Science.gov

Sample records for zirconate titanate pzt

  1. Cylindrical Micro Ultrasonic Motor Utilizing Bulk Lead Zirconate Titanate (PZT)

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Kurosawa, Minoru; Higuchi, Toshiro

    1999-05-01

    Ultrasonic motors are expected to be used as microactuatorsbecause of their high torque, low speed and simple construction. Wehave already reported cylindrical-shaped micro ultrasonic motors whichutilized a lead zirconate titanate (PZT) thin film. In this paper, wediscuss a micro ultrasonic motor composed of bulk PZT. The statortransducer had dimensions of 2.4 mm in diameter and 10 mmlength. The maximum revolution speed was 650 rpm and the maximumoutput torque was 0.22 mNm with the condition of 100 Vp-pinput voltage. The driving frequency was 85 kHz. The comparisonbetween the bulk PZT stator transducer and the previous PZT thin filmtransducer was considered. From this consideration, the e31piezoelectric factor was determined to be the main factor fordifferent output torques. The bulk PZT motor wasapplied to robot hands which was a simple procedure. A two axes hands application was successfully operated with a step motion and carried up to a 10 g load.

  2. Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator

    DTIC Science & Technology

    2012-06-01

    Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator by Asha J. Hall, Richard A...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6040 June 2012 Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate ...2011 to April 2012 4. TITLE AND SUBTITLE Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph

  3. Method for measuring the mode-I fracture toughness in lead zirconate titanate (PZT)

    NASA Astrophysics Data System (ADS)

    Karastamatis, Thomas; Lynch, Christopher S.

    2000-06-01

    Previous measurements of the fracture toughness of PZT have relied on Vicker's indentations, bend specimens, and compact tension specimens. Vicker's indentations are qualitative and are not suitable for toughness measurements. Recent work has clearly shown that non-linear material behavior induces a non-linear stress gradient through other specimen geometries that must be accounted for to accurately determine the fracture toughness. This work describes the development of a measurement technique for the R-curve behavior of unpoled ferroelastic ceramics using 4-point bend specimens with semi-elliptical surface cracks. The model material is a soft, transparent composition of 8/65/35 lead lanthanum zirconate titanate. The aspect ratio is measured during crack growth. The non-linear stress gradient through the cross section calculated from strain gage data. A parametric study based on the analysis of Newman and Raju is used to elucidate the restrictions on application of this technique.

  4. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  5. Real time monitoring of spot-welded joints under service load using lead zirconate titanate (PZT) transducers

    NASA Astrophysics Data System (ADS)

    Yao, Ping; Zheng, Botong; Dawood, Mina; Huo, Linsheng; Song, Gangbing

    2017-03-01

    This paper proposes a nondestructive method to evaluate the health status of resistance spot-welded (RSW) joint under service load using lead zirconate titanate (PZT) active sensing system, in which the PZT transducers were used as both actuator and sensor. The physical principle of the approach was validated through a numerical analysis showing that an opening between the faying faces at the welded joint occurred under tension load. The opening decreased the contact area hence reduced the amplitude of the stress wave received by the PZT sensor. Therefore, by comparing the energy index of the signals before and after the loading, the health condition of the joint can be evaluated. Five ST14 steel single lap joint specimens were tested under tension load while being monitored by the PZT sensing system and digital image correlation (DIC) system in real time. The data obtained from the DIC system validated the numerical results. By comparing the energy index of the signal obtained from the PZT sensing system before and after unloading, it was concluded that the RSW joint was intact after being loaded to the service load. The proposed method is promising in evaluating the health condition of RSW joint nondestructively.

  6. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  7. Design, fabrication, test, and evaluation of RF MEMS series switches using lead zirconate titanate (PZT) thin film actuators

    NASA Astrophysics Data System (ADS)

    Polcawich, Ronald G.

    The aim of this thesis was to design and prototype a robust, low voltage RF MEMS switch for use in military phased arrays. The frequencies of interest for this work include very low frequencies down to DC operation with the upper limit extending to at least 40 GHz. This broad frequency requirement requires a robust high frequency design and simulation using microwave transmission lines. With the aid of researchers at the US Army Research Laboratory, co-planar waveguide (CPW) transmission lines were chosen and designed to provide a low loss, 50 ohm impedance transmission line for the switch. CPW designs allow for both series and shunt switch configuration with this work focusing on a series switch. Furthermore, a series switch an ohmic contact was chosen as opposed to capacitive contacts. Piezoelectric actuation is chosen for the switch to enable operating voltages less than 10 volts while still maintaining a restoring force to prevent stiction. To meet these demands, lead zirconate titanate (PZT) thin films have been chosen for the piezoelectric actuator. Mechanical modeling of cantilevers comprised of an elastic layer and a Pt-PZT-Pt actuator were used to demonstrate feasibility of closing large gaps between switch contacts. Placement of the actuator to minimize perturbations to the RF transmission line is critical for broadband performance. Using fabrication design rules, electro-mechanical modeling, and high frequency design, the actuators were designed to fit with the RF gap between the RF conductor and ground planes of the CPW transmission line. Optimal performance was obtained with the actuators mechanically isolated from a majority of the RF transmission except for a small section that provides the contact pad to enable switch closure. The resulting switch is the first demonstrated first surface micromachined RF MEMS switch operating from DC to 65 GHz. This switch has a median actuation voltage below 5 volts with operation as low as 2 volts. Isolation in the

  8. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE PAGES

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; ...

    2011-12-01

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr₀.₅₃Ti₀.₄₇O₃) (1-x)- (PbFe₀.₅Ta₀.₅O₃)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm², which actually increases (to 40 μC/cm²) in the high-T tetragonal phase, representingmore » an exciting new room temperature oxide multiferroic to compete with BiFeO₃. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less

  9. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  10. Calculation of Hysteresis Losses for Ferroelectric Soft Lead Zirconate Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2014-02-01

    The phenomenological Hamad model was modified to enable retracing of the hysteresis loop of ferroelectric soft lead zirconate titanate (PZT). Comparison with experimental results revealed the modified model can retrace polarization versus electric field for different electric field amplitudes and temperatures. Hysteresis loss per unit volume per cycle for soft PZT was predicted and estimated. The results revealed that energy loss increased with decreasing temperature and with increasing electric field amplitude.

  11. Reliable integration of piezoelectric lead zirconate titanate with MEMS fabrication processes

    NASA Astrophysics Data System (ADS)

    Gross, Steven J.; Zhang, Qingqi; Tadigadapa, Srinivas; Trolier-McKinstry, Susan; Jackson, Thomas N.; Djuth, Frank T.

    2001-10-01

    The high piezoelectric effect of lead zirconate titanate (PZT) films enables improved performance in microelectromechanical systems (MEMS). The material's reliable integration into current and mainstream MEMS microfabrication processes is then of great interest. In this paper we report on high reliability fabrication processes that can be used for producing PZT based MEMS devices. Pattern definition and release of PZT, low stress silicon nitride, platinum, and/or zirconia structures via wet and dry chemical etching and ion beam etching, including their affects on the piezoelectric properties of PZT are reported. Ion beam etching results in appreciable imprint in the polarization - electric field hysteresis loop of the PZT, which can be ameliorated by annealing in ambient air at 450 degree(s)C. PZT on silicon nitride cantilever structures were defined and released by dry xenon difluoride silicon sacrificial etching. The advantages and difficulties of wet release etching versus xenon difluoride are also presented.

  12. Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites

    SciTech Connect

    Tang, Haixiong E-mail: hsodano@ufl.edu; Malakooti, Mohammad H.; Sodano, Henry A. E-mail: hsodano@ufl.edu

    2013-11-25

    The relationship between the orientation of lead zirconate titanate (PZT) nanowires dispersed in nanocomposites and the resulting dielectric constants are quantified. The orientation of the PZT nanowires embedded in a polymer matrix is controlled by varying the draw ratio and subsequently quantified using Herman's Orientation Factor. Consequently, it is demonstrated that the dielectric constants of nanocomposites are improved by increasing the orientation factor of the PZT nanowires. This technique is proposed to improve the dielectric constant of the nanocomposites without the need for additional filler volume fraction since the nanocomposites are utilized in a wide range of high dielectric permittivity electronic components.

  13. A Yttrium Iron Garnet-Lead Zirconate Titanate Phase Shifter

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Tatarenko, A. S.; Bichurin, M. I.

    2006-03-01

    Tunable microwave phase shifters are of interest for miniature oscillators and phased array antenna systems. Traditional ferrite phase shifters use magnetic tuning systems that are slow, demand high power, and are not miniature in size. Here we discuss the design, fabrication and characterization of a novel electric field tunable phase shifter based on a yttrium iron garnet (YIG) -- lead zirconate titanate (PZT) bilayer. The electrical control of the phase shift is realized through magnetoelectric (ME) interaction. The phase shifter consisted of a microstrip transmission line with stubs of λ/8 and 3λ/8 lengths for generating circularly polarized microwave magnetic field in the YIG-PZT resonator. The ME resonator was made from 124 micron thick (100) YIG film on GGG and 0.5 mm thickness PZT with electrodes. The operating frequency of the phase shifter was set by applying appropriate bias magnetic field. The phase shift vs. electric field E characteristics was linear or quadratic in E, depending on the operating frequency. The maximum phase shift was 180 deg. and showed an insertion loss of 1.5-2.0 dB at 5 GHz and 3-4 dB at the frequency 10 GHz. The ME phase shifter is capable of rapid tuning, miniature in size and dissipates practically zero power. -- The work was supported by grants from ONR, ARO and NSF.

  14. Ferroelastic contribution to the piezoelectric response in lead zirconate titanate by in situ stroboscopic neutron diffraction

    NASA Astrophysics Data System (ADS)

    Jones, Jacob L.; Hoffman, Mark; Daniels, John E.; Studer, Andrew J.

    2006-11-01

    Ferroelastic domain switching during dynamic actuation is measured in situ for a piezoelectric lead zirconate titanate (PZT) ceramic utilizing a new capability developed on The Australian Strain Scanner (TASS) at ANSTO. Diffraction patterns are obtained as a function of time during a 1 Hz cycle. The change in the 0 0 2 and 2 0 0 diffraction intensities indicates there is ferroelastic domain switching at sub-coercive (weak) fields.

  15. Detection of high-energy heavy ions using piezoelectric lead zirconate titanate

    SciTech Connect

    Takechi, Seiji; Morinaga, Shin-ya; Kurozumi, Atsuma; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Shibata, Hiromi; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2009-04-15

    The characteristics of a radiation detector fabricated with stacks of piezoelectric lead zirconate titanate (PZT) elements were studied by irradiating it with a 400 MeV/n xenon (Xe) beam for various beam pulse durations. This detector is referred to as the multilayered detector (MD). To understand the production mechanism behind the output voltage obtained from the MD, measurement of the spatial distribution of the output signals generated in the MD was attempted. It was found that the amplitude observed was dependent on the number of Xe ions per unit time and the amount of ionization loss energy of Xe ions in PZT.

  16. Characterization of lead zirconate titanate--lanthanum ruthenate thin film structures prepared by chemical solution deposition.

    PubMed

    Bencan, Andreja; Malic, Barbara; Drazic, Goran; Vukadinović, Miso; Kosec, Marija

    2007-01-01

    In this work, the results of compositional and microstructural analysis of lead zirconate titanate--lanthanum ruthenate thin film structures prepared by chemical solution deposition are discussed. The cross-section transmission electron microscope (TEM) micrographs of the La-Ru-O film deposited on a SiO2/Si substrate and annealed at 700 degrees C revealed RuO2 crystals embedded in a glassy silicate matrix. When the La-Ru-O film was deposited on a Pt/TiO2/SiO2/Si substrate, RuO2 and La4Ru6O19 crystallized after annealing at 700 degrees C. After firing at 550 degrees C randomly oriented lead zirconate titanate (PZT) thin films crystallized on the La-Ru-O/SiO2/Si substrate, while on La-Ru-O/Pt/TiO2/SiO2/Si substrates PZT thin films with (111) preferred orientation were obtained. No diffusion of the Ru atoms in the PZT film was found. Ferroelectric response of PZT thin films on these substrates is shown in comparison with the PZT film deposited directly on the Pt/TiO2/SiO2/Si substrate without a La-Ru-O layer.

  17. Dust detector using piezoelectric lead zirconate titanate with current-to-voltage converting amplifier for functional advancement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Miyachi, Takashi; Hattori, Maki; Sugita, Seiji; Takechi, Seiji; Okada, Nagaya

    2013-03-01

    This paper describes the concept of a dust monitor using lead zirconate titanate (PZT) ceramics with a large detection area. Its potential as a dust detector is experimentally demonstrated. The dust monitor has a small volume compared to an impact ionization detector with the same detection area, due to the PZT sensor. The PZT sensor, as a traditional device for the in-situ observation of hypervelocity dust particles, has been used for momentum measurement. The hypervelocity impact signals of PZT sensors are typically read by charge-sensitive amplifiers. Instead, we suggest a new method that a current-to-voltage converting amplifier is useful for interpreting the impact signal of a PZT sensor arising from dust particles down to 0.5 μm in radius. We propose that datasets of dust impacts can be obtained with a higher statistical accuracy, if the new method is applied to instruments on forthcoming interplanetary-space-cruising spacecrafts.

  18. Effects of Electric Field and Biaxial Flexure on the Failure of Poled Lead Zirconate Titanate

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A

    2008-01-01

    Reliable design of lead zirconate titanate (PZT) piezo stack actuators demands that a number of issues, including electromechanical coupling and ceramic strength-size scaling, be scrutinized. This study addresses those through the use of ball-on-ring (BoR) biaxial flexure strength tests of a PZT piezoelectric material that is concurrently subjected to an electric field. The Weibull strength distributions and fracture surfaces were examined. The mechanical failures were further analyzed in terms of internal stress, energy release rate, and domain-switching toughening. Both the sign and the magnitude of an electric field had a significant effect on the strength of poled PZT within the tested range. A surface flaw type with a depth of ~18 m was identified to be the strength limiter and responsible for the failure of the tested PZT under both mechanical and electromechanical loadings. With ~0.74 in the absence of electric field, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  19. Crystallization of sputtered lead zirconate titanate films by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Vasant Kumar, C. V. R.; Pascual, R.; Sayer, M.

    1992-01-01

    A rapid thermal annealing (RTA) technique has been employed to process lead zirconate titanate (PZT) films prepared by reactive magnetron sputtering. The films were fabricated by dc sputtering a multielement metal target in an oxygen ambient at a substrate temperature of 200 °C. A subsequent postdeposition RTA at 600 °C for 5 s crystallizes the films into a perovskite-type structure through various intermediate phases. Due to the short postdeposition processing times inherent in the RTA method, the initial nature of the as-grown films has a critical influence on the crystallization kinetics. The reaction sequence in the formation of perovskite PZT from the films deposited at low substrate temperatures by the sputtering technique has been evaluated, and various key factors influencing the crystallization of PZT have been identified. As-grown films are constituted of polycrystalline orthorhombic lead oxide in an amorphous matrix of titania and zirconia. During annealing lead oxide transforms into a cubic phase, and the lead oxide stoichiometry determines the processing route to PZT. In the case of lead-rich films, intermediate compounds of lead with titania and zirconia are observed, which react during the final stage of annealing at 600 °C to form PZT. In lead-deficient films, the formation of a pyrochlore phase has been observed, which crystallizes into perovskite at 750 °C. The Zr/Ti ratio also influences the crystallization sequence. In the case of Ti-rich PZT, the intermediate compounds initially involve a zirconium-rich rhombohedral PZT, with which residual titanium reacts to form tetragonal PZT. The films showed good ferroelectric and other electrical properties with a remanent polarization of 24 μC/cm2, coercive field of 32 kV/cm, ɛ'=950, tan δ=0.02, and σdc (300 K)=10-12 Ω-1 cm-1 with an activation energy between 0.9 and 1.4 eV.

  20. Influence of high-temperature annealing on the orientation of the unipolarity vector in lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Kanareikin, A. G.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.; Sergienko, A. Yu.; Sergeeva, O. N.

    2016-11-01

    The factors responsible for the change in the orientation of the natural unipolarity vector due to heating to the Curie temperature of a Pt/PZT/Pt thin-film capacitor (PZT—lead zirconate titanate) formed on a TiO2/SiO2/Si substrate have been considered. Lead zirconate titanate thin layers containing a small excess of lead oxide have been formed ex situ using high-frequency magnetron sputtering with a variation in the annealing temperature (crystallization of the perovskite phase) in the range from 580 to 650°C. It has been assumed that the reorientation of the unipolarity vector in the PZT layer is caused by the change in the mechanism of crystallization of the perovskite phase with an increase in the annealing temperature.

  1. Temperature dependence of self-consistent full matrix material constants of lead zirconate titanate ceramics

    PubMed Central

    Cao, Wenwu

    2015-01-01

    Up to date, there are no self-consistent data in the literature on the temperature dependence of full matrix material properties for piezoelectric materials because they are extremely difficult to determine. Using only one sample, we have measured the temperature dependence of full matrix constants of lead zirconate titanate (PZT-4) from room temperature to 120 °C by resonant ultrasound spectroscopy. Self-consistency is guaranteed here because all data at different temperatures come from one sample. Such temperature dependence data would make it a reality to accurately predict device performance at high temperatures using computer simulations. PMID:25713470

  2. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGES

    Wang, Hong; Lee, Sung Min; Wang, James L.; ...

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  3. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  4. Lead-Zirconate-Titanate Acoustic Energy Harvesters with Dual Top Electrodes

    NASA Astrophysics Data System (ADS)

    Tomioka, Shungo; Kimura, Shu; Tsujimoto, Kyohei; Iizumi, Satoshi; Uchida, Yusuke; Tomii, Kazuki; Matsuda, Tomohiro; Nishioka, Yasushiro

    2011-09-01

    In this paper, we present the power generation performances of a lead-zirconate-titanate (PZT) microelectromechanical system (MEMS) acoustic energy harvester having dual top electrodes to utilize the different polarizations of charges on the surface of a vibrating PZT diaphragm at first resonance. The PZT acoustic energy harvester had a diaphragm with a diameter of 2 mm consisting of Al (0.1 µm)/PZT (1 µm)/Pt (0.1 µm)/Ti (0.1 µm)/SiO2 (1.5 µm), and the diaphragm vibrations were excited by sound pressure. The top Al electrodes independently cover the peripheral surface and the central surface of the PZT diaphragm. The peripheral energy harvester generated a power of 5.28×10-11 W, and the central energy harvester generated a power of 4.25×10-11 W at a sound pressure level of 100 dB (0.01 W/m2) at 4.92 kHz. Thus, nearly 80% of the total power of the energy harvesters can be increased by utilizing the polarization at the central part of the diaphragm, which was usually not considered when only the peripheral part of the diaphragm was utilized.

  5. MECHANICAL STRENGTH RESPONSES OF POLED LEAD ZIRCONATE TITANATE UNDER EXTREME ELECTRIC FIELD AND VARIOUS TEMPERATURE CONDITIONS

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Zhang, Kewei; Lin, Hua-Tay; Wereszczak, Andrew A

    2016-01-01

    PZT (lead zirconate titanate), particularly PZT-5A, is used in a variety of critical actuation and sensing systems because of its high Curie temperature and large piezoelectric coefficients. However, PZT is susceptible to mechanical failure. The evaluation of the mechanical strength of the material under the target working conditions is very important. This study presents part of the recent experimental developments in mechanical testing and evaluation of PZT materials at Oak Ridge National Laboratory. Ball-on-ring and four-point bending testing setups were used, with modifications made to account for testing requirements from high-level electric field and elevated temperature. The poled PZT-5A or equivalent material was tested under various specimen and testing conditions. The parameters of the distribution of strengths (characteristic strength and Weibull modulus) are discussed in relation to the testing conditions. Fractographic results based on scanning electron microscopy are also presented and discussed. The related data can serve as input for the design of piezoceramic devices, not only those used in energy systems like fuel injectors in heavy-duty diesel engines, but also those used in structural health monitoring, energy harvesting, and other critical systems in aerospace and civil engineering.

  6. Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy

    SciTech Connect

    Zavala, G.; Fendler, J.H.; Trolier-McKinstry, S.

    1997-06-01

    Scanning force microscopy (SFM) has been used for the determination of friction, phase transformation, piezoelectric behavior (in the contact mode), polarization state, and dielectric constant (in the noncontact mode) of nanometer regions of lead zirconate titanate (PZT) films. The use of the SFM tip in the contact mode, to polarize different nanoregions of the PZT film and to apply an oscillating field thereon, led to effective piezoelectric coefficients and piezoelectric loops. The measured effective piezoelectric coefficient was shown to depend appreciably on both the tip contact force and the quality of the tip-to-film electrical contact. In the noncontact mode, application of an ac signal (with a frequency {omega}) across the tip{emdash}PZT film{emdash}electrode system produced an oscillation of the tip at frequencies {omega} (fundamental or first harmonic) and 2{omega} (second harmonic). The signals at {omega} and 2{omega} were related to the state of polarization and the dielectric constant of the PZT film, respectively. Analysis of the combined contact, noncontact and friction force microscopic data provided insight into the structure and into the dielectric, ferroelectric, and piezoelectric properties of distinct nanoregions of the PZT film. {copyright} {ital 1997 American Institute of Physics.}

  7. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  8. Hydrogen diffusion in lead zirconate titanate and barium titanate

    NASA Astrophysics Data System (ADS)

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-01

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ˜32 MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  9. Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process

    NASA Astrophysics Data System (ADS)

    Park, Gun-Tae; Choi, Jong-Jin; Park, Chee-Sung; Lee, Jae-Wung; Kim, Hyoun-Ee

    2004-09-01

    Lead zirconate titanate (PZT) films were deposited on platinized silicon substrates by spin coating using PZT sols containing polyvinylpyrrolidone (PVP) as an additive. Single-layered 1-μm-thick PZT films with 60/40 composition were fabricated using two successive spin coatings followed by a single heat treatment step. The crack formation was effectively suppressed by the presence of nanosized pores which were generated during the heat treatment. The film has a preferred orientation corresponding to the (100) crystallographic direction. The ferroelectric and piezoelectric properties of the specimen were comparable to those of a film with same composition and thickness but prepared by the conventional sol-gel procedure.

  10. Thickness dependence of structure and piezoelectric properties at nanoscale of polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Araújo, E. B.; Lima, E. C.; Bdikin, I. K.; Kholkin, A. L.

    2013-05-01

    Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films.

  11. Biaxial Flexural Strength of Poled Lead Zirconate Titanate under High Electric Field with Extended Field Range

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    In the present work, as-received poled lead zirconate titanate, or PZT 5A, was examined using ball-on-ring (BoR) mechanical testing coupled with an electric field. Electric fields in the range of 4Ec (Ec, coercive field) with controlled loading paths were applied, and mechanical tests at a substantial number of characteristic electric field levels were conducted. Commercial electronic liquid FC-40 was used to prevent the setup from dielectric breakdown under a high electric field. Weibull strength distribution was used to interpret the mechanical strength data. The data showed that the strength levels of the PZT-5A tested under OC (open circuit) in air and in FC-40 were almost the same. It was further revealed that , for the studied cases, the effect of loading history on the biaxial flexural strength of the PZT was significant in -Ec, but not in OC or zero field as well as 4Ec . An asymmetry V curve was observed for the characteristic strength-electric field graph, and the bottom of V curve was located near the negative coercive field. Microscopy analysis showed that surface-located volume-distributed flaws were the strength limiter and responsible for the failure of the tested PZT under electromechanical loadings.

  12. Lead zirconate titanate thin films for piezoelectric actuation and sensing of MEMS resonators

    NASA Astrophysics Data System (ADS)

    Piekarski, Brett Harold

    This research is focused on examining the potential benefits and limitations of applying sol-gel lead zirconate titanate (PZT) piezoelectric thin films to on-chip piezoelectrically driven RF microelectromechanical system (MEMS) resonators in the low frequency (LF) to very high frequency (VHF) frequency range. MEMS fabrication methods are presented for fabricating PZT-based MEMS resonator structures along with investigations into the resultant thin film residual stresses and material properties, and their impact on resonator frequency, beam curvature, and resonant mode shape. The PZT, silicon dioxide (SiO2), platinum (Pt), and silicon nitride (Si3N4) thin film material properties are characterized and validated by wafer bow, cantilever resonance, cantilever thermal-induced tip deflection and finite element modeling (FEM) techniques. The performance of the fabricated PZT-based MEMS resonators are presented and compared to previously demonstrated zinc oxide (ZnO) based resonators as well as to electrostatically based MEMS resonator designs. Resonators with frequency response peaks of greater than 25 dB, quality factors up to 4700, and resonant frequencies up to 10 MHz are demonstrated along with a discussion of their advantages and disadvantages for use as MEMS resonators. Nonlinear resonator response is also investigated in relation to the onset of classic Duffing behavior, beam buckling and mode coupling. Fabrication techniques, operating conditions, and design rules are presented to minimize or eliminate nonlinear resonator response.

  13. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films

    SciTech Connect

    Dufay, T.; Guiffard, B.; Seveno, R.; Thomas, J.-C.

    2015-05-28

    Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.

  14. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    PubMed

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  15. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    DTIC Science & Technology

    2014-09-01

    crystallization oflead zirconate titanate (PZT) thin films was evaluated on two different platinum coated Si substrates. One substrate consisted of aPt... titanate (PZT) thin films was evaluated on two different platinum coated Si substrates. One substrate consisted of a Pt coating on a Ti adhesion layer... titanate (PZT) thin films was evaluated on two different platinum-coated Si substrates. One substrate consisted of a Pt coating on a Ti adhesion layer

  16. Strength Properties of Aged Poled Lead Zirconate Titanate Subjected to Electromechanical Loadings

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2012-01-01

    Electric field and aging time are two important factors that affect the mechanical strength and long-term reliability of lead zirconate titanate or PZT actuators. In the present work, a commercial PZT-5A aged four years was examined using ball-on-ring (BoR) mechanical testing under coupled electric fields. The electric field range of -3E{sub c} to +3E{sub c} (E{sub c}, coercive electric field) was studied (i.e., -3E{sub c}, -E{sub c}, 0, +E{sub c}, +2E{sub c}, and +3E{sub c}) with a controlled electric loading path. A Weibull distribution was used to interpret the mechanical strength data. With an electric field preloaded from 0 to -3E{sub c}, it was found that subsequent increases in the electric field resulted in an asymmetrical V-shaped curve of mechanical strength against the electric field. The bottom of the V curve was located near the zero electric field level. Microscopy analysis showed that pores were the strength limiter for the tested PZT under electromechanical loadings.

  17. Piezoelectric and Dielectric Performance of Poled Lead Zirconate Titanate Subjected to Electric Cyclic Fatigue

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M; Wereszczak, Andrew A

    2012-01-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Their responses were evaluated using unipolar and bipolar measurements on the same setup. Mechanical strain and charge density or polarization loops exhibited various variations when the material was cycled to more than 10^8 cycles. Important quantities including loop amplitude, hysteresis, switchable polarization, coercive field have been characterized accordingly under corresponding measurement conditions. At the same time, offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement condition also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications to the application of interest have been discussed.

  18. Internal Friction and Dielectric Measurements in Lead Zirconate Titanate Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert

    2000-09-01

    Elastic modulus (Young’s modulus M and shear modulus G) and internal friction Q-1 are measured as a function of temperature from {-}180{\\degC} to 500°C in undoped lead zirconate titanate (PZT) ferroelectric ceramics in the range of kHz and low frequencies (0.1 to 1 Hz). New phase transition temperatures at the morphotropic zone at low temperatures are determined from the elastic modulus minimum. Permittivity \\varepsilon and dielectric loss \\tan(δ) are measured in the frequency range of 20 Hz to 10 kHz. Both mechanical and electrical measurements allow the observation of relaxation peaks in the ferroelectric phase. The Arrhenius plots of all these results show that it is possible to investigate these relaxation processes using both experimental techniques.

  19. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    SciTech Connect

    Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 10^5 to 7 10^5 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 10^8 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. A scanning acoustic microscope also was employed as a nondestructive tool to detect the presence of defects. Failed plates were subsequently sectioned, and the extensive cracks and porous regions were observed to be across the PZT layers. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to monitor the behavior of PZT stacks.

  20. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    NASA Astrophysics Data System (ADS)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  1. EPDM composite membranes modified with cerium doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  2. Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method

    NASA Astrophysics Data System (ADS)

    Park, Gun-Tae; Choi, Jong-Jin; Ryu, Jungho; Fan, Huiqing; Kim, Hyoun-Ee

    2002-06-01

    A method to simultaneously measure the longitudinal (d33) and transverse (d31) piezoelectric coefficients of a lead zirconate titanate (PZT) thin film was developed. This system was based on the pneumatic loading method but was modified to monitor the radial strain when a pressurized gas was introduced into the chamber. The results of the bulk piezoelectric material measured by this system coincided with that measured by both the Berlincourt method and the resonance method. The effective d33 and the real d31 of the PZT thin film fabricated by the sol-gel multiple coating method, and poled at 300 kV/cm were 125 and -60 pC/N, respectively. The real d33 estimated upon considering the constraints by the silicon substrate was 180 pC/N.

  3. Study of the characteristics of a piezoelectric lead zirconate titanate radiation detector using a pulsed xenon source

    SciTech Connect

    Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Okudaira, Osamu; Takechi, Seiji; Kurozumi, Atsuma; Morinaga, Shinya; Uno, Takefumi; Shibata, Hiromi; Kobayashi, Masanori; Murakami, Takeshi; Uchihori, Yukio; Okada, Nagaya

    2010-05-15

    The detector characteristics of piezoelectric lead zirconate titanate (PZT) were studied by directly irradiating a multilayered PZT detector with 400 MeV/n xenon ions. An extracted beam was processed with a rotating slit. Thus, passed through {approx}10{sup 3} xenon ions were available for 50 to 250 {mu}s. The effect of polarization on the output signal was discussed, and the optimal electrode configuration was determined. The output signal appeared as an isolated pulse whose amplitude was qualitatively understood by the Bethe-Bloch formula. However, the calculated and the observed values differed depending on the rotation speed of the slit. A process that can explain the differences is presented here. The output signal appearing beyond the range of 400 MeV/n xenon ion beam was discussed. The sensitivity was compared with that obtained with hypervelocity collision of dust.

  4. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    SciTech Connect

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  5. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microeletronic [corrected] devices.

    PubMed

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M; Calzada, M Lourdes

    2016-02-03

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

  6. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

    NASA Astrophysics Data System (ADS)

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes

    2016-02-01

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound – morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) – are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm‑2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

  7. Comparison of lead zirconate titanate thin films for microelectromechanical energy harvester with interdigitated and parallel plate electrodes.

    PubMed

    Chidambaram, Nachiappan; Mazzalai, Andrea; Balma, Davide; Muralt, Paul

    2013-08-01

    Lead zirconate titanate (PZT) thin films on insulator- buffered silicon substrates with interdigitated electrodes (IDEs) have the potential to harvest more energy than parallel plate electrode (PPE) structures because the former exploit the longitudinal piezoelectric effect, which is about twice as high as the transverse piezoelectric effect used by PPE structures. In this work, both options are compared with respect to dielectric, ferroelectric, and piezoelectric properties, leakage currents, and figure of merit (FOM) for energy harvesting. The test samples were silicon beams with {100} PZT thin films in the case of the PPE geometry, and random PZT thin films for the IDE geometry. Both films were obtained by an identical sol-gel route. Almost the same dielectric constants were derived when the conformal mapping method was applied for the IDE capacitor to correct for the IDE geometry. The dielectric loss was smaller in the IDE case. The ferroelectric loops showed a higher saturation polarization, a higher coercive field, and less back-switching for the IDE case. The leakage current density of the IDE structure was measured to be about 4 orders of magnitude lower than that of the PPE structure. The best FOM of the IDE structures was 20% superior to that of the PPE structures while also having a voltage response that was ten times higher (12.9 mV/μ strain).

