late Eocene-Oligocene Mengla Fm. Provenance analyses illustrate that the former likely had source areas that included the Hoh-Xil, Songpan-Ganzi, northern Qiangtang, Yidun and western Yangtze Terranes, which are consistent with the catchments of the Upper and Lower Jinshajiang Segments, whereas the latter mainly transported material from a limited number of sources, such as the Lincang granitic intrusions west of the Simao Basin. Integrated with available detrital zircon U-Pb geochronologic and paleogeographic data, our study suggests the existence of a paleo-Red River during the Paleocene to late Eocene that was truncated and lost its northern sources after approximately 35 Ma, due to left-lateral strike-slip faulting of the Ailao Shan-Red River and clockwise rotation of the Lanping-Simao Terrane.

  8. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.

    2017-12-01

    The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.

  9. SHRIMP U-Pb detrital zircon dating to check subdivisions in metamorphic complexes: a case of study in the Nevado-Filábride complex (Betic Cordillera, Spain)

    NASA Astrophysics Data System (ADS)

    Santamaría-López, Ángel; Sanz de Galdeano, Carlos

    2018-04-01

    U-Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the Nevado-Filábride complex (Betic Cordillera, Spain). Five of eight samples correspond to the lower part of the lithologic sequence of this complex, where radiometric dating of metasediments has not been presented till the present. The youngest age populations in the majority of samples are Carboniferous. The estimation of the maximum age of deposition in the lower and upper units is 349.1 ± 1.6 and 334.6 ± 2.9 Ma, respectively. In addition, samples show common age populations at ca. 490-630 and ca. 910-1010 Ma. Observations agree with the Carboniferous to early Permian U-Pb ages previously obtained in orthogneisses levels which are situated in the upper part of the complex. Combination of the minimum age of deposition deducible from the orthogneisses studies and the maximum ages of deposition obtained from the detrital zircons of this work, allow establishing the deposition of de studied lithological succession comprised between ca. 282 and 349 Ma or a shorter period.

  10. U-Pb and Hf isotope analysis of detrital zircons from Mesozoic strata of the Gravina belt, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.

    2015-10-01

    The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.

  11. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission-track thermochronology and detrital zircon U-Pb geochronology in the Gyirong basin area, southern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Tianyi; Wang, Guocan; Leloup, Philippe Hervé; van der Beek, Peter; Bernet, Matthias; Cao, Kai; Wang, An; Liu, Chao; Zhang, Kexin

    2016-07-01

    The Gyirong basin, southern Tibet, contains the record of Miocene-Pliocene exhumation, drainage development, and sedimentation along the northern flank of the Himalaya. The tectonic controls on basin formation and their potential link to the South Tibetan Detachment System (STDS) are not well understood. We use detrital zircon (ZFT) and apatite (AFT) fission-track analysis, together with detrital zircon U-Pb dating to decipher the provenance of Gyirong basin sediments and the exhumation history of the source areas. Results are presented for nine detrital samples of Gyirong basin sediments (AFT, ZFT, and U-Pb), two modern river-sediment samples (ZFT and AFT), and six bedrock samples (ZFT) from transect across the Gyirong fault bounding the basin to the east. The combination of detrital zircon U-Pb and fission-track data demonstrates that the Gyirong basin sediments were sourced locally from the Tethyan Sedimentary Sequence. This provenance pattern indicates that deposition was controlled by the Gyirong fault, active since 10 Ma, whose vertical throw was probably < 5000 m, rather than being controlled by normal faults associated with the STDS. The detrital thermochronology data contain two prominent age groups at 37-41 and 15-18 Ma, suggesting rapid exhumation at these times. A 15-18 Ma phase of rapid exhumation has been recorded widely in both southern Tibet and the Himalaya. A possible interpretation for such a major regional exhumation event might be detachment of the subducting Indian plate slab during the middle Miocene, inducing dynamic uplift of the Indian plate overriding its own slab.

  12. Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): Paleogeographic constraints from U-Pb-Hf in zircons

    NASA Astrophysics Data System (ADS)

    Abbo, Avishai; Avigad, Dov; Gerdes, Axel; Güngör, Talip

    2015-06-01

    The Tauride block in Turkey is a peri-Gondwana, Cadomian-type terrane that rifted from the Afro-Arabian margin of Gondwana in the Permo-Triassic and re-accreted to Arabia in the Neogene. In the Karacahisar dome in the southern-central Taurides, Neoproterozoic basement metasediments and intrusive rocks are overlain by Cambro-Ordovician, Carboniferous and Triassic sediments. We studied U-Pb-Hf in zircons from major rock units exposed in Karacahisar in order to constrain the Cadomian crustal evolution of the Taurides, to evaluate the provenance of the Neoproterozoic and overlying sediments, to constrain the paleogeography of the Taurides, and to assess their linkage to Gondwana. The Neoproterozoic metasediments are low-grade metamorphic wacke-type turbidites that evolved in a broad back-arc basin peripheral to Afro-Arabia. Their detrital zircon U-Pb signal comprises a preponderance (40-68%) of Neoproterozoic-aged zircons (peak ages defined at 635 and 830 Ma), indicating that the sedimentary pile was built mainly from the erosion of Pan-African terranes from Afro-Arabia. The εHf values of the younger population (635 Ma) are mostly positive, indicating derivation from a juvenile arc, whereas Cryogenian-Tonian detrital zircons spread vertically (- 25 < εHf < 15), indicating a different provenance where mixing of juvenile magmas with Paleoproterozoic to Neoarchean crust was widespread. An unusually high proportion of pre-Neoproterozoic zircons is found in all Cadomian metasediments, including up to 31% Grenvillian-aged (ca. 1.0 Ga) and up to 35% of ca. 2.5 Ga zircons; about a third of the latter possess positive εHf values. Because only minor exposures of 1.0 and 2.5 Ga crustal vestiges are currently known in North Africa and Arabia, we infer that pre-Neoproterozoic terranes were dispersed within the Cadomian realm itself. The youngest detrital zircons in all Cadomian metasediments concentrate at 0.58 Ga, indicating that the proto-Cadomian back-arc basin was formed

  13. First U-Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Abubaker, Atnisha; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Elicki, Olaf

    2017-10-01

    LA-ICP-MS U-Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U-Pb ages fall into three groups: 2.8-2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3-1.6 Ga (46%), early to late Palaeoproterozoic; 1.0-0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2-1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2-1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th-U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.

  14. Petrography and U-Pb detrital zircon geochronology of metasedimentary strata dredged from the Chukchi Borderland, Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brumley, K.; Miller, E. L.; Mayer, L. A.; Andronikov, A.; Wooden, J. L.; Dumitru, T. A.; Elliott, B.; Gehrels, G. E.; Mukasa, S. B.

    2010-12-01

    In 2008-2009, twelve dredges were taken aboard the USCGC Healy from outcrops along the Alpha Ridge, Northern Chukchi Borderland, Northwind Ridge and the Chukchi Plateau in the Arctic Ocean as part of the U.S. Extended Continental Shelf Project. To ensure sampling of outcrop, steep bathymetric slopes (>40°) with little mud cover were identified with multibeam sonar and targeted for dredging. The first dredge from Alpha Ridge yielded volcaniclastic sedimentary rocks deposited from a phreatomagmatic eruption in shallow water (<200m). This is inconsistent with tectonic reconstructions suggesting that the Alpha Ridge was created as an oceanic plateau on deep oceanic crust of the Canada Basin. Another dredge, taken from the northern tip of Northwind Ridge, yielded metasedimentary rocks deformed under greenschist facies conditions (chlorite+white mica). These rocks are intruded and/or overlain by mid-Cretaceous alkalic basalts, also taken in this dredge, and dated by 40Ar/39Ar (plagioclase separate) to be 112±1 Ma. The metasedimentary rocks, from this single dredge, range in grain size from mud to coarse sandstone and grit which all contain grains and sub-angular clasts of volcanic, plutonic, metamorphic and fine grained sedimentary rocks as well as monocrystalline quartz, potassium feldspar, and plagioclase. All of these samples display the same bedding to foliation angle and lithology, which further indicates that they were dredged from in situ outcrop and are not random samples of ice rafted debris. Based on grain size variations and graded beds, they are interpreted as Silurian gravity flow deposits fed by proximal syn-orogenic and/or magmatic arc sources. Detrital zircons were separated from four sandstone samples of the Northwind Ridge dredge, and their U-Pb single grain ages determined by LA-MC-ICPMS and SHRIMP, (N= 393). Their detrital zircon populations are dominated by euhedral first-cycle zircon ca. 430 and 980 Ma with lesser older recycled zircons between

  15. Zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes of the Bozhushan granite, Yunnan province, SW China: Constraints on petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Cui; Hu, Rui-Zhong; Bi, Xian-Wu; Zhong, Hong; Lan, Jiang-Bo; Zhao, Cheng-Hai; Zhu, Jing-Jing

    2015-03-01

    The Bainiuchang silver-polymetallic ore deposit is a super-large deposit in the western part of the South China tungsten-tin province (or the Nanling tungsten-tin province). The deposit is spatially and temporally associated with the Bozhushan granite pluton. Our new data indicate that the Bozhushan granitoids formed at 86-87 Ma. The granitoids are geochemically consistent with A-type granite. The Bozhushan pluton consists predominantly of biotite granite that is characterized by weakly peraluminous to metaluminous compositions and high alkali contents (Na2O + K2O = 7.51-9.06 wt.%). The granitic rocks are enriched in large-ion lithophile elements (LILE) Rb, Th, U, and K, but relatively depleted in Ba and Sr. In addition, they have high Zr + Nb + Ce + Y contents (310-478 ppm) and high 10,000× Ga/Al ratios (2.7-3.1). The temperatures of the parental magmas for the Bozhushan granites are estimated to be 790-842 °C based on the zircon saturation thermometer. Isotopically, the Bozhushan granites are characterized by elevated initial 87Sr/86Sr ratios (0.7126-0.7257) and low εNd values (-11.2 to -12.4), and high δ18O values (7.91-9.58‰) and low εHf values (-9.5 to -6.1) for zircon crystals, which indicate a dominant continental crustal source. The two-stage Hf model ages vary from 1.53 to 1.86 Ga. The isotopic compositions support the interpretation that the granitic rocks formed by melting of the Meso- and Neoproterozoic metasedimentary basements of the Cathaysia block. These results, together with geological records in the other parts of the western Cathaysia block, suggest that the formation of the Bozhushan A-type granites is related to lithospheric extension and asthenospheric upwelling that are associated with the change of plate motion in Late-Cretaceous.

  16. Quantifying the timescales of Archean UHT metamorphism through U-Pb monazite and zircon petrochronology

    NASA Astrophysics Data System (ADS)

    Guevara, V.; MacLennan, S. A.; Schoene, B.; Dragovic, B.; Caddick, M. J.; Kylander-Clark, A. R.; Couëslan, C. G.

    2016-12-01

    Unraveling the timescales of metamorphism is crucial to understanding the mechanisms behind mass/heat transfer through Earth's crust. Though such mechanisms and their durations are becoming well constrained in modern (Phanerozoic) settings, the drivers of metamorphism in the ancient geologic record remain more enigmatic. The development of accessory phase petrochronology has allowed metamorphic evolution to be closely linked to isotopic dates, ultimately improving quantification of metamorphic durations. While in-situ petrochronological methods preserve textural and spatial context, they often lack the temporal resolution required to accurately quantify metamorphic duration in Archean terranes. Here we combine in-situ U-Pb monazite (mnz) and zircon (zrn) laser ablation split-stream (LASS) and high-precision ID-TIMS-TEA petrochronology of distinct grain domains to resolve the timescales of ultrahigh temperature (UHT) metamorphism in the Archean Pikwitonei granulite domain (PGD). The PGD encompasses >1.5x105 km2 of granulite-facies rocks on the NW edge of the Superior Province. Themodynamic modelling of a pelite from the western part of the PGD suggests peak P-T conditions of >8 kbar, 900-940 °C and UHT decompression to 8 kbar followed by cooling. LASS analysis of zrn inclusions in garnet (grt) yields a date of 2701 Ma, with Ti in zrn thermometry yielding T of 800-900 °C. LASS analysis of mnz yields dates of 2720-2680 Ma for low HREE domains with no to shallow negative Eu anomalies, suggestive of growth during plagioclase (plg) breakdown and grt stability. ID-TIMS analysis of a mnz fragment with a strong negative Eu anomaly, suggestive of growth during plg stability, gives a concordant 207Pb/206Pb date of 2666 Ma, consistent with LASS results of 2660-2640 Ma for chemically similar domains. ID-TIMS analyses of zrn rims yield a range of 207Pb/206Pb dates from 2671 to 2656 Ma (±<1 Ma). Ti in zrn yields 800 °C for these rims, indicating they grew at similar T

  17. Tectonic Evolution of the Izmir Ankara Suture Zone in Northwest Turkey Using Zircon U-Pb Geochronology and Zircon Lu-Hf Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Campbell, C.; Taylor, M. H.; Licht, A.; Mueller, M.; Ocakglu, F.; Moeller, A.; Metais, G.; Beard, K. C.

    2017-12-01

    Detrital zircons from a Cretaceous forearc basin and Tertiary foreland basin located along the Sakarya Zone of the Western Pontides were analyzed to better understand the closure history of the Tethyan oceans. The Variscan Orogeny is characterized by abundant 350-300 Ma U-Pb ages and vertical ɛHf arrays, consistent with a mature magmatic arc that emplaced plutons through a southward growing accretionary margin. An ɛHf pull-up is observed from 300-250 Ma interpreted as rifting of the Intra-Pontide Ocean. The Cimmerian Orogeny is characterized by a 250-230 Ma ɛHf pull-down, followed by a 230-200 Ma magmatic gap consistent with underthrusting of the Karakaya Complex. From 200-120 Ma another magmatic lull is observed. The Alpine Orogeny is characterized by an ɛHf pull-down from 120-85 Ma within Cretaceous forearc sediments and a 100 Ma deviant ɛHf vertical array within Tertiary foreland basin sediments. Minor zircon U-Pb age peaks and contrasting inter-basinal ɛHf evolution are interpreted to represent onset of Andean-style subduction along the southern margin of the Sakarya Zone at 120 Ma followed by crustal thickening until 85 Ma. The deviant 100 Ma ɛHf vertical array within foreland basin detritus is interpreted as initiation of intra-oceanic subduction within the Izmir-Ankara Ocean. An 85-75 Ma ɛHf pull-up from forearc basin sediments is interpreted as slab roll-back along the southern margin of the Sakarya Zone, responsible for final rifting of the Western Black Sea. At 80 Ma, a vertical ɛHf array from Tertiary foreland basin deposits is interpreted to represent synchronous melting of the Tavsanli Zone and intra-oceanic slab break-off. A single 66 Myr pre-collisional grain defines a sharp ɛHf pull-down immediately prior to total arc shut-off, interpreted to represent incipient collision between the Sakarya and Tavsanli zones. A 52 Ma syn-collisional tuff yields minimally intermediate ɛHf values followed by a slight 48 Ma ɛHf pull-down, interpreted as a

  18. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  19. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Neoproterozoic Huashan Group in the Jingshan Area, Northern Yangtze Block, China

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, K.

    2015-12-01

    In the northern Yangtze Block, a clear angular unconformity between the Mesoproterozoic sequences (e.g. Dagushi Group) and the overlying Neoproterozoic strata (e.g. Huashan Group) marks the the Jinning orogeny. A combined study of Lu-Hf isotopes and U-Pb ages for detrital zircons from Huashan Group can provide information on the crustal evolution of sedimentary provenances and the timing of the Jinning orogeny. Detrital zircons from Huashan Group have two major U-Pb age populations of about 2.0Ga, 2.65Ga, and three subordinate age groups of about 0.82Ga, 2.5Ga, 2.9Ga with minor >3.0Ga ages. The youngest five analyses yield a weighted average age of 816±9Ma, which is consistent with that of interlayered basalt (824±9Ma, Deng et al., 2013) and roughly defines the minimum depositional age of Huashan Group. Detrital zircons of Huashan Group mostly have two stage Hf isotope model ages (TDM2) between 3.0 to 3.3Ga, indicating that the northern Yangtze Block experienced significant continental crustal growth during the Paleo- to Meso-archean. Similar U-Pb ages of detrital zircons have been obtained from Precambrian sedimentary rocks in the northern Yangtze Block from previous studies (Liu et al., 2008; Guo et al., 2014 and references therein). Recently, ca. 2.65Ga A-type granites had been reported from the Kongling and Huji area, which likely record the thermally stable lithosphere (Chen et al., 2013; Zhou et al., 2015). In combination with this study, it documents the widespread 2.6-2.7Ga magmatic rocks in the northern Yangtze Block. Zhao et al. (2013) demonstrated both the ca. 850Ma tonalite and trondhjemite of the Huangling igneous complex were formed in a continental arc setting. This suggests the Miaowan-Huashan oceanic basin proposed by Bader et al. (2013) has not been closed at ca. 850Ma. This evidence, together with the depositional age of the Huashan Group, indicates the Jinning orogeny took place at 850-820 Ma. [1] Bader et al., 2013 Tectonics [2] Deng et al

  20. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan

    2014-11-01

    The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.

  1. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  2. U-Pb systematics in coexisting zircon, rutile and titanite from granophyres in the Archean Stillwater Complex: metamictization and the fate of radiogenic Pb

    NASA Astrophysics Data System (ADS)

    Friedman, R. M.; Wall, C. J.; Scoates, J. S.; Meurer, W. P.

    2009-12-01

    Self-irradiation of zircon causes structural damage (metamictization) that can result in the loss of radiogenic Pb during interaction with aqueous solutions. To evaluate this behavior in metamict zircon, and in other U-bearing accessory phases like titanite and rutile, we are examining the U-Pb systematics of granophyric rocks from the ca. 2.7 Ga Stillwater layered intrusion, Montana. Four samples were studied in detail, including a pegmatitic ksp-qtz core to a gabbroic pegmatoid in the Lower Banded Series (N1), an alaskite and an amphibole-rich reaction zone between the alaskite and anorthosite (AN1) in the Middle Banded Series, and an amphibole-bearing granophyre from the Upper Banded Series (GN3). Except in the pegmatite, zircon is variably metamict with amorphous zones characterized by distinctive Ca-enrichment. Single zircon grains were analyzed by ID-TIMS following annealing and chemical abrasion, and multi-grain (n=4-5) fractions of titanite and rutile were analyzed by conventional ID-TIMS; the UBC 233-235U-205Pb isotopic tracer is calibrated against mixed U-Pb gravimetric reference solutions made available through the EarthTime initiative. The U-Pb systematics are coherent only for the pegmatite yielding both a Concordia age of 2709.60 ± 0.80 Ma (2σ, including tracer calibration, decay-constant errors not included) for low-U zircon (76-237 ppm) and concordant titanite results with 207Pb/206Pb ages from 2701-2710 Ma. The results for high-U zircon (up to 1438 ppm) for the other three samples are strongly discordant (9-43%, 85-89%, 28-71%, respectively) with a wide range of 207Pb/206Pb ages (2583-2647 Ma, 2210-2357 Ma, 2345-2499 Ma). Given the extreme incompatibility of Pb2+ in zircon and the highly metamict state of zircon in these granophyres, we are investigating the extent to which radiogenic lead is selectively removed during the chemical abrasion and annealing process from step-wise leaching experiments and image analysis (CL, SEM). In contrast

  3. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition

  4. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    NASA Astrophysics Data System (ADS)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2018-03-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  5. SHRIMP U-Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain

    NASA Astrophysics Data System (ADS)

    Díaz Alvarado, Juan; Fernández, Carlos; Castro, Antonio; Moreno-Ventas, Ignacio

    2013-08-01

    This work shows the results of a U-Pb SHRIMP zircon geochronological study of the central part of the Gredos massif (Spanish Central System batholith). The studied batholith is composed of several granodiorite and monzogranite tabular bodies, around 1 km thick each, intruded into partially molten pelitic metasediments. Granodiorites and monzogranites, belonging to three distinct intrusive bodies, and samples of anatectic leucogranites have been selected for SHRIMP U-Pb zircon geochronology. Distinct age groups, separated by up to 20 Ma, have been distinguished in each sample. Important age differences have also been determined among the most representative age groups of the three analyzed granitoid bodies: 312.6 ± 2.8 Ma for the Circo de Gredos Bt-granodiorites (floor intrusive layer), 306.9 ± 1.5 Ma for the Barbellido-Plataforma granitoids (top intrusive layer) and 303.5 ± 2.8 Ma for Las Pozas Crd-monzogranites (middle intrusive layer). These age differences are interpreted in terms of sequential emplacement of the three intrusive bodies, contemporary with the Late Paleozoic D3 deformation phase. The anatectic leucogranites are coeval to slightly younger than the adjacent intrusive granodiorites and monzogranites (305.4 ± 1.6 Ma for Refugio del Rey leucogranites and 303 ± 2 Ma for migmatitic hornfelses). It is suggested that these anatectic magmas were generated in response to the thermal effects of granodiorite intrusions. Thermal modeling with COMSOL Multiphysics® reveals that sequential emplacement was able to keep the thermal conditions of the batholith around the temperature of zircon crystallization in granitic melts (around 750 °C) for several million of years, favoring the partial melting of host rocks and the existence of large magma chambers composed of crystal mush prone to be rejuvenated after new intrusions.