  8. Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites

    NASA Astrophysics Data System (ADS)

    Chan, H. L. W.; Ng, P. K. L.; Choy, C. L.

    1999-05-01

    Lead zirconate titanate/vinylidene fluoride-trifluoroethylene [PZT/P(VDF-TrFE)] 0-3 composites for pyroelectric sensor and piezoelectric transducer applications have been fabricated by incorporating PZT powder into a P(VDF-TrFE) copolymer matrix. The properties of these composites can be tailored to suit designated applications by varying the ceramic volume fraction and by using different poling procedures. As both phases in the composite are ferroelectric, and the piezoelectric coefficients of the ceramic and copolymer phases have opposite signs while the pyroelectric coefficients have like signs, special ways can be used to produce three groups of samples with (1) only the ceramic phase poled, (2) two phases poled in the same direction to achieve reinforced pyroelectric activity and reduced piezoelectric activity, and (3) two phases poled in opposite directions to obtain reinforced piezoelectric activity and reduced pyroelectric activity. In this work, original experimental results on the properties of PZT/P(VDF-TrFE) composites poled under different conditions are presented and possible reasons behind the reinforcement and cancellation of piezoelectric and pyroelectric properties are discussed.

  9. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

    PubMed Central

    Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes

    2016-01-01

    Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics. PMID:26837240

  10. Ferroelectric/ferroelastic behavior and piezoelectric response of lead zirconate titanate thin films under nanoindentation

    SciTech Connect

    Koval, V.; Reece, M.J.; Bushby, A.J.

    2005-04-01

    The electromechanical response of pure lead zirconate titanate (PZT) and Mn-doped PZT thin ferroelectric films under nanoindentation forces of up to 500 mN was investigated. The stress-induced current transients were measured as a function of the externally applied load on films of different thicknesses using a spherical WC-Co cermet indenter of 500 {mu}m nominal radius. It was found that the quasi-static current generated through the direct piezoelectric effect is superimposed with a contribution from irreversible domain processes during the loading/unloading cycle. The film thickness dependency of the electrical transients and an asymmetry of the current-force curves are attributed to the in-plane clamping stress in the films produced by a dissimilar substrate. Analysis of corresponding charge-force hysteresis loops revealed a significant role for the residual stress state on the polarization switching in thin films. By the application of an indentation force, a portion of Barkhausen jumps was empirically estimated to increase as a consequence of reduction of the clamping effect on domains. The Rayleigh hysteretic charge-force curves showed recovery of the charge released during the load-unload stress cycle. For the thicker 700 nm films, the total charge released during loading was fully recovered with weak hysteresis. In contrast, strong in-plane clamping stresses in the 70 nm thick films are suggested to be reponsible for incomplete recovery upon unloading. A considerable domain-wall contribution to the electromechanical response was demonstrated by an enhanced polarization state, which was shown by an increase of the effective piezoelectric coefficient d{sub eff} of about 35% of its initial value for the thin films at a maximum force of 500 mN.

  11. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  12. Neutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate thin films

    SciTech Connect

    Graham, Joseph T.; Brennecka, Geoff L.; Ihlefeld, Jon F.; Ferreira, Paulo; Small, Leo; Duquette, David; Apblett, Christopher; Landsberger, Sheldon

    2013-03-28

    The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16 {+-} 0.03) Multiplication-Sign 10{sup 15} cm{sup -2}. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher coercive fields was observed accompanied by the formation of a secondary hysteron peak following exposure to high fluence levels. The changes are attributed to the radiation-induced formation of defect dipoles and other charged defects, which serve as effective domain wall pinning sites. Differences in damage accumulation rates with initial film quality were observed between the film sets suggesting a dominance of pre-irradiation microstructure on changes in macroscopic switching behavior.

  13. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: response to electric fields and mechanical stress

    NASA Astrophysics Data System (ADS)

    Pramanick, Abhijit; Prewitt, Anderson D.; Cottrell, Michelle A.; Lee, Wayne; Studer, Andrew J.; An, Ke; Hubbard, Camden R.; Jones, Jacob L.

    2010-06-01

    Structural changes in commercial lead zirconate titanate (PZT) ceramics (EC-65) under the application of electric fields and mechanical stress were measured using neutron diffraction instruments at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Oak Ridge National Laboratory (ORNL). The structural changes during electric-field application were measured on the WOMBAT beamline at ANSTO and include non-180° domain switching, lattice strains and field-induced phase transformations. Using time-resolved data acquisition capabilities, lattice strains were measured under cyclic electric fields at times as short as 30 μs. Structural changes including the (002) and (200) lattice strains and non-180° domain switching were measured during uniaxial mechanical compression on the NRSF2 instrument at ORNL. Contraction of the crystallographic polarization axis, (002), and reorientation of non-180° domains occur at lowest stresses, followed by (200) elastic strains at higher stresses.

  14. Lead zirconate titanate nanoscale patterning by ultraviolet-based lithography lift-off technique for nano-electromechanical system applications.

    PubMed

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu

    2012-09-01

    The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.

  15. Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating

    NASA Astrophysics Data System (ADS)

    Sun, Yilin; Xie, Dan; Zhang, Xiaowen; Xu, Jianlong; Li, Xinming; Li, Xian; Dai, Ruixuan; Li, Xiao; Li, Peilian; Gao, Xingsen; Zhu, Hongwei

    2017-01-01

    We report the temperature and gate-voltage-dependent electrical properties of lead-zirconate-titanate-gated MoS2 field-effect transistors (MoS2-PZT FETs) within a temperature range of 300 to 380 K. The MoS2 transistors with PZT gating exhibit large reproducible clockwise hysteresis, which is induced by the dynamic charge-trapping/de-trapping process of interfacial states between PZT films and MoS2 channels under the modulation of ferroelectric polarization of PZT films. In this way, the modulation of the gate effect on the hysteresis behavior has been achieved by activating the dynamic charge-trapping/de-trapping process in the interfacial states under different V gs . Moreover, the temperature dependence of the current in the range of 300 to 380 K indicates thermally activated hysteretic behaviors. The hysteresis in the transfer characteristics of MoS2-PZT FETs shows a simultaneous enlargement with increasing temperature, which can be attributed to the thermally sensitive dynamic trapping/de-trapping process of interfacial states.

  16. Pulsed laser deposition and ferroelectric characterization of nanostructured perovskite lead zirconate titanate (52/48) thin films.

    PubMed

    Prabu, M; Banu, I B Shameem; Vijayaraghavan, G V; Gobalakrishnan, S; Chavali, Murthy

    2013-03-01

    Perovskite lead zirconate titanate nanostructured (PZT) thin films with Zr/Ti ratio of 52/48 were deposited on Pt/TiO2/SiO2/Si(100) substrate using pulsed laser deposition method. A metal/ ferroelectric/metal (MFM) structure was used for ferroelectric property measurements, formed by depositing gold electrode on top of the film. A Nd:YAG UV laser having a wavelength of 355 nm and an energy fluence of -2.7 J/cm2 was used to deposit the film. The film was deposited on platinum (Pt) coated silicon substrate at the substrate temperature of 600 degrees C and the base vacuum of 10(-6) mbar. The scanning electron microscopy (SEM) images revealed well-crystallized films with a fine microstructure and an average grain size of - 50 nm. The ferroelectric properties of the film were studied and the results were discussed. The voltage dependent Polarization versus Electric field hysteresis measurements of PZT (52/48) pellet showed a well-defined hysteresis loop with a fairly high remnant polarization (P(r)) and low coercive field (E(c)).

  17. Promotion of piezoelectric properties of lead zirconate titanate ceramics with (Zr,Ti) partially replaced by Nb 2O 5

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Huei; Huang, Cheng-Liang; Wu, Long

    2004-12-01

    This study investigated the correlation of sintering effects on piezoelectric properties of Nb modified lead zirconate titanate (PZT) piezoceramics produced by the conventional solid reaction sintering. Samples were prepared at a composition Zr/Ti=53/47, contiguous to a morphotropic phase boundary (MPB) for 1 mol% Nb2O5. Replacement of Ti+4 by Nb+5 in such perovskite type solid solutions was accomplished by the creation of cation vacancies. These created vacancies seemed to facilitate material transport and benefit sintering. Calcined at 850 °C/2 h and sintered at 1250 °C/2 h, the PZT ceramics yielded a minimum value of the mechanical quality factor (Qm) 50, and exhibited a maximum electromechanical coupling factor κp 0.62, in accordance with the relationship between the mechanical quality factor and electromechanical coupling factor. In addition, during the sintering process a piezoelectric charge constant at d33 was found to be of 385 pC/N. It was noted that the fundamental resonance frequency was around 200 kHz, which was suitable for piezoelectric nebulizer (fluid atomizer), ultrasonic cleaning transducer applications.

  18. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    SciTech Connect

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S.; Sahul, Raffi; Hackenberger, Wes

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  19. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route

    NASA Astrophysics Data System (ADS)

    Mai, Manfang; Lin, Cheng; Xiong, Zhaoxian; Xue, Hao; Chen, Lifu

    2009-03-01

    Lead zirconate titanate (PZT) fibers with diameters from 10μm to 40μm were prepared via a sol-gel route. Several kinds of chemicals were used, including lead acetate trihydrate, zirconium n-butoxide and titanium n-butoxide, in addition to butanol as a solvent. As a water source for hydrolysis reaction, Pb(CH3COO)2·3H2O was directly used without further adding of water or catalyst conventionally. Acetylacetonate and acetate were added as stabilization agents to obtain stable sols for fiber drawing. The gel-to-ceramic conversion was characterized with thermal analysis, infrared spectroscopy and X-ray diffraction. A pure perovskite phase was obtained after heat treatment at 650°C for 1h. By using scanning electron microscope (SEM), it was observed that a lower rate of heat treatment resulted in a denser microstructure of the fibers. The relative permittivity and the P-E hysteresis loop of the crystalline PZT fibers were also measured and discussed in the paper.

  20. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert; Cheng, Bo Lin

    2002-05-01

    Three undoped lead zirconate titanate (PZT) ceramics were prepared with compositions close to the morphotropic phase boundary: Pb(Zr0.50Ti0.50)O3, Pb(Zr0.52Ti0.48)O3, and Pb(Zr0.54Ti0.46)O3. Internal friction Q-1 and shear modulus G were measured versus temperature from 20 °C to 500 °C. Experiments were performed on an inverted torsional pendulum at low frequencies (0.1, 0.3, and 1 Hz). The ferroelectric-paraelectric phase transition results in a peak (P1) of Q-1 correlated with a sharp minimum M1 of G. Moreover the Q-1(T) curves show two relaxation peaks called R1 and R2 respectively, correlated with two shear modulus anomalies called A1 and A2 on the G(T) curves. The main features of the transition P1 peak are studied, they suggest that its behavior is similar to the internal friction peaks associated with martensitic transformation. The relaxation peak, R1 and R2 are both attributed to motion of domain walls (DWs), and can be analyzed by thermal activated process described by Arrhenius law. The R2 peak is demonstrated to be due to the interaction of domain walls and oxygen vacancies because it depends on oxygen vacancy concentration and electrical polarization. However, the R1 peak is more complex; its height is found to be increased as stress amplitude and heating rate increase. It seems that the R1 peak is influenced by three mechanisms: (i) relaxation due to DW-point defects interaction, (ii) variation of domain wall density, and (iii) domain wall depinning from point defect clusters.

  1. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle.

    PubMed

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi₁-x)O₃] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log₁₀ cfu/mL to zero after 24 h of incubation with BZT nanoparticle.

  2. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  3. Piezoelectric thick bismuth titanate/lead zirconate titanate composite film transducers for smart NDE of metals

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Jen, C.-K.

    2004-08-01

    Thick film piezoelectric ceramic sensors have been successfully deposited on different metallic substrates with different shapes by a sol-gel spray technique. The ball-milled bismuth titanate fine powders were dispersed into PZT solution to achieve the gel. The films with desired thickness up to 200 µm have been obtained through the multilayer coating approach. These thick films were also effectively coated onto thin sheet metals of thickness down to 25 µm. Self-support films with flat and shell geometries were made. Piezoelectricity was achieved using the corona discharge poling method. The area of the top silver paste electrode was also optimized. The center frequencies of ultrasonic signals generated by these films ranged from 3.6 to 30 MHz and their bandwidth was broad as well. The ultrasonic signals generated and received by these ultrasonic transducers (UTs) operated in the pulse/echo mode had a signal to noise ratio more than 30 dB. The main advantages of such sensors are that they (1) do not need couplant, (2) can serve as piezoelectric and UT, (3) can be coated onto curved surfaces and (4) can operate up to 440 °C. The capability of these thick film UTs for non-destructive evaluation of materials at 440 °C has been demonstrated.

  4. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  5. Determination of metal impurities in advanced lead zirconate titanate ceramics by axial view mode inductively coupled plasma optical emission spectrometry.

    PubMed

    Villanueva Tagle, M E; Larrea Marín, M T; Martin Gavilán, O; Durruthy Rodríguez, M D; Calderón Piñar, F; Pomares Alfonso, M S

    2012-05-30

    An inductively coupled plasma optical emission spectrometry quantification method for the determination of Al, Ca, Cr Cu, Fe, Mn, Mg, Ni, Zn, Ba, K, In and Co in lead zirconate-titanate (PZT) ceramics, modified with strontium and chromium, was developed. Total digestion of ceramics was achieved with a HNO(3), H(2)O(2) and HF (ac) mixture by using a microwave furnace. The sensitivity of the net signal intensity respect to radiofrequency power (P) and nebulizer argon flow (F(N)) variations was strongly dependent of the total excitation energy of line (TEE). For lines with TEE near metastable atoms and ions of argon, an increment of the sensitivities to P and F(N) variation was observed. At robust plasma conditions the matrix effect was reduced for all matrices and analytes considered. The precision of analysis ranged from 3 to 13%, whereas the analytes recoveries in the spiked samples varied, mostly, from 90 to 110%. The detection limits of studied elements were from 0.004 to 10 mg kg(-1).

  6. Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Kwok, K. W.; Chan, H. L. W.; Choy, C. L.

    2002-09-01

    Composite films comprising lead zirconate titanate (PZT) ceramic particles dispersed in a vinylidene fluoride-trifluoroethylene copolymer matrix have been prepared by compression molding. The ceramic and copolymer phases of the composite films are polarized separately, resulting in samples with three different polarization states: only the ceramic phase polarized, both phases polarized in the same direction, and two phases polarized in opposite directions. The effect of polarization state on the longitudinal and transverse piezoelectric coefficients (d33 and d31) of the composite film has been investigated as functions of ceramic volume fraction phic. When the ceramic and copolymer phases of a composite film are polarized in the same direction, their piezoelectric activities partially cancel each other, thereby giving almost zero piezoelectric activity at phi]c[approx0.4. On the other hand, when the phases of a composite film are polarized in opposite directions, their piezoelectric activities reinforce. However, depolarization of the ceramic phase is observed at high phic, leading to a decrease in the piezoelectric activity. The observed d33 and d31 values for the composite films agree well with theoretical predictions.

  7. Comparison of the thermal degradation of heavily Nb-doped and normal PZT thin films.

    PubMed

    Yang, Jeong-Suong; Kang, Yunsung; Kang, Inyoung; Lim, Seungmo; Shin, Seung-Joo; Lee, Jungwon; Hur, Kangheon

    2017-01-04

    The degradation of Niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, 2-step PZT and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary (MPB) were in-situ deposited under optimum condition by RF-magnetron sputtering. All 2 μm thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiOx bottom electrode on Si wafer, and Nb doped PZT thin film was on Ir/TiW electrode with help of orientation control. Sputtered PZT films formed on MEMS gyroscope, and the degradation rates were compared at different temperatures. Nb-doped PZT showed the best resistance to the thermal degradation, followed by 2-step PZT. To clarify the effect of oxygen vacancies for the degradation of the film at high temperature, photo-luminescence (PL) measurement was conducted. It confirmed that oxygen vacancy rate was the lowest in heavily Nb-doped PZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed Nb-doped PZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of micro-electromechanical system (MEMS) packaging.

  8. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices.

    PubMed

    Wu, Weiwei; Bai, Suo; Yuan, Miaomiao; Qin, Yong; Wang, Zhong Lin; Jing, Tao

    2012-07-24

    Wearable nanogenerators are of vital importance to portable energy-harvesting and personal electronics. Here we report a method to synthesize a lead zirconate titanate textile in which nanowires are parallel with each other and a procedure to make it into flexible and wearable nanogenerators. The nanogenerator can generate 6 V output voltage and 45 nA output current, which are large enough to power a liquid crystal display and a UV sensor.

  9. Optimization of PbTiO3 Seed Layers for PZT MEMS Actuators

    DTIC Science & Technology

    2008-12-01

    14. ABSTRACT The material properties of sol - gel lead zirconate titanate (PZT) are inherently linked with its crystallinity and texture. The use...Layer Solution ...........................................................................................3 2.3 Preparation Prior to Sol - Gel ...Processing..........................................................................4 2.4 Sol - Gel Processing

  10. Critical scattering of synchrotron radiation in lead zirconate-titanate with low titanium concentrations

    NASA Astrophysics Data System (ADS)

    Andronikova, D. A.; Bosak, A. A.; Bronwald, Iu. A.; Burkovsky, R. G.; Vakhrushev, S. B.; Leontiev, N. G.; Leontiev, I. N.; Tagantsev, A. K.; Filimonov, A. V.; Chernyshov, D. Yu.

    2015-12-01

    Diffuse scattering in the lead zirconate-titanate single crystal with a titanium concentration of 0.7 at % has been studied by the synchrotron radiation scattering method. Measurements have been performed both in the vicinity of the Brillouin zone center and at the M-point. Highly anisotropic diffuse scattering has been revealed in the paraelectric phase near the Brillouin zone center; diffuse scattering anisotropy is similar to that previously observed in pure lead zirconate. The temperature dependence of this diffuse scattering obeys a critical law with T c ≈ 480 K. Diffuse scattering in the vicinity of the M-point weakly depends on temperature; this dependence behaves differently at M-points with various indices.

  11. Compact piezoelectric micromotor with a single bulk lead zirconate titanate stator

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Lan, Hua; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2013-04-01

    The advance of micro/nanotechnology promotes the development of micromotors in recent years. In this article, a compact piezoelectric ultrasonic micromotor with a single bulk lead zirconate titanate stator is proposed. A traveling wave is generated by superposition of bending modes with 90° phase difference excited by d15 inverse piezoelectric effects. The operating principle simplifies the system structure significantly, and provides a miniaturization solution. A research prototype with the size of 0.75× 0.75×1.55 mm is developed. It can produce start-up torque of 0.27μNmand maximum speed of 2760 r/min at 14RMS.

  12. Low Temperature Sintering of PZT

    NASA Astrophysics Data System (ADS)

    Medesi, A.; Greiner, T.; Benkler, M.; Megnin, C.; Hanemann, T.

    2014-11-01

    This paper describes the fabrication and characterization of lead zirconate titanate (PZT) films fired in a liquid-phase sintering process at 900 °C in air. In detail the manufacturing of piezoelectric multilayers with internal pure silver (Tm = 961 °C) electrodes are reported. The feasibility of ten sintering aids in two different volume fractions was investigated for a commercial hard PZT powder (PIC 181, PI Ceramics) with respect to density, microstructure, mechanical behaviour, and piezoelectric properties. Li2O, Li2CO3, PbO, MnO2, V2O5, CuO, Bi2O3, the eutectic mixtures Cu2O·PbO and PbO·WO3 and the ternary system Li2CO3·Bi2O3·CuO (LBCu) have been tested as liquid phase sintering aids. The combination of PZT with LBCu showed the best results. With 5 vol.% LBCu an average relative density of 97% and a characteristic breaking strength of 77 MPa was achieved. Composition of PZT with 2 vol.% LBCu exhibits the highest averaged piezoelectrical charge constant (d33) of 181 pC/N.

  13. Gas pipeline leakage detection based on PZT sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Junxiao; Ren, Liang; Ho, Siu-Chun; Jia, Ziguang; Song, Gangbing

    2017-02-01

    In this paper, an innovative method for rapid detection and location determination of pipeline leakage utilizing lead zirconate titanate (PZT) sensors is proposed. The negative pressure wave (NPW) is a stress wave generated by leakage in the pipeline, and propagates along the pipeline from the leakage point to both ends. Thus the NPW is associated with hoop strain variation along the pipe wall. PZT sensors mounted on the pipeline were used to measure the strain variation and allowed accurate (within 2% error) and repeatable location (within 4% variance) of five manually controlled leakage points. Experimental results have verified the effectiveness and the location accuracy for leakage in a 55 meter long model pipeline.

  14. Damage-free patterning of ferroelectric lead zirconate titanate thin films for microelectromechanical systems via contact printing

    NASA Astrophysics Data System (ADS)

    Welsh, Aaron

    This thesis describes the utilization and optimization of the soft lithographic technique, microcontact printing, to additively pattern ferroelectric lead zirconate titanate (PZT) thin films for application in microelectromechanical systems (MEMS). For this purpose, the solution wetting, pattern transfer, printing dynamics, stamp/substrate configurations, and processing damages were optimized for incorporation of PZT thin films into a bio-mass sensor application. This patterning technique transfers liquid ceramic precursors onto a device stack in a desired configuration either through pattern definition in the stamp, substrate or both surfaces. It was determined that for ideal transfer of the pattern from the stamp to the substrate surface, wetting between the solution and the printing surface is paramount. To this end, polyurethane-based stamp surfaces were shown to be wet uniformly by polar solutions. Patterned stamp surfaces revealed that printing from raised features onto flat substrates could be accomplished with a minimum feature size of 5 mum. Films patterned by printing as a function of thickness (0.1 to 1 mum) showed analogous functional properties to continuous films that were not patterned. Specifically, 1 mum thick PZT printed features had a relative permittivity of 1050 +/- 10 and a loss tangent of 2.0 +/- 0.4 % at 10 kHz; remanent polarization was 30 +/- 0.4 muC/cm 2 and the coercive field was 45 +/- 1 kV/cm; and a piezoelectric coefficient e31,f of -7 +/- 0.4 C/m2. No pinching in the minor hysteresis loops or splitting of the first order reversal curve (FORC) distributions was observed. Non-uniform distribution of the solution over the printed area becomes more problematic as feature size is decreased. This resulted in solutions printed from 5 mum wide raised features exhibiting a parabolic shape with sidewall angles of ˜ 1 degree. As an alternative, printing solutions from recesses in the stamp surface resulted in more uniform solution thickness

  15. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Kumar, Ashok; Chrisey, Douglas B.; Tomozawa, M.; Scott, J. F.; Katiyar, Ram S.

    2011-10-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr0.2Ti0.80)O3]1-x-[(Ba0.70Ca0.30)TiO3]x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, Ps ~ 3-6 µC cm-2) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 °C. 1000/ɛ versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ~1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ~47-73 kV cm-1 with an energy density of 0.05-0.6 J cm-3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  16. Temperature effects on the mechanical behaviour of PZT 95/5

    NASA Astrophysics Data System (ADS)

    Khan, A. S.; Balzer, J. E.; Wilgeroth, J. M.; Proud, W. G.

    2014-05-01

    This research is to develop a better understanding of the piezoelectric ceramic lead zirconate titanate (PZT) 95/5 with varying temperatures, porosities and strain rates. Here, unpoled PZT samples of two different porosities were subjected to a range of compression rates, using quasi-static loading equipment, drop-weight towers and Split Hopkinson Pressure Bars (SHPBs). Varying temperatures were achieved using purpose-made environmental chambers. The resulting stress-strain relationships are compared. The samples were square tiles, 7.5 × 7.5 mm and 3 mm thickness. The density of the standard PZT used here was 7.75 g cm-3 (henceforth described as PZT), whilst the density of the higher porosity PZT was 7.38 g cm-3 (henceforth described as PPZT). This research is part of a wider study.

  17. Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Hui; Chu, Jia-Ru

    2008-06-01

    High-quality lead zirconate titanate (PZT) thick films have been prepared on silicon substrates by combining PZT-Si bonding and wet-etching technology. The bulk PZT wafer was first bonded to the silicon substrate using a 2 µm thick intermediate layer of epoxy resin with a bonding strength higher than 10 MPa. Then the bulk PZT was thinned by a wet-etching method. The thickness of the final PZT films depends on the etching time. The PZT thick films after being polished showed a surface roughness of about 20 nm (RMS), which can satisfy most of the requirements in MEMS. The prepared PZT thick films show a dielectric constant as high as 2400 below 100 kHz, remnant polarization of 13 µC cm-2, piezoelectric constant d31 of about -280 pm V-1 and Young's modulus of about 63 GPa. The measured electromechanical properties of the PZT thick films were comparable to those of the corresponding bulk ceramics. This approach makes it possible to obtain high-quality PZT films because it separates the PZT wafer fabrication from the target substrate and consequently allows integration of the PZT thick films onto many kinds of substrates. Finally, a self-sensing bulk PZT thick film actuator was fabricated as an example of a basic PZT-Si diaphragm structure that can be used in piezoelectric micropumps, and its sensing and actuating performances were also demonstrated.

  18. Fabrication, characterization and applications of PZT and ITO nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Shiyou

    Lead Zirconate Titanate (PbZr1--xTixO 3, PZT) is one of the most important piezoelectric materials, which has been used traditionally as sensors and actuators. One dimensional (1-D) PZT is expected to have great potentials as building blocks for micro and nano sensors and actuators, nano active fiber composites and integrated nanosystems. The objective of this research is to investigate the size effect on mechanical and piezoelectric properties through the fabrication and characterization of 1-D PZT nanostructures such as PZT nanofibers and nanotubes. The electrospinning process and template-assisted method were used to synthesize PZT nanofibers and nanotubes, respectively. Various novel experimental methods, such as atomic force microscopy (AFM) and nanomanipulator, were used to characterize the mechanical and piezoelectric properties of PZT nanostructures. The obtained results have shown that the piezoelectric and mechanical properties of PZT are size dependent. A single PZT nanofiber presented a lower young's modulus (42.99 GPa measured from AFM-base method and 46.6 GPa from vibration-based method, respectively) than that of PZT thin films and bulks. The PZT nanofibers with diameters smaller than 150 nm still demonstrated a strong electromechanical coupling effect. The piezoelectric constant (d 33) of PZT nanofibers increased from 574.1 pm/V to 860.5 pm/V when their diameters decreased from 112 nm to 50 nm. PZT nanotubes were found to have a d33 value of up to 595 pm/V. These values are significantly higher than that of PZT thin films and comparable to that of PZT bulks. The PZT nanofibers and nanotubes developed in this research not only provide new types of sensing and actuation mechanisms for various novel nanodevices, but also provide significantly improved performance compared with their thin film counterpart used in microelectromechanical systems (MEMS). 1-D ITO nanostructures (nanofibers and nanotubes) were synthesized and characterized for potential use

  19. Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films

    SciTech Connect

    Araújo, E.B.; Nahime, B.O.; Melo, M.; Dinelli, F.; Tantussi, F.; Baschieri, P.; Fuso, F.; Allegrini, M.

    2015-01-15

    Highlights: • Pyrochlore phase crystallizes near the bottom film-electrode interface. • PLZT films show a non-uniform microstrain and crystallite size in depth profile. • Complex grainy structure leads to different elastic modulus at the nanoscale. - Abstract: Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale.

  20. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, Yongan; Damadoran, Anoop R.; Xia, Jing; Martin, Lane W.; Huang, Yonggang; Rogers, John A.

    2014-08-01

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  1. Effects of porosity on dielectric and piezoelectric properties of porous lead zirconate titanate ceramics

    SciTech Connect

    Yang Ankun; Wang Changan; Guo Rui; Huang Yong

    2011-04-11

    We report porous lead zirconate titanate ceramics fabricated by tert-butyl alcohol-based gel-casting process which show a very high thickness electromechanical coupling coefficient (0.77), high hydrostatic figure of merit (9594x10{sup -15} m{sup 2}/N), and low acoustic impedance (3.7 Mrayls). We show that the porosity effectively affects the performance of the samples in two ways: (1) a higher porosity simplifies the resonance behavior, leading to more efficient energy transduction; (2) its replacement of active ceramic phase leads to low relative permittivity, high hydrostatic figure of merit, and low acoustic impedance. It was confirmed the properties could be tailored by controlling the porosity.

  2. Perovskite-type titanate zirconate as photocatalyst for textile wastewater treatment.

    PubMed

    Ferrari-Lima, A M; Ueda, A C; Bergamo, E A; Marques, R G; Ferri, E A V; Pinto, C S; Pereira, C A A; Yassue-Cordeiro, P H; Souza, R P

    2016-09-10

    Calcium titanate zirconate, Ca(Ti(1-x)Zrx)O3 (CZT), powders have been synthesised by the polymeric precursor method. The structural analysis of the CZT powders was monitored by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS) and textural analysis. The photocatalytic properties were evaluated by methylene blue (MB) decomposition and real textile wastewater (RTW) combined treatment (coagulation/flocculation/photocatalysis). Chemical oxygen demand (COD) of RTW was successfully reduced from 6195 mg L(-1) (untreated) to 662 mg L(-1) after coagulation/flocculation with a tannin-based coagulant (Tanfloc®) and finally to 471 mg L(-1) after combined treatment (coagulation/flocculation/photocatalysis) applying ultraviolet radiation and CaTiO3 as photocatalyst.

  3. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  4. Metalloorganic solution deposition of ferroelectric PZT films.

    PubMed

    Lipeles, R A; Coleman, D J; Leung, M S

    1991-01-01

    The metallo-organic solution deposition (MOSD or sol-gel) technique can be used for preparing lead zirconate titanate (PZT) ceramics with a wide range of compositions and crystal structures for electrooptical applications. Film morphology is affected by the stoichiometry of the film, hydrolysis and polymerization of the sol-gel solution, and thermal treatment of the deposited material. The lattice parameter decreases with the amount of titanium in the PZT, in agreement with ceramic data. A slight initial excess of lead in the coating solution is found to improve film morphology. Unlike traditional powder ceramic processing techniques, MOSD permits the growth of small uniform grains that are conducive to achieving consistent electronic and optical properties. Results show that the properties of films prepared by the MOSD process can be tailored to meet the needs of device applications.

  5. Attempt to prepare perovskite PZT at low temperatures using IBAD

    NASA Astrophysics Data System (ADS)

    Vapenka, David; Hlubucek, Jiri; Horodyska, Petra

    2016-11-01

    Lead zirconate titanate (Pb[ZrxTi1-x]O3 ) is well-known for his excellent ferroelectric, piezoelectric and electromechanical properties. These properties are closely related to the perovskite crystal structure of PZT. A common way to achieve thin film of perovskite PZT is to anneal the layer after deposition. The high annealing temperature (600 - 700°C) limits a set of usable substrates. To grow a thin layer of perovskite PZT at reduced temperature it is necessary to add crystallization energy to the system by another way. In this article are presented some results of using ion beam sputtering system (IBS) with ion beam assistance (IBAD) to growth perovskite PZT layer at reduced temperature. This process is very complicated and the resulting layer properties are strongly influenced by deposition parameters (ions energy, chemical composition of the atmosphere in the sputtering chamber etc.). We achieved partial success when pyrochlore crystal structure of PZT was grown at reduced substrate temperature (110°C) (at this temperatures are the PZT layers usually amorphous)

  6. Voltage-impulse-induced dual-range nonvolatile magnetization modulation in metglas/PZT heterostructure

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.

    2016-11-01

    Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.

  7. Characterization of plasmon propagation in graphene on PZT substrates via infrared nano-imaging

    NASA Astrophysics Data System (ADS)

    Goldflam, M. D.; Ni, Guangxin; Fei, Zhe; McLeod, A. S.; Ozyilmaz, Barbaros; Castro Neto, Antonio; Fogler, Michael; Basov, D. N.

    2014-03-01

    Using scattering-type scanning near-field optical microscopy, we have characterized graphene plasmons on a graphene-lead zirconate titanate (PZT) back-gated structure. By applying modest back-gate voltages of +/-1 V across the PZT, we have been able to induce variations in the graphene plasmon wavelength of more than ~200 nm. The change in plasmon wavelength we observe corresponds to a shift in carrier concentration in the graphene by more than one order of magnitude. Additionally, we describe the plasmonic losses originating from the presence of PZT in such a device. Our results also suggest that persistent tuning of the graphene plasmon may be achieved by utilizing the ferroelectric nature of PZT.

  8. Optimization of PZT Thin Film Crystalline Orientation Through Optimization of TiO2/Pt Templates

    DTIC Science & Technology

    2011-01-01

    6,887,716 B2, May 3, 2005. 5. Calame, F.; Muralt, P. Growth and Properties of Gradient Free Sol Gel Lead Zirconate Titanate Thin Films. Appl. Phys...Optimization of PZT Thin Film Crystalline Orientation Through Optimization of TiO2 /Pt Templates by Daniel M. Potrepka, Glen R. Fox, and... TiO2 /Pt Templates Daniel M. Potrepka and Ronald G. Polcawich Sensors and Electron Devices Directorate, ARL Glen R. Fox Fox Materials

  9. Estimate of the changes in the characteristics of a PZT vibrator under a space environment

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Lee, Sanghoon; Kim, Moojoon

    2015-03-01

    To utilize lead zirconate titanate (PZT) vibrators in the aerospace industry, we formulate the changes in the characteristics of the vibrator for the transverse mode and the thickness mode as functions of the temperature. For practical use, we adopted a few linear functions and a square function as regression functions in order to estimate the characteristics of the commercialized PZT-5 series of ceramics. The input admittance characteristics were calculated using the characteristic functions suggested in this study, and the results showed good agreement with the measured ones.

  10. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.

  11. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra

    2015-03-01

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb1-3x/2 SmxZr0.65Ti0.35O3-0.05Ni0.8Zn0.2Fe2O4 (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P-E and M-H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field.

  12. Crack tip process zone domain switching in a soft lead zirconate titanate ceramics.

    SciTech Connect

    Jones, J. L.; Motahari, S. M.; Varlioglu, M.; Lienert, U.; Bernier, J. V.; Hoffman, M.; Ustundag, E.; Univ. of Florida; Iowa State Univ.; The Univ. of New South Wales

    2007-09-01

    Non-180{sup o} domain switching leads to fracture toughness enhancement in ferroelastic materials. Using a high-energy synchrotron X-ray source and a two-dimensional detector in transmission geometry, non-180{sup o} domain switching and crystallographic lattice strains were measured in situ around a crack tip in a soft tetragonal lead zirconate titanate ceramic. At K{sub 1} = 0.71 MPa m{sup 1/2} and below the initiation toughness, the process zone size, spatial distribution of preferred domain orientations, and lattice strains near the crack tip are a strong function of direction within the plane of the compact tension specimen. Deviatoric stresses and strains calculated using a finite element model and projected to the same directions measured in diffraction correlate with the measured spatial distributions and directional dependencies. Some preferred orientations remain in the crack wake after the crack has propagated; within the crack wake, the tetragonal 0 0 1 axis has a preferred orientation both perpendicular to the crack face and toward the crack front.

  13. RF magnetron sputter deposition and analysis of strontium-doped lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Sriram, Sharath; Bhaskaran, Madhu; Holland, Anthony S.; Fardin, Ernest; Kandasamy, Sasikaran

    2006-01-01

    The paper investigates conditions for depositing perovskite-oriented strontium-doped lead zirconate titanate (PSZT) thin films using RF magnetron sputtering. PSZT is a material that can exhibit high piezoelectric and ferroelectric properties. The deposition was conducted using an 8/65/35 PSZT sputtering target. The effects of sputtering conditions and the deposition rates for films sputtered onto several surfaces (including gold and platinum coated substrates) were studied. Combinations of in-situ heating during sputtering and post-deposition Rapid Thermal Annealing (RTA) were performed and resulting phases determined. RTA was carried out in argon to observe their effects. The sputtered films were analyzed by Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD), and X-Ray Photoelectron Spectroscopy (XPS). Results show dramatic differences in the grain structure of the deposited films on the different surfaces. The stoichiometry of the sputtered films is demonstrated using XPS. In the case of gold and platinum coated substrates, sputtering was also carried out for different durations, to establish the growth rate of the film, and to observe the variation in grain size with sputtering duration. The deposited thin films were resistant to most chemical wet etchants and were Ion Beam Etched (IBE) at 19 nm/min.

  14. Crystal structure and electrical properties of bismuth sodium titanate zirconate ceramics.

    PubMed

    Rachakom, Ampika; Jaiban, Panupong; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha

    2012-01-05

    Lead-free bismuth sodium titanate zirconate (Bi0.5Na0.5Ti1-xZrxO3 where x = 0.20, 0.35, 0.40, 0.45, 0.60, and 0.80 mole fraction) [BNTZ] ceramics were successfully prepared using the conventional mixed-oxide method. The samples were sintered for 2 h at temperatures lower than 1,000°C. The density of the BNTZ samples was at least 95% of the theoretical values. The scanning electron microscopy micrographs showed that small grains were embedded between large grains, causing a relatively wide grain size distribution. The density and grain size increased with increasing Zr concentration. A peak shift in X-ray diffraction patterns as well as the disappearance of several hkl reflections indicated some significant crystal-structure changes in these materials. Preliminary crystal-structure analysis indicated the existence of phase transition from a rhombohedral to an orthorhombic structure. The dielectric and ferroelectric properties were also found to correlate well with the observed phase transition.

  15. Some observations on the effects of shear stress on a polymorphic transformation in perovskite-structured lead-zirconate-titanate ceramic

    NASA Astrophysics Data System (ADS)

    Zeuch, David H.; Montgomery, Stephen T.; Keck, Jeffrey D.

    1993-02-01

    We performed a series of hydrostatic and constant-stress-difference (CSD) experiments at room temperature on modified lead-zirconate-titanate (PZT 95/5-2Nb) ceramic in order to quantify the influence of shear stress on the displacive, and possibly martensitic, first-order, ferroelectric/rhombohedral → antiferroelectric/orthorhombic phase transformation. In hydrostatic compression, the transformation began at approximately 260 MPa and was incompletely reversed upon return to ambient conditions. Strains associated with the transformation were isotropic, both on the first and subsequent hydrostatic cycles. Results for the CSD tests were quite different. First, the confining pressure and mean stress at which the transition begins decreased approximately linearly with increasing stress difference. Second, we observed that the rate of transformation apparently decreased with increasing shear stress and the accompanying purely elastic shear strain. This result contrasts with the almost universal assertion that shear stresses accelerate reaction and transformation kinetics. Finally, strain was not isotropic during the transformation: axial strains were greater and lateral strains smaller than for the hydrostatic case, though volumetric strain behavior was comparable for the two types of tests. However, this last effect does not appear to be an example of transformational plasticity but, rather, a "one-time" occurrence: no additional unexpected strains accumulated during subsequent cycles through the transition under nonhydrostatic loading. If subsequent hydrostatic cycles were performed on samples previously run under CSD conditions, strain anisotropy was again observed, indicating that the earlier superimposed shear stress produced a permanent mechanical anisotropy in the material. The mechanical anisotropy probably results from a crystallographic preferred orientation that developed during the transformation under shear stress.

  16. Dielectric and Ferroelectric Properties of Lead Lanthanum Zirconate Titanate Thin Films for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Tong, Sheng

    As the increasing requirement of alternative energy with less pollution influence and higher energy efficient, new energy source and related storage methods are hot topic nowadays. Capacitors that supply high instant power are one of the keys in this application for both economic and functional design aspects. To lower the cost and increases the volumetric efficiency and reliability, relaxor thin films are considered as one of the candidates of the next generation capacitors. The research mainly focuses on dielectric and ferroelectric properties of lead lanthanum zirconate titanate or Pb1-xLax(ZryTi1-y)O3 (PLZT, x/y/1-y) relaxor thin films deposited on silicon (Si) and nickel (Ni) substrates in a range of thickness with different bottom electrodes, e.g. Platinum (Pt) and LaNiO3 (LNO). The final fabricated PLZT film capacitors will show strong potential for the energy storage application. The method adopted is the acetic acid assisted sol-gel deposition for the PLZT thin films. The wet chemical process is cost-effective and easily to scale up for plant/industrial products. We investigated the different bottom electrode/substrate influence in structure, microstructure, phases/defects, and heat-treatment conditions to achieve the optimized PLZT thin films. Issues of basic physical size effects in the PLZT thin films were also investigated, including thickness effects in the dielectric and ferroelectric properties of the films in a wide range of temperatures, the phase transition of the thin-film relaxors, lanthanum content effect, electrode-dielectric junction, misfit strain effect, etc. Based on the results and analysis, optimum PLZT film capacitors can be determined of proper substrate/electrode/dielectric that achieves the desired dielectric properties required for different applications, especially a more cost-effective method to develop volumetrically efficient capacitors with high charge density, energy density, dielectric breakdown strength, energy storage

  17. Elastic, dielectric, and piezoelectric properties of ceramic lead zirconate titanate/α-Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Konstantinov, G. M.; Naumenko, A. A.; Shvetsova, N. A.; Makar'ev, D. I.; Lugovaya, M. A.

    2015-03-01

    The technology of producing ceramic lead zirconate titanate/α-Al2O3 composites has been developed. Elements of piezoactive composites containing from 0 to 60 vol % α-Al2O3 have been prepared. The elastic, dielectric, and piezoelectric parameters of the synthesized ceramic composites have been measured, and their microstructure has been studied. It has been found that the concentration dependences of the elastic and piezoelectric properties exhibit anomalies. The obtained data have been interpreted based on the percolation theory and the concept of microstructural constructing polycrystalline composition materials.

  18. A combination of PZT and EMAT transducers for interface inspection.

    PubMed

    Na, Won-Bae; Kundu, Tribikram

    2002-05-01

    A PZT (Lead Zirconate-Titanate) transducer requires a couplant to send and receive mechanical waves. This requirement is a major shortcoming of the PZT technique for use in field applications. In the laboratory environment careful considerations and surface treatments are required to use PZT because the couplant can affect the consistency of experimental results. One alternative to overcome this shortcoming is the use of EMAT (ElectroMagnetic Acoustic Transducer). However, EMAT gives relatively low transmitted ultrasonic energy, with low signal to noise ratio, and the induced energy is critically dependent on the probe proximity to the test object. These are not desirable properties for NDT (nondestructive testing) of civil infrastructures. That is why, in this paper, a combination of PZT and EMAT is introduced for investigating reinforced concrete structures. Interface defects between steel bars and concrete are investigated by this technique. It is shown that the PZT-EMAT combination is very effective for steel bar-concrete interface inspection and the guided waves are useful for nondestructive testing of civil infrastructures.

  19. Deformation behavior of lead zirconate titanate ceramics under uniaxial compression measured by the digital image correlation method

    NASA Astrophysics Data System (ADS)

    Chen, Di; Carter, Emma; Kamlah, Marc

    2016-09-01

    The deformation behavior of lead zirconate titanate bulk ceramic specimen under uniaxial compression was monitored by the digital image correlation method and the homogeneity of the deformation was discussed. Combined with using a Sawyer-Tower circuit, the depolarization curve was also obtained. Because of the friction at both the top and bottom surfaces of the lead zirconate titanate ceramic specimen, the distribution of deformation under large uniaxial compressive stresses usually shows a barrel shape. By focusing on correspondingly selected regions of interest and calculating the values of strain components there, the barreling behavior was proved. This barreling behavior is due to elastic strains, in the first place, while the remnant strains are less affected by this phenomenon. All these findings are the experimental justifications for the selection of an aspect ratio of 3:1 for our specimens, where only the central cubic region of a specimen represents the desired purely uniaxial stress state. Only from this region, true uniaxial stress-strain results can be obtained to develop constitutive models.

  20. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  1. Effects of the poling process on dielectric, piezoelectric, and ferroelectric properties of lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Prewitt, Anderson D.

    Smart materials are widely used in many of today's relevant technologies such as nano and micro electromechanical systems (NEMS and MEMS), sensors, actuators, nonvolatile memory, and solid state devices. Many of these systems rely heavily on the electromechanical properties of certain smart materials, such as piezoelectricity and ferroelectricity. By definition, piezoelectricity is a mechanical stress in a material that produces an electric displacement (known as the direct piezoelectric effect) or electrical charge in a material which produces a mechanical strain (known as the converse piezoelectric effect). Ferroelectricity is a sub-class of piezoelectricity in which the polarization occurs spontaneously and the dipoles can be reoriented. Domain walls are the nanoscale regions separating two finite distinctively polarized areas in a ferroelectric. The reorientation of polarization in a material is called the poling process and many factors can influence the effectiveness of this process. A more fundamental understanding of how electrical and mechanical loading changes the domain structure of these materials could lead to enhanced properties such as increased energy transduction and decreased nonlinear behavior. This research demonstrates the influence of mechanical pressure and electrical field during and after the poling process on domain walls. The effects of strong mechanical forces on large-scale domain switching and weak cyclic forces on small-scale domain wall motion are investigated to show how they affect the macroscopic behavior of these materials. Commercial lead zirconate titanate ceramics were studied under various poling conditions and the effect of domain wall motion on the piezoelectric, dielectric, and ferroelectric properties was investigated. Polarization and strain measurements from samples poled at specific conditions and converse piezoelectric coefficient and dielectric permittivity data was extracted and interpreted in the context of

  2. From lab to industrial: PZT nanoparticles synthesis and process control for application in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Lin

    Lead Zirconate Titanate (PZT) nanoparticles hold many promising current and future applications, such as PZT ink for 3-D printing or seeds for PZT thick films. One common method is hydrothermal growth, in which temperature, duration time, or mineralizer concentrations are optimized to produce PZT nanoparticles with desired morphology, controlled size and size distribution. A modified hydrothermal process is used to fabricate PZT nanoparticles. The novelty is to employ a high ramping rate (e.g., 20 deg C/min) to generate abrupt supersaturation so as to promote burst nucleation of PZT nanoparticles as well as a fast cooling rate (e.g., 5 deg C/min) with a controlled termination of crystal growth. As a result, PZT nanoparticles with a size distribution ranging from 200 nm to 800 nm are obtained with cubic morphology and good crystallinity. The identification of nanoparticles is confirmed through use of X-ray diffractometer (XRD). XRD patterns are used to compare sample variations in their microstructures such as lattice parameter. A cubic morphology and particle size are also examined via SEM images. The hydrothermal process is further modified with excess lead (from 20% wt. to 80% wt.) to significantly reduce amorphous phase and agglomeration of the PZT nanoparticles. With a modified process, the particle size still remains within the 200 nm to 800 nm. Also, the crystal structures (microstructure) of the samples show little variations. Finally, a semi-continuous hydrothermal manufacturing process was developed to substantially reduce the fabrication time and maintained the same high quality as the nanoparticles prepared in an earlier stage. In this semi-continuous process, a furnace is maintained at the process temperature (200 deg C), whereas autoclaves containing PZT sol are placed in and out of the furnace to control the ramp-up and cooling rates. This setup eliminates an extremely time-consuming step of cooling down the furnace, thus saving tremendous amount of

  3. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    PubMed

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  4. Temperature Dependent Mechanical Property of PZT Film: An Investigation by Nanoindentation

    PubMed Central

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains. PMID:25768957

  5. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001)

    NASA Astrophysics Data System (ADS)

    Chopra, Anuj; Bayraktar, Muharrem; Nijland, Maarten; ten Elshof, Johan E.; Bijkerk, Fred; Rijnders, Guus

    2016-12-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber-Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ˜97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  6. Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films

    DOE PAGES

    Marincel, Dan M.; Zhang, H. R.; Briston, J.; ...

    2015-04-27

    The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domain structure ismore » studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.« less

  7. Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films

    NASA Astrophysics Data System (ADS)

    Marincel, D. M.; Zhang, H. R.; Britson, J.; Belianinov, A.; Jesse, S.; Kalinin, S. V.; Chen, L. Q.; Rainforth, W. M.; Reaney, I. M.; Randall, C. A.; Trolier-McKinstry, S.

    2015-04-01

    The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb Zr1 -x,TixO3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratios onto 24° tilt SrTi O3 bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy while the cross-sectional domain structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800 ±70 nm for PZT 45:55 and 450 ±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. This study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.

  8. Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films

    SciTech Connect

    Marincel, Dan M.; Zhang, H. R.; Briston, J.; Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.; Chen, L. Q.; Rainforth, William M.; Reaney, Ian M.; Randall, Clive A.; Trolier-McKinstry, Susan

    2015-04-27

    The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domain structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.

  9. Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie temperature.

    SciTech Connect

    Narayanan, M.; Tong, S.; Ma, B.; Liu, S.; Balachandran, U.

    2012-01-01

    A modified Johnson model is proposed to describe the nonlinear field dependence of the dielectric constant ({var_epsilon}-E loop) in ferroelectric materials below the Curie temperature. This model describes the characteristic ferroelectric 'butterfly' shape observed in typical {var_epsilon}-E loops. The predicted nonlinear behavior agreed well with the measured values in both the low- and high-field regions for lead lanthanum zirconate titanate films. The proposed model was also validated at different temperatures below the ferroelectric-to-paraelectric Curie point. The anharmonic coefficient in the model decreased from 6.142 x 10{sup -19} cm{sup 2}/V{sup 2} to 2.039 x 10{sup -19} cm{sup 2}/V{sup 2} when the temperature increased from 25 C to 250 C.

  10. The effect of low-fluence neutron irradiation on silver-electroded lead-zirconate-titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Broomfield, G. H.

    1980-06-01

    The properties of several different versions of near equi-molar proportioned lead-zirconate-titanate ceramic piezoelectric plates were measured after irradiation for up to 48 h in an MTR hollow fuel element. The irradiation temperature was 180 ± 50°C and the maximum fluences 3.5 × 10 19 thermal and 1.4 × 10 19 fission neutrons/cm 2. The irradiation decreased the capacitance, increased the thickness-mode resonant frequencies and decreased the elevated temperature electromechanical coupling in all of the samples tested. The effects are considered to be due to a change in the electrode bonding and a reduction in the polarisation of the ceramic.

  11. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  12. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation.

    PubMed

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  13. Ultrasonic Imaging for Poling Uniformity Measurements in PZT Ceramic Elements

    SciTech Connect

    Jamieson, E.E.

    2000-03-14

    This report summarizes the results of a project sponsored by Honeywell Corporation (formerly AlliedSignal Inc.) Federal Manufacturing and Technologies/Kansas City (FM and T/KC) and conducted jointly with the University of Missouri, Rolla, titled ''Ultrasonic Imaging for Poling Uniformity Measurements in PZT Ceramic Elements.'' In this three-month research project, a series of experiments was performed on soft and hard lead-zirconate-titanate (PZT) structures to determine the effectiveness of ultrasonic measurements as a nondestructive method of evaluating poling quality and uniformity. The study revealed that acoustic velocity correlates well with the degree of poling of PZT structures, as predicted by elastic theory. Additionally, time-of-flight (TOF) imaging was shown to be an ideal tool for viewing the spatial distribution of poled material and of material affected by the electric field beyond the edge of electroded regions. Finally, the effectiveness of ultrasonic methods for flaw detection and evaluation of PZT/stainless steel bonds was also demonstrated.

  14. Effect of External Vibration on PZT Impedance Signature.

    PubMed

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  15. Dielectric properties of novel polyurethane-PZT-graphite foam composites

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Nelo, Mikko; Juuti, Jari; Jantunen, Heli

    2016-09-01

    Flexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology.

  16. Drop Tower Characterization of Army Research Lab (ARL)-Fabricated Thin-Film Lead Zirconate Titanate (PZT) Transducers

    DTIC Science & Technology

    2012-04-01

    S) AND ADDRESS(ES) Commander, U.S. Army Research, Development, and Engineering Command ATTN: RDMR- WSI Redstone Arsenal, AL 35898-5000 8...Electronic steve.cornelius@us.army.mil RDMR-CSI Electronic RDMR-ASP Mr. Ron Schmalbach Electronic ron.schmalbach@us.army.mil RDMR- WSI Mr

  17. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    PubMed

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  18. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains.

    PubMed

    Nguyen, Minh D; Houwman, Evert P; Dekkers, Matthijn; Rijnders, Guus

    2017-03-08

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V(-1) was found for a 4-μm film thickness. From a series of films in the thickness range 0.5-5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V(-1) was deduced in the 3.5-4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness.

  19. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains

    PubMed Central

    2017-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756

  20. Preparation and Characterization of PZT Wafers

    NASA Astrophysics Data System (ADS)

    Seal, A.; Rao, B. S. S. Chandra; Kamath, S. V.; Sen, A.; Maiti, H. S.

    2008-07-01

    Piezoelectric materials have recently attracted a lot of attention for ultrasonic structural health monitoring (shm) in aerospace, defence and civilian sectors, where they can act as both actuators and sensors. Incidentally, piezoelectric materials in the form of wafers (pwas-piezoelectric wafer active sensor, approx. 5-10 mm square and 0.2-0.3 mm thickness) are inexpensive, non intrusive and non-resonant wide band devices that can be surface-mounted on existing structures, inserted between the layers of lap joints or embedded inside composite materials. The material of choice for piezoelectric wafers is lead zirconate titanate (PZT) of composition close to morphotropic phase boundary [pb(zr0.52 ti0.48)o3]. However, an excess pbo is normally added to pzt as a densification aid and also to make up for the lead loss during high temperature sintering. Hence, it is of paramount importance to know how the shift of the lead content from the morphotropic composition affects the piezoelectric and mechanical properties of the sintered wafers, keeping in view the importance of mechanical properties of wafers in shm. In the present study, we observed that with the increase in the lead content of the sintered wafers, the dielectric and piezoelectric constants decreased. However, the elastic modulus, hardness and fracture toughness of the wafers increased with increasing lead content in the composition. Hence, the lead content in the sintered wafers should be optimized to get acceptable piezoelectric and mechanical

  1. PZT Thin Film Piezoelectric Traveling Wave Motor

    NASA Technical Reports Server (NTRS)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  2. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures

    PubMed Central

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711

  3. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    SciTech Connect

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-07-14

    High energy synchrotron XRD was employed to determine the lattice strain {epsilon}{l_brace}111{r_brace}and diffraction peak intensity ratio R{l_brace}200{r_brace}in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the {epsilon}{l_brace}111{r_brace}-cos{sup 2} {psi} plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90 Degree-Sign ferroelectric domains, quantified in terms of R{l_brace}200{r_brace}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks.

  4. Titan

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  5. IN SITU Detection of Surface-Mounted PZT Transducer Defects Using Linear Reciprocity

    NASA Astrophysics Data System (ADS)

    Lee, Sang Jun; Sohn, Hoon; Michaels, Jennifer E.; Michaels, Thomas E.

    2010-02-01

    Guided waves generated by Lead Zirconate Titanate (PZT) transducers are often used to detect structural damage for nondestructive evaluation (NDE) and structural health monitoring (SHM) applications. It is generally assumed that the surface-mounted PZT transducers are both undamaged and properly bonded to the host structure during usage. However, this assumption may not be valid, particularly under realistic operating conditions. In this study, a methodology for PZT transducer diagnosis is developed to identify abnormal transducers using linear reciprocity of guided wave propagation between pairs of surface-mounted transducers on metallic structures. The advantage of the proposed technique is that transducer bonding problems and PZT defects can be detected even when the system being monitored is subjected to varying operational, environmental or structural conditions. In addition, the complexity of the boundary conditions and the geometry of the structure do not affect performance. The effectiveness of this diagnostic technique is evaluated via numerical simulations and experiments with PZT transducers instrumented on an aluminum plate.

  6. Study of 1-3 PZT fibre/epoxy composite force sensor

    NASA Astrophysics Data System (ADS)

    Choy, S. H.; Chan, H. L. W.; Ng, M. W.; Liu, P. C. K.

    2005-09-01

    Lead zirconate titanate (PZT) fibres were prepared by a powder-based extrusion method. Pre-sintered PZT powder mixed with poly(acrylic acid) was spun in a spinnerette to produce fibres. The fibre of ˜400 μm diameter was used to fabricate 1-3 PZT fibre/epoxy composite discs with different volume fractions (ϕ) of PZT. Since the ceramic fibres are rather brittle, their elastic properties cannot be measured directly. In order to determine the properties of the ceramic fibres, effective properties of the fibres/epoxy 1-3 composite were measured. By using a modified series and parallel model, the properties of 1-3 composites can be calculated. Then, the elastic coefficient s33,fibreE, relative permittivity ɛ33,fibreT and piezoelectric strain coefficient d33,fibre of the ceramic fibre could be found. Ring-shaped PZT fibre/epoxy materials composites with different ϕ were fabricated to be used as the sensing material in force sensor applications. The ring-shape composite with ϕ=0.5 was installed into a housing and the sensor was calibrated by different methods and its sensitivity was found to be 144 pC/N within the frequency range of 0.5 6.4 kHz which is much higher than that of a quartz force sensor with a similar structure.

  7. Control of chemical composition of PZT thin films produced by ion-beam deposition from a multicomponent target

    NASA Astrophysics Data System (ADS)

    Hlubucek, Jiri; Vapenka, David; Horodyska, Petra; Vaclavik, Jan

    2016-11-01

    Lead zirconate titanate (PZT) is widely used for its ferroelectric and piezoelectric properties, which are conditioned by perovskite structure. Crystallization into this desired phase is determined also by a proper stoichiometry, where the lead concentration is a crucial parameter. The crystallization process takes place during annealing under high temperatures, which is linked to heavy lead losses, so the lead has to be in excess. Therefore, this paper is devoted to the control of chemical composition of PZT thin films deposited via ion beam sputtering (IBS). A commonly used approach for IBS relies on employing a multicomponent target to obtain films with the same composition as that of the target. However, in the case of PZT it is favorable to have the ability to controllably change the chemical composition of thin films in order to acquire high perovskite content. Our study revealed that the determinative lead content in PZT layers prepared by simple and dual ion-beam deposition from a multicomponent target can be easily controlled by the power of primary ion source. At the same time, the composition is also dependent on the substrate temperature and the power of assistant ion source. Thin PZT films with more than 30 % lead excess were acquired from a stoichiometric multicomponent target (i.e. a target without any lead excess). We can therefore propose several possible sets of deposition parameters suitable for the PZT deposition via IBS to obtain high perovskite content.

  8. The Effects of TI/PT Bottom Electrode on Crystallographic and Surface Characteristics of PZT Thick Films

    NASA Astrophysics Data System (ADS)

    Koochekzadeh, Ali; Keshavarz Alamdari, Eskandar; Barzegar, Abdolghafar

    The ceramic lead zirconate titanate (PZT) films near the morphotropic phase boundary are successfully integrated into MEMS devices, especially for applications in microsensors and actuators. The ferro/piezo electric properties of PZT thick films are widely dependent on its surface quality and crystallographic orientation growth. This paper indicates the influences of platinum bottom electrode on the surface and crystallographic properties of PZT. Ti (10nm) and Pt (100nm) thin films have been deposited on silicon substrate by thermal evaporation and electron beam respectively without vacuum breaking. After annealing treatment, the Pt film exhibited (111) preferred orientation. Finally one micron thick PZT (54/46) film was deposited by a RF magnetron sputtering at room temperature in pure Argon followed by a conventional post annealing treatment on silicon substrate. The XRD measurements have shown the provskite structure of PZT films with (100) preferred orientation at annealing temperatures above 600°C and (111) preferred orientation above 650°c. The SEM results demonstrate that whatever the annealing temperature is increased, recrystallization grains and black holes on Pt surface occurs and cause morphological change of PZT surface. The AFM test shows the strong RMS roughness of platinum surface after annealing temperature at 650°C.

  9. Measurement of high piezoelectric response of strontium-doped lead zirconate titanate thin films using a nanoindenter

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Bhaskaran, M.; Holland, A. S.; Short, K. T.; Latella, B. A.

    2007-05-01

    Strontium-doped lead zirconate titanate (PSZT) is reported to have a high piezoelectric coefficient (d33) in the range of 200-600 pm/V, when in the form of ceramic disks or pellets. This article reports piezoelectric response results for PSZT thin films deposited by rf magnetron sputtering on gold-coated silicon substrates. The compositions of the deposited thin films have been found to be uniform with depth, using secondary ion mass spectroscopy. The surfaces of the deposited thin films have been studied using an atomic force microscope and observed to be regular and nanostructured in nature. The piezoelectric response of the thin films, using the inverse piezoelectric effect, has been measured using a nanoindenter. Values of thin film d33 up to 608 pm/V were obtained, which is much higher than previously reported values of d33 for any thin film. The high values can be attributed to optimized deposition conditions and the low stress measured for the thin film arrangement on the substrate. The technique has been verified by obtaining a null response for silicon dioxide and by measuring d33 values of similar magnitude for PSZT thin films using an atomic force microscope in the same testing arrangement. The piezoelectric response has been mapped to study variations across the thin film and with distance from the top electrode.

  10. Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates.

    PubMed

    Sriram, S; Bhaskaran, M; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-02-01

    This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300 degrees C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis was carried out using a combination of high-resolution imaging, energy filtered imaging, energy dispersive X-ray (EDX) analysis, and hollow cone illumination. At the interface between the PSZT films and gold, an amorphous silicon-rich layer (about 4 nm thick) was observed, with the film composition remaining uniform otherwise. The films were found to be polycrystalline with a columnar structure perpendicular to the substrate. Interdiffusion between the bottom metal layers and silicon was observed and was confirmed using secondary ion mass spectrometry. This occurs due to the temperature of deposition (300 degrees C) being close to the eutectic point of gold and silicon (363 degrees C). The diffused regions in silicon were composed primarily of gold (analyzed by EDX) and were bounded by (111) silicon planes, highlighted by the triangular diffused regions observed in the two-dimensional TEM image.