  6. A hidden Late Cretaceous arc and subsequent magmatic events in the Caucasus-Iran-Anatolia (CIA) orogenic belt: Detrital zircon U-Pb and Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Tien, C. Y.; Lin, Y. C.; Chu, M. F.; Chung, S. L.; Bi˙ngöl, A. F.

    2017-12-01

    The Caucasus-Iran-Anatolia (CIA) orogenic belt formed by "Turkic-type orogeny" consists mainly of subduction-accretion complexes following the collision between Eurasia and Arabia and the closure of Neotethy. This study reports U-Pb and Hf isotopic data of detrital zircon separates from five Eocene to mid-Miocene sandstone samples from Divrigi and Duranlar in the west to the Mus basin in the east, all locating in the northern part of the Bitlis-Zagros suture zone. The U-Pb age data suggest four main magmatic episodes: (1) 100-70 Ma, (2) 60-40 Ma, (3) 30 Ma, and (4) 15 Ma. The Late Cretaceous zircons recovered mainly from the Mus basin are marked by a significant Hf isotopic variation over time, with ɛHf(T) values dropping from +15 to -10. Zircons from the second and third episodes show spatial variations in isotopic compositions, with positive ɛHf(T) values (+10 to +5) in the Mus basin and heterogeneous ɛHf(T) values (+10 to -10) in the west. The fourth and youngest episode of zircons, mainly from Duranlar area, shows uniform ɛHf(T) values around +5. We attribute the Late Cretaceous episode of zircons to the broadly coeval Elazig arc magmatism that, according to our counterpart study, occurred as a short-lived, intra-oceanic arc system by subduction initiation after the formation of Neotethyan ophiolites in the region. Moreover, we argue that this Late Cretaceous arc system may have existed more widely within the southern branch of Neothethys than that suggested by present-day outcrops. The dramatic change in Hf isotopic composition from 100 to 70 Ma, also observed in the rock record by our counterpart study, may be interpreted as a result of subduction to accretion processes. The remaining three episodes of zircons are related to younger stages of magmatism within or around the suture zone that remains poorly studied. Our results indicate that detrital zircon is a useful tool to uncover "hidden" magmatic records in the CIA and other "Turkic-type" orogenic

  7. U-Pb age of the Diana Complex and Adirondack granulite petrogenesis

    USGS Publications Warehouse

    Basu, A.R.; Premo, W.R.

    2001-01-01

    U-Pb isotopic analyses of eight single and multi-grain zircon fractions separated from a syenite of the Diana Complex of the Adirondack Mountains do not define a single linear array, but a scatter along a chord that intersects the Concordia curve at 1145 ?? 29 and 285 ?? 204 Ma. For the most concordant analyses, the 207Pb/206Pb ages range between 1115 and 1150 Ma. Detailed petrographic studies revealed that most grains contained at least two phases of zircon growth, either primary magmatic cores enclosed by variable thickness of metamorphic overgrowths or magmatic portions enclosing presumably older xenocrystic zircon cores. The magmatic portions are characterized by typical dipyramidal prismatic zoning and numerous black inclusions that make them quite distinct from adjacent overgrowths or cores when observed in polarizing light microscopy and in back-scattered electron micrographs. Careful handpicking and analysis of the "best" magmatic grains, devoid of visible overgrowth of core material, produced two nearly concordant points that along with two of the multi-grain analyses yielded an upper-intercept age of 1118 ?? 2.8 Ma and a lower-intercept age of 251 ?? 13 Ma. The older age is interpreted as the crystallization age of the syenite and the younger one is consistent with late stage uplift of the Appalachian region. The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, implying a cogenetic relationship among the various meta-igneous rocks of the Adirondacks. The retention of a high-temperature contact metamorphic aureole around Diana convincingly places the timing of Adirondack regional metamorphism as early as 1118 Ma. This result also implies that the sources of anomalous high-temperature during granulite metamorphism are the syn-metamorphic intrusions, such as the Diana Complex.

  8. New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary

    USGS Publications Warehouse

    Davidek, K.; Landing, E.; Bowring, S.A.; Westrop, S.R.; Rushton, A.W.A.; Fortey, R.A.; Adrain, J.M.

    1998-01-01

    A crystal-rich volcaniclastic sandatone in the lower Peltura scarabaeoides Zone at Ogof-odi near Criccieth, North Wales, yields a U-Pb zircon age of 491 ?? 1 Ma. This late Late Cambrian date indicates a remarkably young age for the Cambrian-Ordovician boundary whose age must be less than 491 Ma. Hence the revised duration of the post-Placentian (trilobite-bearing) Cambrian indicates that local trilobite zonations allow a biostratigraphic resolution comparble to that provided by Ordovician graptolites and Mesozoic ammonites.

  9. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Nédélec, A.; Paquette, J.-L.

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  10. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Paquette, Jean-Louis; Nédélec, Anne

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  11. Generation of syntectonic calc-alkaline, magnesian granites through remelting of pre-tectonic igneous sources - U-Pb zircon ages and Sr, Nd and Pb isotope data from the Donkerhoek granite (southern Damara orogen, Namibia)

    NASA Astrophysics Data System (ADS)

    Schwark, L.; Jung, S.; Hauff, F.; Garbe-Schönberg, D.; Berndt, J.

    2018-06-01

    The 541 ± 4 Ma-old magnesian, weakly peraluminous, calc-alkalic Donkerhoek Onanis granite is part of the ca. 6000 km2 large Donkerhoek batholith in the Southern Zone of the Damara orogen of Namibia. Linear major and trace element variations and decreasing MgO, FeO, Al2O3, CaO, K2O, Na2O, Ba and Sr concentrations with increasing SiO2 indicate that this part of the batholith represent a coherent mass and underwent fractional crystallization processes. The Donkerhoek Onanis granites are isotopically evolved (initial εNd: -4.7 to -12.3, initial 87Sr/86Sr: 0.7099-0.7157) with moderately radiogenic Pb isotope ratios (206Pb/204Pb: 17.26-18.22; 207Pb/204Pb: 15.59-15.67; 208Pb/204Pb: 37.60-38.06). Beside heterogeneities imparted by the sources, an evaluation of LREE fractionation and Nd isotope data suggests that AFC processes also modified some samples. Based on the chemical and isotope data, the Donkerhoek Onanis granites cannot be derived by partial melting of Al- and Fe-rich metasedimentary rocks of the Kuiseb formation in which they intruded. Instead, melting of meta-igneous crustal sources with Proterozoic crustal residence ages is more likely. Three igneous to meta-igneous rock suites from the area (Matchless amphibolites, Proterozoic mafic to felsic gneisses from the southern Kalahari craton basement, syn-tectonic Salem granodiorites to granites) are potential sources. An evaluation of chemical and isotope data suggests that remelting of early syn-orogenic Salem-type granites is the most likely process which would also explain the existence of ca. 563 ± 4 Ma-old zircon in the Donkerhoek Onanis granites. Comparison of the Donkerhoek Onanis granites with experimentally derived melt compositions from an intermediate igneous parent indicates temperatures between 800 and 850 °C. It is suggested that the Pan-African igneous activity in this part of the Damara Belt was a moderate-temperature intra-crustal event. Although there are some compositional similarities with

  12. U-Pb Dating of Unabraded Detrital Zircon Metamorphic Rims in the Nanaimo Basin, British Columbia

    NASA Astrophysics Data System (ADS)

    Boivin, M. P.; Guest, B.; Matthews, W.

    2016-12-01

    Thin metamorphic rims on detrital zircons from the Nanaimo Basin in SW British Columbia offer a unique opportunity to further constrain the source of these zircons, helping to resolve the long standing Baja BC controversy. Here we present an analytical approach for dating thin zircon rims and use it to show that zircons from the Nanaimo Basin are most likely derived from metamorphic rocks in southern California. Conventional in-situ laser ablation sample preparation typically requires mounting and polishing zircon grains to expose their core. However, in order to date these thin metamorphic zircon rims a depth-profiling approach on unabraded grains was employed. Zircon grains from the Upper Cretaceous Geoffrey, Spray, and Gabriola formations of the Nanaimo Group exposed on Denman and Hornby Islands (British Columbia) were sorted into five groups based on morphology. The zircons were then mounted on tape along with several grains of a well-characterised zircon reference material to validate the uncertainty of the method. The zircons were then imaged using a Zygo Zescope optical profilometer in order to correct for grain-to-grain variations in elevation relative to mounting medium and ensure consistent laser focus. Backscatter electron images (BSE) were used to further characterised the grains and optimize the location of laser ablation targets. Zircons were ablated using a Resonetics 193 nm excimer laser and uranium and lead isotopic ratios were measured using an Agilent 7700 quadrupole mass spectrometer. A low frequency laser repetition rate extended the data collection period on relatively thin zircon rims. Our results show that metamorphic zircon growth occurred in two main phases at 100 Ma and 77 Ma suggesting two sources of detrital zircons with differing metamorphic histories were present in the catchment area. The timing of metamorphism of the source area for the Nanaimo basin is inconsistent with derivation from sources in the Rocky Mountains (Lemhi sub

  13. The Mesozoic metamorphic-magmatic events in the Medog area, the Eastern Himalayan Syntaxis: constraints from zircon U-Pb geochronology, trace elements and Hf isotope compositions in granitoids

    NASA Astrophysics Data System (ADS)

    Dong, Hanwen; Xu, Zhiqin; Li, Yuan; Liu, Zhao; Li, Huaqi

    2015-01-01

    Based on the regional geological mapping, several granitoid intrusions had been discovered in the Eastern Himalayan Syntaxis (EHS). In order to constrain their petrogenesis and discuss their relations with the regional tectonics, we carried out U-Pb dating, trace elements and Hf isotope geochemistry studies on zircons separated from the granitoid rocks, in the area of the EHS. In this contribution, the granitoid rocks are mainly composed of diorites (X20-1-6) and granitic gneissic rocks (X2-15-1). The U-Pb zircon dating of diorites yields a crystallization age of 193.8 ± 2.0 Ma. These zircon have ɛ Hf( t) values ranging from -6.48 to -0.05, indicating an involvement of ancient crustal materials in the generation of these igneous rocks. The zircons from the Medog granitic gneissic rock commonly show zoning structures. The REE patterns and abundances of the inherited cores are different from those of the oscillatory rims. The LA-ICP-MS U-Pb zircon in situ analyses indicate that: (1) the zircon cores give multi-stage magmatic event ages ranging from 516 to 1,826 Ma, of which six ages are converged on 1,330-911 Ma, it is considered that the migmatitic gneiss has been formed in this time, and (2) while the zircon rims yield 206Pb/238U weighted mean ages of 217.4 ± 3.0 Ma (MSWD = 3.2), which was interpreted to represent the ages of the Triassic anatexis. Their ɛ Hf( t) values range from -18.98 to -8.36 and -14.22 to 8.72, respectively. The timing of the anatexis in the Medog area is coeval with the widespread metamorphism in Lhasa terrane.

  14. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  15. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to

  16. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    have a late Neoproterozoic basement, whereas the East European Platform (EEP) has a Paleoproterozoic-Archean basement. The zircon and the paleocurrent data indicate that the eastern and central part of the Early Cretaceous turbidite basin was mainly fed by EEP, whereas local sources were dominant in the western part of the basin and especially fed from a crystalline basement of the Istanbul zone. This in turn indicates that the Black Sea did not form a major barrier between the Pontides and the EEP and was probably not open during the Early Cretaceous. Keywords: Central Pontides, Early Cretaceous, Paleocurrent, Provenance, U-Pb Detrital zircon.

  17. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  18. Thermomagmatic evolution of Mesoproterozoic crust in the Blue Ridge of SW Virginia and NW North Carolina: Evidence from U-Pb geochronology and zircon geothermometry

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Wooden, Joseph L.; Mazdab, Frank K.; Southworth, Scott; Fanning, Mark C.

    2010-01-01

    New geologic mapping, petrology, and U-Pb geochronology indicate that Mesoproterozoic crust near Mount Rogers consists of felsic to mafic meta-igneous rocks emplaced over 260 m.y. The oldest rocks are compositionally diverse and migmatitic, whereas younger granitoids are porphyritic to porphyroclastic. Cathodoluminescence imaging indicates that zircon from four representative units preserves textural evidence of multiple episodes of growth, including domains of igneous, metamorphic, and inherited origin. Sensitive high-resolution ion microprobe (SHRIMP) trace-element analyses indicate that metamorphic zircon is characterized by lower Th/U, higher Yb/Gd, and lower overall rare earth element (REE) concentrations than igneous zircon. SHRIMP U-Pb isotopic analyses of zircon define three episodes of magmatism: 1327 ± 7 Ma, 1180–1155 Ma, and 1061 ± 5 Ma. Crustal recycling is recorded by inherited igneous cores of 1.33–1.29 Ga age in 1161 ± 7 Ma meta-monzogranite. Overlapping ages of igneous and metamorphic crystallization indicate that plutons of ca. 1170 and 1060 Ma age were emplaced during episodes of regional heating. Local development of hornblende + plagioclase + quartz ± clinopyroxene indicates that prograde metamorphism at 1170–1145 Ma and 1060–1020 Ma reached upper-amphibolite-facies conditions, with temperatures estimated using Ti-in-zircon geothermometry at ~740 ± 40 °C during both episodes. The chemical composition of 1327 ± 7 Ma orthogranofels from migmatite preserves the first evidence of arc-generated rocks in the Blue Ridge, indicating a subduction-related environment that may have been comparable to similar-age systems in inliers of the Northern Appalachians and the Composite Arc belt of Canada. Granitic magmatism at 1180–1155 Ma and ca. 1060 Ma near Mount Rogers was contemporaneous with anorthosite-mangerite-charnockite-granite (AMCG) plutonism in the Northern Appalachian inliers and Canadian Grenville Province. Metamorphism at ca. 1160

  19. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios <0.66. The U-bearing granites were mainly derived from the partial melting of pelitic sedimentary source, whereas the psammitic source generated the barren granites. In addition, the barren granites show higher TFMM, Ba, and Eu/Eu* but lower SiO2, Rb/Sr and Al2O3/TiO2 ratios with higher zircon saturation temperatures relative to the U-bearing granites. These results indicate that the geochemical compositions of the U

  20. Emeishan volcanism and the end-Guadalupian extinction: New U-Pb TIMS ages

    NASA Astrophysics Data System (ADS)

    Mundil, Roland; Denyszyn, Steve; He, Bin; Metcalfe, Ian; Yigang, Xu

    2010-05-01

    High-resolution geochronology with an age resolution at the permil level is instrumental in testing proposed causal links between continental-scale, short-term volcanic events and environmental crises that affect life globally. Synchroneity with large-scale volcanic events has been shown for three of the five most severe extinctions, namely the end-Permian extinction coinciding with Siberian Trapp volcanism, the end-Triassic extinction with Central Atlantic Magmatic Province) volcanism and the end-Cretaceous with Deccan Trapp volcanism. Recent studies also show that the magnitude of the extinction is not solely a function of the size (volume) of the volcanic event but more importantly of the eruption rate and also the nature of the host rock that is intruded, and the resulting reactions and release of gases that can affect climate. The end-Guadalupian (end Middle Permian, ca 260 Ma) biotic crisis has traditionally not been included in the 'big five' mass extinctions, possibly because of its close proximity in time to the end-Permian event, although its magnitude (in terms of total extinction rate) is comparable to the three most severe extinctions (end-Ordovician, end-Permian, end-Cretaceous). As a result, research of the end-Guadalupian event has so far been neglected and its timing as well as the temporal relation to the Emeishan volcanic province in western China is as yet not fully studied. Geochronological data are so far mostly based on ambiguous 40Ar/39Ar analyses of commonly altered basaltic products and U-Pb zircon analyses on felsic products using micro-beam techniques that typically result in radio-isotopic ages with percent-level uncertainty, and thus insufficient for high-resolution correlations of events. In addition, no precise and accurate radio-isotopic data exist from this time period so that evolutionary events (extinction and recovery) on land and in the ocean are notoriously difficult to correlate though biostratigraphic records are available

  1. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites

    NASA Astrophysics Data System (ADS)

    Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi

    2012-08-01

    Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.

  2. Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming Province, USA: Evidence from U-Pb systematics in zircon

    USGS Publications Warehouse

    Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.

    1996-01-01

    The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.

  3. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  4. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication

    NASA Astrophysics Data System (ADS)

    Zeng, Renyu; Lai, Jianqing; Mao, Xiancheng; Li, Bin; Ju, Peijiao; Tao, Shilong

    2016-05-01

    Granitoids are widely distributed in Jinchuan at the southwestern margin of the North China plate, which is also an important area of mineral deposits. The research subject of this article are two Paleozoic granitoids, a cataclastic syenogranite and a granodiorite porphyry. This study presents whole rock geochemistry and zircon U-Pb-Hf isotope data for the two granitoids to determine their petrogenesis, source characteristics and tectonic significance. The cataclastic syenogranite is characterized by metaluminous composition with high potassium, and LaN/YbN from 39 to 48. The composition with strong negative Eu anomalies and Zircon saturation temperatures (TZr) from 947 to 1072 °C classify this intrusion as an A-type granite. The granodiorite porphyry is metaluminous with high sodium, sub-alkaline, LaN/YbN ratios from 27 to 32. These I-type intrusions have no Eu anomalies and TZr ranges from 818 to 845 °C. Both the cataclastic syenogranite and granodiorite porphyry show enrichment of LREE and LILE and depletion of HREE and HFSE, except Hf and Zr. Using single zircon LA-ICP-MS U-Pb dating, the emplacement age of the cataclastic syenogranite and granodiorite porphyry are determined at 433.4 ± 3.7 Ma and 361.7 ± 4.6 Ma, respectively. Zircons from the cataclastic syenogranits have uniform negative εHf(t) values (-11 ± 0.5 to -9 ± 0.5), implying the involvement of an old Palaeoproterozoic crustal source in magma genesis. The zircons from the granodiorite porphyry have εHf(t) values that range from -8 ± 1.0 to +10 ± 0.6, suggesting heterogeneous source materials involving both juvenile and ancient crust reworked crustal components. Based on the geological significance of granites at the southwestern margin of the North China plate, the closure of the North Qilian Ocean occurred at ∼444 Ma. Geochemical features suggest that the cataclastic syenogranite and granodiorite porphyry formed in an intraplate extensional and compressional setting, respectively. Hence

  5. Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.