  11. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Britson, Jason

    The defining characteristic of ferroelectric materials is their ability to be switched between energetically equivalent polarization states. This behavior has led to an interest in ferroelectrics for a wide range of bulk and thin film applications such as mechanical actuators and ferroelectric random access memory devices. Ferroelectric switching depends on domain wall motion, however, and is critically influenced by the existence of defects such as dislocations and preexisting domains. Domain wall motion in thin film applications can be controlled by individual local defects due to the reduced length scale of the system. This dissertation describes the impact of preexisting ferroelastic domains and misfits dislocations in coherent (001)-oriented Pb(Zr0.2,Ti0.8)O3 (PZT) thin films on the switching response and domain structure. A phase field model based on the Landau-Ginzburg-Devonshire theory that accounts for the electrostatic and mechanical interactions is used to describe domain structures in ferroelectric PZT thin films. To solve the governing equations a semi-implicit Fourier-Spectral scheme is developed that accommodates boundary conditions appropriate to the thin film geometry. Errors are reduced in the solutions at the film edges through extensions to the model developed to correct the Fourier transform around stationary discontinuities at the thin film edges. This correction is shown to result in increased accuracy of the phase field model needed to appropriately describe dynamic switching responses in the thin film. Investigation of switching around preexisting ferroelastic domains showed these defects are strong obstacles to switching in PZT thin films. Directly above the ferroelastic domain the magnitude of the required nucleation bias underneath a tip-like electrode was found to be elevated compared to the required bias far from the domain. Locally both the piezoelectric and dielectric responses of the thin film were found to be suppressed, which is

  12. Titan

    NASA Astrophysics Data System (ADS)

    Owen, T.

    1982-02-01

    Historical data and data from the Voyager spacecraft are reviewed in an attempt to model the atmospheric processes of Saturn moon Titan. Earth based IR astronomy established that Titan has a CH4 atmosphere, Voyager I UV spectrometer readings revealed the presence of nitrogen, and IR readings suggested the existence of hydrocarbons and nitrogenous compounds. A model is proposed in which methane on Titan behaves much like water does on earth and in the same relative abundance. Further modelling is suggested for the formation of methane hydrate on Titan by the accretion of gases after the formation of the moon, and the subsequent heating of the planetary interior by the decay of radioactive elements freed the ice-trapped gases into the atmosphere. It is noted that an alternative explanation of a greenhouse effect having raised the temperature to 150 K is also possible.

  13. Temperature and strain rate effects on the piezoelectric charge production of PZT 95/5

    NASA Astrophysics Data System (ADS)

    Khan, Amnah S.; Proud, William G.

    2017-01-01

    To develop a better understanding of the piezoelectric ceramic lead zirconate titanate (PZT) 95/5, parameters including varying temperatures, porosities and strain rates have been studied. The effects on the charge output and fracture of poled PZT samples of different porosities have been investigated with compressive strain rates (10-4 - 10+3 s-1) using quasi-static loading equipment, drop-weight towers and Split Hopkinson Pressure Bars (SHPBs). The cylindrical specimens were of 4.4 mm diameter, thickness 0.8 - 4.4 mm, and density 7.3 - 8.3 g cm-3. The temperature range of -20 °C to +80 °C was achieved using purpose-built environmental chambers. The resulting stress-strain relationships are compared; all the samples ultimately displayed a brittle response at failure [1].

  14. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  15. Titan

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    2004-12-01

    Titan's surface remains enigmatic after the T0 observations, in part because of the large distance of the Cassini spacecraft from Titan (the VIMS effective spatial resolution was no better than the latest ground-based Adaptive Optics observations), the high altitude scattering haze layer, and the surface's potential intrinsic complexity in composition and topography. The Ta observations of late October should have established, at some level, the extent to which Titan's surface is like that of other large icy satellites, or unique in being hydrocarbon-rich. Much of the seemingly self-contradictory nature of Titan's surface can be resolved by recognizing that large variations in composition and geology are likely over very small scales. I will focus on confronting new and traditional models with the data available, and forecast what might be in store as Cassini moves into its period of repeated close flybys of Titan. Ethane liquid, fogs and hazes, shiny polyacetylene deposits, and the role of ammonia in Titan's interior will all be considered in light of the new Cassini data expected this autumn.

  16. Effects of acetylacetone additions on PZT thin film processing

    SciTech Connect

    Schwartz, R.W.; Assink, R.A.; Dimos, D.; Sinclair, M.B.; Boyle, T.J.; Buchheit, C.D.

    1995-02-01

    Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. The authors discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

  17. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles

    PubMed Central

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-01-01

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment. PMID:28025571

  18. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y3Fe5O12 (YIG) with x=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0-3 composites with x=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  19. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    PubMed

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m(-1), 123.4700 GPa, 0.3000 and 0.0693 V·m·N(-1), respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m(-1) and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  20. Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1999-01-01

    With a launch in December 2001, Space Infrared Telescope Facility (SIRTF) can observe Titan in the interval after Infrared Space Observatory (ISO) but before the onset of observations by Cassini. By virtue of its broad spectral coverage in the thermal infrared, 10-180 micron, its moderately high spectral resolution, approaching lambda/delta lambda=600 over part of this wavelength range, and the very high sensitivity of its helium- cooled detectors, the Infrared Spectrometer (IRS) and MIPS on SIRTF can address several issues raised through earlier observations by the Voyager IRIS experiment and by ISO. These include, for example, a better characterization of the vertical distribution of water in Titan's middle and upper atmospheres and the discovery of new compounds, such as allene or proprionitrile. This talk will address the temperature- and composition-sounding capabilities of SIRTF, particularly in the context of how they will complement Cassini observations and aid in their planning.

  1. Application of PZT sensors for detection of damage severity and location in concrete

    NASA Astrophysics Data System (ADS)

    Sabet Divsholi, Bahador; Yang, Yaowen

    2008-12-01

    Piezoelectric ceramic lead zirconate titanate (PZT) based electromechanical impedance (EMI) technique has been applied for structural health monitoring (SHM) of various engineering systems. However, study on identification of damage severity and location is still in need. In the EMI method, the PZT electromechanical (EM) admittance is used as a damage indicator. Statistical techniques such as root mean square deviation (RMSD) have been employed to associate the damage level with the changes in the EM admittance signature. To achieve high sensitivity to damage, high frequency signatures (>200 kHz) have been used to monitor the region close to the PZT location. It has been reported that the use of RMSD as the damage indicator is difficult to specify the damage location and severity due to the inconsistency in the RMSD results. This paper proposes the use of large frequency (30-400 kHz) range and the RMSD values of sub-frequency intervals to eliminate the inconsistency in the results. An experiment is carried out on a real size concrete structure subjected to artificial damages. The PZT admittance signatures in a frequency range of 30 to 400 kHz for various structural damages have been recorded and the RMSD values of sub-frequency intervals of 10 kHz are calculated. Results show less inconsistency and uncertainties compared to the traditional method using limited high frequency range. It is observed that the damage close to the PZT changes the RMSD at high frequency range significantly; however the damage far away from the PZT changes the RMSD at low frequency range significantly.

  2. Using PZT Grid Networks in Low Velocity Impact Studies

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Cook, Mike; Schmoke, Jimmy; Harper, Katie; Reay, Jerry; Matthews, Lorin; Hyde, Truell

    2004-10-01

    Orbital debris has become such a large problem that computer models, space debris tracking devices, and debris shielding processes have become a vital part of the preparation for the launch of any space mission. In order to fully understand the physics behind the damage that space debris may cause, it is first necessary to reproduce such an environment in the lab. The Center for Astrophysics, Space Physics and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG) which is used for low velocity impact studies. The LGG was used to perform impact tests on stainless steel and aluminum disk plates, since these materials are often used in the construction of man-made structures in space. Piezoelectric lead zirconate titanate (PZT) crystals were employed to measure the momentum delivered to the plate upon impact. Multiple PZT networks were attached to the plates in order to determine the location of individual impacts. This paper will show the results of this testing on both stainless steel and aluminum disks and explain the numerical process determining the locations of the impacts.

  3. Pre-transitional evolution of central peaks and transverse acoustic phonon branch in single crystal lead zirconate titanate with Ti concentration 0.7%

    NASA Astrophysics Data System (ADS)

    Andronikova, D. A.; Bronwald, I. A.; Burkovsky, R. G.; Leontiev, I. N.; Leontiev, N. G.; Bosak, A. A.; Filimonov, A. V.; Vakhrushev, S. B.

    2016-11-01

    Inelastic X-ray scattering measurements have been done to study the lattice dynamics in lead zirconate titanate solid solution with 0.7% of PbTiO3. The temperature evolution of central peak and low-energy transverse phonon branches has been traced. Temperature dependent in-plane transverse polarized acoustic phonon branch in <1 1 0> direction has been revealed. The central peaks of two types have been found. The central peak at small wave vectors can be attributed to the relaxational-type soft ferroelectric mode, while the latter at Q = (1.5 -0.5 0) could be linked to the formation of M-superstructure in the intermediate ferroelectric phase.

  4. An in situ diffraction study of domain wall motion contributions to the frequency dispersion of the piezoelectric coefficient in lead zirconate titanate

    SciTech Connect

    Seshadri, Shruti B.; Prewitt, Anderson D.; Jones, Jacob L.; Studer, Andrew J.; Damjanovic, Dragan

    2013-01-28

    The contribution of non-180 Degree-Sign domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under subcoercive electric fields of low frequencies, approximately 3% to 4% of the volume fraction of non-180 Degree-Sign domains parallel to the field experienced polarization reorientation. This subtle non-180 Degree-Sign domain wall motion directly contributes to 64% to 75% of the magnitude of the piezoelectric coefficient. Moreover, part of the 33 pm/V decrease in piezoelectric coefficient across 2 orders of magnitude in frequency is quantitatively attributed to non-180 Degree-Sign domain wall motion effects.

  5. The Study of Temperature Dependence of Second Harmonic Generation in Lead Lanthanum Titanate Thin Film by Corona Poling

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-An; Wu, Adam Y.; Liou, Wan-Rone; Tung, Po-Yen; Yeh, Mei-Ling

    2003-09-01

    Ferroelectric materials possess certain properties such as spontaneous polarization, domain structure, the hysteres is effect, and optical nonlinearity which attract much interest for research. Lead zirconate titanate (PZT) is one of the most researched materials for piezoelectric and electro optical applications. Recently, lanthanum modified lead titanate (PLT) has become popular because it possesses interesting properties such as a lower Curie temperature, a lower coercive field, and smaller remanent polarizations than PZT and has great potential for nonlinear optical and electro optical applications. PLT thin films were sputter deposited on fused silica substrate. We studied the second-order nonlinear optical properties in these thin films. The second harmonic generation intensities as a function of temperature were obtained. The optimum temperatures for obtaining the largest nonlinear optical coefficient have been found and the results are presented.

  6. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  7. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy

    2016-04-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  8. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Stafford, Mr Randy

    2016-01-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22 C) and at 50 C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50 C, compared with reductions of 25 and 15% in the respective coefficients at 22 C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  9. Fabrication and performance of a single-crystal lead magnesium niobate-lead titanate cylindrical hydrophone.

    PubMed

    Brown, Jeremy A; Dunphy, Kevin; Leadbetter, Jeff R; Adamson, Robert B A; Beslin, Olivier

    2013-08-01

    The development of a piezoelectric hydrophone based on lead magnesium niobate-lead titanate [PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT)] single-crystal piezoelectric as the hydrophone substrate is reported. Although PMN-PT can possess much higher piezoelectric sensitivity than traditional lead zirconate titanate (PZT) piezoelectrics, it is highly anisotropic and therefore there is a large gain in sensitivity only when the crystal structure is oriented in a specific direction. Because of this, simply replacing the PZT substrate with a PMN-PT cylinder is not an optimal solution because the crystal orientation does not uniformly align with the circumferential axis of the hydrophone. Therefore, a composite hydrophone that maintains the optimal crystal axis around the hydrophone circumference has been developed. An 11.3 mm diameter composite hydrophone cylinder was fabricated from a single <110> cut PMN-PT rectangular plate. Solid end caps were applied to the cylinder and the sensitivity was directly compared with a solid PZT-5A cylindrical hydrophone of equal dimensions in a hydrophone test tank. The charge sensitivity showed a 9.1 dB improvement over the PZT hydrophone and the voltage sensitivity showed a 3.5 dB improvement. This was in good agreement with the expected theoretical improvements of 10.1 and 4.5 dB, respectively.

  10. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  11. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  12. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d 33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  13. Influence of PZT Coating Thickness and Electrical Pole Alignment on Microresonator Properties

    PubMed Central

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Vilkauskas, Andrius; Palevicius, Arvydas

    2016-01-01

    With increasing technical requirements in the design of microresonators, the development of new techniques for lightweight, simple, and inexpensive components becomes relevant. Lead zirconate titanate (PZT) is a powerful tool in the formation of these components, allowing a self-actuation or self-sensing capability. Different fabrication methods lead to the variation of the properties of the device itself. This research paper covers the fabrication of a novel PZT film and the investigations of its chemical, surface, and dynamic properties when film thickness is varied. A screen-printing technique was used for the formation of smooth films of 60 µm, 68 µm, and 25 µm thickness. A custom-made poling technique was applied to enhance the piezoelectric properties of the designed films. However, poling did not change any compositional or surface characteristics of the films; changes were only seen in the electrical ones. The results showed that a thinner poled PZT film having a chemical composition with the highest amount of copper and zirconium led to better electrical characteristics (generated voltage of 3.5 mV). PMID:27834910

  14. Processing and properties of lead zirconate titanate thin films on gallium nitride and ruthenium by sol-gel and chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cao, Wei

    The Pb(ZrxTi1-x)O3 (PZT) thin films are potential candidates for ferroelectric random access memory (FeRAM) devices and components for microelectromechanical systems (MEMS). For example, the PZT/GaN system is being explored as RF MEMS devices for insertion in RF communication systems. A reproducible sol-gel process was developed for the deposition of PZT films on wurtzite (0001) GaN/sapphire substrates. The composition, crystallography, and interfacial nanochemistry were evaluated by various characterization techniques. The PZT/GaN heterostructure exhibited a chemically sharp interface with insignificant interdiffusion between PZT and GaN layers. However, PZT in metal -ferroelectric -semiconductor (MFS) configuration showed lower capacitance and asymmetrical polarization hysteresis compared to PZT in metal-ferroelectric-metal configuration. Such a deviation was attributed to the high depolarization field (Edepol) within PZT. To mitigate this issue, a two-pronged approach was used. First, the calculated spatial distribution of the electric field and potential, which stem from all the charge densities within the MFS configuration, demonstrated that by adjusting controllable parameters, one can minimize Edepol and maximize polarization. Second, a robust metal-organic chemical vapor deposition (MOCVD) process was developed to fabricate high quality PZT thin films on GaN. In this experimental approach, phase-pure and highly (111) oriented PZT films were deposited on GaN/sapphire substrates by MOCVD. The orientation relationships of PZT/GaN system were determined using x-ray pole figure and high-resolution transmission electron microscopy (TEM). The nanochemistry of the PZT/GaN interface, studied using analytical TEM, indicated a chemically sharp interface with interdiffusion limited to a region below 5 nm. The properties of MOCVD-PZT on GaN are briefly compared with PZT by sol-gel processing, rf sputtering, and pulsed laser deposition. Additionally, a preliminary study

  15. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  16. Large Stroke Vertical PZT Microactuator With High-Speed Rotational Scanning.

    PubMed

    Qiu, Zhen; Rhee, Choong-Ho; Choi, Jongsoo; Wang, Thomas D; Oldham, Kenn R

    2014-04-01

    A thin-film piezoelectric microactuator using a novel combination of active vertical translational scanning and passive resonant rotational scanning is presented. Thin-film lead-zirconate-titanate unimorph bending beams surrounding a central platform provide nearly 200-μm displacement at 18 V with bandwidth greater than 200 Hz. Inside the platform, a mirror mount, or mirror surface, supported by silicon dioxide spring beams can be excited to resonance by low-voltage; high-frequency excitation of the outer PZT beams. Over ±5.5° mechanical resonance is obtained at 3.8 kHz and ±2 V. The combination of large translational vertical displacements and high-speed rotational scanning is intended to support real-time cross-sectional imaging in a dual axes confocal endomicroscope.

  17. Large Stroke Vertical PZT Microactuator With High-Speed Rotational Scanning

    PubMed Central

    Qiu, Zhen; Rhee, Choong-Ho; Choi, Jongsoo; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    A thin-film piezoelectric microactuator using a novel combination of active vertical translational scanning and passive resonant rotational scanning is presented. Thin-film lead-zirconate-titanate unimorph bending beams surrounding a central platform provide nearly 200-μm displacement at 18 V with bandwidth greater than 200 Hz. Inside the platform, a mirror mount, or mirror surface, supported by silicon dioxide spring beams can be excited to resonance by low-voltage; high-frequency excitation of the outer PZT beams. Over ±5.5° mechanical resonance is obtained at 3.8 kHz and ±2 V. The combination of large translational vertical displacements and high-speed rotational scanning is intended to support real-time cross-sectional imaging in a dual axes confocal endomicroscope. PMID:25506187

  18. Identification of crystalline elastic anisotropy in PZT ceramics from in-situ blocking stress measurements

    SciTech Connect

    Daniel, L.; Hall, D. A.; Withers, P. J.; Webber, K. G.; King, A.

    2014-05-07

    High energy x-ray diffraction measurements of lattice strains were performed on a rhombohedral Lead Zirconate Titanate ceramic (PZT 55-45) under combinations of applied electric field and compressive stress. These measurements allow the construction of blocking stress curves for different sets of crystallographic orientations which reflect the single crystal elastic anisotropy. A micro-mechanical interpretation of the results is then proposed. Assuming cubic symmetry for the crystalline elastic stiffness tensor and isotropy for the macroscopic elastic properties, the elastic properties of the single crystal are extracted from the measured data. An anisotropy ratio close to 0.3 is found (compared to 1 for isotropic materials). The high level of anisotropy found in this work suggests that crystalline elastic anisotropy should not be neglected in the modelling of ferroelectric materials.

  19. Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films.

    PubMed

    Zhou, Qifa; Cannata, Jonathan M; Meyer, Richard J; van Tol, David J; Tadigadapa, Srinivas; Hughes, W Jack; Shung, K Kirk; Trolier-McKinstry, Susan

    2005-03-01

    Miniaturized tonpilz transducers are potentially useful for ultrasonic imaging in the 10 to 100 MHz frequency range due to their higher efficiency and output capabilities. In this work, 4 to 10-microm thick piezoelectric thin films were used as the active element in the construction of miniaturized tonpilz structures. The tonpilz stack consisted of silver/lead zirconate titanate (PZT)/lanthanum nickelate (LaNiO3)/silicon on insulator (SOI) substrates. First, conductive LaNiO3 thin films, approximately 300 nm in thickness, were grown on SOI substrates by a metalorganic decomposition (MOD) method. The room temperature resistivity of the LaNiO3 was 6.5 x 10(-6) omega x m. Randomly oriented PZT (52/48) films up to 7-microm thick were then deposited using a sol-gel process on the LaNiO3-coated SOI substrates. The PZT films with LaNiO3 bottom electrodes showed good dielectric and ferroelectric properties. The relative dielectric permittivity (at 1 kHz) was about 1030. The remanent polarization of PZT films was larger than 26 microC/cm2. The effective transverse piezoelectric e31,f coefficient of PZT thick films was about -6.5 C/m2 when poled at -75 kV/cm for 15 minutes at room temperature. Enhanced piezoelectric properties were obtained on poling the PZT films at higher temperatures. A silver layer about 40-microm thick was prepared by silver powder dispersed in epoxy and deposited onto the PZT film to form the tail mass of the tonpilz structure. The top layers of this wafer were subsequently diced with a saw, and the structure was bonded to a second wafer. The original silicon carrier wafer was polished and etched using a Xenon difluoride (XeF2) etching system. The resulting structures showed good piezoelectric activity. This process flow should enable integration of the piezoelectric elements with drive/receive electronics.

  20. 2.79 μm erbium laser with lead-lanthanum zirconate titanate ceramics electro-optic Q-switching output coupler

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Eichler, Hans J.

    2000-07-01

    Highly refractive and transparent lead-lanthanum zirconate titanate (PLZT) ceramics are used for an output coupler of the erbium yttrium scandium gallium garnet laser (λ=2.79 μm) that simultaneously serves as the laser electro-optic Q switch. The optical aperture of such a dual-function PLZT element was 6×6 mm2 and the thickness was 3 mm. For Q switching, short ≈3 μs negative voltage pulses (1500-1800 V) were applied to the positively direct current biased (≈1400 V) PLZT element. Single-pulse lasing with a pulse half width of 160-170 ns was observed at short and long delays of the Q switch with respect to the pump flash. The highest output energy of 20-22 mJ within 1.5-2.5 μs, consisting of two or three pulses with 130 ns half width was obtained at an intermediate delay of 90-110 μs.

  1. Development of dual PZT transducers for reference-free crack detection in thin plate structures.

    PubMed

    Sohn, Hoon; Kim, Seuno Bum

    2010-01-01

    A new Lamb-wave-based nondestructive testing (NDT) technique, which does not rely on previously stored baseline data, is developed for crack monitoring in plate structures. Commonly, the presence of damage is identified by comparing "current data" measured from a potentially damaged stage of a structure with "baseline data" previously obtained at the intact condition of the structure. In practice, structural defects typically take place long after collection of the baseline data, and the baseline data can be also affected by external loading, temperature variations, and changing boundary conditions. To eliminate the dependence on the baseline data comparison, the authors previously developed a reference-free NDT technique using 2 pairs of collocated lead zirconate titanate (PZT) transducers placed on both sides of a plate. This reference-free technique is further advanced in the present study by the necessity of attaching transducers only on a single surface of a structure for certain applications such as aircraft. To achieve this goal, a new design of PZT transducers called dual PZT transducers is proposed. Crack formation creates Lamb wave mode conversion due to a sudden thickness change of the structure. This crack appearance is instantly detected from the measured Lamb wave signals using the dual PZT transducers. This study also suggests a reference-free statistical approach that enables damage classification using only the currently measured data set. Numerical simulations and experiments were conducted using an aluminum plate with uniform thickness and fundamental Lamb waves modes to demonstrate the applicability of the proposed technique to reference-free crack detection.

  2. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites

    NASA Astrophysics Data System (ADS)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-01

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0.5-T0.5)) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  3. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    PubMed

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0.5-T0.5)) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  4. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    PubMed

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  5. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M.; Yu, Z. J.; Xu, H.; Mao, W. G.; Pei, Y. M.; Li, F. X.; Feng, X.; Fang, D. N.

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials.

  6. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  7. Emission, plasma formation, and brightness of a PZT ferroelectric cathode

    SciTech Connect

    Sampayan, S.; Caporaso, G.; Trimble, D.; Westenskow, G.

    1995-04-27

    We have measured an 36-A-cm{sup {minus}2} current emission density over the surface area of an 11.4-cm{sup 2}-area Lead-Titanate- Zirconate (PZT) ferroelectric cathode with a pulsed anode-cathode (A-K) potential of 50 kV. We have also observed currents above those predicted by classical Child-Langmuir formula for a wide variety of cases. Since a plasma within the A-K gap could also lead to increase current emission we are attempting to measure the properties of the plasma near the cathode surface at emission time. In other measurements, we have observed strong gap currents in the absence of an A-K potential. Further, we continue to make brightness measurements of the emitted beam and observe spatially non-uniform emission and large shot-to-shot variation. Measurements show individual beamlets with a brightness as high 10{sup 11} Am{sup {minus}2} rad{sup {minus}2}.

  8. Optical amplification in disordered electrooptic Tm{sup 3+} and Ho{sup 3+} codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations

    SciTech Connect

    Zhao, Hua; Zhang, Kun; Xu, Long; Sun, Fankui; Zhang, Jingwen; Chen, Xuesheng; Li, Kewen K.

    2014-02-21

    Rare earth doped electro-optic (EO) ceramics of lanthanum-modified lead zirconate titanate (PLZT) are promising in building multifunctional optical devices, by taking advantage of both EO effect and optical activity. In this work, the combination of the measured spectra of absorption and photoluminescence, the fluorescent decay, the calculated Judd-Ofelt parameters, and measured single pass gain in Tm{sup 3+}, Ho{sup 3+} codoped PLZT ceramics have marked them out as promising gain media in building electrically controllable lasers/optical amplifiers and other multifunctional devices. Optical energy storage was also observed in the optical amplification dynamics.

  9. Numerical analysis for structural health monitoring of a damaged composite panel using PZT actuators and sensors

    NASA Astrophysics Data System (ADS)

    Nagabhushana, A.; Spiegel, M.; Adu, S.; Hayes, N.; Paul, D.; Trivedi, K.; Fairbee, B.; Zheng, H.; Gerrity, A.; Kotru, S.; Roy, S.; Barkey, M.; Burkett, S. L.

    2012-04-01

    Reliable damage detection is crucial for assessing the integrity of a structure. In this paper, a numerical study of a composite panel fabricated to simulate a crack is undertaken using finite element methods (FEM). The damage to be considered is a transverse crack which pre-exists in the structure. The finite element models are developed for an undamaged and a damaged composite panel to compute the change in Lamb wave response due to the existence of a crack. The model is validated using shear lag analysis applied at the crack. The results are verified experimentally by comparing the results for an undamaged composite panel and a composite panel fabricated with a simulated crack using the vacuum assisted resin transfer molding (VARTM) process. The responses for each panel are obtained using surface mounted lead zirconate titanate (PZT) actuators and sensors. PZT is used to generate Lamb waves which produce stress throughout the panel thickness. Propagation characteristics of Lamb waves are varied by the presence of damage. The sensor data provide reliable information about the integrity of the structure. Numerical results are compared to the sensor output to ensure accuracy of the damage detection system.

  10. PZT networks for impact studies using a one stage light gas gun

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, J.; Cook, M.; Schmoke, J.; Harper, K.; Reay, J.; Matthews, L.; Hyde, T. W.

    Orbital debris has become such a large problem that computer models, space debris tracking devices, and debris shielding processes have become a vital part of the preparation for the launch of any space mission. In order to fully understand the physics behind the damage that space debris may cause, it is necessary to reproduce such an environment in the lab. The Center for Astrophysics, Space Physics and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG) which is used for low velocity impact studies. The LGG was used to perform impact tests on stainless steel and aluminum disk plates, since these materials are often used in the construction of man-made structures in space. Piezoelectric lead zirconate titanate (PZT) crystals were employed to measure the momentum delivered to the plate upon impact. Multiple PZT networks were attached to the plates in order to determine the location of individual impacts. This paper will show the results of this testing on both stainless steel and aluminum disks and explain the numerical process determining the locations of the impacts.

  11. Synthesis and characterization of thick PZT films via sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Shakeri, Amid; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2014-09-01

    Thick films of lead zirconate titanate (PZT) offer possibilities for micro-electro-mechanical systems such as high frequency ultrasonic transducers. In this paper, crack-free thick films of PZT have been prepared up to 45 μm thickness via modified sol-gel dip coating method. In this procedure, acetic acid-alcoholic based sol is used by applying diethanolamine (DEA) and deionized water as additives. The effects of DEA and water on the crystal structure and surface morphology of the films are investigated. The mechanisms of acetic acid and DEA complexations are introduced by using FTIR spectrometer which illustrates suitable substitution of complexing agents with alkoxide groups. DEA/(Ti + Zr) = 0.5 or water/(Ti + Zr) = 0.5 are determined as the optimum molar ratio of additives, which lead to the formation of almost pure perovskite phase with the tetragonal lattice parameters of ct = 4.16 Ǻ and at = 4.02 Ǻ and a distortion of 2%. Values of remanent polarization and dielectric constant of 7.8 μC cm-2 and 1630 were obtained for 45 μm thick films, respectively.

  12. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  13. Powering low-power implants using PZT transducer discs operated in the radial mode

    NASA Astrophysics Data System (ADS)

    Sanni, Ayodele; Vilches, Antonio

    2013-11-01

    This paper reports experimental results that are used to compare operation characteristics of lead zirconate titanate (PZT) piezoelectric ceramic discs operated in the radial mode. The devices are driven to radially vibrate at their lowest fundamental resonant frequency and thus transmit and receive power when immersed in a liquid phantom. A number of 1 mm × 10 mm (thickness × diameter) PZT discs are characterized experimentally within a propagation tank and results discussed. On the basis of these measured characteristics, a novel application is developed and reported for the first time. This consists of a tuned LC resonator circuit which is used at the receiving disc to maximize sensitivity as well as a Seiko start-up IC S-882Z which is employed to charge a capacitor that drives a PIC microcontroller (μC) once the voltage exceeds 2 V DC. We show that a mean input power of 486 mW RMS results in 976 μW RMS received over a range of 80 mm and that this is sufficient to periodically (every 60 s) power the μC to directly drive a red LED for 5 ms with a current of 4.8 mA/flash. This approach is suitable for low-power, periodically activated analogue bio-implant applications.

  14. PZT/P(VDF-HFP) 0 3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Wegener, Michael; Arlt, Kristin

    2008-08-01

    Composite films of lead zirconate titanate (PZT) and poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) were prepared as 100 µm thin films by solvent casting. Within the 0-3 composites, the ceramic-volume fraction was varied between 0.19 and 0.65, which yielded films with different structural and dielectric properties. These influenced the piezoelectric properties of the composite films found after electric poling, which was performed here at room temperature. The piezoelectric activity, with a maximum piezoelectric coefficient of 11 pC N-1 in the film-thickness direction, originates from the polarization of the embedded ceramic particles as proved by poling experiments in corona discharges as well as in direct contact.

  15. A Feasibility Study of PZT Thin-Film Microactuators for Hybrid Cochlear Implants.

    PubMed

    Lee, Cheng-Chun; Shen, I; Hume, C; Cao, G

    2005-01-01

    Hybrid cochlear implants would integrate electric and acoustic auditory stimulation into a single unit to rehabilitate patients with sensori-neural hearing loss. Conceptually, hybrid cochlear implants consist of an electrode array, as in traditional cochlear implants, and an acoustic microactuator to generate pressure waves inside the cochlea. To enable hybrid cochlear implants, one must develop acoustic actuators small enough to be placed directly into the cochlea. In this study, the microactuators consist of a silicon diaphragm and a Lead-Zirconate-Titanate Oxide (PZT) thin film. Two actuators are tested. For the first actuator, the diaphragm size is 1.1 mm by 1.1 mm, the diaphragm thickness is about 12 m, and the PZT film thickness is 1 μm. The microactuator is tested in an unloaded condition (in air) and a loaded condition (with water and glass sheets) equivalent to a loading of 17 Pa. The microactuator presents a constant displacement of 16 nm, when the driving voltage is sinusoidal with amplitude of 5 V and frequency ranging from 500 Hz to 10 kHz. For the second actuator, the diaphragm size is 800 μm by 800 μm, the diaphragm thickness is 1 μm, and the PZT film thickness remains 1 m. The second actuator presents a displacement of 6 nm, when the sinusoidal driving voltage is 7.5 V in amplitude. Given that the motion of the stapes in normal hearing is 10-30 nm when the incoming sound pressure is 1 Pa (i.e.

  16. Properties of PZT thick film made on LTCC substrates with dielectric intermediate layers

    NASA Astrophysics Data System (ADS)

    DÄ browski, Arkadiusz; Golonka, Leszek

    2016-11-01

    Results of experiments on application of various interlayers between LTCC (Low Temperature Cofired Ceramics) substrate and thick-film PZT (Lead Zirconate - Titanate) are described in this work. Thick-film intermediate layers were based on several dielectric materials: TiN, Al2O3, SiC, TiO2, SiC, YSZ, BN. Seven screen printable pastes were prepared on the base of powders of mentioned materials with addition of glass and organic vehicle. The substrates were made of 951 (DuPont), CeramTapeGC (CeramTec) and HL2000 (Heraeus) LTCC tapes. Sandwich type transducers, consisting of barrier layer, gold bottom electrode, PZT layer and silver top electrode were prepared and characterized. Basic piezoelectric parameters - permittivity, effective charge constant (d33(eff)) and remanent polarization were determined. The best properties were obtained for substrates made of 951. In general, interlayers based on TiO2, SiC and Al2O3 improved permittivity and charge constant comparing to bare substrates. For example, for 951 substrate the PZT layer exhibited d33(eff) equal to 160, 215, 250 and 230 pC/N for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of CeramTape GC substrates determined permittivity was equal to 215, 245, 235 and 275 for bare substrate, TiO2 interlayer, SiC interlayer and Al2O3 interlayer, respectively. In case of TiN and BN materials the parameters were considerably deteriorated.

  17. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    PubMed

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the <011> Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived

  18. Optimization of a 0.69PZT-0.31PZNN thick film by controlling slurry viscosity and tape-casting blade height

    NASA Astrophysics Data System (ADS)

    Song, Daniel; Woo, Min Sik; Ahn, Jung Hwan; Sung, Tae Hyun; Kim, Kyoung Bum

    2014-12-01

    We investigated how the viscosities of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) slurry samples affect the laminated-film densities based on various conditions of degassing time for 0, 30, and 60 min. PZT-PZNN slurries with different viscosities were tape casted into green sheets by adjusting the comma blade height to 100, 200, 300, 400, and 500 μm. As a result the slurry viscosity linearly increased with increasing slurry degassing time, and the thickness of the green sheet increased with increasing comma blade height. The density and the dielectric properties of piezoelectric ceramic films with the same thicknesses, but composed of different numbers of layers, were compared. The laminated-film density and the dielectric property d33 × g33 increased with decreasing number of laminated layers. However, when the viscosity of the slurry was too high (degassing time > 60 min) and the comma blade height was too high (comma blade height > 300 μm), the tape-casted green sheet was too thick to have enough time to dry. By controlling the slurry viscosity by adjusting the degassing time and the comma blade height, we were able to optimize the thickness of the green sheet in a tape-casting. The optimal green sheet thickness was < 70 μm, and the number of sheets laminated should be minimized to increase the film's density and dielectric constant.

  19. PZT piezoelectric films on glass for Gen-X imaging

    NASA Astrophysics Data System (ADS)

    Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films ({700°C), a lower temperature, two-step crystallization process was employed. An {80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a

  20. Real-Time, Label-Free, All-Electrical Detection of Salmonella typhimurium Using Lead Zirconate Titanate/Gold-Coated Glass Cantilevers at any Relative Humidity

    PubMed Central

    Zhu, Qing; Shih, Wan Y.; Shih, Wei-Heng

    2007-01-01

    We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = −5×10−11g/Hz, and a detection concentration sensitivity, 5×103 cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor. PMID:22872784

  1. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm‑1 Oe‑1–130.5 V cm‑1 Oe‑1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  2. Processing effects for integrated PZT: Residual stress, thickness, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Ong, Ryan Jason

    This dissertation focuses on the integration of lead zirconate titanate (PZT) films on Pt/Ti/SiO2//Si, and the effect of on properties. Direct deposition of PZT on Si will lead to on-chip power capacitors, non-volatile memory cells, and vibration sensors. However, previous research indicates that the dielectric, ferroelectric and piezoelectric response characteristics for the devices are often inferior to bulk specimens. Property variations have been attributed to changes in several major variables including, chemical composition, phase content, grain size, crystallographic orientation, film thickness, and stress, each of which, in turn, can depend on processing. The first goal of this work was to design a sol-gel processing methodology to control all major variables except film thickness and stress, thus isolating their respective effects on properties. All specimens were verified to be of the Pb(Zr0.53Ti0.47)O3 composition, in the perovskite structure, with a constant grain size of 110nm, and with (111) fiber texture. PZT film thickness was varied from 95nm to 500nm and residual stress was measured to be either 150 or 180MPa, biaxial tensile, depending on thickness. These specimens allowed for new insights into the fundamental differences between bulk materials and thin films. A series-capacitor model accounted for the observed dilution in room-temperature K from >900 to ˜600 as film thickness decreased, but could not account for the absence of the expected dielectric anomaly at high temperatures. Instead, a stress-induced distributed phase transformation related to the polycrystalline nature of the film was proposed to account for the observed behavior. Residual stress reduced the spontaneous polarization values in these specimens to 32muC/cm 2 from the predicted stress-free value of 50muC/cm2. An increase in coercive field was attributed to interfacial capacitance and residual stress, whereas a decrease of 30MPa tensile stress resulted in an increase of d33

  3. Direct observation of single domains in poled (111) PZT (PbZr 0.25Ti 0.75O 3) films

    NASA Astrophysics Data System (ADS)

    Zybill, C. E.; Boubekeur, H.; Radojkovic, P.; Schwartzkopff, M.; Hartmann, E.; Koch, F.; Groos, G.; Rezek, B.; Bruchhaus, R.; Wersing, W.

    1999-10-01

    Films of (111) oriented poled ferroelectric lead zirconate titanate (PZT) crystallites on (100)Si/SiO 2/(111) Pt were investigated by scanning tunneling microscopy (STM), atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). SAXS investigations allowed to estimate a mean value of domain thickness of 17.5 nm. Exertion of stress (5.1×10 4 N m -2) to the film resulted in an increase of domain width of ˜1%. After metallization of the PZT surface with a Cr-Ni film of 5.2 nm or a Ti film of 5.0 nm thickness, domains were visible by STM measurements as parallel stripes on the surface with a width of 15-20 nm. A downward vertical corrugation of 1.0-1.5 nm typically occurred at the intersection site of domain walls with the surface. Its presence is ascribed to shear strain originating from coherency defects in the interface. High resolution AFM with electron beam deposited supertips on unmetallized samples revealed areas of typically several micrometers in diameter showing crystallites with perfectly aligned domains of 10-15 nm width. The domains formed parallel slabs of twinned-crystallites with their polarization c-axis changing alternately from [001] to [010] direction. For a fully poled (111) PZT film, the c-axis of each (90°) domain is inclined towards the surface by 35° and tilted against the surface normal by +45 or -45°, respectively. These results generally confirm the Speck-Streiffer-Pompe-Romanov domain model which predicts for a (111) PZT film of 500 nm thickness a polyvariant with alternating (90°) domains of 16.4 nm width.

  4. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation

    PubMed Central

    Jang, Ling-Sheng; Kuo, Kuo-Ching

    2007-01-01

    Lead Zirconate Titanate oxide (PZT) thick films with thicknesses of up to 10 mm were developed using a modified sol-gel technique. Usually, the film thickness is less than 1 mm by conventional sol-gel processing, while the electrical charge accumulation which reveals the direct effect of piezoelectricity is proportional to the film thickness and therefore restricted. Two approaches were adopted to conventional sol-gel processing – precursor concentration modulation and rapid thermal annealing. A 10 μm thick film was successfully fabricated by coating 16 times via this technique. The thickness of each coating layer was about 0.6 mm and the morphology of the film was dense with a crack-free area as large as 16 mm2. In addition, the structure, surface morphology and physical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) and electrical performance. The dielectric constant and hysteresis loops were measured as electric characteristics. This study investigates the actuation and sensing performance of the vibrating structures with the piezoelectric thick film. The actuation tests demonstrated that a 4 mm × 4 mm × 6.5 mm PZT film drove a 40 mm × 7 mm × 0.5 mm silicon beam as an actuator. Additionally, it generated an electrical signal of 60 mVpp as a sensor, while vibration was input by a shaker. The frequencies of the first two modes of the beam were compared with the theoretical values obtained by Euler-Bernoulli beam theory. The linearity of the actuation and sensing tests were also examined.

  5. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  6. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  7. Array lead zirconate titanate/glass piezoelectric microcantilevers for real-time detection of Bacillus anthracis with 10 spores/ml sensitivity and 1/1000 selectivity in bacterial mixtures

    NASA Astrophysics Data System (ADS)

    McGovern, John-Paul; Shih, Wei-Heng; Rest, Richard F.; Purohit, Mitali; Mattiucci, Mark; Pourrezaei, Kambiz; Onaral, Banu; Shih, Wan Y.

    2009-12-01

    An array of three identical piezoelectric microcantilever sensors (PEMSs) consisting of a lead zirconate titanate layer bonded to a glass layer was fabricated and examined for simultaneous, in situ, real-time, all-electrical detection of Bacillus anthracis (BA) spores in an aqueous suspension using the first longitudinal extension mode of resonance. With anti-BA antibody immobilized on the sensor surfaces all three PEMS exhibited identical BA detection resonance frequency shifts at all tested concentrations, 10-107 spores/ml with a standard deviation of less than 10%. The detection concentration limit of 10 spores/ml was about two orders of magnitude lower than would be permitted by flexural peaks. In blinded-sample testing, the array PEMS detected BA in three samples containing BA: (1) 3.3×103 spores/ml, (2) a mixture of 3.3×103 spores/ml and 3.3×105 S. aureus (SA) and P. aeruginosa (PA) per ml, and (3) a mixture of 3.3×103 spores/ml with 3.3×106 SA+PA/ml. There was no response to a sample containing only 3.3×106 SA+PA/ml. These results illustrate the sensitivity, specificity, reusability, and reliability of array PEMS for in situ, real-time detection of BA spores.

  8. Mechanical and Ferroelectric Response of Highly Textured PZT Films for Low Power MEMS

    DTIC Science & Technology

    2012-10-01

    W., Xu, B., Xie, Z., Hemker, K., "Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate ... zirconate titanate films by scanning force microscopy, Journal of Applied Physics, 81 (11), pp. 7480-7491, 1997. 5. Hidaka, T., et al

  9. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Kuzenko, D. V.

    2016-08-01

    The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.

  10. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement

    PubMed Central

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-01-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θx, θy) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μm of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μm of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μm, which approaches the desired imaging resolution, 5 μm, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system. PMID:25506131

  11. A comparative study of ultrasonic micro-motors based on single crystal PMN-PT and polycrystalline PZT ceramics

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen A.; Rayner, Philip J.; Gore, Jonathan; Bowles, Adrian R.; McBride, Richard C.

    2008-03-01

    A comparative study has been made to explore the potential benefits of newly available single-crystal ferroelectric materials when used in a practical device, in this case an ultrasonic micro-motor. This type of micro-motor exhibits exceptional power-to-weight characteristics, which could be exploited beneficially, for example, in unmanned air-vehicle (UAV) systems. The operating principles of a range of commercial and experimental motor designs were evaluated objectively in order to identify areas of performance that can potentially be enhanced using PMN-PT single-crystal piezoelectric ceramics. Based on this analysis a practical motor design was selected for construction and experimentation. Detailed numerical analysis indicated that a motor constructed from single crystal PMN-PT could be expected to provide an improvement in motor stall-torque by up to a factor of 2.8 and a no-load speed improvement by a factor of 1.5 when compared with motors based on standard polycrystalline lead-zirconate-titanate (PZT) ceramics. In practice single-crystal versions of the motor were found to produce double the power output of their polycrystalline counterparts. Overall efficiency was found to be improved two-fold. There were significant discrepancies between the numerical predictions for the single-crystal devices and their measured performance, whereas the polycrystalline devices were found to perform closely in line with predictions.

  12. Chem-prep PZT 95/5 for neutron generator applicatios : powder preparation characterization utilizing design of experiments.

    SciTech Connect

    Lockwood, Steven John; Rodman-Gonzales, Emily Diane; Voigt, James A.; Moore, Diana Lynn

    2003-07-01

    Niobium doped PZT 95/5 (lead zirconate-lead titanate) is the material used in voltage bars for all ferroelectric neutron generator power supplies. In June of 1999, the transfer and scale-up of the Sandia Process from Department 1846 to Department 14192 was initiated. The laboratory-scale process of 1.6 kg has been successfully scaled to a production batch quantity of 10 kg. This report documents efforts to characterize and optimize the production-scale process utilizing Design of Experiments methodology. Of the 34 factors identified in the powder preparation sub-process, 11 were initially selected for the screening design. Additional experiments and safety analysis subsequently reduced the screening design to six factors. Three of the six factors (Milling Time, Media Size, and Pyrolysis Air Flow) were identified as statistically significant for one or more responses and were further investigated through a full factorial interaction design. Analysis of the interaction design resulted in developing models for Powder Bulk Density, Powder Tap Density, and +20 Mesh Fraction. Subsequent batches validated the models. The initial baseline powder preparation conditions were modified, resulting in improved powder yield by significantly reducing the +20 mesh waste fraction. Response variation analysis indicated additional investigation of the powder preparation sub-process steps was necessary to identify and reduce the sources of variation to further optimize the process.

  13. Meteoritic Zircon.

    PubMed

    Marvin, U B; Klein, C

    1964-11-13

    Zircon (ZrSiO(5)) has been identified as an accessory mineral in the Vaca Muerta mesosiderite and in the troilite nodules of the Toluca iron meteorite. The occurrence in Vaca Muerta is a new discovery confirmned by electron-probe nmicroanalysis of a grain in a polished section of the meteorite. Our identification of zircon in Toluca substantiates an occurrence in this meteorite reported in 1895 by Laspeyres and Kaiser.

  14. Processing of PZT ceramics: aqueous mixing procedures for powder consolidation

    SciTech Connect

    Bunker, B.C.; Lamppa, D.L.; Moore, R.H.

    1986-02-01

    Inhomogeneities in chemical compositions and microstructures can result in lot-to-lot variations in the charge release characteristics of ferroelectric lead-zirconate-titanate ceramics. One source of inhomogeneity is agglomeration and selective sedimentation which occurs during aqueous mixing of the constituent oxides. Procedures using electrostatic and steric stabilization of oxide powders were developed for fabricating homogeneous powder compacts. Use of lead carbonate instead of lead oxide minimizes problems encountered using various slurry stabilization techniques.

  15. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Tang, Haixiong; Sodano, Henry A

    2014-12-03

    Lead zirconium titanate (PZT) nanowires are synthesized using a scalable two-step hydrothermal reaction. The piezo-electric coupling coefficient of the PZT NWs shows the highest value for PZT nano-wires in the literature (80 ± 5 pm/V). A PZT-NW-based nanocomposite is fabri-cated to demonstrate an energy-harvesting application with an open-circuit voltage up to 7 V and a power density up to 2.4 μW/cm(3) .

  16. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NASA Astrophysics Data System (ADS)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  17. Titan Submarines!

    NASA Astrophysics Data System (ADS)

    Oleson, S. R.; Lorenz, R. D.; Paul, M. V.; Hartwig, J. W.; Walsh, J. M.

    2017-02-01

    A NIAC Phase II submarine concept, dubbed 'Titan Turtle' for Saturn's moon Titan's northern sea, Ligea Mare. A design concept including science and operations is described for this -180°C liquid methane sea.

  18. Performance of PZT based MEMS devices with integrated ZnO electronics

    NASA Astrophysics Data System (ADS)

    Wallace, Margeaux

    This thesis describes routes to enable increased understanding and performance of lead zirconate titanate-based microelectromechanical systems (MEMS). Emphasis was placed on monolithic integration with interposer electronics, and in understanding the role of mechanical boundary conditions on the ferroelectric/ferroelastic response. Co-processing of ZnO thin film transistors (TFTs) with Pb(Zr0.52 Ti0.48)0.98Nb0.02O3 (PZT)-based piezoelectrics was investigated to assess whether interposer electronics on PZT can serve as a control scheme for large area arrays of sensors or actuators. ZnO TFT processing produced no measured changes in remanent polarization, dielectric constant, loss tangent, or aging rates. The TFT performance also did not degrade when fabricated on top of the PZT, the mobility (> 24 cm/Vs) remaining comparable to TFTs deposited on glass. To show ZnO array integration, a 5x5 array of PZT capacitors on glass was fabricated as a prototype for an adjustable X-ray mirror, where the ZnO TFT were used for row-column addressing of the actuators. 1.5 mum thick sputter deposited PZT on glass patterned with large area (cm2) electrodes had a dielectric constant of >1200, tandelta ˜ 2% and an average remanent polarization >23 muC/cm 2. Photoreactive benzocyclobutene (BCB) electrically isolated the ZnO TFTs from the top electrodes of the piezoelectric. Flex cables were bonded to the wafer using anisotropic conductive film (ACF) to connect the gates (row control) and the drains (column control) in the TFT array to a control box. It was found that when actuating the PZT cells through the TFT array, the glass mirror experienced approximately 1.5 mum of deflection for a 10 V application. Studies on ferroelectric/ferroelastic domain reorientation were also performed on 1.9 mum thick tetragonal {001} oriented PbZr0.3Ti 0.7O3 films doped with 1% Mn. Different mechanical boundary constraints were investigated and domain reorientation was quantified through the intensity

  19. Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Trong Tue, Phan; Shimoda, Tatsuya; Takamura, Yuzuru

    2017-01-01

    Patterning of lead zirconium titanate (PZT) films is crucial for highly integrated piezoelectric/ferroelectric micro-devices. In this work, we report a novel lift-off method using solution-processed indium zinc oxide (IZO) thin film as a sacrificial layer for sub-5 µm fine-patterning PZT film. The processes include IZO layer deposition and patterning, PZT film preparation, and final lift-off. The results reveal that the lift-off PZT processes provide better structural and electrical properties than those formed by the conventional wet-etching method. The successful patterning by the lift-off was mainly due to the fact that the IZO sacrificial layer is easy to etch and has a high-temperature resistance. This finding shows great promise for highly integrated electronic devices.

  20. Biologically functionalized nanochannels on ferroelectric lead zirconium titanate surfaces.

    SciTech Connect

    Ocola, L. E.; Pan, W. C.; Kuo, M.; Tirumala, V. R.; Reiss, B. D.; Firestone, M. A.; Illinois Mathematics and Science Academy

    2005-01-01

    We recently started a program at Argonne to exploit patterned, polarizable ferroelectric surfaces, such as lead zirconium titanate (PZT), as a means to create field-responsive inorganic-biomolecule interfaces to study and manipulate biomatter on surfaces. In this paper we will discuss the integration of nanochannels on the surface of PZT films and their selective functionalization to create nanovalves to control nanofluidic flow. Microfluidic devices have been fabricated using a variety of methods, ranging from thermal decomposition of buried patterned channels, to fabricating trenches via plasma etch or hot embossing followed by trench capping. Our work focuses on an alternative method by using a bilayer resist in an inverted configuration normally used for T- and Gamma- gate fabrication. This method is capable of yielding sub-100 nm nanochannels with high aspect ratios and sub-500nm alignment. We have recently demonstrated that the polarization hysteresis loop of PZT is the same before and after exposure to an aqueous environment. This opens the possibility of selective surface modification of PZT via coupling of a wide range of biomolecules (e.g., peptides, proteins) and the use of the electric-field-responsive properties of PZT to manipulate the function (e.g., orientation) of the tethered biomolecules. We have used phage display techniques to evolve specific peptide motifs that selectively bind to PZT. The optimum heptapeptide that facilitates both the attachment of functional biological molecules to the surface of PZT has been identified.

  1. Performance of PZT8 Versus PZT4 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, Dominick A.; Schulze, Gary W.

    PZT8 and PZT4 are the common "hard" piezoceramic materials used in power ultrasonic transducers (e.g., welding, cutting, sonar, etc.). PZT8 is perceived as the better choice for resonant devices, primarily due to its higher mechanical quality factor Qm. PZT8 is also considered a "harder" material compared to PZT4, since it has better stability at higher preloads and drive levels. Many transducer designers never consider PZT4 for their applications, even though it has clear advantages such as higher output (i.e., higher d33). Even the perceived advantage of PZT8 regarding Qm may not be significant for most Langevin, bolted stack type transducers if the mechanical joint losses dominate. This research is a case study on the performance of identical ultrasonic transducers used for semiconductor wire bonding, assembled with either PZT8 or PZT4 materials. The main purpose of the study is to establish rule-of-thumb transducer design guidelines for the selection of PZT8 versus PZT4 materials. Several metrics are investigated such as impedance, frequency, capacitance, dielectric loss, Qm, heating, displacement gain, and electro-mechanical coupling factor. The experimental and theoretical research methods include Bode plots, thermal IR camera imaging, scanning laser vibrometry and coupled-field finite element analysis.

  2. Flexoelectricity in PZT Nanoribbons and Biomembranes

    DTIC Science & Technology

    2015-01-09

    Michael_McAlpine. Biotemplated synthesis of PZT nanowires , Nano Letters (11 2013) Thanh_Nguyen, Ian_Hogue, Kellye_Cung, Prashant_Purohit, Michael_McAlpine...dependent growth of the neuron. In a third project we showed how bio-templated PZT nanowires could be used to produce currents when subjected to cyclic

  3. EXAFS study of PZT sols

    SciTech Connect

    Arcon, Iztok; Malic, Barbara; Kosec, Marija; Kodre, Alojz

    2003-12-10

    The environment of lead atoms in PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} (PZT) sols was analyzed by EXAFS. The sols were prepared by 2-methoxyethanol-route from lead acetate, titanium n-propoxide, and zirconium n-propoxide, either unmodified or modified with acetic acid or acetylacetone. The addition of the modifier evokes the crystallization of the perovskite phase in the films at a lower temperature. In the sols a change in the local Pb environments is observed only after modification with 2 mol of acetylacetone or acetic acid per mole of Zr n-propoxide. With lower amounts of acetylacetone modifier the local Pb neighborhood is not affected.

  4. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    SciTech Connect

    Eydam, Agnes Suchaneck, Gunnar Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-11-05

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes.

  5. Ceramic with zircon coating

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  6. Radiation Effects in Zircon

    SciTech Connect

    Ewing, Rodney C.; Meldrum, Alkiviathes; Wang, L. M.; Weber, William J.; Corrales, Louis R.

    2003-12-11

    The widespread distribution of zircon in the continental crust, its tendency to concentrate trace elements, particularly lanthanides and actinides, its use in age-dating, and its resistance to chemical and physical degradation have made zircon the most important accessory mineral in geologic studies. Because zircon is highly refractory, it also has important industrial applications, including its use as a lining material in high-temperature furnaces. However, during the past decade, zircon has also been proposed for advanced technology applications, such as a durable material for the immobilization of plutonium or, when modified by ion-beam irradiation, as an optic waveguide material. In all of these applications, the change in properties as a function of increasing radiation dose is of critical importance. In this chapter, we summarize the state-of-knowledge on the radiation damage accumulation process in zircon.

  7. Flexible graphene-PZT ferroelectric nonvolatile memory

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Kahya, Orhan; Tat Toh, Chee; Özyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol-gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm-2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene-PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  8. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  9. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  10. Titan Haze

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  11. The Climate of Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  12. Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Shaffer, J. W.; Sodano, H. A.

    2010-12-01

    Piezoelectric fiber composites (PFCs) have been developed in order to overcome the fragile nature of monolithic piezoelectric materials by embedding piezoceramic inclusions into a polymer matrix. The flexible nature of the polymer matrix protects the piezoelectric fiber from damage or fracture under mechanical loading and allows the composites to be easily conformed to curved surfaces for use in many applications. Although PFCs have many useful properties, they still suffer from several drawbacks, namely the required separate electrodes make it impossible to embed the composites into the host structure, and the relatively low tensile modulus of the piezoelectric inclusion means that it contributes little to structural properties. To resolve the inadequacies of current PFCs, a novel active structural fiber (ASF) was developed that can be embedded into a composite structure to perform sensing and actuation, and provide load bearing functionality. The concept and feasibility of this ASF has been validated by coating a silicon carbide (SiC) fiber with a barium titanate (BaTiO3) shell using electrophoresis deposition techniques. However, lead based ceramics react with SiC fiber during high temperature sintering and thus the use of these highly coupled piezoceramics requires alternative deposition approaches. This paper will introduce a new ASF fabricated by coating a single carbon fiber with a concentric PZT (PbZr0.52Ti0.48O3) shell using electrolytic deposition (ELD). ELD quickly and uniformly coats the fiber and, since the PZT precursor has a low crystallization temperature, the carbon fiber is not exposed to high sintering temperatures which typically degrade the in-plane material properties of the fiber and composite. Carbon fiber has been widely used in industry and studied in academia due to its excellent mechanical properties, while PZT has been extensively used for sensing or actuation because of its high piezoelectric coupling. Crystal structures of the PZT

  13. Does Titan have oceans?

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    1994-04-01

    Titan is one of the few worlds in the solar system whose essential nature remains hidden. Satellite data from Voyager are examined. Remote sensing investigations from Earth are explored. Possible models of Titan's surface are reviewed. A closer look at Titan would provide useful information. The data to be gathered by the planetary mission Cassini is discussed.

  14. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface

    NASA Astrophysics Data System (ADS)

    Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih

    2016-07-01

    The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.

  15. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  16. Intensive Titan exploration begins

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2005-01-01

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  17. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  18. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-15

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr{sub 0.5}Ti{sub 0.5}O{sub 3} after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 10{sup 15} neutrons/cm{sup 2}. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  19. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. Lastly, the results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  20. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE PAGES

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; ...

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. Lastly, the results demonstrate a method by which the effects of radiation on crystallographic structuremore » may be investigated.« less

  1. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-12-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO3) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10-9 m/V, about 45 times larger than for LiNbO3) but it decreased rapidly below 75 K; at 1.3 K, d15 was only about 8% of its room temperature value.

  2. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  3. A new generation of more pH stable reversed phases prepared by silanization of zirconized silica.

    PubMed

    Silva, César R; Airoldi, Claudio; Collins, Kenneth E; Collins, Carol H

    2008-05-16

    To further extend our studies in the search for reversed phases with enhanced durability at high pH, zirconized silica has now been explored as an alternative support. The synthesis of the new stationary phases involves silanization of a zirconium-modified silica support with a C(18) trifunctional silane, followed by endcapping. The chromatographic properties of the C(18) phases based on zirconized silica are similar to their titanized silica counterparts. Accelerated high pH stability tests, using phosphate mobile phases and elevated temperature, have shown that the zirconized silica phases have promising advantages not only over similarly prepared non-metalized phases but also over titanized silica C(18) phases.

  4. Ti site occupancy in zircon

    NASA Astrophysics Data System (ADS)

    Tailby, N. D.; Walker, A. M.; Berry, A. J.; Hermann, J.; Evans, K. A.; Mavrogenes, J. A.; O'Neill, H. St. C.; Rodina, I. S.; Soldatov, A. V.; Rubatto, D.; Sutton, S. R.

    2011-02-01

    Ti site occupancy in zircon (ZrSiO 4) is fundamental to thermobarometry because substitution mechanisms control Ti content-temperature relations. Here we describe the results of three independent methods used to demonstrate that Ti substitutes for Si and not Zr in zircon. Zircon grains were synthesized from oxide powders held in a Na 2WO 4 flux at 1 bar and 1300 °C. Zircon grains equilibrated with rutile + cristobalite show Ti contents (1201 ppm) nearly half that of zircon grains equilibrated with srilankite ((Ti,Zr)O 2) + tetragonal zirconia (2640 ppm). The lower Ti content of zircon grains produced at silica-saturated conditions indicates that Ti substitution predominately occurs on the Si site. Moreover, the higher Ti contents of silica-saturated experiments at 1 bar (1201 ppm), relative to those at 1 GPa (457 ppm, Ferry and Watson, 2007), indicates a substantial pressure effect on Ti solubility in zircon. Measured Ti K-α edge X-ray Absorption Near Edge Structure (XANES) spectra of synthetic zircon grains show energies and normalized intensities akin to those seen among tetrahedrally coordinated Ti-bearing standard minerals, strongly suggesting that Ti occupies the Si site. Density functional theory (DFT) calculations confirm that Ti substitution is most likely to occur on the Si site and predict a Ti-O bond length of 1.797 Å (compared to an average of 2.160 Å for substitution on the Zr site), in excellent agreement with X-ray Absorption Fine Structure (EXAFS) spectra of experimentally grown zircon grains which indicate a value of 1.76(1) Å. The software FEFF 8.4 was used to simulate XANES spectra from the defect structures determined by DFT for Ti substituting on both the Si and Zr sites. The predicted spectrum for Ti on the Si site reproduces all the key features of the experimental zircon spectra, whereas Ti on the Zr site is markedly different. All applied methods confirm that Ti substitutes for Si in zircon. Consequently, the Ti content of zircon at a

  5. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  6. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  7. ISO Spectroscopy of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; Schulz, B.; Feuchtgruber, H.; Gautier, D.; Ott, S.; de Graauw, Th.; Kessler, M. F.

    2000-11-01

    In the spectroscopic mode, Titan was observed by ISO in 1997 by SWS/Grating, PHT-S and CAM/CVF. The combination of these data provides Titan's spectrum from 5 to 17 and from 2.5 to 5 μm with resolving powers ranging from 40 (CAM/CVF) to 2000 (SWS). The analysis of the spectra provides information on (a) Titan's atmospheric structure (temperature and composition) and (b) Titan's surface (through the emission observed in the 2.9-micron window). In this paper we concentrate on the 7 to 9 and 2.5 to 5 micron regions. A temperature profile for Titan's disk is inferred from the analysis of the 7.7 μm CH4 band. The CH3D abundance is estimated to be 7.5 (+4.0-3.7) × 10-6, for a D/H ratio of 9.5 (+9.5-1.0) × 10-5. The 2.9 methane ``window'' on Titan is observed in its full shape for the first time. It shows two peaks at 2.7 and 2.8 μm, and an absorption feature at 2.75 μm, which may be the spectral signature of a surface component on Titan.

  8. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    SciTech Connect

    Kumar, Ashok Shukla, A. K.; Barrionuevo, D.; Ortega, N.; Katiyar, Ram S.; Shannigrahi, Santiranjan; Scott, J. F.

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  9. Tectonic features on Titan

    NASA Astrophysics Data System (ADS)

    Cook, C.; Barnes, J.

    2011-10-01

    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display known stress fields driven or modified by global forces which affect patterns of tectonism. Patterns such as these are seen in Europa's tidal forces, Enceladus' tiger strips, and Ganymede's global expansion. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays visible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored Virgae.

  10. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  11. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  12. Antiferroelectricity in lead zirconate

    NASA Astrophysics Data System (ADS)

    Tagantsev, Alexander K.

    2014-03-01

    Antiferroelectrics are essential ingredients for widely applied piezoelectric and ferroelectric materials. Despite their technological importance, the reason why materials become antiferroelectric has remained allusive since their first discovery. Experimentally, antiferroelectrics can be recognized as materials that exhibit a structural phase transition between two non-polar phases with a strong dielectric anomaly at the high temperature side of the transition. Despite a widely spread opinion that these materials can be viewed as direct analogues of antiferromagnetics, the so-called anti-polar ionic displacements at the transition do not guaranty the antiferroelectric behavior of the material while the interpretation of such behavior does not require the incorporation of the anti-polar ionic displacements in the scenario. To get insight in the true origin of antiferroelectricity, we studied the lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray scattering techniques and the Brillouin light scattering. Based on our experimental data, we showed that the driving force for antiferroelectricity is a ferroelectric instability. Through flexoelectric coupling, it drives the system to a state, which is virtually unstable against incommensurate modulations. However, the Umklapp interaction allows the system to go directly to the commensurate lock-in phase, leaving the incommensurate phase as a ``missed'' opportunity. By this mechanism the ferroelectric softening is transformed into an antiferroelectric transition. The remaining key parts of the whole scenario are repulsive and attractive biquadratic couplings that suppress the appearance of the spontaneous polarization and induce the anti-phase octahedral rotations in the low-temperature phase. The analysis of the results reveals that the antiferroelectric state is a ``missed'' incommensurate phase, and that the paraelectric to antiferroelectric phase transition is driven by the

  13. Standing wave brass-PZT square tubular ultrasonic motor.

    PubMed

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise).