    2010-12-01

    Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension <10 µm. Zircons were dated in-situ by adjusting the field aperture of the CAMECA ims1270 to preferentially collect secondary ions emitted from within the inner few microns of the ~15 µm diameter analysis pit. This allows us to analyze zircon grains with a minimum dimension as

  6. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.

    2002-01-01

    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U-Pb

  7. An Integrated Analytical Approach to Obtaining Reliable U-Pb and Hf Isotopic Data from Complex (>3.9 to 3.3 Ga) Zircon from the Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Bowring, S. A.; Vervoort, J. D.; Fisher, C. M.

    2014-12-01

    The Acasta Gneiss Complex (AGC) of northwestern Canada preserves some of Earth's oldest granitic crust (>4.03 Ga) and thereby contains important insight into crust forming processes on the early Earth. In general, rocks of the AGC have undergone a complex history of metamorphism and deformation (Archean and Paleoproterozoic)1,2, and, as a consequence, the zircons retain a complex history including inheritance, magmatic and metamorphic overgrowths, recrystallization, and multi-stage Pb loss. Previously published Hf isotopic data on zircons show within sample variability in excess of analytical uncertainty2,3,4. In order to assess the meaning and significance of this apparent isotopic variability, we are using two different methods to obtain coupled U-Pb and Lu-Hf isotopic data in zircon from a suite of rocks ranging in age from ca. > 3.9 Ga to 3.3 Ga. To obtain these data from the same volume of zircon, our approach involves: 1) split stream LA-ICPMS for U-Pb and Lu-Hf; 2) mechanical isolation of zircon domains for chemical abrasion and ID-TIMS U-Pb analyses and solution ICPMS for Lu-Hf recovered from U-Pb ion exchange chromatography. The deconvolution of complex histories requires this integrated approach and permits us to take advantage of both high spatial resolution and highest precision measurements to ultimately decipher the age and isotopic composition of discrete domains of multi-phase zircon. We demonstrate our approach with both relatively simple and complex grain populations in an attempt to understand within and between grain heterogeneity. The samples with the simplest zircon systematics have increasingly negative ɛHf from oldest to youngest, consistent with involvement of 4.0 Ga or older crust in later generations; also, none of our samples have been derived solely from strongly depleted sources. The presence of intra-zircon variability within samples from the AGC reflects a complex history of magmatic additions requiring melting/assimilation of older

  8. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhang, Rongqing; Zhang, Zhiyu; Shi, Guanghai; Zhang, Qichao; Abuduwayiti, Maituohuti; Liu, Jianhui

    2015-01-01

    Extending approximately 1300 km and located in the Western Kunlun Mountains, the Hetian nephrite belt is the largest nephrite belt in the world and contains approximately 11 major deposits and more than 20 orebodies including the Alamas deposit. Hetian nephrite deposits can be classified as Mg-skarn deposits with Precambrian dolomitic marble host rock and green, green-white and white nephrite zones are distributed gradually in the zone of a granodiorite pluton. The green nephrite is mainly predominately composed of tremolite with generally minor to trace constituents of diopside, grossularitic garnet, actinolite and other minerals. Also green nephrite has higher content of TFe2O3, than green-white and white nephrites have. We subdivided the zircons from the green nephrites into four types, depending on their internal textures, mineral inclusions, and SHRIMP U-Pb ages. Type I zircons are round instead of idiomorphic in shape and lack obvious zoning. Type II and IV zircons have broad, clear oscillatory zoning and are hypidiomorphic or idiomorphic in shape; they contain inclusions of diopside, tremolite, chlorite and calcite. Most Type III zircons are narrow rims (< 10 μm) surrounding Type II and Type I zircons with highly luminous brightness and no zoning. Both Type I and Type II zircons have individual ages of 411 to 445 Ma and Type IV zircons have younger ages (388 to 406 Ma). Among the concordant ages, 425.7 ± 5.8 Ma and 420.0 ± 9.9 Ma for the QYZr1 and QYZr2 are consistent within error, with the 418.5 ± 2.8 Ma of the Alamas granodiorite formation age and the maximum age of the Alamas nephrite deposit. The partially recrystallization of zircons during skarn formation possibly lead to some younger individual ages (406.5 to 308 Ma). In the Western Kunlun Mountain, both Buya granite and Alamas grandiorite are high Ba-Sr granites and crystallized in Western Kunlun Orogen. The Buya granite formed at about 430 Ma in a post-orogenic tectonic environment. Considering

  9. Evaluating the mush extraction + multiple magma batch model for the Lake City magmatic system (Colorado, USA) using zircon U/Pb TIMS-TEA

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Schoene, B.; Deering, C. D.

    2016-12-01

    Volcanic eruptions that involve a wide range of magma types highlight questions on genetic and geometric relationships between magmas in the crust prior to eruption. The Lake City magmatic system (Colorado, USA) is one such example: exposed in the caldera are ignimbrites from the 23 Ma Sunshine Peak Tuff, which range in composition and crystallinity with time (crystal-poor rhyolite to crystal-rich trachyte), and resurgent intrusions of porphyritic syenite, monzonite, and dacite (Hon 1987). Field relations and bulk rock geochemistry suggest the Lake City magmatic system was complex, with magmas of these various types existing concurrently as multiple magma batches, though not necessarily always in contact (Kennedy et al. 2015). Geochemical modeling further suggests that the crystal-poor rhyolites were liquids extracted from a syenitic mush and that the crystal-rich trachytes are remobilized portions of this cumulate. To address the genetic and geometric links between these magmas in more detail, we utilize TIMS-TEA to assess U/Pb zircon geochronology and trace element geochemistry in concert. For each eruptive unit/magma type, zircons were roughly separated into size groupings (small, medium, large), imaged by cathodoluminescence (CL), and analyzed individually by CA-ID-TIMS. Preliminary results indicate that zircons crystallized over a period of 177±31 ky, which is within the range suggested by Ar/Ar geochronology (80-300 ky, Bove et al. 2001). Consistent with the current model for the Lake City system, zircons from the rhyolites and trachytes overlap in age, while those of the dacites are younger. There is no clear relationship between age and CL zoning pattern or crystal size (e.g., small crystals are not always the youngest). We can further address relationships between the rhyolite, trachyte, and syenite using TEA to assess trace elements of the dated zircons. Rhyolite-MELTS models suggest that zircons crystallized in a rhyolitic melt derived from the trachyte

  10. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  11. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Opås, Birgitte; Elburg, Marlina; Läufer, Andreas; Estrada, Solveig; Ksienzyk, Anna K.; Damaske, Detlef; Hofmann, Mandy

    2017-04-01

    We have targeted the southern side of the Dronning Maud Land (DML) Mountains, East Antarctica, in search of moraine material that might reveal the presence and nature of any cryptic terranes in the ice-covered region of the East Antarctic polar plateau. Nine samples of unconsolidated glacial till, carried by the northward flowing East Antarctic Ice Sheet to the southern side of the DML escarpment, were collected and processed for U-Pb zircon analyses. The samples resulted in ca. 1100 new U-Pb zircon ages between ca. 2000 and 500 Ma. The oldest Palaeoproterozoic zircons come from the easternmost localities with a probable source region in the western part of the Ruker Craton. Major Stenian and Tonian age peaks are recognised. Tonian rocks are well known from the SW terrane in the Sør Rondane Mountains and characterise a major Tonian Oceanic Arc Super Terrane. Stenian ages of ca. 1080 Ma on the other hand are far less common in the outcropping region. Although Late Mesoproterozoic ages are common in both the Maud Province of western-central DML as well as in the Rayner Complex, the Stenian rocks in this study differ with respect to composition and/or isotope geochemistry; they are juvenile, subduction-related and resemble an early phase of oceanic arcs that was so far unknown in this region. In the W, the oldest age peak is ca. 800-720 Ma with possible counterparts in the Schirmacher Oasis. All samples show a protracted Late Neoproterozoic/Early Palaeozoic overprint, accompanied by igneous addition, most likely related to the East African-Antarctic Orogen. This overprint appears most intense in the westernmost locality, in the vicinity of the Forster Magnetic Anomaly and lasted for ca. 150 Ma; an E-ward younging of metamorphic ages is observed. The new moraine samples together with previous outcrop studies reveal that this region has undergone two major phases of oceanic arc/terrane accretion; the first one from ca. 1100-900 Ma is probably related to accretion

  12. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  13. Reply to Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on the 0.1 Ma Toya Tephra, Japan"

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi

    2015-04-01

    Guillong et al. (2015) mentioned that corrections for abundance sensitivity for 232Th and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon for LA-ICP-MS analyses. There is no denying that more rigorous treatments are necessary to obtain more reliable ages than those in Ito (2014). However, as shown in Fig. 2 in Guillong et al. (2015), the uncorrected (230Th)/(238U) for reference zircons except for Mud Tank are only 5-20% higher than unity. Since U abundance of Toya Tephra zircons that have U-Pb ages < 1 Ma is in-between that of FCT and Plesovice, the overestimation of 230Th by both abundance sensitivity and molecular interferences is expected to be 5-20% for the Toya Tephra. Moreover Ito (2014) obtained U-Th ages of the Toya Tephra by comparison with Fish Canyon Tuff (FCT) data. Because both the FCT and the Toya Tephra have similar trends of overestimation of 230Th, the effect of overestimation of 230Th to cause overestimation of U-Th age should be cancelled out or negligible. Therefore the pivotal conclusion in Ito (2014) that simultaneous U-Pb and U-Th dating using LA-ICP-MS is possible and useful for Quaternary zircons holds true.

  14. Alxa Block Provenance of Ediacaran (Sinian) Sediments in the Helanshan Area: Constraints from Hf Isotopes and U-Pb Geochronology of Detrital Zircons

    NASA Astrophysics Data System (ADS)

    Xiaopeng, D.

    2016-12-01

    The tectonic relationship between the Alxa Block and the North China Craton has long been controversial. The Helanshan area lies at the western margin of the Ordos Block and east of the Alxa Block (Fig.a), and it contains rocks of the lower Zhengmuguan and upper Tuerkeng formations that belong to the Ediacaran system. The Zhengmuguan Formation is made up of abyssal facies rocks including dolomite and glacial conglomerate with dropstones, and the Tuerkeng Formation consists of silty slate of the neritic facies. A discontinuity marks the boundary between the Tuerkeng Formation and the Early Cambrian Suyukou Formation, which is composed mainly of pebbly sandstone towards the base and sandstone towards the top, representing a change in sedimentary facies from terrestrial to littoral.The Neoproterozoic U-Pb ages of zircons from the Ediacaran and Early Cambrian sediments peak at 818 ± 4 Ma (n = 88) and 905 ± 8 Ma (n = 20), consistent with the Neoproterozoic age peaks found in the Precambrian basement of the Alxa Block(Fig.b). There are few Neoproterozoic zircons in the Neoproterozoic strata of the Langshan area, and there are no reports of Neoproterozoic zircons in the Zhuozishan area, northwest of Helanshan, or in the western margin of the neighboring Ordos Basin. A number of Neoproterozoic zircons are found in the Middle Cambrian to Middle Ordovician strata of the Niushoushan area. And while Niushoushan is part of the Hexi Corridor, it did not amalgamate with the NCC before the Early-Middle Cambrian. Therefore, the Neoproterozoic and Early Cambrian sediments in Helanshan record information about Neoproterozoic magmatic events in the Alxa Block, and indicate an Alxa Block provenance(Fig.c).The Hf isotopic characteristics of the Neoproterozoic zircons from the Ediacaran Zhengmuguan Formation in the Helanshan area (eHf(t) = -7.812 to 3.274, TDMC = 2211-1578 Ma, n = 10) are similar to those Neoproterozoic igneous zircons from the Langshan area (eHf(t) = -1.105 to 5

  15. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2

  16. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Lin; Zou, Hai-Bo; Ye, Xian-Tao; Chen, Xiang-Yan

    2018-01-01

    The Pamir Plateau at the western end of the India-Asia collision zone underwent long-term terrane drifting, accretion and collision between early Paleozoic and Mesozoic. However, the detailed evolution of this plateau, in particular, the timing of the Proto- and Palaeo-Tethys ocean subduction and closure, remains enigmatic. Here we report new field observations and zircon U-Pb ages and Hf isotopic compositions of the representative rocks from the so-called Precambrian basement in the northeastern Pamir, i.e., the Bulunkuole Group. The rock associations of the Bulunkuole Group indicate volcano-sedimentary sequences with arc affinities. Geochronological data demonstrate that the deposition age of the Bulunkuole Group in the NE section of the Pamir was Middle to Late Cambrian (530-508 Ma) rather than Paleoproterozoic. The deposition age became progressively younger from south to north. The amphibolite- to granulite facies metamorphism of the Bulunkuole Group took place at ca. 200-180 Ma. Unlike the scenario in the Southern Kunlun terrane (SKT) in the eastern section of the West Kunlun Orogenic Belt (WKOB), early Paleozoic metamorphism (ca. 440 Ma) was absent in this area. Two phases of magmatic intrusions, composed of granites and minor gabbros with arc geochemical signatures, emplaced at 510-480 Ma and 240-200 Ma. The amphibolite (meta mafic sheet? 519 Ma) and the meta-rhyolite (508 Ma) have zircon εHf(t) values of 1.6 to 5.9 and - 1.5 to 1.4, respectively. The 511 Ma gneissic granite sheet and the 486 Ma gabbro have zircon εHf(t) values of - 0.1 to 2.4 and 1.3 to 3.6, respectively. Zircon εHf(t) of the 245 Ma augen gneissic granite sheet varies from - 2.2 to 2.0 whereas the metamorphic zircons from the amphibolite (193 Ma) and high-pressure mafic granulite sample (187 Ma) have negative εHf(t) values of - 5.3 to - 2 and - 15 to - 12, respectively. In line with rock association and the deposition age of the Bulunkuole Group and the Saitula Group in the eastern

  17. Metamorphic P-T path and zircon U-Pb dating of HP mafic granulites in the Yushugou granulite-peridotite complex, Chinese South Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhang, Lifei; Xia, Bin; Lü, Zeng

    2018-03-01

    Co-existing granulite and peridotite may represent relics of the paleo-suture zone and provides an optimal opportunity for better understanding of orogeny between two blocks. In this study, we carried out petrological and U-Pb zircon dating investigation on the HP mafic granulites associated with peridotite complex at Yushugou in Chinese South Tianshan. The studied samples include garnet-bearing high-pressure mafic granulites which can be subdivided into two types: Type I orthopyroxene-free and Type II orthopyroxene-bearing granulites and amphibolite. Type I granulite (Y21-2) has a mineral assemblage of garnet (33 vol.%), clinopyroxene (32 vol.%) and plagioclase (30 vol.%); and Type II granulite (Y18-8) has a mineral assemblage of garnet (22 vol.%), clinopyroxene (10 vol.%), orthopyroxene (14 vol.%), plagioclase (45 vol.%) and quartz. Garnet in both granulites exhibits core-rim structure characterized by increasing grossular and decreasing pyrope from core to rim. Petrographic observations and phase equilibrium modeling using THERMOCALC in the NCFMASHTO system for the mafic granulites (Y21-2 and Y18-8) show three stages of metamorphism: Stage I (granulite facies) was recognized by the large porphyroblastic garnet core, with P-T conditions of 9.8-10.4 Kbar and 860-900 °C (Y21-2) and 9.9-10.6 Kbar and 875-890 °C (Y18-8), respectively; Stage II (HP granulite facies) has peak P-T conditions of 12.1 Kbar at 755 °C (Y21-2) and 13.8 Kbar at 815 °C (Y18-8) using mineral assemblages combining with garnet rim compositions with maximum grossular and minimum pyrope contents; Stage III (amphibolite facies) was characterized by the development of calcic amphibole in granulites with temperature of 446-563 °C. Therefore, an anticlockwise P-T path characterized by simultaneous temperature-decreasing and pressure-increasing was inferred for the Yushugou HP mafic granulite. Studies of zircon morphology and inclusions, combined with zircon U-Pb dating and REE geochemistry

  18. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon

    NASA Astrophysics Data System (ADS)

    Yui, Tzen-Fu; Fukoyama, Mayuko; Iizuka, Yoshiyuki; Wu, Chao-Ming; Wu, Tsai-Way; Liou, J. G.; Grove, Marty

    2013-02-01

    Zircons from two Myanmar jadeitite samples were separated for texture, mineral inclusion, U-Pb dating and trace element composition analyses. Three types of zircons, with respect to U-Pb isotope system, were recognized. Type I zircons are inherited ones, yielding an igneous protolith age of 160 ± 1 Ma; Type II zircons are metasomatic/hydrothermal ones, giving a (minimum) jadeitite formation age of 77 ± 3 Ma; and Type III zircons are incompletely recrystallized ones, with non-coherent and geologically meaningless ages from 153 to 105 Ma. These Myanmar jadeitites would therefore have formed through whole-sale metasomatic replacement processes. Compared with Type I zircons, Type II zircons show typical metasomatic/hydrothermal geochemical signatures, with low Th/U ratio (< 0.1), small Ce anomaly (Ce/Ce* = < 5) and low ΣREE content (40-115 ppm). Type III zircons, however, commonly have the above geochemical signatures straddle in between Type I and Type II zircons. It is shown that the resetting rates of various trace element compositions and U-Pb isotope system of inherited zircons are not coupled "in phase" in response to zircon recrystallization during jadeitite formation. The observed abnormally low Th/U ratio and small Ce anomaly of some Type I zircons, as well as the lack of negative Eu anomaly of all Type I zircons, should be suspected to be of secondary origin. In extreme cases, incompletely recrystallized zircons may show typical metasomatic/hydrothermal geochemical signatures, but leave U-Pb isotope system partially reset or even largely unchanged. Such zircons easily lead to incorrect age interpretation, and hence erroneous geological implication. The Myanmar jadeitites, based on the present study, might have formed during the Late Cretaceous subduction before the beginning of India-Asia continental collision at Paleocene. Previously proposed Late Jurassic ages for Myanmar jadeitites are suggested as results rooted on data retrieved from incompletely

  19. Petrogenesis of Sveconorwegian magmatism in southwest Norway; constraints from zircon U-Pb-Hf-O and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Roberts, Nick M. W.; Slagstad, Trond; Parrish, Randall R.; Norry, Michael J.; Marker, Mogens; Horstwood, Matthew S. A.; Røhr, Torkil

    2013-04-01

    The Sveconorwegian orogen is traditionally interpreted as a Himalayan-scale continental collision, and the eastward continuation of the Grenville Province of Laurentia; however, it has recently been proposed that it represents an accretionary orogen without full-scale continental collision (Slagstad et al., in press). We suggest that magmatism is one of the key constraints to differentiate between different types of orogens; thus, detailed investigation of the timing and petrogenesis of the magmatic record is a requirement for better understanding of the Sveconorwegian orogen as a whole. Here, we present new U-Pb geochronology, zircon Hf-O isotope, and whole-rock geochemical data to constrain the petrogenesis of the early -Sveconorwegian Sirdal Magmatic Belt (SMB). The SMB is a batholithic-scale complex of intrusions that intrudes into most of the Rogaland-Hardangervidda Block in southwest Norway. Current age constraints put emplacement between ~1050 to 1020 Ma. New ages from the Suldal region indicate that the onset of SMB magmatism can be put back to 1070 Ma, which is some 30-50 Myrs prior to high-grade metamorphism. Average initial ɛHf signatures range from ~0 to 4; these overlap with later post-Sveconorwegian granites and with early-/pre-Sveconorwegian ferroan (A-type) granites. Average δ18O signatures range from ~5.7 to 8.7, except for one anomalous granite at ~11.6. The Hf-O signatures are compatible with a mixed mantle-crustal source. Crustal sources may include ~1500 Ma Telemarkian or ~1200 Ma juvenile crust. Hf-O bulk-mixing modelling using a 1500 Ma crustal source indicates >50 % mantle input. Although much further mapping and geochronological work is required, granitic magmatism appears to have persisted throughout much of the ~1100 to 900 Ma period that spans the Sveconorwegian orogen. This magmatism is consistently ferroan (i.e. dry); however, the SMB marks a clear transition to magnesian (i.e. wet) magmatism, with a return to ferroan magmatism at

  20. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike

  1. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector

  2. Detrital U-Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides

    USGS Publications Warehouse

    Clift, P.D.; Carter, A.; Draut, A.E.; Long, H.V.; Chew, D.M.; Schouten, H.A.

    2009-01-01

    The Early Ordovician Grampian Orogeny in the British Isles represents a classic example of collision between an oceanic island arc and a passive continental margin, starting around 480??Ma. The South Mayo Trough in western Ireland preserves a complete and well-dated sedimentary record of arc collision. We sampled sandstones and conglomerates from the Rosroe, Maumtrasna and Derryveeny Formations in order to assess erosion rates and patterns during and after arc collision. U-Pb dating of zircons reveals a provenance dominated by erosion from the upper levels of the Dalradian Supergroup (Southern Highland and Argyll Groups), with up to 20% influx from the colliding arc into the Rosroe Formation, but only 6% in the Maumtrasna Formation (~ 465??Ma). The dominant source regions lay to the northeast (e.g. in the vicinity of the Ox Mountains, 50??km distant, along strike). The older portions of the North Mayo Dalradian and its depositional basement (the Annagh Gneiss Complex) do not appear to have been important sources, while the Connemara Dalradian only plays a part after 460??Ma, when it supplies the Derryveeny Formation. By this time all erosion from the arc had effectively ceased and exhumation rates had slowed greatly. The Irish Grampian Orogeny parallels the modern Taiwan collision in showing little role for the colliding arc in the production of sediment. Negligible volumes of arc crust are lost because of erosion during accretion to the continental margin. ?? 2008 Elsevier B.V.

  3. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Pamoukaghlián, Karina; Gaucher, Claudio; Frei, Robert; Poiré, Daniel G.; Chemale, Farid; Frei, Dirk; Will, Thomas M.

    2017-11-01

    The Río de la Plata Craton is a continental block that crops out in Uruguay, eastern Argentina, southernmost Brazil and Paraguay. It comprises in Uruguay the Piedra Alta, Tandilia and Nico Pérez terranes, separated by the Colonia and the Sarandí del Yí megashears. The La Tuna Granite, which intrudes the Araminda metasandstones in the Tandilia Terrane, was considered Cambrian in age and the intruded sandstones were assigned to the Neoproterozoic Piedras de Afilar Formation. We show that the granite is Paleoproterozoic in age and that the host metasandstones do not belong to the Piedras de Afilar Formation, but to the Paleoproterozoic Montevideo Formation. U-Pb LA ICP-MS of zircon ages for the La Tuna Granite yielded a concordant crystallization age of 2156 ± 26 Ma. Furthermore a metamorphic event at 2010 ± 9 Ma is revealed by Pb stepwise leaching dating of monazites. U-Pb detrital zircon ages of the host Araminda metasandstone yield an upper intercept discordia age of 2152 ± 29 Ma, which marks the intrusion of the La Tuna pluton, and which is in accordance with the zircon U-Pb LA ICP MS constraints. A concordant U-Pb detrital zircon age of 2465 ± 40 Ma provides a maximum depositional age constraint for the metapsammites. Comparing quartz arenites of the Ediacaran Piedras de Afilar Formation with the Araminda metaquartzites, we conclude that they are very similar regarding petrology but they differ in age and metamorphic overprint. Detrital zircons in quartz arenites of the Piedras de Afilar Formation show youngest ages of 1.0 Ga. On the other hand, detrital zircons recovered from the Araminda metasandstones and the age of the intruding granite allow interpreting a depositional age between 2465 and 2150 Ma. Nd model ages show crustal residence times in average more than 200 myr older for the Tandilia Terrane both in Uruguay and Argentina, with a significant Neoarchean component, which is lacking in the Piedra Alta Terrane. Whereas the Piedra Alta Terrane was

  4. Zircon U-Pb and molybdenite Re-Os geochronology and geological significance of the Baoshan porphyry Cu polymetallic deposit in Jiangxi province

    NASA Astrophysics Data System (ADS)

    Jia, Liqiong; Wang, Liang

    2017-10-01

    Baoshan porphyry Cu polymetallic deposit belongs to Jiujiang-Ruichang Cu-Au ore field, which is a component part of the Middle-Lower Yangtze River Cu-Au metallogenic belt. The U-Pb LA-MC-TCP MS dating of the zircons from Baoshan granodiorite porphyry yields an age of 147.81±0.48Ma (MSWD=1.07). Six molybdenite samples separated from Baoshan deposit are used for Re-Os dating and obtained the weighted average age of 147.42±0.84Ma and an isochron age of 147.7±1.2Ma. These ages suggest that the mineralization in the Baoshan deposit is genetically associated to the granodiorite porphyry, and the process of rock-and ore-forming is continuous. These data indicate that ages of intrusion and ore-body from Baoshan deposit are almost identical to other typical magmatic intrusion and deposits in Jiujiang-Ruichang metallogenic district. Tt is inferred that the Baoshan deposit was formed in the transition from EW-striking Tndosinian tectonic domain to NE-striking Paleo-Pacific tectonic domain.

  5. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE PAGES

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...

    2017-08-23

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  6. Zircon age-temperature-compositional spectra in plutonic rocks

    SciTech Connect

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  7. Molybdenite Re-Os, zircon U-Pb dating and Lu-Hf isotopic analysis of the Xiaerchulu Au deposit, Inner Mongolia Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Jia-xin; Nie, Feng-Jun; Zhang, Xue-ni; Jiang, Si-hong

    2016-09-01

    The Xiaerchulu Au deposit, located in the Southern Orogenic Belt (SOB) of Western Inner Mongolia (WIM), is hosted in an Early Permian (271-261 Ma) volcanic-plutonic sequence. Mineralization took place in silicified biotite granites or along the contact zone between the Neoproterozoic Baiyinbaolage Group and the biotite granite. In order to constrain the timing of the Xiaerchulu mineralization and discuss the petrogenesis of the hosting granites, molybdenite Re-Os, and zircon U-Pb and, Lu-Hf, and REE, geochemical, and Sr-Nd isotopic studies were completed in this study. We measured Re-Os isotopes of six molybdenite samples from the main ore body, which yielded a weighted average model age of 261.7 ± 1.5 Ma with a MSWD of 0.55, indicating that the time of mineralization was at ca. 262 Ma. High precision U-Pb dating for the studied granites yields Permian 206Pb/238U ages ranging from 271 to 269 Ma. These age data confirm that both the intrusion and related mineralization were initiated in Early Permian period. These granites are strongly peraluminous with A/CNK = 1.11-1.12, high SiO2-K2O contents, as well as containing biotite and muscovite, indicating a petrogenesis of typical S-type granites, the above consideration is also consistent with the result of discrimination diagrams. The Re contents of molybdenite, εNd(t), and zircon εHf(t), as well as the 176Hf/177Hf values of the granites, fall into the ranges from 1.153 to 2.740 μg/g, - 11.1 to - 9.3, - 8.8 to - 0.9, and 0.282358 to 0.282688, respectively. All of this evidence suggests that the metals were derived from a predominantly crustal source, the granites originated from crust in an extensional setting, and the rejuvenation of the continent may have play an important role during the ore-forming processes of the Early Permian epoch.

  8. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  9. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: Clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon

    NASA Astrophysics Data System (ADS)

    Melo, Marilane G.; Lana, Cristiano; Stevens, Gary; Pedrosa-Soares, Antônio C.; Gerdes, Axel; Alkmin, Leonardo A.; Nalini, Hermínio A.; Alkmim, Fernando F.

    2017-07-01

    The Carlos Chagas batholith (CCB) is a very large ( 14,000 km2) S-type granitic body formed during the syn-collisional stage of the Araçuaí orogen (southeastern Brazil). Zircons extracted from the CCB record a wide range of U-Pb ages (from 825 to 490 Ma), indicating a complex history of inheritance, magmatic crystallization and partial melting during the evolution of the orogeny. Magmatic zircons (ca. 578-588 Ma) are marked by similar Hf isotope compositions and REE patterns to those of inherited cores (ca. 825-600 Ma), indicating that these aspects of the chemical signature of the magmatic zircons have likely been inherited from the source. The U-Pb ages and initial 176Hf/177Hf ratios from anatectic and metamorphic zircon domains are consistent with a two-stage metamorphic evolution marked by contrasting mechanisms of zircon growth and recrystallization during the orogeny. Ti-in-zircon thermometry is consistent with the findings of previous metamorphic work and indicates that the two metamorphic events in the batholith reached granulite facies conditions (> 800 °C) producing two generations of garnet via fluid-absent partial melting reactions. The oldest metamorphic episode (ca. 570-550 Ma) is recorded by development of thin anatectic overgrowths on older cores and by growth of new anatectic zircon crystals. Both domains have higher initial 176Hf/177Hf values compared to relict cores and display REE patterns typical of zircon that grew contemporaneously with peritectic garnet through biotite-absent fluid partial melting reactions. Hf isotopic and chemical evidences indicate that a second anatectic episode (ca. 535-500 Ma) is only recorded in parts from the CCB. In these rocks, the growth of new anatectic zircon and/or overgrowths is marked by high initial 176Hf/177Hf values and also by formation of second generation of garnet, as indicated by petrographic observations and REE patterns. In addition, some rocks contain zircon crystals formed by solid

  10. U-Pb zircon geochronology of plutonism in the northern Peninsular Ranges batholith, southern California: Implications for the Late Cretaceous tectonic evolution of southern California

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.; Wooden, Joseph L.; Fanning, C. Mark

    2014-01-01

    Utilizing both sensitive high-resolution ion microprobe (SHRIMP) and conventional isotope dilution–thermal ionization mass spectrometry (ID-TIMS) methods, crystallization and/or emplacement ages have been obtained for a suite of Cretaceous intermediate-composition plutonic samples collected along a roughly E-W–trending traverse through the northern Peninsular Ranges batholith. Previously noted petrologic, mineralogic, and textural differences delineated four major zonations from west to east and raised the need for detailed geochemical and isotopic work. U-Pb zircon geochronology establishes that these zonations are essentially temporally separate. Mean 206Pb/238U ages date the three older zones from west to east at 126–107 Ma, 107–98 Ma, and 98–91 Ma. Despite petrologic differences, a relatively smooth progression of magmatism is seen from west to east. A fourth zone is defined by magmatism at ca. 85 Ma, which represents emplacement of deeper-level plutons east of the Eastern Peninsular Ranges mylonite zone in an allochthonous thrust sheet in the northeastern Peninsular Ranges batholith.The age data presented here differ slightly from those presented in earlier work for similar rocks exposed across the middle and southern portions of the Peninsular Ranges batholith in that our data define a relatively smooth progression of magmatism from west to east, and that the transition from western-type to eastern-type plutonism is interpreted to have occurred at ca. 98 Ma and not at ca. 105 Ma.The progressive involvement of older crustal components in the enrichment of eastern Peninsular Ranges batholith–type magma sources is documented by the occurrence of Proterozoic zircon inheritance within samples of the eastern part of the batholith.

  11. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma fish canyon tuff reference standard

    USGS Publications Warehouse

    Lanphere, M.A.; Baadsgaard, H.

    2001-01-01

    The accuracy of ages measured using the 40Ar/39Ar technique is affected by uncertainties in the age of radiation fluence-monitor minerals. At present, there is lack of agreement about the ages of certain minerals used as fluence monitors. The accuracy of the age of a standard may be improved if the age can be measured using different decay schemes. This has been done by measuring ages on minerals from the Oligocene Fish Canyon Tuff (FCT) using the K-Ar, 40Ar/39Ar. Rb-Sr and U/Pb methods. K-Ar and 40Ar/39Ar total fusion ages of sanidine, biotite and hornblende yielded a mean age of 27.57 ?? 0.36 Ma. The weighted mean 40Ar/39Ar plateau age of sanidine and biotite is 27.57 ?? 0.18 Ma. A biotite-feldspar Rb-Sr isochron yielded an age of 27.44 ?? 0.16 Ma. The U-Pb data for zircon are complex because of the presence of Precambrian zircons and inheritance of radiogenic Pb. Zircons with 207Pb/235U < 0.4 yielded a discordia line with a lower concordia intercept of 27.52 ?? 0.09 Ma. Evaluation of the combined data suggests that the best age for FCT is 27.51 Ma. Published by Elsevier Science B.V.

  12. Comparative use of TIMS and SHRIMP for U Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France)

    NASA Astrophysics Data System (ADS)

    Cocherie, A.; Rossi, Ph.; Fanning, C. M.; Guerrot, C.

    2005-05-01

    The Corsica-Sardinia batholith in the southern realm of the Hercynian belt of Europe shows evidence for gravitational collapse of this part of the mountain belt, causing major felsic and mafic magmatism. The latest intrusions are composed of leucomonzogranite and late metaluminous and alkaline granite, associated with tholeiitic layered complexes and dykes. Three dating methods on zircon (Pb-evaporation, ID-TIMS and SHRIMP) were used to unravel the chronology of these felsic and mafic rocks. Dating of zircons by the conventional U-Pb method, using TIMS after zircon dissolution, achieved an analytical uncertainty of 1 Ma for favourable cases. The TIMS Pb-evaporation technique resulted in ages with an uncertainty range of 4 to 8 Ma. After 15 to 20 analyses with the SHRIMP method, a precision ranging from 2 to 5 Ma was obtained (all at 2 σ). The three methods applied to the same zircon population extracted from four A-type granites, show that the uncertainty ranges within 2-5 Ma according to the sample. This error seems to correspond to the real geochronological uncertainty that can be achieved. The results obtained show that all six tested alkaline granites were emplaced during a very short interval of about 3-5 Ma at about 288 Ma, almost contemporaneous with the leucomonzogranite emplacement (291-287 Ma) that ended the batholith formation. In addition, there is no significant gap with the age of emplacement of the mafic tholeiitic magmatism (around 286 Ma) crosscutting the "A-type" granites. The late alkaline granites definitely do not show up here as precursors of the Tethyan rifting that began at about 170 Ma, i.e. some 100 Ma after their emplacement. It is thus necessary to examine if alternative hypotheses to the anorogenic model of the A-type Younger Granite province better fit the new geochronological data. A model involving depleted continental-crust derived magma should be compatible with the timing and geodynamical constraints as far as isotopic data are

  13. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Gutíerrez-Alonso, G.; Murphy, J. B.; Drost, K.; Gama, C.; Silva, J. B.

    2017-05-01

    Paleozoic continental reconstructions indicate that subduction of Rheic oceanic lithosphere led to collision between Laurussia and Gondwana which was a major event in the formation of the Ouachita-Appalachian-Variscan orogenic belt and the amalgamation of Pangea. However, arc systems which record Rheic Ocean subduction are poorly preserved. The preservation of Devonian detrital zircon in Late Devonian-Early Carboniferous siliciclastic rocks of SW Iberia, rather than arc-related igneous rocks indicates that direct evidence of the arc system may have been largely destroyed by erosion. Here we report in-situ detrital zircon U-Pb isotopic analyses of Late Devonian-Early Carboniferous siliciclastic rocks from the Pulo do Lobo Zone, which is a reworked Late Paleozoic suture zone located between Laurussia and Gondwana. Detrital zircon age spectra from the Pulo do Lobo Zone Frasnian formations show striking similarities, revealing a wide range of ages dominated by Neoproterozoic and Paleoproterozoic grains sourced from rocks typical of peri-Gondwanan terranes, such as Avalonia, the Meguma terrane and the Ossa-Morena Zone. Pulo do Lobo rocks also include representative populations of Mesoproterozoic and Early Silurian zircons that are typical of Avalonia and the Meguma terrane which are absent in the Ossa-Morena Zone. The Famennian-Tournaisian formations from the Pulo do Lobo Zone, however, contain more abundant Middle-Late Devonian zircon indicating the contribution from a previously unrecognized source probably related to the Rheic Ocean magmatic arc(s). The Middle-Late Devonian to Early Carboniferous zircon ages from the siliciclastic rocks of SW Iberia (South Portuguese, Pulo do Lobo and Ossa-Morena zones) have a wide range in εHfT values (- 8.2 to + 8.3) indicating the likely crystallization from magmas formed in a convergent setting. The missing Rheic Ocean arc was probably built on a Meguma/Avalonia type basement. We propose for the Pulo do Lobo Zone that the

  14. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  15. Detrital Zircon U-Pb Analysis of the Liuqu Conglomerate Along the Yarlung-Zangbo Suture Zone, and Implications for the Mode and Timing of Collision Tectonics in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Dilek, Y.

    2016-12-01

    The Liuqu Conglomerate (LQC) along the Yarlung-Zangbo suture zone (YZSZ) in Southern Tibet is a terrestrial deposit that provides significant spatial and temporal constraints for the timing and nature of collisional events in the tectonic evolution of the Tibetan-Himalayan orogenic belt. The 10-km-wide (N-S) LQC is exposed discontinuously for more than 1000 km in an E-W direction, and is tectonically overlain to the north by the Cretaceous Neotethyan oceanic lithosphere along a S-vergent thrust fault system and to the south by Triassic-Jurassic metamorphosed sedimentary-volcanic rocks of the Tethyan Himalaya along N-vergent reverse-thrust faults. The major facies of the LQC are the matrix-supported to clast-supported conglomerates. The matrix is poorly to moderate sorted red quartz sandstone, mudstone and sub-rounded pebble to cobble-sized clasts. The clast lithology present in central and southern parts includes dark red sandstone, siltstone and mudstone greyish-green shale, grey phyllite and slate with their provenance in the Triassic Tethyan Himalaya to the south. The clastic material making up its stratigraphy in the northern part of the LQC includes quartz sandstone, radiolarian chert, minor dolerite, gabbro and peridotite derived from the Cretaceous ophiolite. Here we report in-situ detrital zircon U-Pb age analysis of sandstone from the LQC near Liuqu area. 163 concordant U-Pb ages obtained from sample 22-LQ-15, 27-LQ-15 and 35-LQ-15 show the youngest age is 307±13 Ma with discordance of -17.02%, and the oldest zircon grain is 3362 ±51 Ma with discordance of 2.63%. Statistically, the age spectrum of these zircons from the three sandstone samples display a prominent peak centred in 935 Ma, a large peak around 516 Ma, and two small clusters around 2429 Ma and 2772 Ma. The zircon U-Pb results provide evidence of age clusters of the sandstone in LQC are consistent with the detrital U-Pb age signature of the sandstone in Tethyan Himalaya. Thus, the sediments in

  16. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico

    USGS Publications Warehouse

    Gehrels, G.E.; Stewart, John H.

    1998-01-01

    One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the

  17. New SIMS U-Pb age constraints on the largest lake transgression event in the Songliao Basin, NE China.

    PubMed

    Xi, Dangpeng; He, Huaiyu; Yu, Zhiqiang; Huang, Qinghua; Hu, Jianfang; Xu, Yankang; Shi, Zhongye; Qin, Zuohuan; Wan, Xiaoqiao

    2018-01-01

    The largest lake transgression event (LTE) associated with lake anoxic events (LAE) and periodic seawater incursion events (SWIE) in the Songliao Basin, northeastern China, occurred during deposition of the Cretaceous Nenjiang Formation. The Yaojia-Nenjiang Formation boundary (YNB) marks the beginning of the LTE, as well as LAE and SWIE. However, there is an absence of direct radioisotopic dating, and therefore the age of the YNB, as well as the beginning of LTE, together with their relationship with other geological events, is strongly debated. Here we present a new SIMS U-Pb zircon age from the lowermost Nenjiang Formation. The bentonite bed located 9.88 m above the YNB of the X1-4 borehole was analyzed. Twenty-five analyses of 25 zircons were conducted, which produced a weighted mean age of 85.5±0.6 Ma (MSWD = 0.87). Based on the average sediment accumulation rate, the age of the YNB is suggested to be 85.7 Ma, indicating that the LTE began in the Early Santonian. The new ages provide a precise chronostratigraphic framework for climatic and geological events. Our new results imply that the beginning of the LTE, LAE and SWIE occurred almost simultaneously with short-term sea level rise, and probably had a close relationship with OAE3.