  14. Electrical imprint effects on far infrared (FIR) transmittance spectrum in PZT ferroelectric films

    NASA Astrophysics Data System (ADS)

    Vivas C., H.

    2015-06-01

    Tunable transmittance response in the 0.1-25 THz range for a lead Zirconate Titanate Ferroelectric film under imprint effects and surface anisotropy is calculated by adapting the classical Landau Devonshire theory and Rouard's method. Induced electrical field is introduced by modulating the P - E polarization profile, while the dielectric permittivity frequency dependence enters into the formalism by taking into account the soft phonon mode E(TO1) contribution in the framework of the Drude-Lorentz model. It is found that two optical states of light transmittance emerge at zero applied field and normal incidence, and the intensities of transmitted light are closely correlated with the strength of imprint and the path of the electrical polarization.

  15. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  16. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  17. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  18. Titan - Some new results

    NASA Astrophysics Data System (ADS)

    Owen, T.; Gautier, D.

    New analyses of Voyager spectra of Titan have led to improvements in the determination of abundances of minor constituents as a function of latitude and altitude. Ground-based microwave observations have extended the Voyager results for HCN, and have demonstrated that CO is mysteriously deficient in the stratosphere. The origin of the CH4, CO, and N2 in Titan's atmosphere is still unresolved. Both primordial and evolutionary sources are compatible with the available evidence.

  19. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  20. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  1. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  2. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. The Titan Space Launch System

    NASA Astrophysics Data System (ADS)

    Keeley, J. T.

    1981-04-01

    The Titan III Space Launch Vehicle (SLV) System providing reliable fast response booster capability is discussed. Early Titans, including Titans I and II and the Gemini launch vehicle are described, and the elements of the Titan III, including the upper stages, payload fairings, and launch facilities are presented. The liquid boost module for STS performance augmentation and the Titan 34D SLV System are also discussed. The Titan III SLV System demonstrates excellent versatility while maintaining a high reliability record during thirteen years of operational flights, and provides optional use of solid thrust augmentation and launch sites on both Coasts.

  4. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  5. Witnessing Springtime on Titan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  6. Electromechanical properties of lanthanum-doped lead hafnate titanate thin films for integrated piezoelectric MEMS applications

    NASA Astrophysics Data System (ADS)

    Kügeler, C.; Böttger, U.; Schneller, T.

    2009-03-01

    This paper focuses on the deposition and electromechanical characterization of lanthanum-doped lead hafnate titanate (PLHT) thin films as key material in piezoelectric microelectromechanical systems (pMEMS). PLHT ( x/30/70) and PLHT( x/45/55) films with a thickness between 150 nm and 250 nm were deposited by chemical solution deposition (CSD). Thereby x varies between 0 and 10% La content. The electrical characterization shows that undoped ( x=0) PLHT exhibit ferroelectric behavior similar to PZT of the same composition. La doping results in reduced ferroelectric properties and also affects the electromechanical properties. Measurements using a double beam laser interferometer yield a piezoelectric coefficient d 33 of 60 pm/V, which stays constant with an increasing electric field. This leads to a linear displacement compared to undoped PLHT or conventional PZT films used for MEMS applications.

  7. Titan: Callisto With Weather?

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Pappalardo, R. T.

    2008-12-01

    Instead of being endogenically active, Titan's interior may be cold and dead. Those landforms on Titan that are unambiguously identifiable can all be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). At the scale of available imaging data, the surface is dominated by vast dune ergs and by fluvial erosion, transportation, and deposition. The sparse distribution of recognizable impact craters (themselves exogenic) is consistent with the presence of aeolian and fluvial activity sufficient to cover and or erode smaller craters, leaving only large ones. Previous suggestions of endogenically produced landforms have been, without exception, inconclusively identified. Features suggested to be cryovolcanic flows may be debris flows and other mass movements, facilitated by hydrocarbon-fluidized unconsolidated materials. Ganesa Macula has been suggested as a putative cryovolcanic dome, but it may simply be an impact structure that contains radar-dark dune or mass-wasted materials. Mountains, which are heavily modified by fluvial and mass wasting processes, could have formed as the scarps of large impact features and/or by slow contraction due to global cooling and freezing of an internal ammonia-water ocean, rather than by endogenically powered orogeny. A cold and inactive interior is consistent with an internal ammonia-water ocean, which has a peritectic temperature of 173K, easily obtained in Titan by radioactive decay alone in the absence of tidal heating. Titan's orbital eccentricity should have damped if its interior is warm and dissipative; instead, its high eccentricity can be ancient if the interior is assumed to be cold and non-dissipative. Indeed, it has been suggested that Titan may be non-hydrostatic, consistent with a thick ice shell and a cold and rigid interior. We suggest that the satellite most akin to Titan may be Callisto. Like Callisto, which may have formed relatively slowly in the outer circumjovian accretion disk

  8. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    SciTech Connect

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma; Pandey, Raghvendar K.

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  9. Influence of Interface and Polarization on Magnetoelectric Coupling in Ni-LEAD Zirconium TITANATE-Ni Trilayers Derived by Electroless Deposition

    NASA Astrophysics Data System (ADS)

    Bi, K.; Wang, Y. G.

    2012-06-01

    Magnetoelectric (ME) coupling in layered structures of magnetostrictive and piezoelectric phases are mediated by mechanical deformation and depends strongly on the interface conditions. Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure of the electroless deposited Ni layer was characterized by X-ray diffraction. The cross-section of the Ni/PZT layers was investigated using scanning electron microscopy. The value of ME voltage coefficient (αE,31) increases as the interface roughness increases. The maximum of αE,31 for the Ni/PZT/Ni trilayers polarized after electroless deposition is higher than that for the Ni/PZT/Ni trilayers polarized before electroless deposition. It is essential to optimize the interface and the polarization to obtain higher ME voltage coefficient.

  10. Optical properties of sol-gel-derived PZT thin films

    NASA Astrophysics Data System (ADS)

    Teowee, Gimtong T.; Boulton, J. M.; Motakef, Sharnaz; Uhlmann, Donald R.; Zelinski, Brian J.; Zanoni, Raymond; Moon, M.

    1992-12-01

    A series of sol-gel derived PT-based films, including PT, PZ, PZT, PLT, PLZ and PLZT, was prepared on platinized Si, fused SiO2 and Corning 7059 substrates. These films were fired at 400 - 700 C for 30 mins. The phase assembly and development were dependent on the precursor chemistries, processing and choice of substrates. The presence of Zr impacted significantly on the crystallization behavior, PbO loss and cracking behavior of the films. Crystallization was severely retarded, especially in Zr-containing PZT films when deposited on amorphous substrates compared to crystalline Pt substrates. Amorphous and crystalline PZT films can be utilized for passive and active optical applications. Waveguiding was achieved in an amorphous PZT 53/47 and a crystalline PLT 28 films and gave attenuation losses of 1.0 and 1.4 dB/cm respectively which represent the lowest values reported to date. The optical properties of the films were investigated using ellipsometry, UV-VIS transmission spectroscopy and waveguide loss measurements. Depending on composition and processing conditions, PZT films (2500 A thick) with refractive indices of 1.60 to 2.33 and absorption edges of 2900 - 3100 A can be obtained. It was ascertained that the resulting interfacial reaction layers between the films and substrates affected considerably the optical properties of thinner films (< 2000 A).

  11. Hypsometry of Titan

    USGS Publications Warehouse

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Stiles, Bryan; Le Gall, Alice; Hayes, Alexander; Aharonson, Oded; Wood, Charles A.; Stofan, Ellen; Kirk, Randy

    2011-01-01

    Cassini RADAR topography data are used to evaluate Titan's hypsometric profile, and to make comparisons with other planetary bodies. Titan's hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the 'glacial buzz-saw' that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.

  12. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  13. Barium titanate nanocomposite capacitor FY09 year end report.

    SciTech Connect

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  14. The tides of Titan.

    PubMed

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  15. Titan's hydrogen torus

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1981-01-01

    A model of Titan's hydrogen torus, capable of describing its time evolution under the influence of the gravitational fields of both the satellite and the planet, is presented. Estimated lifetimes for hydrogen atoms near Titan's orbit of the order of 10 to the 7th s, based on recent Pioneer 11 measurements, suggest that the torus completely encircles Saturn and is angularly unsymmetric, having an enhanced gas density near the satellite. New model calculations confirm this and provide an explanation for the torus detected by the Copernicus satellite and the UV instrument of Pioneer 11. Agreement between calculated and observed Lyman alpha intensities suggests a hydrogen escape flux between 1 x 10 to the 9th/sq cm-s and 3 x 10 to the 9th/sq cm-s should be operative at Titan. This produces a torus containing some 10 to the 34th hydrogen atoms.

  16. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  17. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  18. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  19. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  20. Radar reflectivity of Titan

    NASA Astrophysics Data System (ADS)

    Muhleman, D. O.; Grossman, A. W.; Butler, B. J.; Slade, M. A.

    1990-05-01

    The low dielectric constant of the liquid hydrocarbon and ethane-methane surface mixture of Titan has as a direct consequence a set of unique microwave-reflection properties which were sought out at 3.5-cm wavelength, using a 70-m transmitting antenna in conjunction with the VLA as a receiving instrument. The statistically significant echoes obtained indicate that Titan is not covered with a deep global ocean of ethane. A global ocean as shallow as about 200 m would have exhibited reflectivities smaller by an order of magnitude, and below the experiment's detection limit.

  1. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  2. Determination of uranium in zircon

    USGS Publications Warehouse

    Cuttitta, F.; Daniels, G.J.

    1959-01-01

    A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.

  3. Sol-gel derived PZT films doped with vanadium pentoxide

    SciTech Connect

    Shen Hongfang; Guo Qing; Zhao Zhiman; Cao Guozhong

    2009-11-15

    The present research investigated the sol-gel preparation, dielectric and ferroelectric properties of PZT films doped with 5 mol% vanadium oxide. Stable PZTV sols can be readily formed, and homogeneous, micrometer thick and pinhole-free PZTV films were obtained by using spin coating followed with rapid annealing. The X-ray diffraction patterns revealed that no parasitic or secondary phases were formed in the sol-gel PZT films with the addition of vanadium oxide. The material doped with vanadium pentoxide showed enhanced dielectric constant and remanent polarization with reduced loss tangent and coercive field.

  4. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  5. The lakes of Titan.

    PubMed

    Stofan, E R; Elachi, C; Lunine, J I; Lorenz, R D; Stiles, B; Mitchell, K L; Ostro, S; Soderblom, L; Wood, C; Zebker, H; Wall, S; Janssen, M; Kirk, R; Lopes, R; Paganelli, F; Radebaugh, J; Wye, L; Anderson, Y; Allison, M; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Francescetti, G; Gim, Y; Hamilton, G; Hensley, S; Johnson, W T K; Kelleher, K; Muhleman, D; Paillou, P; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Vetrella, S; West, R

    2007-01-04

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70 degrees north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table.

  6. Sinking with the Titanic

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-03-01

    In the Titanic movie, when the rear part of the ship is about to sink, Jack Dawson (Leonardo DiCaprio) says to Rose DeWitt Bukater (Kate Winslet) to get ready to swim, because the sinking body will suck them into the abysses. Is this sucking phenomenon really happening? And, if so, why?

  7. Nitrogen loss from Titan

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.; Johnson, R. E.; Michael, M.; Luhmann, J. G.

    2003-08-01

    Dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by photoelectrons and sputtering by the magnetospheric ions and pickup ions are the main sources of translationally excited (hot) nitrogen atoms and molecules in the upper atmosphere of Titan. As Titan does not posses an intrinsic magnetic field, Saturn's magnetospheric ions can penetrate Titan's exobase and sputter atoms and molecules from it. The sputtering of nitrogen from Titan's upper atmosphere by the corotating nitrogen ions and by photodissociation was addressed earlier [Lammer and Bauer, 1993; Shematovich et al., 2001]. Here penetration of slowed and deflected magnetospheric N+ and carbon-containing pickup ions is described using a Monte Carlo model. The interaction of these ions with the atmospheric neutrals leads to the production of fast neutrals that collide with other atmospheric neutrals producing heating and ejection of atoms and molecules. Results from Brecht et al. [2000] are used to estimate the net flux and energy spectra of the magnetospheric and pickup ions onto the exobase. Sputtering is primarily responsible for any ejected molecular nitrogen, and, for the ion fluxes used, we show that the total sputtering contribution is comparable to or larger than the dissociation contribution giving a total loss rate of ~3.6 × 1025 nitrogen neutrals per second.

  8. Titanates and Titanate-Metal Compounds in Biological Contexts

    PubMed Central

    Chen, Yen-Wei; Drury, Jeanie L.; Chung, Whasun Oh; Hobbs, David T.; Wataha, John C.

    2015-01-01

    Metal ions are notorious environmental contaminants, some causing toxicity at exquisitely low (ppm-level) concentrations. Yet, the redox properties of metal ions make them attractive candidates for bio-therapeutics. Titanates are insoluble particulate compounds of titanium and oxygen with crystalline surfaces that bind metal ions; these compounds offer a means to scavenge metal ions in environmental contexts or deliver them in therapeutic contexts while limiting systemic exposure and toxicity. In either application, the toxicological properties of titanates are crucial. To date, the accurate measurement of the in vitro toxicity of titanates has been complicated by their particulate nature, which interferes with many assays that are optical density (OD)-dependent, and at present, little to no in vivo titanate toxicity data exist. Compatibility data garnered thus far for native titanates in vitro are inconsistent and lacking in mechanistic understanding. These data suggest that native titanates have little toxicity toward several oral and skin bacteria species, but do suppress mammalian cell metabolism in a cells-pecific manner. Titanate compounds bind several types of metal ions, including some common environmental toxins, and enhance delivery to bacteria or cells. Substantial work remains to address the practical applicability of titanates. Nevertheless, titanates have promise to serve as novel vehicles for metal-based therapeutics or as a new class of metal scavengers for environmental applications. PMID:26430701

  9. Topological Modeling of Metamict Zircon

    NASA Astrophysics Data System (ADS)

    Hobbs, L. W.; Zhang, Y.; Yuan, X.

    2006-05-01

    Zircon (ZrSiO4) is the most studied metamict mineral and a leading model for candidate ceramic hosts designed to encapsulate highly radioactive nuclear waste and excess plutonium. It is also emblematic of compound oxide ceramics with a potential to phase separate in the amorphized state. Several groups have carried out ab initio or molecular dynamics (MD) simulations of melt-quenched or radiation-disordered zircon. A tendency for silica tetrahedra to polymerize, implying incipient phase separation, has been noted, but adequate descriptors of the amorphous state capable of distinguishing between different disordered arrangements have not been available. This contribution details critical modifications made to empirical potentials used in MD simulations and useful improvements in modeling efficiency that have facilitated constant pressure simulations of quenched and displacement cascade-amorphized zircon. The simulated end- states have been subjected to topological assessment algorithms for enumerating coordinations, bond lengths and bond angles; counting primitive rings and identifying structure-defining local primitive-ring clusters; and assessing degree of coordination-unit polymerization. The topologies of simulated melt, melt-quenched and cascade-amorphized disordered arrangements have been found to be different and distinguishable. A two-body Born-Mayer empirical potential with ZBL short-range repulsive term was fit to major structural, elastic, thermal and dielectric properties of crystalline zircon, but it was noted that the best crystalline fit, with non-stoichiometric partial ion charges, led to unrealistic coordinations in amorphized arrangements and uncontrolled expansions in constant pressure simulations because of silica polymerization. Therefore, stoichiometrically charge-balanced partial charges were instead chosen and optimized; the optimal choice of O-1.2, Si+2.4, Zr+2.4 led to realistic coordinations (Zr 7, Si 4) and well-behaved constant

  10. Titan's global geologic processes

    NASA Astrophysics Data System (ADS)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540-558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130-161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299-321. [5] Lopes et al. JGR: Planets, 118, 1-20. [6] Janssen et al., (2009) Icarus, 200, 222-239. [7] Janssen

  11. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  12. Upstream of Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.

    2011-12-01

    The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

  13. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  14. Ethane ocean on Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  15. Titan's Eccentricity Tides

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  16. Titanic exploration with GIS

    USGS Publications Warehouse

    Kerski, J.J.

    2004-01-01

    To help teachers and students investigate one of the world's most famous historical events using the geographic perspective and GIS tools and methods, the U.S. Geological Survey (USGS) created a set of educational lessons based on the RMS Titanic's April 1912 sailing. With these lessons, student researchers can learn about latitude and longitude, map projections, ocean currents, databases, maps, and images through the analysis of the route, warnings, sinking, rescue, and eventual discovery of the submerged ocean liner in 1985. They can also consider the human and physical aspects of the maiden voyage in the North Atlantic Ocean at a variety of scales, from global to regional to local. Likewise, their investigations can reveal how the sinking of the Titanic affected future shipping routes.

  17. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  18. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  19. The albedo of Titan

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Lutz, B. L.; Thompson, D. T.; Bus, E. S.

    1986-01-01

    Photometric observations of Titan since 1972 show a cyclical variation of about 10 percent. A minimum value of brightness and albedo apparently occurred in 1984. Spectrophotometric observations, made annualy since 1980 at 8 A resolution, 3295-8880 A, were used to derive the value p-asterisk = 0.156 + or - 0.010 for the integrated geometric albedo in 1984. Variations of the equivalent widths of spectral features were not seen.

  20. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  1. Gravity Science at Titan

    NASA Astrophysics Data System (ADS)

    Iess, Luciano; Rappaport, Nicole J.; Jacobson, Robert A.; Racioppa, Paolo; Stevenson, David J.; Tortora, Paolo; Armstrong, John W.; Asmar, Sami W.

    2010-05-01

    Doppler data from four Cassini flybys have provided a determination of the degree 3, order 3 gravity field of Titan. Thanks to the good quality of the data and the favourable geometry of the encounters, the unconstrained estimation of the harmonic coefficients has shown that Radau-Darwin equation can be used to infer the moment of inertia of the satellite. We present the results of the data analysis and outline their implications for the interior structure.

  2. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  3. On Titan's Xanadu region

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Barnes, Jason W.; Melosh, H. Jay

    2011-08-01

    A large, circular marking ˜1800 km across is seen in near-infrared images of Titan. The feature is centered at 10°S, 120°W on Titan, encompasses much of Titan's western Xanadu region, and has an off-center, quasi-circular, inner margin about 700 km across, with lobate outer margins extending 200-500 km from the inner margin. On the feature's southern flank is Tui Regio, an area that has very high reflectivity at 5 μm, and is hypothesized to exhibit geologically recent cryovolcanic flows (Barnes, J.W. et al. [2006]. Geophys. Res. Lett. 33), similar to flows seen in Hotei Regio, a cryovolcanic area whose morphology may be controlled by pre-existing, crustal fractures resulting from an ancient impact (Soderblom, L.A. et al. [2009]. Icarus, 204). The spectral reflectivity of the large, circular feature is quite different than that of its surroundings, making it compositionally distinct, and radar measurements of its topography, brightness temperature and volume scattering also suggest that the feature is quite distinct from its surroundings. These and several other lines of evidence, in addition to the feature's morphology, suggest that it may occupy the site of an ancient impact.

  4. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  5. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  6. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  7. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  8. PZT thin films for piezoelectric MEMS mechanical energy harvesting

    NASA Astrophysics Data System (ADS)

    Yeager, Charles

    This thesis describes the optimization of piezoelectric Pb(ZrxTi 1-x)O3 (PZT) thin films for energy generation by mechanical energy harvesting, and self-powered micro-electro-mechanical systems (MEMS). For this purpose, optimization of the material was studied, as was the incorporation of piezoelectric films into low frequency mechanical harvesters. A systematic analysis of the energy harvesting figure of merit was made. As a figure of merit (e31,ƒ)2/epsilon r (transverse piezoelectric coefficient squared over relative permittivity) was utilized. PZT films of several tetragonal compositions were grown on CaF2, MgO, SrTiO3, and Si substrates, thereby separating the dependence of composition on domain orientation. To minimize artifacts associated with composition gradients, and to extend the temperature growth window, PZT films were grown by metal organic chemical vapor deposition (MOCVD). Using this method, epitaxial {001} films achieved c-domain textures above 90% on single crystal MgO and CaF2 substrates. This could be tailored via the thermal stresses established by the differences in thermal expansion coefficients of the film and the substrate. The single-domain e31,ƒ for PZT thin films was determined to exceed -12 C/m2 in the tetragonal phase field for x ≥ 0.19, nearly twice the phenomenologically modeled value. The utilization of c-domain PZT films is motivated by a figure of merit above 0.8 C2/m4 for (001) PZT thin films. Increases to the FoM via doping and hot poling were also quantified; a 1% Mn doping reduced epsilonr by 20% without decreasing the piezoelectric coefficient. Hot poling a device for one hour above 120°C also resulted in a 20% reduction in epsilonr ; furthermore, 1% Mn doping reduced epsilonr by another 12% upon hot poling. Two methods for fabricating thin film mechanical energy harvesting devices were investigated. It was found that phosphoric acid solutions could be used to pattern MgO crystals, but this was typically accompanied by

  9. Titan after Cassini Huygens

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  10. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  11. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; John, B. E.; Kelemen, P. B.; Mazdab, F. K.; Wooden, J. L.; Cheadle, M. J.; Hanghøj, K.; Schwartz, J. J.

    2007-07-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.

  12. Metallic lead nanospheres discovered in ancient zircons

    PubMed Central

    Kusiak, Monika A.; Dunkley, Daniel J.; Wirth, Richard; Whitehouse, Martin J.; Wilde, Simon A.; Marquardt, Katharina

    2015-01-01

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods. PMID:25848043

  13. Metallic lead nanospheres discovered in ancient zircons.

    PubMed

    Kusiak, Monika A; Dunkley, Daniel J; Wirth, Richard; Whitehouse, Martin J; Wilde, Simon A; Marquardt, Katharina

    2015-04-21

    Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U-Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5-30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U-Pb ages obtained by high spatial resolution methods.

  14. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves

    PubMed Central

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-01-01

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104

  15. Dielectric properties of the multicomponent PZT-type solid solution

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Adamczyk, Małgorzata; Machnik, Zbigniew; Dercz, Grzegorz

    2015-10-01

    In this paper the multicomponent PZT-type solid solution doped by barium, calcium, strontium, bismuth and germanium with composition: Pb0.975Ba0.01Ca0.01Sr0.005(Zr0.52Ti0.48)O3 + 1.4 wt.% Bi2O3 + 0.3 wt.% GeO obtained by hot uniaxial pressing method is described. The results of structural, dielectric, ferroelectric and electromechanical studies of these ceramics are presented. It has been stated that introduction to the basic composition PZT admixtures of the barium, calcium, strontium, bismuth and germanium has a positive effect on the electro-physic parameters of obtained ceramic samples. This material has good microstructure, with high value of the dielectric permittivity (with the high temperature of phase transition) as well as low dielectric losses. It allows considering this material as elements for low frequency and high temperature electromechanical transducers.

  16. Enhance of ferroelectric properties by modifying Pb2+ side by Mg2+ in PZT (52/48) ceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Kumar, Pawan; Kar, Manoranjan; Sinha, S. K.

    2013-02-01

    Magnesium substituted lead zirconate titanate Pb1-xMgxZr0.52Ti0.48O3 (x=0.02, 0.04, 0.06 & 0.08) have been prepared by the sol-gel method. The crystal structure and phase purity of the samples were studied by powder X-ray diffraction (XRD) technique. The ferroelectric hysteresis loop measurements were carried out at room temperature using ferroelectric loop tracer over a field range of 4.5kv/cm. The saturation polarization and coercivety and remnant polarization increase with the increase in magnesium concentration. The piezoelectric constant was measured by varying the polling field was found to be decrease with the increase in concentration of magnesium.

  17. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  18. Titan Beyond Cassini—Huygens

    NASA Astrophysics Data System (ADS)

    Dougherty, Michele K.; Coustenis, Athena; Lorenz, Ralph D.

    This chapter reviews the unanswered science questions which remain after the Cassini-Huygens nominal tour as well as the many new questions which has arisen following new discoveries which have been made. Further missions to the Titan system which have been studied are described, in particular that of the most recent study, the Titan Saturn System Mission.

  19. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  20. Modeling the thermal behavior of PZT patches during the manufacturing process of smart thermoplastic structures

    NASA Astrophysics Data System (ADS)

    Elsoufi, L.; Khalil, K.; Lachat, R.; Charon, W.

    2007-08-01

    This paper concerns the manufacturing processes of thermoplastic structures including piezoceramic patches (PZT). The objective of the study reported here was to find a trade-off between the manufacturing conditions and the thermal endurance of the PZT patches. We studied the influence of high temperatures on the PZT efficiency during manufacturing. Two processes were considered: injection molding and thermoforming. The studied object consists of a polypropylene plate containing a PZT patch integrated at different positions. On the one hand, we simulated with ANSYS the thermal transient effects to study the PZT cooling according to the time of its exposure to heat for different fabrication cases and with different manufacturing processes. On the other hand, the loss in PZT generated voltage according to the temperature increment was measured by thermo-mechanical experiences using a dynamical-mechanical analysis machine (DMA) connected to an acquisition chain.

  1. Truss structure integrity identification using PZT sensor-actuator

    SciTech Connect

    Sun, F.P.; Chaudhry, Z.; Liang, C.; Rogers, C.A.

    1994-12-31

    This paper presents a frequency domain impedance-signature-based technique for health monitoring of an assembled truss structure. Unlike conventional modal analysis approaches, the technique uses piezoceramic (PZT) elements as integrated sensor-actuators for acquisition of signature pattern of the truss. The concept of the localization of sensing/actuation area for damage detection of an assembled structure is presented for the first time. Through a PZT patch bonded to a truss node and the measurement of its electric admittance, which is coupled with the mechanical impedance of the truss, the signature pattern of a truss is monitored. The admittance of a truss in question is compared with that of the original healthy truss. Statistic algorithm is then applied to extract a damage index of the truss based on the signature pattern difference. Experimental proof that over a selected band, the detection range of a bonded PZT sensor on a truss is highly constrained to its immediate neighborhood is presented. This characteristic allows accurate determination of the damage location in a complex real-world structure with a minimum mathematical modeling and numerical computation.

  2. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  3. Evaluating the Paleomagnetic Potential of Zircons

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Lima, E. A.; Weiss, B. P.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.

    2015-12-01

    Because zircon crystals commonly display high natural U/Pb ratios and excellent resistance to weathering, paleomagnetic data collected from zircons potentially enjoy the benefits of excellent age controls and minimal remagnetization from infiltrating fluids. We present rock magnetic and paleomagnetic experiments on two sets of zircons with contrasting geologic histories to determine the viability of zircons as paleomagnetic recorders. First, we characterize primary zircons from the Bishop Tuff, a pyroclastic deposit formed at 767±1 ka in a magnetic field of 43±3 µT. Magnetic field maps with ~10 µm resolution obtained with the nitrogen vacancy (NV) diamond magnetometer indicate that most ferromagnetic sources are situated within zircon interiors, suggesting a primary origin (Fig. 1A). Stepwise thermal demagnetization reveals well-defined components of magnetization blocked in most samples up to 580˚C, indicating the dominance of magnetite, which is the expected primary phase. The intensity of natural remanent magnetization (NRM) is typically 10-12 Am2. Ongoing Thellier-Thellier dual heating experiments will evaluate the accuracy of recovered paleointensities. Second, we study Hadean and Archean detrital zircons from the Jack Hills. In contrast to the Bishop Tuff samples, magnetic microscopy and stepwise thermal demagnetization demonstrate that the remanent magnetization of >80% of Jack Hills zircon are carried exclusively by secondary hematite situated on grain surfaces (Fig. 1B). NRM intensities range between 10-15 and 10-12 Am2 and decrease by a factor of several upon chemical removal of secondary hematite. Our analyses reveal a diversity of ferromagnetic mineralogies and distribution in natural zircons. While some zircon populations carry reliable paleomagnetic information, others are dominated by secondary ferromagnetic phases. Without the application of high-resolution magnetic microscopy techniques to identify the main ferromagnetic carrier, it is

  4. Titan's atmosphere from DISR

    NASA Astrophysics Data System (ADS)

    West, Robert

    This abstract distills information about Titan's atmosphere described in detail in a paper by M. G. Tomasko, L. Doose, S. Engel, L. E. Dafoe, R. West, M. Lemmon, E. Karkoschka and C. See, ‘A model of Titan's aerosols based on measurements made inside the atmosphere', Planetary and Space Sciences, in press, 2008. The Descent Imager Spectral Radiometer (DISR) observed Titan's sky and surface during the descent of the Huygens Probe in January, 2005. Measurements were made over the altitude range 160 Km to the surface near latitude -10 degrees. The DISR instrument package included several components to measure the radiation state as a function of altitude. These include upward and downward-looking visible and near-infrared spectrometers covering the wavelength range 450 to 1600 nm, an ultraviolet photometer, a solar aureole camera with polarizers, and a sun sensor. Measurements were made at a variety of azimuthal angles relative to the sun azimuth. Due to unanticipated behavior of the probe (reverse spin and high-amplitude, chaotic tip and tilt) the retrieval process has required more effort than was planned and the total science return is less than expected. Nevertheless the data yielded unsurpassed and unique information which constrain the optical and physical properties of the photochemical haze aerosols and condensate particles. The principal findings are (1) between 80 Km and 160 Km the photochemical haze is well mixed with the gas with a scale height of about 65 Km, (2) between 80 Km and the surface the particle optical depth is a linear function of altitude with a break in slope near 30 Km altitude, (3) optical properties of the haze do not depend much on altitude above 80 Km although more recent work by Tomasko and colleagues suggest a gradient in the stratosphere; below 80 Km there are changes in optical behavior which suggest that condensation plays a role, (4) the data confirm previous results which proposed a particle structure of aggregates of small

  5. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  6. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  7. Acetylene on Titan

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779-784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 - 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 - 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111-168 (Springer, 2004).

  8. The Tides of Titan

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Titan has long been thought to host a subsurface water ocean. A liquid water or water-ammonia layer underneath the outer icy shell was invoked to explain the Voyager and Cassini observations of abundant methane (an easily dissociated species) in the atmosphere of the satellite. Given the paucity of surface hydrocarbon reservoirs, the atmospheric methane must be supplied by the interior, and an ocean can both provide a large storage volume and facilitate the outgassing from the deeper layers of the satellite to the surface. Huygens probe observations of a Schumann-like resonance point to the presence of an electrically conductive layer at a depth of 50-100 km, which has been interpreted to be the top of an ammonia-doped ocean [1]. Cassini gravity observations provide stronger evidence of the existence of such subsurface ocean. By combining precise measurements of the spacecraft range rate during six flybys, suitably distributed along Titan's orbit (three near pericenter, two near apocenter one near quadrature), we have been able to determine the k2 Love number to be k2 = 0.589±0.150 and k2 = 0.637±0.224 in two independent so-lutions (quoted uncertainties are 2-sigma) [2]. Such a large value indicates that Titan is highly deformable over time scales of days, as one would expect if a global ocean were hidden beneath the outer icy shell. The inclusion of time-variable gravity in the solution provided also a more reliable estimate of the static field, including an updated long-wavelength geoid. We discuss the methods adopted in our solutions and some implications of our results for the interior structure of Titan, and outline the expected improvements from the additional gravity flybys before the end of mission in 2017. [1] C. Beghin, C. Sotin, M. Hamelin, Comptes Rendue Geoscience, 342, 425 (2010). [2] L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, Science, 337, 457 (2012).