  18. U-Pb zircon geochronology of the Paleoproterozoic Tagragra de Tata inlier and its Neoproterozoic cover, western Anti-Atlas, Morocco

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.; Benziane, F.; Yazidi, A.; Armstrong, T.R.

    2002-01-01

    New U-Pb zircon data obtained by sensitive high resolution ion microprobe (SHRIMP) from the Tagragra de Tata inlier in the western Anti-Atlas, Morocco establish Paleoproterozoic ages for the basement schists, granites, and metadolerites, and a Neoproterozoic age for an ignimbrite of the Ouarzazate Series in the cover sequence. The age of interbedded felsic metatuff in the metasedimentary and metavolcanic sequence of the basement schists is 2072 ?? 8 Ma. This date represents: (1) the first reliable age from the metasedimentary and metavolcanic sequence; (2) the oldest reliable age for the basement of the Anti-Atlas; (3) the first date on the timing of deposition of the sediments on the northern edge of the Paleoproterozoic West African craton; (4) a lower age limit on deformation during the Eburnean orogeny; and (5) the first date obtained from the non-granitic Paleoproterozoic basement of Morocco. Ages of 2046 ?? 7 Ma (Targant granite) and 2041 ?? 6 Ma (Oudad granite) support earlier interpretations of a Paleoproterozoic Eburnean igneous event in the Anti-Atlas. The granites post-date the Eburnean D1 deformation event in the Paleoproterozoic schist sequence, and place a ???2046 Ma limit on short-lived Eburnean deformation in the area. Cross-cutting metadolerite is 2040 ?? 6 Ma; this is the first date from a metadolerite in the western Anti-Atlas. All of the dolerites in the area post-date emplacement of the two granites and the new age constrains the onset of late- or post-Eburnean extension. Ignimbrite of the Ouarzazate Series, immediately above the Paleoproterozoic basement is 565 ?? 7 Ma. This Neoproterozoic age agrees with ages of similar volcanic rocks elsewhere from the Ouarzazate Series. The date also agrees with the ages of associated hypabyssal intrusions, and marks the second and final stage of Pan-African orogenic activity in the western Anti-Atlas. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Temporal and Spatial Fluctuations in Ancestral Northern Cascade Arc Magmatism from New LA-ICP-MS U-Pb Zircon Dating

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; Mullen, E.; Jean-Louis, P.; Tepper, J. H.

    2015-12-01

    Mt. Baker and the adjacent Chilliwack batholith (MBC focus) in NW Washington preserve the longest magmatic record in the Cascade Arc, providing an excellent natural laboratory for examining the spatial, temporal and geochemical evolution of Cascade magmatism and links to tectonic processes. We present new U-Pb zircon LA-ICP-MS ages for 14 samples from MBC and neighboring regions of the north Cascades. The new results are up to 8 Myr different from previous K-Ar ages, illustrating the need for new age determinations in the Cascades. A maximum age of 34.74±0.24 Ma (2σ) (Post Creek stock) is consistent with 35-40 Ma ages for arc inception in the southern Cascades. The most voluminous MBC plutons cluster at 32-29 Ma, consistent with an early flare-up that also coincides with intrusion of the Index batholith farther south (2 samples at 33.26±0.19, 33.53±0.15 Ma). This flare-up is absent in the northernmost Cascades where the oldest pluton (Fall Creek stock) is 6.646±0.046 Ma, 4 Myr younger than previously cited. Earliest Cascade magmatism is progressively younger to the north of MBC, possibly tracing the northerly passage of the slab edge. MBC activity was continuous to 22.75±0.17 Ma (Whatcom Arm), marking the initiation of an 11 Myr hiatus. Magmatism resumed at 11.33±0.08 Ma (Indian Creek) and continued to the modern Mt. Baker cone, defining a pattern of southwesterly migration over ~55 km that may be attributable to slab rollback and arc rotation (e.g. Wells & McCaffrey 2013). Uniformity of the rate and direction of migration implies that rollback and rotation began at least 11 Myr ago. Post-hiatus magmas show distinct geochemical and petrologic characteristics including a major Pb isotopic shift. The 2.430±0.016 Ma Lake Ann stock contains 4.2 Ma zircon antecrysts, recording prolonged activity in that area. The 1.165±0.013 Ma Kulshan caldera ignimbrite contains ~200 Ma inherited zircons that may provide the first direct record of Wrangellian basement beneath

  20. Calibrating Late Cretaceous Terrestrial Cyclostratigraphy with High-precision U-Pb Zircon Geochronology: Qingshankou Formation of the Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ramezani, J.; Wang, C.

    2015-12-01

    A continuous succession of Late Cretaceous lacustrine strata has been recovered from the SK-I south (SK-Is) and SKI north (SK-In) boreholes in the long-lived Cretaceous Songliao Basin in Northeast China. Establishing a high-resolution chronostratigraphic framework is a prerequisite for integrating the Songliao record with the global marine Cretaceous. We present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal-ionization mass spectrometry method from multiple bentonite core samples from the Late Cretaceous Qingshankou Formation in order to assess the astrochronological model for the Songliao Basin cyclostratigraphy. Our results from the SK-Is core present major improvements in precision and accuracy over the previously published geochronology and allow a cycle-level calibration of the cyclostratigraphy. The resulting choronostratigraphy suggest a good first-order agreement between the radioisotope geochronology and the established astrochronological time scale over the corresponding interval. The dated bentonite beds near the 1780 m depth straddle a prominent oil shale layer of the Qingshankou Formation, which records a basin-wide lake anoxic event (LAE1), providing a direct age constraint for the LAE1. The latter appears to coincide in time with the Late Cretaceous (Turonian) global sea level change event Tu4 presently constrained at 91.8 Ma.

  1. Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U-Pb-Hf isotope evidence from Barry Station, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Manton, Ryan J.; Buckman, Solomon; Nutman, Allen P.; Bennett, Vickie C.

    2017-08-01

    Early Paleozoic intra-oceanic terranes crop out along the Peel-Manning Fault System, in the southern New England Orogen, NSW Australia. These are the Cambrian ophiolitic Weraerai terrane and the Siluro-Devonian island arc Gamilaroi terrane. There has been debate whether these terranes formed at the Gondwana margin or if they are intra-oceanic, and were accreted to Gondwana later in the Paleozoic. Major-trace-REE elemental data indicate Weraerai terrane formed in a supra-subduction environment. Rare zircons extracted from Weraerai terrane gabbro-plagiogranite suites at Barry Station yield a U-Pb zircon date of 504.9 ± 3.5 Ma with initial εHf values of + 11.1 indicating a juvenile source. Amphibole-bearing felsic dykes and net-vein complexes are also found within the gabbro with a U-Pb zircon date of 503.2 ± 5.7 Ma and initial εHf values of + 11.6. These are coeval in age with their host rocks and we propose they represent partial melts of the mafic crust during the circulation of seawater. The Gamilaroi trondhjemites of prehnite-pumpellyite-greenschist metamorphic grade terrane yielded very few zircons with an age of 413 ± 8.7 Ma. Zircon initial εHf values range from + 5.0 to + 2.9, indicating an input from an evolved crustal source, unlike the purely oceanic Weraerai terrane. Gamilaroi terrane trondhjemites are enriched in LREE have low K2O and K2O/Na2O ratios and strong negative Nb anomalies consistent with supra-subduction zone environments. Multiple subduction zones may well have existed within the Panthalassa Ocean during the early-mid Paleozoic with the Weraerai-Gamilaroi being accreted onto the Gondwanan margin during the latest Devonian.

  2. U-Pb isotope systematics and age of uranium mineralization, Midnite mine, Washington.

    USGS Publications Warehouse

    Ludwig, K. R.; Nash, J.T.; Naeser, C.W.

    1981-01-01

    Uranium ores at the Midnite mine, near Spokane, Washington, occur in phyllites and calcsilicates of the Proterozoic Togo Formation, near the margins of an anomalously uraniferous, porphyritic quartz monzonite of Late Cretaceous age. The present geometry of the ore zones is tabular, with the thickest zones above depressions in the pluton-country rock contact. Analyses of high-grade ores from the mine define a 207 Pb/ 204 Pb- 235 U/ 204 Pb isochron indicating an age of mineralization of 51.0 + or - 0.5 m.y. This age coincides with a time of regional volcanic activity (Sanpoil Volcanics), shallow intrusive activity, erosion, and faulting. U-Th-Pb isotopic ages of zircons from the porphyritic quartz monzonite in the mine indicate an age of about 75 m.y., hence the present orebodies were formed about 24 m.y. after its intrusion. The 51-m.y. time of mineralization probably represents a period of mobilization and redeposition of uranium by supergene ground waters, perhaps aided by mild heating and ground preparation and preserved by a capping of newly accumulated, impermeable volcanic rocks. It seems most likely that the initial concentration of uranium occurred about 75 m.y. ago, probably from relatively mild hydrothermal fluids in the contact-metamorphic aureole of the U-rich porphyritic quartz monzonite.Pitchblende, coffinitc, pyrite, marcasite, and hisingerite are the most common minerals in the uranium-bearing veinlets, with minor sphalerite and chalcopyrite. Coffinitc with associated marcasite is paragenetically later than pitchblende, though textural and isotopic evidence suggests no large difference in the times of pitchblende and colfinite formation.The U-Pb isotope systematics of total ores and of pitchblende-coffinite and pyrite-marcasite separates show that whereas open system behavior for U and Pb is essentially negligible for large (200-500 g) ore samples, Pb migration has occurred on a scale of 1 to 10 mm (out of pitchblende and coffinite and into pyrite

  3. Petrogenesis of granodiorite in the Balong region, eastern Kunlun Orogen, China: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Huang, X.; Li, H.; Wang, Y.; Liu, Y.

    2017-12-01

    Numerous granitoid intrusions that close to the Balong region have great scientific significance to reveal tectonic evolution and geodynamic background of eastern Kunlun Orogen (EKO). Balong granodiorite (BLG) is located at the northern of the EKO. It generally emplaced into the Proterozoic to Lower Palaeozoic rocks and contains abundant mafic microgranular enclaves. LA-ICP-MS zircon U-Pb dating of the BLG gives a 206Pb/238U age of 230.7±1.9 Ma, indicating that it was emplaced in the Late Triassic. The BLG is high-K calc-alkaline series and metaluminous, with SiO2 of 59.86 61.83%, K2O+Na2O of 5.98 6.40%, CaO of 4.95 5.77% and P2O5 of 0.14% 0.18%. The granodioritic rocks are enriched in LILE (Ba, Rb, Sr), but depleted in HFSE (Nb, Ta, P, Ti), with weak negative Eu anomalies (δEu=0.70 0.82). Mineralogy and geochemistry of the rocks show an affinity to I-type granite. The BLG, having (87Sr/86Sr)i ratios of 0.70819 to 0.70832, ɛNd(t) values of -5.27 to -5.75, and zircon ɛHf(t) values ranging from -3.86 to -1.34. The whole-rock Nd isotopic model ages (1432 1471 Ma) and zircon Hf isotopic model ages (1205 1357 Ma) indicate that the BLG is generated by partial melting of lower crust (Precambrian metabasaltic basement rocks) with different degree of involvement of mantle material. Combined with regional geological data, the granodiorite was derived from dehydration melting of mafic lower crustal rocks during the subduction of the Anyemaqen ocean lithosphere at Late Permian-Triassic in a subduction setting. Basaltic magma underplating and crust-mantle mixing are main mechanisms for the origin of large-scale I-type granitoid in Balong.

  4. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  5. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  6. Structure and U-Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting (Kulidzhik area, Eastern Rhodopes, Bulgaria)

    NASA Astrophysics Data System (ADS)

    Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.

    2016-10-01

    The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.

  7. Geochemistry, mineralogy, and zircon U-Pb-Hf isotopes in peraluminous A-type granite xenoliths in Pliocene-Pleistocene basalts of northern Pannonian Basin (Slovakia)

    NASA Astrophysics Data System (ADS)

    Huraiová, Monika; Paquette, Jean-Louis; Konečný, Patrik; Gannoun, Abdel-Mouhcine; Hurai, Vratislav

    2017-08-01

    Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene-Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite-ulvöspinel. Zircon and Nb-U-REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U-Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive ɛHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb-U-REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth

  8. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon)

    NASA Astrophysics Data System (ADS)

    Toteu, Sadrack Félix; Penaye, Joseph; Deloule, Etienne; Van Schmus, William Randall; Tchameni, Rigobert

    2006-04-01

    Ion microprobe U-Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700-665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100-950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa-Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west-central Africa.

  9. Upper crustal emplacement and deformation of granitoids inside the Uppermost Unit of the Cretan nappe stack: constraints from U-Pb zircon dating, microfabrics and paleostress analyses

    NASA Astrophysics Data System (ADS)

    Kneuker, Tilo; Dörr, Wolfgang; Petschick, Rainer; Zulauf, Gernold

    2015-03-01

    The present study is dealing with the emplacement and deformation of diorite and quartz diorite exposed along new road cuts between Agios Nikolaos and Sitia (Uppermost Unit, eastern Crete). Mingling of both melt types is indicated by enclaves of diorite inside quartz diorite and vice versa. The diorite and quartz diorite intruded into coarse-grained white marble, which is in lateral contact to, but also forms the roof of, the intrusive body. Evidence for contact metamorphism is indicated by increasing grain size of calcite in the marble with decreasing distance from the diorite. U-Pb (TIMS) dating of zircons, separated from quartz diorite, yielded a concordant age at 74.0 ± 0.25 Ma, which is interpreted as emplacement age. As this age is close to published K-Ar cooling ages of hornblende and biotite, the melt should have intruded and cooled down rapidly at upper structural levels, which is not common for granitoids of the Uppermost Unit of Crete. Upper crustal melt emplacement is also documented by stoped blocks and by the lack of any ductile (viscous) deformation. The diorite and quartz diorite, however, are affected by strong post-Oligocene brittle faulting. Paleostress analysis, based on these faults, revealed a change in stress field from N-S and NNW-SSE shortening by thrusting (convergence between African and European plates) to NNE-SSW and NE-SW shortening accommodated by strike-slip (SW-ward extrusion of the Anatolian microplate). Calcite-twin density indicates high differential stress (260 ± 20 MPa) related to these phases of crustal shortening.

  10. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  11. Combined Detrital U/Pb Zircon and 40Ar/39Ar Mica Geoochronology to Test Structural Models for a Devonian Orogenic Collapse Basin in the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Templeton, J.; Anders, M.; Fossen, H.

    2014-12-01

    The Hornelen basin is the largest of the Devonian 'Old Red' sandstone basins in Norway, comprising 25 km of alluvial-fluvial deposits which are organized into basin-wide, coarsening-upward megacycles. Hornelen sits with several smaller basins in the hanging wall a major extensional shear zone along which the ultra-high pressure metamorphic core of subducted Baltican crust was rapidly exhumed during the extensional collapse of the Caledonian orogeny. The timing of orogenic collapse corresponds closely to the timing of the basins, which are loosely constrained by sparse trace-fossil assemblages to a mid-Devonian age. Further, the basins are now in brittle fault contact with the underlying mylonitic shear zone and the metamorphic core, implying that they are the upper-crustal expression of large-scale extension and deep-crustal exhumation. Two distinct structural models have been proposed for Hornelen to account for these observations. The strike-slip model juxtaposes different source terranes across the basin-controlling fault and predicts spatially changing provenance within chronostratigraphic units. The supradetachment model links the filling of the basin directly to unroofing of the metamorphic core on a low-angle detachment fault, and predicts basin-wide changes in provenance through time with progressive exhumation of the metamorphic hinterland. We present an extensive new provenance dataset, spanning the Hornelen basin strata through space and time. Detrital zircon U/Pb ages from 18 new samples comprise three distinct populations (1.6, 1.0, and 0.43 Ga) with the Caledonian-aged zircons (ca 0.43 Ga) present mainly along the northern margin of the basin, representing an Upper Allochthon source not found on the southern or eastern margins of the basin. Juxtaposition of different source terranes across the basin supports the strike-slip model. 40Ar/39Ar detrital white mica from the same sample set documents a younging of the dominant age peak from 432 Ma in the

  12. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  13. Zircon U-Pb geochronology, Sr-Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran

    NASA Astrophysics Data System (ADS)

    Karimpour, M. H.; Stern, C. R.; Farmer, G. L.

    2010-03-01

    The Paleo-Tethys ocean opened in Silurian time, and its subduction under the Turan plate started in the Late Devonian. By Late Triassic time (225 Ma), no Paleo-Tethys crust remained on the surface of the Iranian plate. Subsequently, however, obduction of the Turan plate over the Iranian plate emplaced allochthonous sheets in what is now northeastern Iran. The sheets contain meta-ophiolites, which have been dated at 281.4 and 277.4 Ma by the 40Ar- 39Ar method. These remnant Paleo-Tethys meta-ophiolites and associated metaflysch sequences were intruded by the Dehnow diorite and Kuhsangi granodiorite. Zircon U-Pb dating indicates that the age of the Kuhsangi granodiorite is 217 ± 4 Ma and that of the Dehnow diorite is 215 ± 4 Ma (Late Triassic, Norian). The granodiorite and diorite have magnetic susceptibilities of between 5 × 10 -5 and 20 × 10 -5 (SI units) and therefore are classified as belonging to the ilmenite series of reduced-type granitoids. Chemically, the Dehnow diorite and Kuhsangi granodiorite are moderately peraluminous S-type plutons with (La/Yb) N = 7-22 and no, or only small, negative Eu anomalies (Eu/Eu* = 0.55-1.1). Their initial 87Sr/ 86Sr ratios range from 0.707949 to 0.708589, and their initial ɛNd values range from -6.63 to -5.90 when recalculated to an age of 216 Ma. These values could be considered to represent continental crust-derived magmas, and metagreywacke to metapelite with initial ɛNd values of -15.01 may have been involved in their genesis, but these were not the sole parent material.

  14. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    NASA Astrophysics Data System (ADS)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina

    2017-10-01

    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  15. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Mao, Jingwen; Pirajno, Franco; Jia, Lihui; Zhang, Feng; Li, Yang

    2017-12-01

    The Lianhuashan deposit has long been regarded as a typical tungsten porphyry deposit, located in the eastern Guangdong Province, in the Southeastern Coastal Metallogenic Belt (SCMB). LA-MC-ICP-MS zircon U-Pb dating of the quartz porphyry yielded a weighted mean 206Pb/238U age of 137.3 ± 2.0 Ma, which is interpreted as the emplacement age of the quartz porphyry. Hydrothermal muscovite yielded a plateau 40Ar/39Ar age of 133.2 ± 0.9 Ma, which is consistent with the zircon U-Pb age, suggesting that the tungsten mineralization is genetically related to the quartz porphyry. Combined with previous studies, we suggest that there is a 145-135 Ma episode linking the granitic magmas with W-Sn ore systems in the SCMB. Zircon ɛHf (t) values of the quartz porphyry are in range of - 3.8 to 0.9, and the two-stage Hf model ages (TDM2) are 1.1-1.4 Ga, which is younger than the basement rocks in the Cathaysia Block (1.8-2.2 Ga), signifying that the quartz porphyry was predominantly derived from melting of Mesoproterozoic crust containing variable amounts of mantle components. In combination with the newly recognized coeval alkaline/bimodal magmatism and A-type granites in eastern Guangdong, we suggest that the 145-135 Ma W-Sn metallogenic event of the SCMB is related to a geodynamic setting of large-scale lithospheric extension and thinning, which can be ascribed to melting of the crust caused by mantle upwelling, triggered by the oblique subduction of the Izanagi plate.

  16. Calibrating the Cretaceous normal superchron with high-precision U-Pb zircon geochronology from Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ramezani, J.; Wang, C.

    2017-12-01

    The Cretaceous Normal Superchron (CNS) or C34n is defined as the prolonged period of normal geomagnetic polarity, which lasted for approximately 38 Myr from the Aptian to the beginning of the Campanian. Along with the Kiaman Reverse Superchron (Carboniferous-Permian), they constitute the two longest periods of stability in the Earth's magnetic field. Polarity reversals are geologically abrupt events of global extent that form the basis of the Geomagnetic Polarity Timescale. In addition, a causal relationship between the end of a superchron and global environmental change has been hypothesized by some workers. Thus, the precise timing of the onset and termination of CNS has important implications for the correlation of global tectonic, paleoclimatic and paleobiotic events, and may help us better understand the causes and consequences of superchrons. At present, the exact age and duration of CNS are poorly understood, in part due to the relative scarcity of relevant paleomagnetic and radioisotopic data. The end of CNS or the C34n/C33r chron boundary is also considered a suitable proxy for the Santonian-Campanian stage boundary in the absence of diagnostic fossils of global distribution for the latter. The early Campanian ( 84 Ma to 76 Ma) is characterized by a steady cooling of the (greenhouse) climate, preceded by an abrupt (possibly 5-6°C) drop in the global temperatures at the Santonain-Campanian boundary, based on the oxygen isotope record of benthic foraminifera. The peak of dinosaur diversity throughout vast swaths of the continents was reached during the Campanian, as well. Here we present a new age constraint for the termination of CNS based on ash bed geochronology from a near-continuous, subsurface, Cretaceous lacustrine record recovered from the Songliao Basin in Northeast China. This extraordinary record allows integration of high-precision U-Pb geochronology, magnetostratigraphy and cyclostratigraphy that enables a multi-chronometer approach to the

  17. U-Pb Zircon Geochronology of the Emigrant Gap Composite Pluton, Northern Sierra Nevada, California: Implications for the Nevadan Orogeny

    USGS Publications Warehouse

    Girty, G. H.; Yoshinobu, S.; Wracher, M.D.; Girty, M.S.; Bryan, K.A.; Skinner, J.E.; McNulty, B.A.; Bracchi, K.A.; Harwood, D.S.; Hanson, R.E.

    1993-01-01

    The undeformed Emigrant Gap composite pluton postdates the Lower to Middle Jurassic Sailor Canyon and Middle Jurassic Tuttle Lake Formations. According to earlier workers, these latterformations contain main and late phase Nevadan-aged (155 +/-3 Ma) spaced, slaty, phyllitic, and crenulation cleavage. Recently discovered fossils indicate that the upper part of the Sailor Canyon Formation can be no older than early Bajocian and no younger than Bathonian. The Tuttle Lake Formation stratigraphically overlies the Sailor Canyon Formation and thus probably includes middle to late Bajocian and/or Bathonian strata.The results of U-Pb work suggest that the Emigrant Gap composite pluton is composed of units that range in age from 168 +/-2 Ma (latest Bathonian to early Callovian) to 163-164 Ma (late Callovian). These new data, when combined with observations summarized above, imply that the Tuttle Lake Formation is older than the undeformed oldest unit of the Emigrant Gap composite pluton (i.e., latest Bathonian or early Callovian), and thus was probably deposited and deformed sometime between middle Bajocian and middle late Bathonian time. Hence, the cleavage contained within the Sailor Canyon and Tuttle Lake Formations could not have formed during the Late Jurassic Nevadan orogeny 155 +/-3 Ma as suggested by earlier workers.Within the foothills belt, just to the west of the Emigrant Gap composite pluton, a pronounced contractional deformation occurred sometime between 200 and 163 Ma (Early to Middle Jurassic). This middle Mesozoic deformation apparently was the result of a collision between an oceanic arc and continental North America. Because of the gross similarity in timing of structures produced during this collision and structures in the wall rocks of the Emigrant Gap composite pluton, we suggest that the latter Middle Jurassic structures are also the result of arc-continent collision, albeit a slightly more continentward expression.

  18. Data Reduction of Laser Ablation Split-Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu-Hf + U-Pb in Detrital Zircon and Sm-Nd +U-Pb in Igneous Monazite

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas

    2017-12-01

    A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.

  19. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Fu, Bin; Li, Yi-Liang

    2003-10-01

    There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of -28.6‰ to -22.3‰ and the carbon concentrations of 0.70-4.98 wt.% CO 2 despite a large variation in δ18O from -4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO 2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric-hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO 2 in the UHP metamorphic fluid. The 13C-poor CO 2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism. Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of -4.1‰ to -1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U-Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724-768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie-Sulu orogen. Therefore, the meteoric-hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated

  20. Petrochemistry and zircon U-Pb geochronology of granitic rocks in the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: Implications for petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Fanka, Alongkot; Tsunogae, Toshiaki; Daorerk, Veerote; Tsutsumi, Yukiyasu; Takamura, Yusuke; Sutthirat, Chakkaphan

    2018-05-01

    Carboniferous biotite granite, Late Permian hornblende granite, and Triassic biotite-hornblende granite, all of which belong to the Eastern Granite Belt, expose in the Wang Nam Khiao area, Nakhon Ratchasima, northeastern Thailand. The Carboniferous biotite granite is dominated by quartz, K-feldspar, plagioclase, and biotite. The Late Permian hornblende granite contains dominant assemblages of plagioclase, quartz, K-feldspar, hornblende, and minor amount of biotite, while the Triassic biotite-hornblende granite consists of quartz, plagioclase, K-feldspar with small amounts of biotite, and hornblende. The REE patterns with steep decrease from light to heavy REE together with the LILE (e.g. K, Sr) enrichment and depletion of some particular HFSE (e.g. Nb, Ti) indicate low degree of partial melting. Mineral chemistry of biotite and hornblende in the granites reflects crystallization from hydrous calc-alkaline arc-derived magmas possibly formed by subduction. Amphibole-plagioclase thermometry and Al-in-hornblende barometry indicate that the Late Permian hornblende granite and the Triassic biotite-hornblende granite may have equilibrated at 3.0-5.8 kbar/700-820 °C and 2.0-3.2 kbar/600-750 °C, respectively, in the middle-upper crust (about 10-15 km depth). Zircon U-Pb geochronology of the Carboniferous biotite granite, Late Permian hornblende granite and Triassic biotite-hornblende granite yielded intrusion ages of 314.6-284.9 Ma, 253.4 Ma, and 237.8 Ma, respectively, which implies multiple episodes of arc-magmatism formed by Palaeo-Tethys subduction beneath Indochina Terrane during Late Carboniferous/Early Permian, Late Permian and Middle Triassic.

  1. Contemporaneous alkaline and tholeiitic magmatism in the Ponta Grossa Arch, Paraná-Etendeka Magmatic Province: Constraints from U-Pb zircon/baddeleyite and 40Ar/39Ar phlogopite dating of the José Fernandes Gabbro and mafic dykes

    NASA Astrophysics Data System (ADS)

    Almeida, Vidyã V.; Janasi, Valdecir A.; Heaman, Larry M.; Shaulis, Barry J.; Hollanda, Maria Helena B. M.; Renne, Paul R.

    2018-04-01

    We report the first high-precision ID-TIMS U-Pb baddeleyite/zircon and 40Ar/39Ar step-heating phlogopite age data for diabase and lamprophyre dykes and a mafic intrusion (José Fernandes Gabbro) located within the Ponta Grossa Arch, Brazil, in order to constrain the temporal evolution between Early Cretaceous tholeiitic and alkaline magmatism of the Paraná-Etendeka Magmatic Province. U-Pb dates from chemically abraded zircon data yielded the best estimate for the emplacement ages of a high Ti-P-Sr basaltic dyke (133.9 ± 0.2 Ma), a dyke with basaltic andesite composition (133.4 ± 0.2 Ma) and the José Fernandes Gabbro (134.5 ± 0.1 Ma). A 40Ar/39Ar phlogopite step-heating age of 133.7 ± 0.1 Ma from a lamprophyre dyke is identical within error to the U-Pb age of the diabase dykes, indicating that tholeiitic and alkaline magmatism were coeval in the Ponta Grossa Arch. Although nearly all analysed fractions are concordant and show low analytical uncertainties (± 0.3-0.9 Ma for baddeleyite; 0.1-0.4 Ma for zircon; 2σ), Pb loss is observed in all baddeleyite fractions and in some initial zircon fractions not submitted to the most extreme chemical abrasion treatment. The resulting age spread may reflect intense and continued magmatic activity in the Ponta Grossa Arch.

  2. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  3. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite

    NASA Astrophysics Data System (ADS)

    Lee, Yuyoung; Cho, Moonsup; Yi, Keewook

    2017-05-01

    Isotopic and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and magmatic evolution. We analyzed Lu-Hf isotopic compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate magmatic features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG magmatism over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf isotopic data in combination with available whole rock Sr-Nd isotopic data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG magmatism at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.

  4. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins

    NASA Astrophysics Data System (ADS)

    Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.

    2015-11-01

    SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.

  5. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  6. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert

    2002-09-01

    The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and

  7. New data for paleoprotherozoic PGE-bearing anorthosite of Kandalaksha massif (Baltic shield): U-Pb and Sm-Nd ages

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel

    2015-04-01

    The aims of this researches were to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) on Kandalaksha anorthosite massif due to study of polimetamorphic history. In marginal zone firstly have been obtained the presence of sulphide mineralization with PGE (Chashchin, Petrov , 2013). Kandalaksha massif is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate polymetamorphism. Two fractions of single grains from anorthosite of the massif gave precise U-Pb age, which is equal to 2450± 3 Ma. Leucocratic gabbro-norite were dated by U-Pb method, with age up to 2230 ± 10 Ma. This age reflects the time of granulite metamorphism according to data of (Mitrofanov, Nirovich, 2003). Two fractions of rutile have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile is 400-450 ° C (Mezger et.al., 1989), thus cooling processes of massif rocks to these temperatures was about 1.7 Ga. These data reflect one of the stages of metamorphic alteration of the massif. Three stages of metamorphism are distinguished by Sm-Nd method. Isotope Sm-Nd dating on Cpx-WR line gives the age of 2311 Ma which suggested of high pressure granulite metamorphism. Moreover Cpx-Pl line reflect the age 1908 Ma of low pressure granulite metamorphism. Also two-points (Grt-Rt) Sm-Nd isochrone yield the age 1687 Ma of the last metamorphic alterations in Kandalaksha anorthosite massif. Model Sm-Nd age of the leucocratic gabbro-norite is 2796 Ma with positive ɛNd (+0.32). It means that the source of gabbro-norite was mantle reservoir. All investigations are devoted to memory of academician PAS F. MItrofanov which was a leader of scientific school for

  8. Exploring the pre-eruptive history of the Central Atlantic Magmatic Province (CAMP) and the link with the end Triassic extinction using high precision U-Pb zircon and baddeleyite geochronology

    NASA Astrophysics Data System (ADS)

    Davies, Joshua; Marzoli, Andrea; Bertrand, Hervé; Youbi, Nasrrddine; Schaltegger, Urs

    2015-04-01

    The Central Atlantic Magmatic Province (CAMP) is a massive outpouring of basaltic lava, dykes and sills that was predominantly emplaced into the Triassic-Jurassic basins of North and South America, Europe and Africa. These basins were, at the time, in the center of the paleo-supercontinent Pangea, and the CAMP flood basalts are associated with Pangea's break-up and the opening of the Atlantic Ocean. The global climatic and environmental impact of the basalt eruption has been temporally linked with the end-Triassic mass extinction, although the extinction horizon, defined by a carbon isotope excursion, is stratigraphically below the first basaltic flows in all of the currently identified basins. Therefore, if the extinction is related to the CAMP, it must be related to a process that occurred before the eruption of the first basalt flow, or is co-incident with a currently unidentified older basalt flow. Here we present high precision TIMS zircon U-Pb geochronology on zircons from the North Mountain basalt (NMB) in the Fundy basin, Canada, and also baddeleyite from the Foum Zuid dyke (FZD) in the Anti-Atlas, Morocco. The NMB zircons have been separated from the lowermost accessible basalt flow of the NMB sequence in a coarse-grained section, rather than from a felsic residual melt pod, which is the usual target for zircon geochronology in basalts. The baddeleyites from the FZD were also separated from a coarse-grained section of the dyke. The zircons and baddeleyites from the NMB and FZD samples contain an antecrystic population with ages more than 1 Ma older than the emplacement of the basalts. The U-Pb ages presented here suggest that there was magmatic activity relating to the CAMP before the eruption of the first basalts. There are a number of possible explanations for the old zircons 1) recycling of zircon from earlier phases of magmatism, which then would have to have been re-molten and entrained into the NMB and FZD magmas. 2) Recycling of crystal mush from

  9. LA-ICP-MS U-Pb detrital zircon study and structural observations of the Cycladic Blueschist Unit on Heraklia Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Laskari, Sofia; Soukis, Konstantinos; Lozios, Stylianos; Stockli, Daniel

    2017-04-01

    At the central and southern part of the Attic-Cycladic complex (Aegean Sea, Greece) significant exposures of the Cycladic Basement Unit orthogneisses and meta-sediments are observed. These are mainly cropping out in Paros, Naxos and Ios islands and to a much lesser extend in Sikinos Island and they comprise Variscan (granitic) orthogneisses and late Paleozoic metasediments. In this paper we present evidence of a hitherto not identified possible outcrop of the Cycladic Basement in Heraklia Island (central Cyclades). The small Heraklia Island, situated at the center of the Attic-Cycladic core complex in the Aegean, between the islands of Naxos and Ios, consists of rocks that are attributed to the Cycladic Blueschist Unit. The tectonostratigraphy of Heraklia Island includes: a) a lowermost schist sequence with interbedded lenses of felsic orthogneisses whose primary relationship is obliterated by later subduction and exhumation related shearing b) A 200m thick variegated marble sequence with sparse calk-schist intercalations, which is isoclinally folded together with 100m thick overlying quartz-mica and calc-schists schists. All rocks comprise a penetrative foliation formed by greenschist facies mineral assemblages but in the uppermost schists relics of the Eocene HP event are found in the form of glaucophane inclusions within albite porphyroblasts. A mylonitic planar fabric with a cataclastic overprint is observed at the base of the marble sequence and the roof of the underlying schists and orthogneisses. It is accompanied by a N-S stretching lineation, subparallel to isoclinal folding in all scales. Numerous kinematic indicators reveal a top-to-N sense of shear thus linking the Heraklia rocks kinematically with the crustal extensional detachment systems of both Naxos and Ios islands. LA-ICP-MS U-Pb detrital zircon study of schists and gneisses is used in order to identify provenance and to elucidate the tectonostratigrachic relationship between the lower and upper

  10. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  11. U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia

    NASA Astrophysics Data System (ADS)

    Hauser, N.; Cabaleri, N. G.; Gallego, O. F.; Monferran, M. D.; Silva Nieto, D.; Armella, C.; Matteini, M.; Aparicio González, P. A.; Pimentel, M. M.; Volkheimer, W.; Reimold, W. U.

    2017-10-01

    The Cañadón Asfalto basin, central Chubut, Argentina, comprises a volcano-sedimentary sequence related to the opening of the Atlantic Ocean during Mesozoic times. The Lonco Trapial, Cañadón Asfalto and Cañadón Calcáreo formations are the main units related to the evolution of this basin. The Las Chacritas and Puesto Almada members are distinguished in the Cañadón Asfalto Formation. LA-HR-ICP-MS U-Pb and Lu-Hf data on zircon were obtained on these units. The Lonco Trapial Formation gave a weighted average age of 172.3 ± 1.8 Ma. A pyroclastic level from the Las Chacritas Member gave a weighted average age of 168.2 ± 2.2 Ma. Two U-Pb concordant ages of 160.3 ± 1.7 Ma on a laminated tuffite and 158.3 ± 1.3 Ma on a pyroclastic level were obtained for the Puesto Almada Member. Two maximum depositional ages constrain the sedimentary provenance areas for the basin: 1) A sample from the Sierra de la Manea range, where a controversial unit related either to the Cañadón Asfalto or to the Cañadón Calcáreo formation occurs, gave an age of 176.6 ± 1.0 Ma. Two younger zircon crystals indicate that this unit may be related to the Cañadón Calcáreo Formation. 2) A sandstone with cross-stratification from the Puesto Almada Member gave a maximum depositional age of 173.6 ± 6.4 Ma. In terms of U-Pb and Lu-Hf isotopes, two magmatic events are identified in central Patagonia: the Mamil Choique magmatic event characterized by negative εHf values around -5.0 and representing recycling during Permian times of Mesoproterozoic crust (TDM of ∼1.5 Ga), and the Cañadón Asfalto magmatic event with negative (-8.2) to positive (+4) εHf values and Meso- to Neoproterozoic TDM between 1.5 and 0.8 Ga. The younger event is characterized by three main cycles: C1 related to the Lonco Trapial magmatism, C2 to the Las Chacritas volcanism, and C3 to the Puesto Almada volcanism. These cycles are related with Marifil, Chon Aike and El Quemado formations volcanics events of

  12. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  13. Identifying the complex melting reaction from 20 Ma to 14 Ma in Tsona leucogranite in Southern Tibet: geochemistry, zircon U-Pb chronology and Hf isotopes evidence

    NASA Astrophysics Data System (ADS)

    Shi, Qingshang; Zhao, Zhidan; Liu, Dong; Zhu, Di-Cheng

    2017-04-01

    The Miocene leucogranites, the record of the evolution of the Himalayan-Tibetan Orogen, extensively intruded the Greater Himalayan Sequence (GHS), and distributed along the South Tibetan Detachment System (STDS) (Guo and Wilson, 2012). Here we present a study of geochemistry, zircon U-Pb chronology and Hf isotopes on the Yamarong leucogranites from Tsona area, Eastern Himalaya, to explore the petrogenesis of the rocks, including melting condition and mechanism, and source of fluid within the magmatism through time. Our new results include: (1) The age of the Yamarong leucogranites range from 14 Ma to 20 Ma (YM1510-1 = 19.7 ± 0.1 Ma, n = 13; YM1502-1 = 17.5 ± 0.1 Ma, n = 12; YM1412 =14.2 ± 0.1 Ma, n = 18), which suggest that the anataxis processes have lasted for more than 6 Ma. (2) The geochemical features are different between the rocks with changing ages, especially between 20 Ma and 17 Ma. The Rb/Sr value of 20 Ma leucogranites (4.1-6.84) is lower than that of 17 Ma samples (5.12-19.02). The 20 Ma leucogranites have higher Ba contents (188-337 ppm) than that of 17 Ma rocks (50-158ppm), which exhibit different trends in the Rb/Sr versus Ba plot, and reveal different melting reaction from 20 Ma to 17 Ma. (Inger and Harris, 1993) (3) The ɛHf(t) isotopes of 20 Ma leucogranites are lower (average ɛHf(t) = -12.5) than that of 17 Ma ones (average ɛHf(t) = -10), which implies differential dissolution of inherited zircon during two partial melting events possibly due to different fluid contribution (Gao et al., 2017); (4) The positive linear relationship of LREEs versus Th in the rocks, with relatively higher contents of Th and LREEs in the 20 Ma, and lower in the 17 Ma leucogranites, which suggests the relationship were mostly controlled by monazite. And this further indicates more monazite was dissolved from the source region in the early stage (˜20Ma) than the later (17Ma) (Gao et al., 2017). In summary, our study provides new evidence for the complex melting

  14. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  15. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong

    2016-09-01

    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes. (143Nd/144Nd)i = (143Nd/144Nd) - (147Sm/144Nd) × (eλt - 1), εNd(t) = [(143Nd/144Nd) / (143Nd/144Nd)CHUR(t) - 1] × 104, (143Nd/144Nd

  16. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  17. U-Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralization in the Sukhaybarat area, western Afif terrane, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Harbi, Hesham M.; Ali, Kamal A.; McNaughton, Neal J.; Andresen, Arild

    2018-04-01

    The Sukhaybarat East and Red Hill deposits, in the northeastern part of the Arabian Shield, are mesothermal vein-type gold deposits hosted by late Cryogenian-Ediacaran intrusive rocks of the Idah suites (diorite, tonalite, granodiorite) and, at Sukhaybarat East, also by Ediacaran metasedimentary rocks. Gold mineralization comprises quartz-arsenopyrite veins (Sukhaybarat East), quartz-carbonate-pyrite veins (Red Hill), and subordinate gold-base metal sulfide veins. In the Red Hill deposit, alteration is complicated due to multiple overprinting hydrothermal events and is characteristically affected by pervasive, pink quartz-K-feldspar-hematite alteration which is overprinted by potassic alteration characterized by a quartz-biotite-carbonate-muscovite/sericite-rutile-apatite assemblage. This assemblage is associated with molybdenite veins which appear to form late in the paragenetic sequence and may represent either evolution of the ore fluid composition, or a later, unrelated mineralized fluids. Hydrothermal alteration at the Sukhaybarat East deposit is dominated by quartz-carbonate-sericite-arsenopyrite assemblages. Zircon from ore-hosting tonalite at Sukhaybarat East yields a U-Pb age of 629 ± 6 Ma, and biotite from the same rock gives an 40Ar/39Ar age of 622 ± 23 Ma. The 40Ar/39Ar age is within the uncertainty range for the U-Pb age of the host intrusion and is interpreted as a minimally disturbed cooling age for the tonalite. In the Red Hill area, granodiorite was emplaced at 615 ± 5 Ma, whereas muscovite/sericite separated from a mineralized sample of a quartz-carbonate-pyrite vein, that was overprinted by molybdenite-bearing veinlets, yields an 40Ar/39Ar age of 597 ± 8 Ma. We interpreted this age to represent the maximum age of the molybdenite mineralization and the probable minimum age of gold mineralization in the Red Hill deposit.