  9. Titan Science Return Quantification

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  10. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  11. Shockwave induced resistivity decreasing in PZT 95/5-2Nb ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gao, Jun-Jie; Xie, Long; He, Hong-Liang; Wang, Gang-Hua; Bai, Jing-Song

    2017-01-01

    This paper focused on the resistivity variation of PZT 95/5-2Nb ferroelectric ceramics under shock compression. First, release current decreasing which is a sign of PZT 95/5-2Nb ceramic resistivity decreasing has been observed by a reasonable sample size design in shock-compact experiment. A depoling current model considering PZT 95/5-2Nb ceramic resistivity decreasing has been obtained. Experiment results analyzed with the model indicate that the resistivity of PZT 95/5-2Nb ceramics reduces to the order of 100 Ω m with applied shock stresses range from 2.5 to 3 GPa.

  12. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    SciTech Connect

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  13. Hydrothermal synthesis of sodium bismuth titanate and titanate nanofibers

    NASA Astrophysics Data System (ADS)

    Kundu, Animesh

    A hydrothermal processing method was developed for the synthesis of sodium bismuth titanate powders and thin films from suitable precursors at 150°C. Oxide precursors were best suited for preparing pure phase materials. The sodium bismuth titanate powders consisted of cube shaped crystals. A modified solution-reprecitation model involving partial dissolution of the precursors was proposed to explain the growth of these particles. The thin films were prepared on strontium titanate (100) substrate. A sample holder was specially designed and fabricated to secure the substrates in the reaction vessel. The result was a relatively smooth film of thickness ≤550 nm. The films were essentially single crystalline and had strong epitaxial relationship with the substrate. Titanate nanofibers (NaxH yTinO2n+1° zH2O) were known to form under similar hydrothermal conditions as sodium bismuth titanate powders. Detail research revealed that the pure hydroxide and oxide precursors tend to form sodium bismuth titanate powders or thin films. Titanate nanofibers were the predominant product when any other ions or organics were present in the precursor. Much faster reaction kinetics for the formation of nanofibers was observed when certain organic compounds were added deliberately with the precursors. Accordingly, a hydrothermal process was developed for converting the precursors to titanate nanofibers in a significantly shorter time than reported in the literature. A thin film consisting of vertically aligned nanofibers was prepared on titanium substrate at 150°C in as little as 30 minutes. Complete conversion of starting precursors to free standing nanofibers was achieved in ˜8 hours at 150°C. The as-prepared nanofibers were some form of sodium titanate. They were converted to hydrogen titanate by ion exchange. Differential Scanning calorimetric experiments were performed to understand the thermal evolution of the fibers. The hydrogen titanate fibers underwent structural

  14. Zircon-rutile-ilmenite froth flotation process

    SciTech Connect

    Schmidt, R.; Denham, D.L. Jr.

    1992-04-21

    This patent describes a method for separating a mixture of minerals comprising at least zircon, ilmenite and rutile. It comprises adding an acid solution to the mixture to acidify to a pH of between about 2.0 and 6.0; adding starch to the mixture to depress the ilmenite and the rutile; adding a source of fluoride ions to the mixture to provide a negative surface charge on the zircon surface to activate the zircon; adding an amine cationic collector to the mixture to float the activated zircon; subjecting the mixture containing the added acid solution, the fluoride ions, the starch and the cationic collector, to froth flotation; and withdrawing a float product comprising the zircon and a sink product comprising the ilmenite and rutile.

  15. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  16. The Geology of Titan

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  17. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  18. Touchdown on Titan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  19. Thermoelectricity in strontium titanate

    NASA Astrophysics Data System (ADS)

    Scullin, Matthew Leo

    This dissertation treats the synthesis, experimental characterization, thermoelectric properties, potential applications of, and theoretical basis for strontium titanate thermoelectric materials. It is found that doubly-doped strontium titanate, Sr1-xLaxTiO3-d is an efficient n-type thermoelectric material, yielding a dimensionless thermoelectric figure of merit zT higher than other oxides and among the highest of any thermoelectric material in general. The improvement in thermoelectric efficiency of this material over other oxides is attributed in large part to the oxygen vacancy, which increases the electronic effective mass m* and in turn thermopower, increases electrical conductivity through donating electrons, and decreases lattice thermal conductivity. Through proper selection of La and oxygen vacancy doping, m* can be tuned in the material in the range of 2-20 me and thermal conductivity reduced by over a factor of three compared to stoichiometric SrTiO3. The potential applications of thin-film thermoelectrics in energy conversion are explored. In addition, the remarkable oxygen reduction of SrTiO3 single-crystal substrates is reported as resulting from pulsed laser deposition growth of oxide thin-films on their surfaces.

  20. Namibian Analogs To Titan Dunes

    NASA Astrophysics Data System (ADS)

    Wall, Stephen D.; Lopes, R.; Kirk, R.; Stofan, E.; Farr, T.; Van der Ploeg, P.; Lorenz, R.; Radebaugh, J.

    2009-09-01

    Titan's equatorial dunes, observed in Cassini SAR, have been described as longitudinal, similar to longitudinal dunes in the Namib sand sea in southern Africa. Their "Y” junctions and the way they divert around topography are used as evidence of equatorial wind flow direction. In two instances of such diversion they exhibit overlying or crosshatched patterns in two distinct directions that have been interpreted as a transition to transverse dunes. Here we describe field observations of the Namibian dunes and these comparisons, we present images of the dunes from terrestrial SAR missions, and we discuss implications to both the Titan dunes and the wind regime that created them. Selected portions of the Namibian dunes resemble Titan's dunes in peak-to-peak distance and length. They are morphologically similar to Titan, and specific superficial analogs are common, but they also differ. For example, when Titan dunes encounter topography they either terminate abruptly, "climb” the upslope, or divert around; only the latter behavior is seen in remote sensing images of Namibia. Namib linear dunes do transition to transverse as they divert, but at considerably smaller wavelength, while at Titan the wavelengths are of the same scale. Crosshatching of similar-wavelength dunes does occur in Namibia, but not near obstacles. Many additional aeolian features that are seen at Namibia such as star dunes, serpentine ridges and scours have not been detected on Titan, although they might be below the Cassini SAR's 300-m resolution. These similarities and differences allow us to explore mechanisms of Titan dune formation, in some cases giving us clues as to what larger scale evidence to look for in SAR images. Viewed at similar resolution, they provide interesting comparisons with the Titan dunes, both in likeness and differences. A part of this work was carried out at JPL under contract with NASA.

  1. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  2. Huygens provides insights about Titan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2005-01-01

    Huygens provides insights about Titan Following the Huygens probe's successful 14 January soft landing on Titan, Saturn's largest moon, scientists at a 21 January European Space Agency (ESA) news briefing announced that the moon has Earth-like meteorology and geology, and that there is evidence for liquid methane. Martin Tomasko, principal investigator for the Huygens Descent Imager-Spectral Radiometer, said, ``Geological evidence for precipitation, erosion, mechanical abrasion and other fluvial activity says that the physical processes shaping Titan are much the same as those shaping Earth.''

  3. Mapping Methane in Titan's Atmosphere near Titan's Surface

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Soderblom, Jason; Barnes, Jason

    2016-06-01

    Titan's atmospheric methane may be coupled to sources and sinks on its surface. In order to map methane concentrations in layers just above Titan's surface, we use data sets in which locations on Titan are imaged from a variety of viewing angles (and within a short time span). We also use a radiative transfer code based on the Markov Chain method of Esposito and House (1978, AJ 219, 1058) to accommodate spherical atmospheric geometries. We report on (a) selected Cassini/VIMS flybys that image terrain on Titan from different angles, (b) the expected vertical resolution of methane maps near the surface from these flybys and (c) preliminary results: 3D methane and haze distributions and surface albedos.

  4. Planetary science: Huygens rediscovers Titan

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2005-12-01

    The first analyses of data sent by the Huygens probe from Saturn's largest moon Titan are flooding in. They paint a picture of a `Peter Pan' world - potentially like Earth, but with its development frozen at an early stage.

  5. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  6. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  7. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  8. Thin Film PZT Piezo MEMS for Micro-Robotic Angular Rate Sensing and Rotary Actuation

    DTIC Science & Technology

    2012-07-31

    Luz Sanchez, Rob Proie, Vishnu Ganesan, Joe Conroy, and Ron Polcawich July 31, 2012 U.S. Army Research Laboratory THIN FILM PZT PIEZO MEMS FOR...Caltech Angular rate sensing on 1-30 mg platform • 2 orders smaller than packaged state of the art gyroscope. • Integrated biomimetic PZT actuator

  9. The thermosphere of Titan

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.

    1984-01-01

    The vertical structure of Titan's thermosphere is calculated down to the mesopause as a function of local time based on Voyager 1 occultation data. The thermal time scales that characterize the diurnal behavior of the thermosphere are discussed, the input model atmosphere used to calculate the temperature profile is presented, and the dominant heating and cooling mechanisms in the thermosphere are examined. The temperature profiles obtained by integrating the heat transfer equation with and without electron heating are presented and discussed. The implications that derived exospheric temperatures have for the neutral hydrogen torus are investigated. The diurnal exospheric temperature is unlikely to exceed 225 K, averages between 187 and 197 K, and has a variational amplitude of 28 K or less. The vertical extent of the hydrogen cloud is too large to be explained in terms of simple thermal escape of hydrogen from the exosphere.

  10. Life on Titan

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  11. Chemistry in Titan

    NASA Astrophysics Data System (ADS)

    Plessis, S.; Carrasco, N.; Pernot, P.

    2009-04-01

    Modelling the chemical composition of Titan's ionosphere is a very challenging issue. Latest works perform either inversion of CASSINI's INMS mass spectra (neutral[1] or ion[2]), or design coupled ion-neutral chemistry models[3]. Coupling ionic and neutral chemistry has been reported to be an essential feature of accurate modelling[3]. Electron Dissociative Recombination (EDR), where free electrons recombine with positive ions to produce neutral species, is a key component of ion-neutral coupling. There is a major difficulty in EDR modelling: for heavy ions, the distribution of neutral products is incompletely characterized by experiments. For instance, for some hydrocarbon ions only the carbon repartition is measured, leaving the hydrogen repartition and thus the exact neutral species identity unknown[4]. This precludes reliable deterministic modelling of this process and of ion-neutral coupling. We propose a novel stochastic description of the EDR chemical reactions which enables efficient representation and simulation of the partial experimental knowledge. The description of products distribution in multi-pathways reactions is based on branching ratios, which should sum to unity. The keystone of our approach is the design of a probability density function accounting for all available informations and physical constrains. This is done by Dirichlet modelling which enables one to sample random variables whose sum is constant[5]. The specifics of EDR partial uncertainty call for a hierarchiral Dirichlet representation, which generalizes our previous work[5]. We present results on the importance of ion-neutral coupling based on our stochastic model. C repartition H repartition (measured) (unknown ) → C4H2 + 3H2 + H .. -→ C4 . → C4H2 + 7H → C3H8. + CH C4H+9 + e- -→ C3 + C .. → C3H3 + CH2 + 2H2 → C2H6 + C2H2 + H .. -→ C2 + C2 . → 2C2H2 + 2H2 + H (1) References [1] J. Cui, R.V. Yelle, V. Vuitton, J.H. Waite Jr., W.T. Kasprzak

  12. Investigation of zircon by CL (Cathodoluminescence) and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Didem Kılıç, Ayşe

    2016-10-01

    Puturge metamorphites consists of schist, gneisse, metagranite gneisse, amphibolite, kyanite quartzite and marble type rocks. Mineralogical studies, geochemical analysis (LA- ICPMS), Raman spectroscopy and cathodoluminescence (CL) imaging that it representing amphibolite facies and greenschiste facies. Zircon imaging called as a metamict from the cathodoluminescence images of zircon minerals. The partially radiated zircon particles is higher radiogenetic mineral ratio in comparison with other zircon particles. The ratio of the radiogenetic elements (U, Pb and Th) arises from chemical difference between the core and rims of zircons. The solubility of zircon effects environmental conditions such as high pH, Zr with hydroxyl ions. Especially alkaline fluids in environment can dissolve zircon. The results show that radiogenetic elements loss in zircons can be generated from metamict zircon through volume diffusion at low temperatures or by an external fluid (H2O). The loss of lead in zircon signifies that the fluids inserting the crystal lattice causes radiation damage processes.

  13. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers.

  14. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  15. Zircon dating of oceanic crustal accretion.

    PubMed

    Lissenberg, C Johan; Rioux, Matthew; Shimizu, Nobumichi; Bowring, Samuel A; Mével, Catherine

    2009-02-20

    Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks.

  16. Elastic softening of zircon by radiation damage

    SciTech Connect

    Salje, Ekhard K. H.

    2006-09-25

    The bulk modulus and the shear modulus of zircon soften by ca. 50% when zircon is amorphized by radiation damage. A theoretical description of the experimental findings is presented which shows that the elastic response on a zircon ceramics with radiation damage follows Hashin-Shtrikman [J. Mech. Phys. Solids 11, 127 (1963)] behavior with very narrow bounds. The elastic response depends, in good approximation, on the square of the volume fraction f{sub a} of the amorphized regions. In a slightly coarser approximation one finds an almost linear interpolation of the bulk and the shear modulus between those of the crystalline state and those of the fully amorphous state.

  17. Enhancement of fatigue endurance in ferroelectric PZT ceramic by the addition of bismuth layered SBT

    NASA Astrophysics Data System (ADS)

    Namsar, O.; Pojprapai, S.; Watcharapasorn, A.; Jiansirisomboon, S.

    2014-10-01

    Electrical fatigue properties of (1-x)PZT-xSBT ceramics (x = 0-1.0 weight fraction) were characterized. It was found that pure PZT ceramic had severe polarization fatigue. This was mainly attributed to an occurrence of the macroscopic cracks at near-electrode regions. On the contrary, pure SBT ceramic exhibited excellent fatigue resistance, which was attributed primarily to weak domain wall pinning. As small amount of SBT (0.1 ≤ x ≤ 0.3) was added into PZT, a small reduction of remanent polarization after fatigue process was observed. This demonstrated that these ceramics had high stability during the repeated domain switching due to their low oxygen vacancy concentration. Therefore, these results suggested that this new ceramic PZT-SBT system seemed to be an alternative material for replacing pure PZT in ferroelectric memory applications.

  18. STRENGTH PROPERTIES OF POLED PZT SUBJECTED TO BIAXIAL FLEXURAL LOADING IN HIGH ELECTRIC FIELD

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    Failure of poled PZT has been experimentally studied using ball-on-ring (BoR) biaxial flexure strength tests with an electric field concurrently applied. The as-received and aged PZTs were tested in high electric fields of -3 to 4 times the coercive field. Both the sign and the magnitude of electric field had a significant effect on the strength of poled PZT. A surface flaw type with a depth of around 18 m was identified as the strength limiter and responsible for the failure of the tested PZT. With a value of 0.76 MPa m1/2 in the open circle condition, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.

  19. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  20. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  1. Refractory Materials of Zirconate. Part 2: Synthesis and some properties of strontium, zirconate, calcium zirconate and barium zirconate

    NASA Technical Reports Server (NTRS)

    Okubo, Tsutomo; Yonemochi, Osamu; Nakamura, Kazuo; Maeda, Minoru

    1988-01-01

    Chemical compounds SrZrO3, CaZrO3, and BaZrO3 were synthesized by solid reaction and arc fusion, and their properties examined. Results were as follows: (1) in the synthesis of CaZrO3 by solid reaction, ZrO2 solid solution with cubic form was produced, which then changed into CaZrO3; (2) the BaZrO3 was a cubic form and did not show any transformation, while SrZrO3 and CaZrO3 with an orthorhombic form transformed to a cubic form at high temperature; and (3) the solubility of BaZrO3 in acid and its vaporization rate at a high temperature were greater than those of zirconates.

  2. Titan's Geology as Viewed by the Cassini Titan Radar Mapper

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.; Stofan, E. R.; Wood, C.; Robshaw, L.; Mitchell, K. L.; Radebaugh, J.; Lorenz, R.; Lunine, J.; Wall, S. D.; Kirk, R.; Cassini RADAR Team

    2007-05-01

    Cassini's Titan Radar Mapper has imaged the surface of Titan on 8 flybys to date, collecting Synthetic Aperture Radar (SAR) data at spatial resolution ranging from about 300 m to about 2 km. These radar images reveal that Titan's surface has been modified by both endogenic (volcanism, tectonism) and exogenic (impact cratering, erosion) processes, with no process dominating in an obvious way. Although less than 15 % of the surface of Titan has been imaged to date using SAR, the acquired swaths are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. Cryovolcanic units have been identified in SAR images mostly at mid-latitudes (40-60 N), these include the construct Ganesa Macula, several calderas with associated flows, and large cryovolcanic flows. Flybys over high northern latitudes have shown lacustrine features, the distribution of these features is consistent with colder temperatures and more precipitation at high latitudes. Some of the depressions filled by the lakes may be volcanic calderas, but a thermokarstic origin is also possible (Mitchell et al., Lunar Planet Sci. Conf. XXXVIII, 2007). Ridges and mountains that are interpreted to be of tectonic origin have been seen mostly at low latitudes (Radebaugh et al., Lunar Planet Sci. Conf. XXXVIII, 2007), while drainage channels appear common at all latitudes (Lorenz et al., Plan. Space Sci., submitted). Fields of dunes (Titan's "sand seas") are mostly equatorial, but a few isolated patches of dunes extend as far north as ~60 degrees. The distribution and orientation of dunes is as expected from Titan's winds (Lorenz et al., 2006, Science 312; Radebaugh et al., Icarus, submitted). Erosion by fluvial processes is likely to have occurred on a global scale. The small number of definitive impact craters suggests that these geologic processes are erasing or burying the majority of impacts. Future data will allow us to further

  3. Crack resistance and fracture toughness of PZT ceramics

    NASA Astrophysics Data System (ADS)

    Fett, Theo; Kamlah, Marc; Munz, Dietrich; Thun, Gerhard

    2001-07-01

    Failure of PZT materials is governed by the crack resistance curve (R-curve). The R-curve was evaluated for a soft PZT: (a) in controlled fracture tests with single-edge-notched bending bars via an improved compliance method combining mechanical compliance and microscopic crack length measurement, (b) by completely stable crack extension tests with a loading device consisting of two pairs of opposite line loads. It was found that the R-curves obtained with different test methods differ strongly. A possible interpretation of the differences is given. A theoretical part deals with the determination of the stress intensity factor solution for bending bars with edge cracks as used in the experiments. Piezoelectric materials exhibit a non-linear stress-strain curve and non-symmetry in tension and compression. Under these conditions the non- linear stress distribution is computed for the bending bar and the stress intensity factor is determined by using the fracture mechanics weight function method. From these computations it results that maximum deviations from the linear-elastic solution of less than 2% occur if a/W>0.3(a=crack length, W=specimen width). In case of the roller loading, it can be shown that maximum errors must be less than 7%.

  4. Crack detection of railway turnouts using PZT sensors (presentation video)

    NASA Astrophysics Data System (ADS)

    Ni, Yiqing; Li, Z. G.; Wu, F.

    2014-05-01

    Railway turnouts (railroad switches) are the weakest components of a rail track system. Cracks may occur in the railway turnouts due to cyclic loadings and impact loadings imposed by passing trains. It is of great significance to continuously monitor the health condition of the railway turnouts and promptly detect crack once it initiates. It is well-known that acoustic emission (AE) signals are generated when a crack initiates and propagates. Detecting the high-frequency AE signals by piezoelectric sensors can help identify the crack and its location. This paper reports the design and implementation of a PZT-based system for crack monitoring of railway turnouts. This online monitoring system is activated for signal collection by a trigger system when a train is arriving to pass through the instrumented railway turnout. It mainly detects the AE signals generated when a crack initiates during the train passage or when the initiated crack expands during the passage of a heavy haul wagon. This system has been installed on a railroad line for over one year and has successfully detected the damage occurring at a railroad switch during its service period. This paper also briefs a guided-wave-based system for monitoring of micro-cracks in rail tracks by integrating FBG and PZT sensors.

  5. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  6. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  7. Detrital Zircon Geochronology Applied to Basin Analysis

    NASA Astrophysics Data System (ADS)

    Gehrels, G. E.

    2014-12-01

    During the past ~15 years, detrital zircon geochronology has developed into a powerful tool for analyzing sedimentary features and processes. One of the most common applications is to use the ages of the youngest detrital zircons in a sample to constrain the maximum age of deposition. In an ideal case, for example in a region with active volcanism, the youngest zircon grains would have crystallized immediately prior to deposition and the lag time between crystallization and deposition is negligible. Such ages provide opportunities for reconstructing the chrono-stratigraphy of a sedimentary sequence, and establishing the chrono-correlation of sedimentary units and surfaces across broad regions. Most sedimentary units also yield detrital zircon grains that significantly predate deposition (because of the extreme durability of zircon). The ages of these grains provide a fingerprint (or chrono-facies) that can be used for comparison of sedimentary units. Such comparisons have traditionally been based on the presence/absence of age populations, but with larger data sets it is becoming possible to determine proportions of ages in a robust fashion, and thereby compare strata much more quantitatively. Common methodology for conducting these types of analyses is to determine ages for several hundred detrital zircon grains from each sample, with random selection of grains to generate a robust age distribution. If necessary, additional analyses are conducted on "young-looking" grains to improve precision on the max depo age. Such analyses commonly yield max depo ages that are reliable to 1-2%. Determining whether a max depo age approximates true depo age commonly requires geologic arguments (e.g., presence of volcanic lithic fragments, size/shape of the youngest zircon crystals, order of youngest ages in a sedimentary sequence). In addition to these chronologic applications, detrital zircon ages provide powerful tools for determining provenance, reconstructing dispersal

  8. Planetary science: Titan's lost seas found

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe

    2007-01-01

    When the Cassini spacecraft found no methane ocean swathing Saturn's moon Titan, it was a blow to proponents of an Earth-like world. The discovery of northern lakes on Titan gives them reason for cheer.

  9. Ferroelectric/electrode interfaces: Polarization switching and reliability of PZT capacitors in nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Chen, Ye (Mike)

    The objective of this work was to investigate how the interface between electrode and PZT influences the PZT capacitor reliability. In order to conduct a well controlled experiment only the top-electrode PZT film interface was modified to study its effect on switching characteristics (i.e. hysteresis loop), voltage switching endurance and polarization retention of state of the art MOCVD grown film (nominally identical). The polycrystalline PZT film (50 -- 90 nm thick) are dominantly tetragonal with small fractions of the rhombohedral phase. XPS analyses of the as-deposited PZT film found the existence of a Pb-rich carbonate surface layer on all PZT film provided by industrial collaborators. Using materials characterizations such as in-situ XPS and ARXPS in tandem with electrical measurements it was determined that the Pb-rich surface layer appears to be an engineered sacrificial layer, which is beneficial in maximizing the switchable polarization and in improving the endurance and opposite-state retention behavior of PZT based FRAM capacitors with Pt electrode. This is because the excess Pb on the PZT surface and the Pb in the surface PZT reacts readily with the Pt during the Pt top electrode deposition creating a Pb-deficient non-ferroelectric interface layer between the top electrode and the PZT film. ARXPS analyses showed that this defective layer was approximately one nanometer thick and this is consistent with the hysteresis loop measurements that indicated a similar interface layer thickness. Inferior switching endurance and polarization retention was found in PZT film with an engineered initial thicker defective interface layer (via a HNO3-clean of the PZT surface prior to the top electrode deposition). This could be due to the fact that this defective interface layer may have thickened during the voltage cycling and/or retention bake. The thickening could be caused by greater carrier trapping and/or interface reaction between the Pb and the Pt. This

  10. Plasmonic assisted two wave mixing phenomenon for energy transfer in ferroelectric PZT film

    NASA Astrophysics Data System (ADS)

    Gupta, Reema; Kumari, Satchi; Tomar, Monika; Gupta, Vinay

    2017-04-01

    Ferroelectric - photorefractive PZT thin films have been exploited to study the energy transfer using pump probe technique for the development of optical delay lines. Two-wave mixing has been studied for three different PZT thin film samples deposited using pulsed laser deposition (PLD) technique. Uniform distribution of gold micro-discs of 40 nm thickness and 120 μm diameter over the surface of PZT thin film plays a vital role in enhancing the two-wave mixing. This is due to the ferroelectric domains present in PZT thin film which get polarized as a result of excited surface plasmons at the Au-PZT interface. The dual effect leads to an enhanced energy transfer from pump to 'Probe Beam'. The maximum two-wave mixing gain was found to be about 1.185 and 1.055 respectively for gold micro-discs patterned and bare PZT thin film deposited on STO substrate. In comparison, the PZT thin film covered completely with the gold overlayer does not show any significant two wave mixing gain due to the scattering of light by Au overlayer.

  11. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  12. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  13. Structure of Titan's evaporites

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  14. No more blind dates with zircon!

    NASA Astrophysics Data System (ADS)

    Cornell, D. H.; Austin Hegardt, E.

    2003-04-01

    For ion probe zircon dating of complex samples it is important to understand the stratigraphic makeup and petrogenetic history of the rock and zircon. Our approach uses cathodoluminescent (CL) or backscattered electron (BSE) images, combined with microbeam trace element analyses by LA-ICPMS or SIMS. Geochemical and textural criteria for petrogenesis are based on a number of case studies. The main criteria are CL-character and relationships of domains, Th/U ratios and Ce anomalies in REE profiles. Following a theoretical analysis, three petrological environments are defined in which zircon develops specific characteristics. (1) In SILICATE LIQUIDS such as granite or diorite intrusions, zircon grows from or interacts with only a small magma volume limited by bulk diffusion rates and trace element partition is controlled by local effects. Oscillatory zonation develops in Si-rich magmas due to different uptake and supply rates of U etc. Xenocrysts develop U-rich, CL-dark rims by reworking or new growth. Positive Ce anomalies reflect local oxidation, driven by site-size preference for the smaller 4+ ion and isolated from Fe-buffering. Zircon Th/U ratios approach magmatic as the interaction volume does not equilibrate with other minerals. Total Pb-loss from CL-bright xenocryst cores can occur, given temperatures around 1000 C and sufficient time. (2) In METAMORPHIC ENVIRONMENTS with no melt present, zircon grows from or interacts with the fluids in grain-boundaries. Fast diffusion rates mean that the zircon equilibrates with a large area of solid minerals. Unzoned CL-bright (low-U) or dark (U>300 ppm) zircon develops as other minerals release Zr and U. In samples containing detrital grains, new zircon rims truncate oscillatory zonation. Reworking follows grain boundaries or cracks. Ce oxidation and Ce anomalies in zircon are prevented by the buffering effect of iron. Minerals like monazite in the paragenesis usually deplete the fluid in Th, leading to Th/U ratios below 0

  15. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009

  16. Titan II secondary payload capability

    NASA Astrophysics Data System (ADS)

    Butts, Aubrey J.; Nance, Milo; Odle, Roger C.

    Small satellite programs are often faced with the prospect of flying as a secondary payload because of size or funding considerations. This paper discusses a concept for flying such payloads on flights already scheduled on the Titan II SLV program over the next decade. The Titan II has the capability of inserting over 4200 lbs into LEO and larger payloads on ballistic trajectories from which higher orbits can be achieved when kick motors are used. Orbit changes are possible depending on the specific altitudes and payloads involved. Of the existing 13 remaining missions currently scheduled to fly on the Titan II SLV, excess performance is available on several missions that could be used to insert secondary payloads of up to 3000 lbs into their final orbit. This paper outlines an approach that would implement a secondary payload mission and allow small satellites to schedule a launch at a predetermined date through the year 2000.

  17. Titan ocean: Ethane, methane, nitrogen

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Detection of the atmosphere of Saturn's satellite Titan by the Voyager I spacecraft indicated an abundance of only 3 mol % methane (CH4). Recently J.I. Lunine, D.J. Stevenson, and Y.L. Yung calculated that 3 mol % methane is sufficiently low to preclude the stable coexistence of liquid methane on Titan's surface, which has a temperature of 94 K (Science, 222, 1229, 1983). Instead, Lunine et al. suggest that Titan's atmospheric methane may have broken down by a catalyzed photochemical reaction to ethane (C2H6). The resulting ocean would consist of a mixture of C2H6 and CH4 in the proportion of 3 to 1.

  18. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  19. Will Titan lose its veil?

    NASA Astrophysics Data System (ADS)

    Dimitrov, V.

    2007-08-01

    Methane CH4 is the only highly reactive and short-lived background component in Titan's atmosphere, so its overall reserve predetermines both features and duration of atmospheric chemical activity. Titan's global chemical activity is considered in terms of methane cycle. One cycle is defined as a period T0=7.0.1014s of complete photochemical destruction of methane's observable atmospheric content CH04 = 2.33.1017 kg. Cycle duration T0, number of the past NP =200±20, future NF =500±50 and total Nmax=NP+NF =700±70 cycles are the main quantitative indices of the global chemical activity [2]. The fact that the period T0 is much less than Titan's lifetime TT =1.42*1017s implies that the current content CH04 is continuously replenishing by methane global circulation. There are two sources of this replenishment, i.e. the outgassing of primordial methane reserve trapped in Titan's interior as the clathrate, and the (sub)ground liquidphase reduction of non-saturated final products of the atmospheric photochemical process. Internal reserve provides the dominant portion (>95%) of general recycling, while reducing reconversion is the minor constituent of the global balance. Yet, there is the problem of the availability of the off-the-shelf trapped methane. Overall admissible stock of the trapped methane depends on its internal allocation and falls in the range (CH4)max1,2=(15.3÷33.3).1020 kg, while continuous atmospheric activity during the whole Titan's life TSun 5.0.1017s needs only (CH4)crit=(CH04 ).Nmax = .(CH4)max 1.65.1020 kg. In turn, this bulk (CH4)crit depends on the clathrate cage-filling efficiency (molecular packing index) {kg CH4/kg clathrate} and can be provided if equals respectively to [1] crit1= (TSun/T0).[(CH4)0/[(CH4)max1] = 5.45.10-3 crit2= (TSun/T0).[(CH4)0/[(CH4)max2] = 2.51.10-3 Thus, the interrelation of overall trapped stock (CH4)max and crucial -values assigns the critical value (CH4)crit that in turn predetermines the very fate of Titan's veil

  20. Titan's chemical complexity

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique

    2012-04-01

    We review here our current knowledge of Titan's gas phase chemistry. We base our discussion on photochemical models as well as on laboratory experiments. We identify the lower mass positive [1,2] and negative [3] ions detected in the upper atmosphere and we show that their formation is a direct consequence of the presence of heavy neutrals. We demonstrate that the observed densities of CO, CO2 and H2O can be explained by a combination of exogenous O, and OH/H2O input [4]. We argue that benzene [5] and ammonia [6] are created in the upper atmosphere through complex chemical processes involving both neutral and ion chemistry. These species diffuse downward where they are at the origin of heavier aromatics and amines, respectively. Finally, we discuss the impact on hydrocarbon densities of recent theoretical calculations of the rate constants of association reactions [7]. [1] V. Vuitton, R. V. Yelle and V. G. Anicich, Astrophys. J., 647, L175 (2006). [2] V. Vuitton, R. V. Yelle and M. J. McEwan, Icarus, 191, 722 (2007). [3] V. Vuitton, P. Lavvas, R. V. Yelle, M. Galand, A. Wellbrock, G. R. Lewis, A. J. Coates and J.-E. Wahlund, Planet. Space Sci., 57, 1558 (2009). [4] S. M. Hörst, V. Vuitton, and R. V. Yelle, J. Geophys. Res., 113, E10006 (2008). [5] V. Vuitton, R. V. Yelle and J. Cui, J. Geophys. Res., 113, E05007 (2008). [6] R. V. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst and J. Cui, Faraday Discuss., 147, 31 (2010). [7] V. Vuitton, R. V. Yelle, S. J. Klippenstein and P. Lavvas, Astrophys. J., in press.