  18. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  19. Zircons as a Probe of Early Luanr History

    NASA Astrophysics Data System (ADS)

    Crow, C. A.; McKeegan, K. D.; Gilmour, J. D.; Crowther, S. A.; Talor, D. J.

    2013-09-01

    Zircons are ideal for investigating the early lunar bombardment because we can measure both U-Pb crystallization ages and fissiongenic Xe degassing ages for the same crystal. We report U-Pb, Pb-Pb and U-Xe ages for three lunar zircons.

  20. Zircons as a Probe of Early Lunar Impact History

    NASA Astrophysics Data System (ADS)

    Crow, C. A.; McKeegan, K. D.; Gilmour, J. D.; Crowther, S. A.; Taylor, D. J.

    2013-08-01

    Zircons are ideal for investigating the early lunar bombardment because we can measure both U-Pb crystallization ages and fissiongenic Xe degassing ages for the same crystal. We report U-Pb, Pb-Pb and U-Xe ages for two lunar zircons.

  1. Petrology and zircon U-Pb geochronology of metagabbros from a mafic-ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in southern India

    NASA Astrophysics Data System (ADS)

    Koizumi, Tatsuya; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Chetty, T. R. K.; Saitoh, Yohsuke

    2014-12-01

    Several mafic-ultramafic complexes occur within the Palghat-Cauvery Suture Zone (PCSZ) in southern India. The PCSZ is regarded in recent models as the zone along which crustal blocks were amalgamated during the Late Neoproterozoic-Cambrian (550-530 Ma) Gondwana assembly. Here we report petrologic and zircon U-Pb geochronologic data from gabbros associated with the Aniyapuram mafic-ultramafic suite in the central domain of the PCSZ. Geothermobarometry and pseudosection approach in the system NCFMASHTO for the metagabbro (Grt + Cpx + Opx + Hbl + Pl + Qtz + Ilm + Rt) yield peak P-T condition of 9.8-10.6 kbar and 730-790 °C, which was followed by decompression to 6.5-8.0 kbar and ca. 750 °C as inferred from the formation of Opx + Pl symplectite around garnet, probably along a clockwise P-T path. Zircon U-Pb data analyzed by LA-ICP-MS plot along a well-defined discordia with upper and lower intercepts in the concordia at 2436 ± 22 Ma and 731 ± 11 Ma respectively, suggesting Neoarchean-Early Paleoproterozoic magmatic emplacement of the protolith and progressive Pb loss related to the Middle Neoproterozoic (Cryogenian) thermal event (or high-grade metamorphism). These results closely compare with the available Neoarchean magmatic ages of mafic-ultramafic complexes (e.g., Sittampundi, Devanur, Agali Hills, and Kanja Malai) and Middle Neoproterozoic magmatic event (e.g., Manamedu and Kadavur) in the PCSZ and adjacent granulite blocks. The 650 Ma concordia ages obtained from unzoned zircons might indicate the timing of high-grade metamorphism or post-peak hydration event. The P-T conditions obtained from Aniyapuram are significantly lower than the high-pressure and ultrahigh-temperature conditions of the 550-530 Ma final collisional event (P > 14 kbar and T > 950 °C). The Middle Neoproterozoic (ca. 730 Ma or 650 Ma) high-grade metamorphism in Aniyapuram reported for the first time from the PCSZ is possibly associated with magmatism in arc tectonic setting.

  2. The synrift evolution of the early Domeyko Basin (Domeyko Range, northern Chile): Coupling detrital 40Ar-39Ar white mica and U-Pb zircon analysis into a tectonostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Solari, L.

    2017-12-01

    Compressional tectonics that shaped the western flank of the Andes seems to have been strongly influenced by the heritage of extensional basins developed during the break-up of Gondwana. However, major questions remain about the exact timing, architecture and driving mechanism of these basins (subduction-related rift versus continental rift). In this work, we coupled U-Pb detrital zircon (DZ) and 39Ar-40Ar in detrital muscovites (DM) into a tectonostratigraphic framework in order to unravel the synrift evolution of the Domeyko Basin (northern Chile, 24° - 26° S). U-Pb data indicate that the rifting in the Domeyko Basin occurred in two stages; a first from ca. 240-225 Ma which led to the formation of the Sierra Exploradora sub-basin (SESB) and a second from ca. 217-200 Ma, opening the Sierra de Varas sub-basin (SVSB) and reactivating the SESB. The competition between mechanical subsidence and the volcanic supply rates in these magma-rich depocenters, led to the dominance of the inter-eruption period in the SVSB and a predominance of the syn-eruptive period along the SESB. Geochronology of detrital minerals deposited during the second rift stage reveal significant differences between both sub-basins. At the SVSB, DZ ages show a main peak at ca. 285-295 Ma and much younger WDM ages, with a main peak close to ca. 200 Ma, slightly younger than the depositional age at ca. 213-210 Ma, likely due to partial resetting of the WDM ages by burial. A lack of muscovite-bearing plutonic sources of 230-200 Ma, leads us to interpret that WDM ages indicate a significant cooling of the Permian plutonic sources close to the basin aperture. On the contrary, along the SESB, WDM ages (260-265 Ma) are only slightly younger than DZ ages (280-270 Ma). The small difference between the WDM and the DZ ages, points to a rapid cooling of plutonic source rocks at ca. 260 Ma, coinciding with the age of the San Rafael orogenic phase in northern Chile. DZ data of the Domeyko Basin show a

  3. Detrital zircon microtextures and U-PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin

    NASA Astrophysics Data System (ADS)

    Finzel, E. S.

    2017-07-01

    Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.

  4. Constraining the Flux of Impactors Postdating Heavy Bombardment Using U-Pb Ages of Impact Glasses

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Norman, M. L.; Ziegler, R. A.; Grange, M. L.

    2013-01-01

    Spherules of glass varying in size from a few micrometres to a few millimetres are common in the lunar regolith. While some of these glass beads are products of pyroclastic fire fountains others originate as impact melt ejected from the target that breaks into small droplets and solidifies as spherical particles while raining back to the lunar surface. These glasses preserve information about the chemical composition of the target and often contain sufficient amount of radioactive nuclides such as 40K to enable Ar-40-Ar-39 dating of individual beads. Studies measuring the age of glass beads have been used in attempts to establish variations in the flux of impactors hitting the Moon, particularly during the period that postdates the formation of major impact basins [1,2]. These studies proposed a possibility of spike in the impact flux about 800 Ma [2] and over the last 400 Ma [1]. More recently U-Th-Pb isotopic systems have been also utilized to determine the age of impact glasses from the Apollo 17 regolith [3]. Our aim is to extend the application of the U-Pb system in impact glasses to spherules isolated from Apollo 14 soil 14163 in an attempt to further investigate the applicability of this isotopic system to the chronology of impact glass beads and gain additional information on the impact flux in the inner Solar system.

  5. Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Cordey, Fabrice; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    This study is based on zircon U-Pb ages of 12 volcanic ash layers and volcanogenic sandstones from two deep water sections with conformable and continuous formational Permian-Triassic boundaries (PTBs) in the Nanpanjiang Basin (South China). Our dates of single, thermally annealed and chemically abraded zircons bracket the PTB in Dongpan and Penglaitan and provide the basis for a first proof-of-concept study utilizing a Bayesian chronology model comparing the three sections of Dongpan, Penglaitan and the Global Stratotype Section and Point (GSSP) at Meishan. Our Bayesian modeling demonstrates that the formational boundaries in Dongpan (251.939 ± 0.030 Ma), Penglaitan (251.984 ± 0.031 Ma) and Meishan (251.956 ± 0.035 Ma) are synchronous within analytical uncertainty of ˜ 40 ka. It also provides quantitative evidence that the ages of the paleontologically defined boundaries, based on conodont unitary association zones in Meishan and on macrofaunas in Dongpan, are identical and coincide with the age of the formational boundaries. The age model also confirms the extreme condensation around the PTB in Meishan, which distorts the projection of any stratigraphic points or intervals onto other more expanded sections by means of Bayesian age-depth models. Dongpan and Penglaitan possess significantly higher sediment accumulation rates and thus offer a greater potential for high-resolution studies of environmental proxies and correlations around the PTB than Meishan. This study highlights the power of high-resolution radio-isotopic ages that allow a robust intercalibration of patterns of biotic changes and fluctuating environmental proxies and will help recognizing their global, regional or local significance.

  6. Sapphirine-bearing granulites from the Tongbai orogen, China: Petrology, phase equilibria, zircon U-Pb geochronology and implications for Paleozoic ultrahigh temperature metamorphism

    NASA Astrophysics Data System (ADS)

    Xiang, Hua; Zhong, Zeng-Qiu; Li, Ye; Qi, Min; Zhou, Han-Wen; Zhang, Li; Zhang, Ze-Ming; Santosh, M.

    2014-11-01

    We report here for the first time the occurrence of sapphirine-bearing granulites within the Qinling Group of the Qinling-Tongbai orogen and provide robust evidence for extreme crustal metamorphism at ultrahigh-temperature (UHT) conditions. We document the UHT indicator of sapphirine and spinel in a mafic granulite consisting of orthopyroxene, biotite, plagioclase, amphibole and rutile/ilmenite. The ferromagnesian minerals in the sapphirine-bearing granulite have high XMg [Mg/(Mg + Fe)] (orthopyroxene XMg = 0.84-0.95; biotite XMg = 0.81; amphibole XMg = 0.87-0.96). The phase equilibria modeling demonstrates that the early spinel-bearing assemblage is stable at 923-950 °C and 6.7-8.9 kbar, and the peak assemblage of Opx + Pl + Spr/Spl + Amp + Bt + Ilm (+ melt) defines a field at 922-947 °C and 8.4-10.2 kbar. Rutiles have variable Zr concentrations but mostly cluster at ca. 1,500 and 3400 ppm. Zr-in-rutile geothermometry yielded high temperatures of up to 890-940 °C. Zircon U-Pb dating of the granulite constrains the timing of the immediate post-peak and retrograde metamorphic stages as 429 ± 7 Ma and 412 ± 4 Ma, respectively. The UHT metamorphism, together with extensive occurrence of coeval magmatic suites suggests that the Tongbai orogen experienced a Paleozoic Andean-type orogeny probably derived from mid-oceanic ridge subduction of the Qinling Ocean.

  7. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, Wallace A.; Hussey, A.M.; Fanning, C.M.

    2007-01-01

    U-Pb ages of detrital, metamorphic, and magmatic zircon and metamorphic monazite and titanite provide evidence for the ages of deposition and metamorphism of metasedimentary rocks from the Merrimack and Putnam-Nashoba terranes of eastern New England. Rocks from these terranes are interpreted here as having been deposited in the middle Paleozoic above Neoproterozoic basement of the Gander terrane and juxtaposed by Late Paleozoic thrusting in thin, fault-bounded slices. The correlative Hebron and Berwick formations (Merrimack terrane) and Tatnic Hill Formation (Putnam-Nashoba terrane), contain detrital zircons with Mesoproterozoic, Ordovician, and Silurian age populations. On the basis of the age of the youngest detrital zircon population (???425 Ma), the Hebron, Berwick and Tatnic Hill formations are no older than Late Silurian (Wenlockian). The minimum deposition ages of the Hebron and Berwick are constrained by ages of cross-cutting plutons (414 ?? 3 and 418 ?? 2 Ma, respectively). The Tatnic Hill Formation must be older than the oldest metamorphic monazite and zircon (???407 Ma). Thus, all three of these units were deposited between ???425 and 418 Ma, probably in the Ludlovian. Age populations of detrital zircons suggest Laurentian and Ordovician arc provenance to the west. High grade metamorphism of the Tatnic Hill Formation soon after deposition probably requires that sedimentation and burial occurred in a fore-arc environment, whereas time-equivalent calcareous sediments of the Hebron and Berwick formations probably originated in a back-arc setting. In contrast to age data from the Berwick Formation, the Kittery Formation contains primarily Mesoproterozoic detrital zircons; only 2 younger grains were identified. The absence of a significant Ordovician population, in addition to paleocurrent directions from the east and structural data indicating thrusting, suggest that the Kittery was derived from peri-Gondwanan sources and deposited in the Fredericton Sea

  8. New U-Pb zircon geochronology of the Choma-Kalomo Block (Zambia) and the Dete-Kamativi Inlier (Zimbabwe), with implications for the extent of the Zimbabwe Craton.

    NASA Astrophysics Data System (ADS)

    Glynn, Sarah; Wiedenbeck, Michael; Master, Sharad; Frei, Dirk

    2015-04-01

    The Choma-Kalomo Block is a north-east trending, Mesoproterozoic terrane located in southern Zambia. It is composed of as yet undated gneissic basement with a high-grade metamorphosed supracrustal metasedimentary sequence, which is intruded by hornblende granites and gneisses of the Choma-Kalomo Batholith, that is dated between ca. 1.37 and 1.18 Ga. Our new zircon U-Pb age data on metasedimentary rocks of the Choma-Kalomo Block identifies samples of different ages, with slightly different provenances. The oldest metasedimentary rock is a muscovite-biotite schist, which has only Palaeoproterozoic detrital zircons, the two age clusters around 2.03-2.02 Ga and 1.8-1.9 Ga, correspond to the ages of granitic intrusion, and metamorphism, in the Magondi Mobile Belt on the western side of the Archaean Zimbabwe Craton. The second sample is a garnetiferous paragneiss, which contains both Palaeoproterozoic (2.04 Ga), and Mesoproterozoic zircons, ca. 1.36 Ga, derived from the granites of the Choma-Kalomo Batholith. The third sample is a biotite-muscovite schist, in which the detrital zircon ages fall into four separate clusters: ca. 3.39 Ga, ca. 2.7-2.6 Ga, ca. 2.1-1.7 Ga (with a peak at ca. 1.18 Ga), and 1.55 - 1.28 Ga. The Archaean zircons in this sample are derived from the Zimbabwe Craton, while the Palaeoproterozoic samples come from the Magondi belt, and the youngest zircons come from both phases of the Choma-Kalomo Batholith. A possible connection between the Choma-Kalomo Block and the Dete-Kamativi Inlier - some 150 km to the south-east in western Zimbabwe - has been proposed on the basis of similarities in the nature of their Sn-Ta-muscovite pegmatite mineralisation. The Dete-Kamativi Inlier, which is part of the Magondi Mobile Belt, is a window into Palaeoproterozoic north-east trending belts of deformed and metamorphosed supracrustal rocks. By dating localities which we suspect form the basement to the surrounding younger sediments, along with selected pegmatites

  9. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari

    2017-04-01

    The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced

  10. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Gerdes, Axel; Zeng, Lingsen; Xue, Huaimin

    2008-06-01

    In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively

  11. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.

    2010-12-01

    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference

  12. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  13. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  14. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    NASA Astrophysics Data System (ADS)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  15. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Jiang, Shao-Yong; Dai, Bao-Zhang; Jiang, Yao-Hui; Hou, Ming-Lan; Pu, Wei; Xu, Bin

    2013-03-01

    The Linglong granite is one of the most important Mesozoic plutons in the Shandong Peninsula, eastern China, and its petrogenesis has long been controversial, particularly with regard to the nature of source region and geodynamic setting. Our new precise zircon U-Pb dating results reveal that the Linglong granite was emplaced in the Late Jurassic (157-160 Ma). In addition, abundant inherited zircons are identified in the granite with four groups of age peaked at ~ 208, ~ 750, ~ 1800 and ~ 2450 Ma. Geochemical studies indicate that the Linglong granite is weakly peraluminous I-type granite, and is characterized by high SiO2, Sr and La, but low MgO, Y and Yb contents, strongly fractionated REE pattern and high Sr/Y and La/Yb ratios. It also exhibits high initial 87Sr/86Sr ratios (0.7097 to 0.7125), low ɛNd(t) (- 17.7 to - 20.3) and variable zircon ɛHf(t) (- 22.2 to - 8.7) values. Calculation of the zircon saturation temperature (TZr) reveals that the magma temperatures are 760 ± 20 °C, and the lowest TZr value of 740 °C may be close to initial magma temperature of this inheritance-rich rock. Interpretation of the elemental and isotopic data suggests that the Linglong granite has some affinities with the adakite, and was most likely derived from partial melting of thickened lower crust without any significant contribution of mantle components. The presence of a large number of inherited zircons and variable Sr-Nd-Hf isotopic compositions reveal that the Linglong granite probably has multiple sources consisting of the lower crust of both South China Block and North China Block, as well as the collision-related alkaline rocks and UHP metamorphic rocks. The continental arc-rifting related to the Izanagi plate subduction was the most likely geodynamic force for formation of the Jurassic Linglong adakatic granite in the Shandong Peninsula.

  16. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study

    USGS Publications Warehouse

    Dalrymple, G.B.; Grove, M.; Lovera, O.M.; Harrison, T.M.; Hulen, J.B.; Lanphere, M.A.

    1999-01-01

    Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yield 207Pb/206Pb vs. 238U/206Pb concordia ages ranging from 1.13 ?? 0.04 Ma to 1.25 ?? 0.04 (1??) Ma. The weighted mean of the U/Pb model ages is 1.18 ?? 0.03 Ma. The U-Pb ages coincide closely with 40Ar/39Ar age spectrum plateau and 'terminal' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350??C by ~0.9-1.0 Ma. Interpretation of the feldspar 40Ar/39Ar age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350??to 300??C between 1.0 and 0.4 Ma or transitory reheating to 300-350??C at about 0.4-0.6 Ma. Subsequent rapid cooling to below 260??C between 0.4 and 0.2 Ma is in agreement with previous proposals that vapor-dominated conditions were initiated within the hydrothermal system at this time. Heat flow calculations constrained with K-feldspar thermal histories and the present elevated regional heat flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2 to 0.6 Ma.

  17. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  18. Silicic melt evolution in the early Izu-Bonin arc recorded in detrital zircons: Zircon U-Pb geochronology and trace element geochemistry for Site U1438, Amami Sankaku Basin

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Tani, K.; Meffre, S.; Wooden, J. L.; Coble, M. A.

    2016-12-01

    Understanding the petrologic evolution of oceanic arc magmas through time is important because these arcs reveal the processes of formation and the early evolution of juvenile continental crust. The Izu-Bonin (IB) arc system has been targeted because it is one of several western Pacific intraoceanic arcs initiated at 50 Ma and because of its prominent spatial asymmetry, with widespread development of relatively enriched rear arc lavas. We examined Pb/U and trace element compositions in zircons recovered at IODP Site 351-U1438 and compared them to regional and global zircon suites. These new arc zircon data indicate that detrital zircons will yield new insights into the generation of IB silicic melts and form a set of useful geochemical proxies for interpreting ancient arc detrital zircon provenance. Project IBM drilling target IBM1 was explored by Expedition 351 at Site U1438, located in the proximal back-arc of the northern Kyushu-Palau Ridge (KPR) at 27.3°N. A 1.2 km thick section of Paleogene volcaniclastic rocks, increasingly lithified and hydrothermally altered with depth, constitutes a proximal rear arc sedimentary record of IB arc initiation and early arc evolution. The ages and compositions of U1438 zircons are compatible with provenance in one or more edifices of the northern KPR and are incompatible with drilling contamination. Melt zircon saturation temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic KPR melts. The abundances of selected trace elements with high native concentrations provide insight into the petrogenesis of U1438 detrital zircon host melts, and may be useful indicators of both short and long-term variations in melt compositions in arc settings. The U1438 zircons are slightly enriched in U and LREE and are depleted in Nb compared to zircons from mid-ocean ridges and the Parece-Vela Basin, as predicted for melts in a primitive oceanic arc setting with magmas derived from a highly depleted mantle

  19. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  20. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  1. Dating the Indo-Asia collision in NW Himalaya: constraints from Sr-Nd isotopes and detrital zircon (U-Pb) and Hf isotopes of Paleogene-Neogene rocks in the Katawaz basin, NW Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew

    2015-04-01

    The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be < 40 Ma to < 22 Ma. The result is consistent with the previous nanofossil study that constrained the upper part of underlying Nisai Formation to be the Middle to Late Eocene. Our current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (< 120 Ma), characterizing the KLA and Karakoram, persistently exist throughout the whole sedimentary

  2. U-Pb Geochronology of Grandite Skarn Garnet: Case Studies From Jurassic Skarns of California

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Seman, S.; Barnes, J.; Stockli, D. F.; Lackey, J. S.

    2016-12-01

    We present 3 case studies using a new method for U-Pb dating grossular-andradite (grandite) skarn garnet via LA-ICP-MS (Seman et al., in prep). Grandite is commonly rich in U, with high Fe3+ contents generally correlating with higher U concentrations. Micron-scale non-radiogenic Pb heterogeneities allow for regression of age data using Tera-Wasserberg concordia. Although others have dated accessory skarn minerals, garnet U-Pb ages are powerful because garnet grows early and is nearly ubiquitous in skarns, resists alteration, and provides a formation age independent of that of the causative pluton. The Darwin stock (Argus range, eastern CA) was likely a short-lived, single pulse of magmatism, genetically related to the Darwin skarn. A robust skarn garnet U-Pb age of 176.8 ± 1.3 Ma agrees well with the pluton U-Pb zircon age of 175 Ma (Chen and Moore, 1982). Furthermore, zircon separated from, and in textural equilibrium with, exoskarn garnetite yields a U-Pb age of 176.8 ± 1 Ma. Such agreement between plutonic and skarn zircon ages with a skarn garnet age in a geologically simple field area is the ideal scenario for establishing grandite U-Pb as a viable tool for directly dating skarns. The Black Rock skarn (BRS; eastern CA) is more complex: multiple plutons and ambiguous field relations complicate determination of a causative pluton. A skarn garnet U-Pb age of 172.0 ± 3 Ma confirms a middle Jurassic BRS formation age. Investigation of 4 local plutons yield zircon U-Pb ages of 222 ± 3 Ma, 213 ± 4 Ma, 207 ± 4 Ma and 176.2 ± 2 Ma. Comparison of the skarn garnet U-Pb and pluton ages suggest the BRS is genetically related to the youngest pluton, providing basis for further field and geochemical investigation. The Whitehorse skarn (WS; Mojave Desert, CA) lies in an important region for studying the changing tectono-magmatic regime of the Jurassic North American Cordillera; basin fill suggests a tectonically-controlled oscillating regional shoreline (Busby, 2012

  3. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  4. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    NASA Astrophysics Data System (ADS)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  5. The age of unusual xenogenic zircons from Yakutian kimberlites

    NASA Astrophysics Data System (ADS)

    Vladykin, N. V.; Lepekhina, E. A.

    2009-12-01

    Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870-1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200-2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800-1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220-2700 Ma). It is known that the period of 1800-1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672-2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.

  6. Oligo-Miocene Alpine Sediment Routing from Integrated Analysis of Seismic-Reflection Data and Detrital Zircon U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Hubbard, S. M.; Sharman, G.; Covault, J. A.

    2014-12-01

    We integrate detrital zircon geochronology and 3D seismic-reflection data to reconstruct Oligo-Miocene paleogeography and sediment routing from the Alpine hinterland to Austrian Molasse foreland basin. Three-dimensional seismic-reflection data image a network of deepwater tributaries and a long-lived (>8 Ma) foredeep-axial channel belt through which predominantly southerly and westerly turbidity currents are interpreted to have transported Alpine detritus >100 km. We analyzed 793 detrital zircon grains from ten sandstone samples collected from the seismically mapped network of channel fill. Grain age populations correspond with major Alpine orogenic cycles: the Cadomian (750-530 Ma), the Caledonian (500-400 Ma), and the Variscan orogenies (350-250 Ma). Additional age populations correspond with Eocene-Oligocene Periadriatic magmatism (40-30 Ma) and pre-Alpine, Precambrian sources >750 Ma. The abundances of these age populations vary between samples. Sediment that entered the foredeep-axial channel belt from the west (freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable, well-distributed detrital zircon ages. Sandstone from a shallow marine unit that was deposited proximal to the northern basin margin consists of >75% Variscan (350-300 Ma) zircon, which is believed to have originated from the Bohemian Massif to the north. Mixing calculations based on the Kolmogorov-Smirnoff statistic suggest that the Alpine fold-thrust belt was an important source of detritus to the deepwater Molasse basin. We document east-to-west provenance dilution within the axial channel belt via one or more southern tributaries. Our results have important implications for sediment dispersal patterns within continental-scale orogens, including the relative role of longitudinal versus transverse sediment delivery in peripheral foreland basins.

  7. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  8. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  9. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    SciTech Connect

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  10. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    NASA Astrophysics Data System (ADS)

    Kunz, Barbara E.; Regis, Daniele; Engi, Martin

    2018-03-01

    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U-Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P-T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U-Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure.

  11. What can zircon ages from the Jack Hills detrital zircon suite really tell us about Hadean geodynamics?

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    As the only direct sample of the Hadean Earth, detrital zircon grains from the Jack Hills, Western Australia, have been the subject of intense investigation over the almost three decades since their discovery. A wide variety of geochemical and isotopic analyses of these grains, as well as their mineral inclusions, have been used variously to support two fundamentally different models for Hadean geodynamics: (i) Some form of (not necessarily modern-style) plate recycling generating felsic (continental-type?) crust at the boundaries [1, 2], or conversely (ii) the persistence of a long-lived, stagnant basaltic lid within which magmatism occurred as a result of internal temperature perturbations and/or impacts [3, 4], a model also generally consistent with a wide range of observations from post-Hadean geochemical reservoirs. Despite the considerable time and resources expended, the majority of these studies uncritically accept the individual U-Pb zircon ages, even though their veracity is key to many of the interpretations [5, 6]. We report here the results of an in-depth evaluation of all published (and new) U-Pb ages from the Jack Hills zircon suite in order to define age populations that can be used with a high degree of confidence in geodynamic interpretations. A notable problem in the interpretation of U-Pb data from ancient zircon grains (including those as young as the Neoarchean) is that disturbance of the systematics even several 100 Ma after crystallization causes data to spread along the concordia curve without becoming discernably discordant within the relatively large error bounds associated with U/Pb ages from in situ dating methods (e.g. SIMS). While 207Pb/206Pb ages are typically more precise, individually they provide no means to detect Pb-loss-induced younging. However, if two or preferably more analyses have been made in the same zircon growth zone, a reasonable evaluation of the possibility of Pb-loss can be made. In the available Jack Hills zircon

  12. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from Central and South-east Asia

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Giuliani, G.; Maluski, H.; Ohnenstetter, D.; Deloule, E.

    2003-04-01

    Marble-hosted ruby deposits represent the first source of gemstones in Asia. The deposits from Jegdalek (Afghanistan), Hunza Valley (Pakistan), Nangimali (Azad-Kashmir), Chumar, Ruyil (Nepal), Mogok (Myanmar), Luc Yen, Yen Bai and Quy Chau (Vietnam) were dated using the 40Ar-39Ar laser stepwise heating technique on syngenetic micas. The following ages were obtained : 24.7 ± 0.3 Ma at Jegdalek ; 10.8 ± 0.3 to 5.4 ± 0.3 Ma at Hunza ; 17.2 ± 0.2 to 15.3 ± 0.1 Ma at Nangimali ; 4.6 ± 0.1 Ma at Ruyil ; 5.6 ± 0.4 Ma at Chumar ; 18.7 ± 0.2 to 17.1 ± 0.2 Ma at Mogok ; 33.8 ± 0.4 to 30.8 ± 0.8 Ma at Luc Yen ; 24.4 ± 0.4 to 23.2 ± 0.6 Ma at Yen Bai, 22.1 ± 0.6 to 21.6 ± 0.7 Ma at Quy Chau. These ages represent cooling ages and thus minimum ages for ruby formation. The ages obtained for Nangimali are close to the Ar-Ar cooling age of 19 Ma recorded in the Chichi granite, North to the ruby deposit. However, (C,O)-isotopic studies of the ruby-bearing marbles show no genetic relation between granite emplacement and ruby deposition in this area. The age found at Jegdalek is similar to the K-Ar ages obtained on the Sairobi pegmatitic dykes (20-26 Ma) and of the Jalalabad pluton (25 Ma), located close to the ruby deposit. At Mogok, the ruby deposits yield ages close to those obtained on high grade metamorphic and foliated intrusive regional rocks (15.8 ± 0.7 - 19.5 ± 1.0 Ma). The ages obtained at Chumar and Ruyil agree with those of the Lesser Himalaya Formation (12 - 6 Ma). Those found at Quy Chau agree with those found for the shear zone activity. Furthermore, U-Pb dating was done on zircons included in a ruby from Luc Yen and spinels in marble from Luc Yen and Hunza. The wide range of 238U-206Pb ages obtained for Luc Yen (266 - 45 Ma) evidences a complex metamorphic history. Ruby crystallised at 45 Ma during ductile activity of the Red River shear zone. At Hunza, an 238U-206Pb age of 94.0 ± 2.1 Ma obtained on inherited zircons confirms the U-Pb age obtained on

  13. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  14. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism

    USGS Publications Warehouse

    Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F.

    2005-01-01

    We studied the Zhimafang ultrahigh-pressure metamorphic (UHP) peridotite from pre-pilot drill hole PP-1 of Chinese Continental Scientific Drilling project in the Sulu UHP terrane, eastern China. The peridotite occurs as lens within quartofeldspathic gneiss, and has an assemblage of Ol + Opx + Cpx + Phl + Ti-clinohumite (Ti-Chu) + Grt (or chromite) ?? magnesite (Mgs). Zircons were separated from cores at depths of 152 m (C24, garnet lhezolite), 160 m (C27, strongly retrograded phlogopite-rich peridotite) and 225 m (C50, banded peridotite), and were dated by SHRIMP mass spectrometer. Isometric zircons without inherited cores contain inclusions of olivine (Fo91-92), enstatite (En91-92), Ti-clinohumite, diopside, phlogopite and apatite. The enstatite inclusions have low Al2O3 contents of only 0.04-0.13 wt.%, indicating a UHP metamorphic origin. The weighted mean 206Pb/238U zircon age for garnet lherzolite (C24) is 221 ?? 3 Ma, and a discordia lower intercept age for peridotite (C50) is 220 ?? 2 Ma. These ages are within error and represent the time of subduction-zone UHP metamorphism. A younger lower intercept age of 212 ?? 3 Ma for a foliated wehrlite (C27) was probably caused by Pb loss during retrograde metamorphism. The source of zirconium may be partially attributed to melt/fluid metasomatism within the mantle wedge. Geochronological and geochemical data confirm that the mantle-derived Zhimafang garnet peridotites (probably the most representative type of Sulu garnet peridotites) were tectonically inserted into a subducting crustal slab and subjected to in situ Triassic subduction-zone UHP metamorphism. ?? 2005 Elsevier B.V. All rights reserved.

  15. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  16. Provenance implications of Th U Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika Agnieszka; Kędzior, Artur; Paszkowski, Mariusz; Suzuki, Kazuhiro; González-Álvarez, Ignacio; Wajsprych, Bolesław; Doktor, Marek

    2006-05-01

    This paper reports the results of CHIME (chemical Th-U-Pb isochron method) dating of detrital monazites from Carboniferous sandstones in the Upper Silesia Coal Basin (USCB). A total of 4739 spots on 863 monazite grains were analyzed from samples of sandstone derived from six stratigraphic units in the sedimentary sequence. Age distributions were identified in detrital monazites from the USCB sequence and correlated with specific dated domains in potential source areas. Most monazites in all samples yielded ca. 300-320 Ma (Variscan) ages; however, eo-Variscan, Caledonian and Cadomian ages were also obtained. The predominant ages are comparable to reported ages of certain tectonostratigraphic domains in the polyorogenic Bohemian Massif (BM), which suggests that various crystalline lithologies in the BM were the dominant sources of USCB sediments.

  17. Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage

    NASA Astrophysics Data System (ADS)

    Haghighi Bardineh, Seyyed Nematollah; Zarei Sahamieh, Reza; Zamanian, Hassan; Ahmadi Khalaji, Ahmad

    2018-03-01

    Subduction of Neo-Tethys lithosphere beneath the Iranian plateau during Neogene led to the formation of a NW-SE trending volcano-plutonic zone called Urumieh-Dokhtar magmatic assemblage (UDMA). The Takht granodiorite (NE of Hamedan Province, western Iran) belongs to the UDMA and has geochemical properties of post-collisional granitoids that was formed after the collision of Arabian and Iranian plateaus. This body contains rounded mafic micro-granular enclaves with relatively gradational rims indicating the effect of magma mixing/mingling in formation of the granodiorite body. The determination of U-Pb zircon age proved the Takht granodiorite was formed at Miocene (16.8 ± 0.24 Ma). The Nd-Sr isotope ratios and Sr/Nd, Nb/La and Th/U ratios of the granodiorite confirmed the magma was formed mainly by melting of continental crust, and its enclaves originated from a mantle derived mafic magma. Samples show negative anomalies in Nb, Sr, Ti, P and Eu, whereas positive anomalies in Th, K, Zr, Yb and Rb that reveals contribution of mantle and crustal materials in their generation. The Takht granodiorite has geochemical features of A2-type granites and also shows properties of both the volcanic arc and within plate magmatism association granitoids (high levels of LILEs and HFSEs). Regarding this interpretation and also post-collisional tectonic regime, it can be concluded that post-collision extensions caused deep faults in the UDMA that let mantle derived magmas rise up to the thicken crust. Such magma triggered melting in the middle crustal levels and was contaminated with crustal materials to generate granodiorite and enclave magmas respectively. The results of the current study decipher collision between the Arabian and the Iranian plateaus occurred before Miocene and the magmatism in the UDMA continued after closure of Neo-Tethys.

  18. U-Pb ages of secondary silica at Yucca Mountain, Nevada: Implications for the paleohydrology of the unsaturated zone

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207PB/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past -0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability

  19. The Comparison of Detrital Zircon Ages to Point Count Provenance Analysis for the Pottsville Sandstone in the Northern Appalachian Foreland Basin Venango County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Loveday, S.; Harris, D. B.; Schiappa, T.; Pecha, M.

    2017-12-01

    The specific sources of sediments deposited in the Appalachian basin prior to and immediately following the Alleghenian orogeny has long been a topic of debate. Recent advances in U-Pb dating of detrital zircons have greatly helped to determine some of the sources of these sediments. For this study, sandstone samples were collected from the Pottsville Formation in the northern Appalachian Foreland Basin, Venango County, Pennsylvania to provide supplementary data for previous work that sought to describe the provenance of the same sediments by point counts of thin sections of the same units. Results of this previous work established that the provenance for these units was transitional recycled orogenic, including multiple recycled sediments, and that a cratonic contribution was not able to be determined clearly. The previous results suggested that the paleoenvironment was a fluvial dominated delta prograding in the northern direction. However, no geochronologic data was found during this study to confirm this interpretation. We sought to verify these results by U-Pb analysis of detrital zircons. Samples were collected from the areas where the previous research took place. U-Pb ages were found from sample at the highest elevation and lowest elevation. In the first sample, sample 17SL01 (younger sample stratigraphically), the zircons yield U-Pb age range peaks at 442-468 ma and 1037-1081 ma. The probability density plot for this specific sample displays a complete age gap from 500 ma to 811 ma. In the second sample, sample 17SL03 (older rock stratigraphically), the zircons yield U-Pb ages range peaks of 424-616 ma and 975-1057 ma. This sample doesn't show any ages younger than 424 ma and it doesn't display the sample age gap as sample 17SL01 does. The ages of zircons are consistent with thin section point counting provenance results from previous research suggesting zircon transport from the northern direction.

  20. Zircon U-Pb and Hf-O isotopes trace the architecture of polymetallic deposits: A case study of the Jurassic ore-forming porphyries in the Qin-Hang metallogenic belt, China

    NASA Astrophysics Data System (ADS)

    Zhao, Panlao; Yuan, Shunda; Mao, Jingwen; Santosh, M.; Zhang, Dongliang

    2017-11-01

    The Qin-Hang intra-continental porphyry-skarn Cu polymetallic belt (QHMB) is among the economically important metallogenic belts in South China. The significant differences in the size and metal assemblage of the Jurassic magmatic-hydrothermal ore deposits in this belt remain as an enigma. Here we employ zircon U-Pb and Hf-O isotopes of the Tongshanling and Baoshan Cu-Pb-Zn deposits in the central part of the QHMB to investigate the contrasting metallogenic architecture. Our SIMS zircon U-Pb data indicate that the Tongshanling and Baoshan granodiorite formed at 160 Ma. These rocks show high Mg# values, and negative zircon εHf(t) and high δ18O values suggesting that the magmas of the granodiorite porphyries were mainly generated through the anatexis of older crustal components triggered by the input of mantle-derived magma. The minor content of amphibole phenocrysts, low Sr/Y ratios, negative Eu anomaly, and low zircon Ce4 +/Ce3 + ratios indicate that the porphyries are relatively less oxidized with less water content compared with the ore-bearing porphyries in the Dexing and Yuanzhuding porphyry Cu deposits in the northern and southern part of the QHMB, suggesting that high magmatic water content and oxidation state are important prerequisites for the formation of large size porphyry-skarn copper deposits in the QHMB. The positive correlation between zircon εHf(t) values with the Cu reserves, as well as zircon δ18O values with the Cu/(Cu + Pb + Zn) ratios of the deposits indicate that the magmatic sources exerted a first-order control on the volume and metal assemblage of deposits in the QHMB. The Hf and Nd isotope contour maps indicate that the central part of the QHMB has high potential for Pb-Zn-dominated magmatic-hydrothermal deposits, whereas the northern and southern part of the QHMB are prospective for large Cu deposits. Our results have important implications in formulating regional exploration strategies for Jurassic porphyry-skarn Cu-Pb-Zn deposits in