  1. Jurassic zircons from the Southwest Indian Ridge.

    PubMed

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-17

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  2. Radiation damage in zircon and monazite

    SciTech Connect

    Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C.

    1998-07-01

    Monazite and zircon respond differently to ion irradiation and to thermal and irradiation-enhanced annealing. The damage process (i.e., elastic interactions leading to amorphization) in radioactive minerals (metamictization) is basically the same as for the ion-beam-irradiated samples with the exception of the dose rate which is much lower in the case of natural samples. The crystalline-to-metamict transition in natural samples with different degrees of damage, from almost fully crystalline to completely metamict, is compared to the sequence of microstructures observed for ion-beam-irradiated monazite and zircon. The damage accumulation process, representing the competing effects of radiation-induced structural disorder and subsequent annealing mechanisms (irradiation-enhanced and thermal) occurs at much higher temperatures for zircon than for monazite. The amorphization dose, expressed as displacements per atom, is considerably higher in the natural samples, and the atomic-scale process leading to metamictization appears to develop differently. Ion-beam-induced amorphization data were used to calculate the {alpha}-decay-event dose required for amorphization in terms of a critical radionuclide concentration, i.e., the concentration above which a sample of a given age will become metamict at a specific temperature. This equation was applied to estimate the reliability of U-Pb ages, to provide a qualitative estimate of the thermal history of high-U natural zircons, and to predict whether actinide-bearing zircon or monazite nuclear waste forms will become amorphous (metamict) over long timescales.

  3. Jurassic zircons from the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from‑2.3 to‑4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  4. Jurassic zircons from the Southwest Indian Ridge

    PubMed Central

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-01-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U–Pb and Lu–Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7–+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from−2.3 to−4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins. PMID:27185575

  5. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  6. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.

  7. Influence of oxygen on the quality of the PZT thin films prepared by IBS

    NASA Astrophysics Data System (ADS)

    Horodyska, Petra; Hlubucek, Jiri; Zidek, Karel; Vaclavik, Jan

    2016-11-01

    Pb(Zr,Ti)O3 (PZT) is a ferroelectric material interesting for its high dielectric constant and piezoelectric response. PZT thin films can be prepared by various methods, e.g. pulsed laser deposition, chemical vapor deposition, sol-gel and, most frequently, sputtering. Though the magnetron sputtering is used more frequently, PZT thin films can be prepared also by ion-beam sputtering (IBS). In this paper we study the deposition process of PZT thin films in our IBS system with a possibility of ion-beam assisted deposition (IBAD), which has the advantage that more energy can be added to the growing layer. We show how in our system the resulting layers, mainly their quality, the Pb content, which is important for the creation of the perovskite crystal structure, and the resulting crystal structure are influenced by the oxygen flux during the deposition for the samples grown on the silicon substrate with and without an intermediate Ti seeding layer.

  8. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  9. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  10. Fabrication and Characterization of PZT Thin-Film on Bulk Micromachined Si Motion Detectors

    SciTech Connect

    Clem, P.; Garino, T.J.; Laguna, G.; Tuttle, B.A.

    1999-01-07

    Motion detectors consisting of Pb(Zr{sub x}Ti{sub (1{minus}x)})O{sub 3} (PZT) thin films, between platinum electrodes, on micromachined silicon compound clamped-clamped or cantilever beam structures were fabricated using either hot KOH or High Aspect Ratio Silicon Etching (HARSE) to micromachine the silicon. The beams were designed such that a thicker region served as a test mass that produced stress at the top of the membrane springs that supported it when the object to which the detector was mounted moved. The PZT film devices were placed on these membranes to generate a charge or a voltage in response to the stress through the piezoelectric effect. Issues of integration of the PZT device fabrication process with the two etching processes are discussed. The effects of PZT composition and device geometry on the response of the detectors to motion is reported and discussed.

  11. CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay

    2010-01-01

    Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that is being considered in fuel injection system.

  12. Titan Aeromony and Climate Workshop

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  13. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  14. The dynamics of Titan's troposphere.

    PubMed

    Tokano, Tetsuya

    2009-02-28

    While the Voyager mission could essentially not reveal the dynamics of Titan's troposphere, useful information was obtained by the Cassini spacecraft and, particularly, by the Huygens probe that landed on Titan's surface; this information can be interpreted by means of numerical models of atmospheric circulation. The meridional circulation is likely to consist of a large Hadley circulation asymmetric about the equator, but is susceptible to disruption by turbulence in clouds. The zonal wind in the troposphere is comparable to or even weaker than that in the terrestrial troposphere and contains zones of easterlies, much in contrast to the super-rotating stratosphere. Unique to Titan is the transition from a geostrophic to cyclostrophic wind balance in the upper troposphere. While Earth-like storm systems associated with baroclinic instability are absent, Saturn's gravitational tide introduces a planetary wave of wavenumber 2 and a periodical variation in the wind direction in the troposphere. Unlike on Earth, the wind over the equatorial surface is westerly. The seasonal reversal in the Hadley circulation sense and zonal wind direction is predicted to have a substantial influence on the formation of dunes as well as variation of Titan's rotation rate and length of day.

  15. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  16. Strain mediated coupling in magnetron sputtered multiferroic PZT/Ni-Mn-In/Si thin film heterostructure

    SciTech Connect

    Singh, Kirandeep; Kaur, Davinder; Singh, Sushil Kumar

    2014-09-21

    The strain mediated electrical and magnetic properties were investigated in PZT/Ni-Mn-In heterostructure deposited on Si (100) by dc/rf magnetron sputtering. X-ray diffraction pattern revealed that (220) orientation of Ni-Mn-In facilitate the (110) oriented tertragonal phase growth of PZT layer in PZT/Ni-Mn-In heterostructure. A distinctive peak in dielectric constant versus temperature plots around martensitic phase transformation temperature of Ni-Mn-In showed a strain mediated coupling between Ni-Mn-In and PZT layers. The ferroelectric measurement taken at different temperatures exhibits a well saturated and temperature dependent P-E loops with a highest value of P{sub sat}~55 μC/cm² obtained during martensite-austenite transition temperature region of Ni-Mn-In. The stress induced by Ni-Mn-In layer on upper PZT film due to structural transformation from martensite to austenite resulted in temperature modulated Tunability of PZT/Ni-Mn-In heterostructure. A tunability of 42% was achieved at 290 K (structural transition region of Ni-Mn-In) in these heterostructures. I-V measurements taken at different temperatures indicated that ohmic conduction was the main conduction mechanism over a large electric field range in these heterostructures. Magnetic measurement revealed that heterostructure was ferromagnetic at room temperature with a saturation magnetization of ~123 emu/cm³. Such multiferroic heterostructures exhibits promising applications in various microelectromechanical systems.

  17. Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation

    NASA Astrophysics Data System (ADS)

    Huynh, Thanh-Canh; Nguyen, Tuan-Cuong; Choi, Sang-Hoon; Kim, Jeong-Tae

    2016-04-01

    In this study, the pre-stress force in pre-stressed concrete (PSC) girders is monitored via mountable PZT interface under varying temperature. Firstly, an impedance-based technique using mountable PZT interface is proposed for pre-stress-loss monitoring in tendon-anchorage systems. A cross correlation-based temperature-effect compensation algorithm using an effective frequency shift (EFS) of impedance signatures is visited. Secondly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at tendon-anchorage. A series of temperature variation and pre-stress-loss events are simulated for the lab-scale PSC girder. Thirdly, the feasibility of the mountable PZT interface for pre-stress-loss monitoring in tendon-anchorage is experimentally verified under constant temperature conditions. Finally, the PZT interface device is examined for pre-stress-loss monitoring under temperature changes to validate its applicability. The temperature effect on impedance signatures is compensated by minimizing cross-correlation deviation between impedance patterns of the mountable PZT interface.

  18. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  19. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  20. Titan's Spectacular Volte-Face

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2013-10-01

    Like Earth, Titan sports lakes, storms and rainfall. These features derive from a methane cycle, reminiscent of Earth's hydrological cycle; methane exists as an ice, liquid and gas and transfers between the surface and atmosphere, according to the seasonal weather. Titan's seasons contrast Earth’s. Imagine a summer trip to 70 latitude, where hurricane-sized storms burst forth out of a clear sky every few months for about 15 years. Then they vanish for another 15 years. Envision a trip to the winter polar region. Here the sky is perhaps clear except that the high haze, which filters sunlight like a translucent globe, is somewhat thicker than it is in the summer. Imperceptibly, you are blocking the diffuse organic matter, which is slowly settling out of the hazy orb, and accumulating on the polar surface. These effects are a few of the many that derive from Titan’s circulation and its seasonal changes during the satellite's 29.5 Earth year orbit about the Sun. In particular, and as indicated in recent observations, Titan's circulation flip-flopped. Before equinox in 2009, on average, air rose in the southern polar region and downwelled in the northern polar region. Now the reverse appears to be happening. Here we discuss the observations ranging from the surface to ~500 km altitude that reveal the symphony of responses of Titan's surface and atmosphere to this dramatic shift. In addition we discuss the syntheses of these effects, from theoretical efforts involving microphysical models, local cloud models and general circulation models, with the question of why Titan's seasonal changes are so much more spectacular compared to those of Earth.

  1. Nitrogen compounds in Titan's stratosphere

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Cirs Investigation Team

    Titan's atmosphere is essentially composed of molecular nitrogen (N2). The chemistry between the two mother molecules (N2 and CH4) leads to the formation of a certain number of nitriles observed in Titan's stratosphere as early as at the time of the Voyager 1 encounter in 1980. In the spectra taken by the Infrared Radiometer Interferometer Spectrometer (IRIS) the signatures of HCN, HC3N, C2N2 and C4N2 (in solid form) were found and reported. Subsequent observations from the ground better described the vertical profiles of these constituents and allowed for the detection of CH3CN (acetonitrile) in the mm range [3,4]. Recent data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys (October 2004 - June 2006) give a handle on the temporal and latitudinal variations of these constituents. The nadir spectra characterize various regions on Titan from 85°S to 75°N with a variety of emission angles. We study the emission observed in the mid-infrared CIRS detector arrays (covering roughly the 600-1500 cm-1 spectral range with apodized resolutions of 2.54 or 0.53 cm-1 ). The composite spectrum shows several molecular signatures of nitriles. Information is retrieved on the meridional variations of the trace constituents and tied to predictions by dynamical-photochemical models [1,2,5]. The nitriles show a significant enhancement at high northern latitudes albeit not as marked as at the time of the Voyager encounter. We will give a review of our current understanding of the minor nitrile chemistry on Titan. References : [1] Coustenis et al., 2006. Icarus, in press. [2] Flasar et al., 2005. Science 308, 975. [3] Marten, A., et al., 2002, Icarus, 158, 532-544. [4] Marten, A. & Moreno, R., 2003. 35th Annual DPS Meeting, Monterey, Ca, BAAS, 35, 952. [5] Teanby et al., 2006. Icarus, 181, 243-255.

  2. TiTaN Reconsidered

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2008-12-01

    Strongly positive TiO2, Ta, and Nb (TiTaN) anomalies (1) in a Samoan ankaramite from Ofu Island have been attributed to the presence of refractory yet titanian eclogite in the mantle source. From chemical compositions, however, the anomalies could instead result from concentration of phenocrysts in magmas produced by mixing between a highly differentiated alkalic basalt and a crystal sludge carrying abundant olivine, clinopyroxene and especially titanomagnetite phenocrysts, the latter producing much of the TiTaN anomalies, and behaving much like rutile in eclogite. This is consistent with petrography. The distinctive effects of addition of each mineral are well illustrated on major-oxide variation diagrams. Separation of these minerals from liquids (to concentrate in ankaramites and dunite-wehrlite-pyroxenite cumulates) beginning at about 0.15 GPa in the mantle produces residual felsic differentiates (hawaiites, mugearites) with low TiTan anomalies (<1), exemplified by samples dredged elsewhere in Samoa from Savai'i (2). The Ofu samples have a low EMII signature (high 3He/4He), whereas the Savai'i samples have a high EMII signature (low 3He/4He), the extremes at Samoa. This gives a coincidental positive correlation at Samoa overall between TiTan anomalies and 3He/4He, TiTan anomalies being accentuated at the two places by the contrasting effects of phenocryst addition and subtraction during differentiation. High 3He/4He beneath several eastern Samoan volcanoes appears to be an attribute of near-FOZO mantle sources with minimal EM2 signature. (1) Jackson, M., et al., 2008. G-Cubed 9: doi:1029/2007GC001876 (2) Jackson, M., et al., 2007, Nature 448: 684-687, doi:10.1038/nature060488

  3. Titan at the Edge: Global Simulations of Titan's Plasma Interaction near Saturn's Magnetopause

    NASA Astrophysics Data System (ADS)

    Snowden, D. S.; Winglee, R.; Kidder, A.

    2011-12-01

    We analyze how the dynamics of Saturn's dayside magnetosphere affect Titan's plasma interaction with a three-dimensional multifluid/multiscale model of Titan embedded in a global model of Saturn's magnetosphere. The characteristics of Titan's environment at 09:00 Saturn local time (SLT) were studied for three cases: a stationary magnetopause, an inward moving magnetopause, and an outward moving magnetopause. The results show that the plasma and magnetic field upstream of Titan vary on short and long time scales. Rotating cold, interchange fingers cause rapid changes in the plasma velocity, density, and composition, while gradual changes are due to the relatively slow compression and expansion of Saturn's magnetopause. We find that Titan can enter the boundary layer on the inside of the magnetopause, which is characterized by shearing flows and a mix of magnetospheric and magnetosheath plasma. The irregular flows in the boundary layer strongly modify Titan's induced magnetosphere. We also examine how Titan's induced magnetosphere and ion tail are affected when Titan crosses Saturn's magnetopause at 13.6 Saturn local time (SLT). During the simulation Titan crosses Saturn's magnetopause twice, exiting and reentering the magnetosphere. Inside Saturn's magnetosheath, Titan's connection to Saturn's magnetic field lines is removed by slow ionospheric convection in ˜1.8 hours and, after Titan crosses back into the magnetosphere, Titan's connection to magnetosheath field lines is removed through ionospheric convection in ˜50 minutes. We also use the two simulations to investigate how Titan may affect the dynamics of Saturn's magnetopause and find that Titan's ion tail may be able to prevent the magnetopause from moving inward and crossing Titan when Titan is in the pre-noon sector. The results of the simulations are compared to data from Cassini's TA and T32 flybys and to the observed variability at Titan's orbital radius.

  4. Extinct 244Pu in ancient zircons.

    PubMed

    Turner, Grenville; Harrison, T Mark; Holland, Greg; Mojzsis, Stephen J; Gilmour, Jamie

    2004-10-01

    We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.

  5. 77 FR 59690 - Titan Resources International, Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... COMMISSION Titan Resources International, Corp.; Order of Suspension of Trading September 26, 2012. It... concerning the securities of Titan Resources International, Corp. (``Titan''). Titan is a Wyoming corporation... releases and other public statements concerning Titan's business operations and financial condition....

  6. Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics.

    PubMed

    Lu, Biao; Li, Peilian; Tang, Zhenhua; Yao, Yingbang; Gao, Xingsen; Kleemann, Wolfgang; Lu, Sheng-Guo

    2017-03-27

    Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants.

  7. Photovoltaic and photostrictive effects in lanthanum-modified lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Poosanaas, Patcharin

    Photostriction is the light induced strain in a material, arising from the combination of photovoltaic and converse-piezoelectric effects. The possibility of directly producing strain by light illumination, without any electrical lead wire connection, makes the photostrictive materials very attractive for potential usage in future generation wireless remote controlled micro-actuator and micro-sensor. However, for the fabrication of these devices, materials exhibiting higher photovoltaic effect and higher response speed must be developed. This research was aimed towards investigating the mechanism of photovoltaic effect, developing photostrictive materials with enhanced performance, and exploring the limits of the photostriction. A new model based on the optical nonlinearity in ferroelectrics having noncentric symmetry has been proposed to explain the mechanism of photovoltaic effect. This model provides a better understanding of photostrictive phenomenon and agrees well with the experimental measurements carried out on PLZT ceramics. Among the various processing routes attempted, coprecipitation route was found to be most suitable for the fabrication of PLZT ceramics. High purity homogeneous powders with stoichiometric compositions obtained from this method yielded compacts with high density, fine grain size and uniformly distributed dopants. These desirable properties resulted in enhancement of photostrictive response. Photovoltaic and photoinduced strain were found to increase with decreasing grain size and increasing relative density. The composition, especially near the morphotropic phase boundary (MPB) of PLZT ceramics, was optimized for photovoltaic characteristics. The maximum photocurrent was observed in tetragonal phase 4/48/52 PLZT, while the maximum photovoltage was observed in 5/54/46 PLZT, which is around the MPB of the PLZT phase diagram. The photostriction was found to be strongly influenced by the surface characteristics (namely, sample thickness and surface roughness) of the sample. Enhancement in photovoltaic and photostrictive effects were observed with decrease in the surface roughness and sample thickness. Theoretical models have been formulated to explain these experimental observations. The model---correlating the sample thickness to photostrictive effect---provides a tool to optimize the sample thickness, which is an important parameter in designing of thick film bimorphs for enhanced efficiency micromechanical devices.

  8. Structural dependence on sintering temperature of lead zirconate-titanate solid solutions

    SciTech Connect

    Lucuta, P.Gr.; Barb, D.; Constantinescu, Fl.

    1985-10-01

    Pb(Zr /SUB 0.525/ Ti /SUB 0.475/ )O3 piezoceramics, both unmodified and doped with 2 wt% Bi2O3 or Nb2O5, were prepared by the usual techniques, using sintering temperatures from 900 to 1250C. The microstructural data showed that the sintering temperature which produces minimum porosity is altered by the oxide additions. X-ray diffraction demonstrated the coexistence of both ferroelectric phases. The lattice parameter measurements showed that the tetragonal and rhombohedral unit cells of the two ferroelectric phases depend on the sintering temperature.

  9. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  10. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  11. Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics

    PubMed Central

    Lu, Biao; Li, Peilian; Tang, Zhenhua; Yao, Yingbang; Gao, Xingsen; Kleemann, Wolfgang; Lu, Sheng-Guo

    2017-01-01

    Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants. PMID:28345655

  12. Research and Education in Development of Multifunctional Sensors and MEMS Devices

    DTIC Science & Technology

    2015-07-15

    SECURITY CLASSIFICATION OF: We have investigated the growth of a family of lead zirconate titanate (PZT) type materials for MEMS and sensors...applications. We successfully demonstrated the growth of high quality (011) PZT single perovskite phase films on ZnO/glass substrates with an MgO buffer...Final Report: Research and Education in Development of Multifunctional Sensors and MEMS Devices Report Title We have investigated the growth of a

  13. Extrinsic Fabry-Perot ultrasonic detector

    NASA Astrophysics Data System (ADS)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  14. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  15. Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Williams, I. S.; Wyborn, D.

    2011-08-01

    The understanding of zircon crystallization, and of the Ti-in-zircon thermometer, has been enhanced by Ti concentration measurements of zircon from a small, concentrically zoned pluton in south-eastern Australia, the Boggy Plain zoned pluton (BPZP). Zircon crystals from rocks ranging in composition from gabbro to aplite were analysed for U-Th-Pb dating and Ti concentrations by an ion microprobe. Geochronological data yield a 206Pb/238U age of 417.2 ± 2.0 Ma (95% confidence) and demonstrate the presence of older inherited or xenocrystic zircon. Titanium measurements ( n = 158) yield a mean Ti concentration of 11.7 ± 6.1 ppm (2SD) which corresponds to a mean crystallization temperature of 790°C for an α-TiO2 = 0.74 (estimated using mineral equilibria), or 760°C for an α-TiO2 = 1.0. Apparent zircon crystallization temperatures are similar in all intrusive phases, although the gabbro yields slightly higher values, indicating that crystallization occurred at the same temperature in all rock types. This finding is consistent with previous work on the BPZP, which indicates that liquid-crystal sorting (crystal fractionation) was the dominant control on chemical differentiation, and that late, differentiated liquids were similar in composition for all rock types. A simple forward model approximately predicts the range of crystallization temperatures, but not the shape of the distributions, due to sampling biases and complexities in the cooling and crystallization history of the pluton. The distribution of Ti concentrations has a mode at a higher Ti (higher temperature) than the sample set of Hadean detrital zircon. This is consistent with the hypothesis that the skew to low-T in the Hadean dataset is due to the presence of zircon that crystallized from wet anatectic melts.

  16. Photochemically driven collapse of Titan's atmosphere.

    PubMed

    Lorenz, R D; McKay, C P; Lunine, J I

    1997-01-31

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, which has a temperature structure that is controlled by the absorption of solar and thermal radiation by methane, hydrogen, and organic aerosols into which methane is irreversibly converted by photolysis. Previous studies of Titan's climate evolution have been done with the assumption that the methane abundance was maintained against photolytic depletion throughout Titan's history, either by continuous supply from the interior or by buffering by a surface or near surface reservoir. Radiative-convective and radiative-saturated equilibrium models of Titan's atmosphere show that methane depletion may have allowed Titan's atmosphere to cool so that nitrogen, its main constituent, condenses onto the surface, collapsing Titan into a Triton-like frozen state with a thin atmosphere.

  17. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  18. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  19. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.

    PubMed

    Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C; Cao, Guo Zhong; Shen, I Y; Hume, Clifford R

    2015-12-01

    Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays.

  20. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  1. Transformation Strain in PZT 95/5 Ceramic

    NASA Astrophysics Data System (ADS)

    Montgomery, Stephen T.; Zeuch, David H.; Setchell, Robert E.; Furnish, Michael D.; Chhabildas, Lalit C.

    1999-06-01

    The ferroelectric ceramic PZT 95/5 transforms to an antiferroelectric phase under compressive loading. We have conducted quasistatic triaxial stress and dynamic uniaxial strain loading experiments on both poled and unpoled ceramic specimens to better understand this phase transformation. Different transformation strain states were observed in the quasistatic and dynamic impact tests reflecting the dependence of material response on loading path. The unpoled ceramic showed an isotropic transformation strain under hydrostatic compression. However, when the stress loading driving the phase transformation included a component of shear, we found that both quasistatic and dynamic loading produced an anisotropic transformation strain with most of the compression occurring in the axis of the principal compressive stress. Measurements on poled ceramic exhibited similar behavior modified by the release of the initial poling strain. *This work supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  2. Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator

    PubMed Central

    Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C.; Cao, Guo Zhong; Hume, Clifford R.

    2015-01-01

    Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. PMID:26631107

  3. NMR quadruopole spectra of PZT from first-principles

    NASA Astrophysics Data System (ADS)

    Mao, Dandan; Walter, Eric J.; Krakauer, Henry

    2006-03-01

    High performance piezoelectric materials are disordered alloys, so it can be difficult to determine the local atomic geometry. Recently, high field NMR measurements have shown great promise as a microscopic probe of ABO3 perovskite-based alloys by their ability to resolve line-splittings due to nuclear quadrupolar coupling with the electric field gradient (EFG) at the nucleus. We report first-principles LDA calculations of the EFG's in monoclinic and tetragonal Pb(Zr0.5Ti0.5)O3 systems using the linear augmented planewave (LAPW) method, and we compute NMR static powder spectra for ^91Zr, ^47Ti, and ^17O atoms as a function of applied strain. With decreasing c/a ratio PZT converts from tetragonal to monoclinic symmetry. We observe that the calculated NMR spectra show dramatic deviations with decreasing c/a from that in tetragonal P4mm well before the electric polarization begins to rotate away from the [001] direction. This indicates that NMR measurements can be a very accurate probe of local structural changes in perovskite piezoelectrics. G. L. Hoatson, D. H. Zhou, F. Fayon, D. Massiot, and R. L. Vold, Phys. Rev. B, 66, 224103 (2002).

  4. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  5. Titan In Situ Exploration Concepts at JPL

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Hall, Jeffery L.; Jones, Jack; Reh, Kim

    2008-01-01

    This slide presentation reviews concepts for exploring Titan via balloon vehicles. The presentation includes information about the baseline options, the deployment scenario, and the balloon technology development.

  6. Pluto's implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Yung, Yuk L.; Randall Gladstone, G.

    2015-01-01

    The current Cassini-Huygens Mission to the Saturn system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of its existence, Titan's atmosphere might have been in a Snowball state, characterized by a colder surface and a smaller amount of atmospheric CH4, similar to that of Pluto or Triton. We run a 1-D chemical transport model and show that the rates of organic synthesis on a Snowball Titan are significantly slower than those on present-day Titan. The primary method of methane destruction-photosensitized dissociation in the stratosphere-is greatly dampened on Snowball Titan. The downward flux of higher-order molecules through the troposphere is dominated not by hydrocarbons such as ethane, as is the case on Titan today, but by nitriles. This result presents a testable observation that could confirm the Snowball Titan hypothesis. Because Pluto's atmosphere is similar to Titan's in composition, it serves as a basis for comparison. Future observations of Pluto by the New Horizons Mission will inform photochemical models of Pluto's atmosphere and can help us understand the photochemical nature of paleo-Titan's atmosphere.

  7. The magnetic memory of Titan's ionized atmosphere.

    PubMed

    Bertucci, C; Achilleos, N; Dougherty, M K; Modolo, R; Coates, A J; Szego, K; Masters, A; Ma, Y; Neubauer, F M; Garnier, P; Wahlund, J-E; Young, D T

    2008-09-12

    After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field.

  8. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1984-01-01

    The optical properties and chemical composition of thiolin, an organic solid synthesized by high-energy-electron irradiation in a plasma discharge (Sagan et al., 1984) to simulate the high-altitude aerosols of Titan, are investigated experimentally using monochromators, ellipsometers, and spectrometers (on thin films deposited by continuous dc discharge) and sequential and nonsequential pyrolytic gas chromatography/mass spectrometry (of the volatile component), respectively. The results are presented in tables and graphs and characterized. The real and imaginary elements of the complex refractive index in the visible are estimated as 1.65 and 0.004-0.08, respectively, in agreement with observations of Titan, and the IR absorption features include the nitrile band at 4.6 microns. The molecules identified in the volatile part of thiolin include complex species considered important in theoretical models of the origin of life on earth.

  9. Detrital Zircon Record of Colorado River Incision

    NASA Astrophysics Data System (ADS)

    Kimbrough, D.; Grove, M.; Gehrels, G.; Dorsey, R.; House, K. P.; Howard, K.; Pearthree, P. A.; Spencer, J. E.; Mahoney, B.

    2007-05-01

    The Colorado River is a large, youthful, unequilibrated continental drainage system the base-level for which was established rather abruptly between 5 and 6 million years ago in conjunction with Gulf of California rifting and establishment of the modern river course through the western Grand Canyon and lower Colorado river region. New laser ablation ICPMS detrital zircon U-Pb analyses (~3000) from ~40 samples provide insight into details relating to the cause, timing and consequences of river inception. These samples encompass (1) the modern Colorado River delta, (2) major tributaries including the Green, "Grand", San Juan, Little Colorado and Gila rivers (3) late Miocene to Pliocene sediments along the lower Colorado (4) late Miocene to Pleistocene deltaic and fluvial sediments of the Imperial and Palm Spring Groups in the western Salton Trough, and (5) late Miocene- early Pliocene Bidahochi Formation of eastern Arizona. Data from the western Salton Trough and modern delta yield strata yield remarkably homogeneous age distributions that indicate there was little evolution in Colorado River sediment composition since 5.3 Ma. Detrital zircon is dominated by a mix of local southwest US cratonal basement (1.7 and 1.4 Ga) plus reworked supracrustal sequences of the Colorado Plateau that provide Neoproterozoic, 1.1 Ga, and early Paleozoic zircons. A relative paucity of Grenville-age grains in the earliest part of the delta sequence may reflect an early stage of the modern river prior to deep incision through Colorado Plateau erg deposits. The strong homogeneity of the detrital zircon record from late Miocene to the present is consistent with the `lake spillover model' for inception and integration of the modern Colorado River drainage. Abrupt integration of the lower Colorado River after 5.6 Ma is clearly recorded by detrital zircon ages from the laucustrine Bouse Formation and Bullhead alluvium aggradational package. Fluvial-laucustrine deposits of the Bidahochi

  10. Plutonium Stabilization in Zircon: Effects of Self-Radiation

    SciTech Connect

    Weber, William J.; Hess, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Begg, Bruce D.; Conradson, Steven D.; Ewing, Rodney C.

    2000-07-10

    Zircon is the most thoroughly studied of all candidate ceramic phases for the stabilization of plutonium. Self-radiation damage from alpha-decay of the Pu can significantly affect the structure and properties of zircon. Two types of synthetic Pu-containing zircons, prepared in 1981, have provided an opportunity to characterize in detail the effects of Pu decay on the structure and properties of zircon and to make unique comparisons to observations of radiation effects in natural zircons. One set of zircon samples contained Pu-238; while the other set of samples contained Pu-239. In both instances, the Pu was substituted directly for Zr. The zircons containing Pu-238, with its 87.7 year half-life, provided a means of accelerating the alpha-decay rate by a factor of 250 when compared to the zircons containing Pu-239. Self-radiation from Pu decay in zircon results in the simultaneous accumulation of point defects and amorphous domains that eventually lead to a completely amorphous state. The swelling in zircon increases sigmoidally with dose and is well saturated at the highest dose. In all cases, the swelling can be accur-ately modeled based on the contributions from crystalline and amorphous components. Detailed X-ray absorption spectroscopy and X-ray diffraction methods have characterized the short-range and long-range structures of each zircon type. The amorphous state of zircon is consistent with the loss of long-range order and edge-sharing relationships between silica and zirconia polyhedra. Despite this, a distorted zircon structure and stoichiometry, which consists of silica and zirconia polyhedra that have rotated relative to each other, is retained over length scales up to 0.5 nm. Atomic-scale computer simulations have also been used to study defect accumulation and amorphization in zircon. The simulation results for the amorphous fraction as a function of alpha-decay dose are in excellent agreement with the experimental results.

  11. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  12. Cassini Imaging Results at Titan

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.

    2005-01-01

    The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.

  13. Safe prescribing: a titanic challenge.

    PubMed

    Routledge, Philip A

    2012-10-01

    The challenge to achieve safe prescribing merits the adjective 'titanic'. The organisational and human errors leading to poor prescribing (e.g. underprescribing, overprescribing, misprescribing or medication errors) have parallels in the organisational and human errors that led to the loss of the Titanic 100 years ago this year. Prescribing can be adversely affected by communication failures, critical conditions, complacency, corner cutting, callowness and a lack of courage of conviction, all of which were also factors leading to the Titanic tragedy. These issues need to be addressed by a commitment to excellence, the final component of the 'Seven C's'. Optimal prescribing is dependent upon close communication and collaborative working between highly trained health professionals, whose role is to ensure maximum clinical effectiveness, whilst also protecting their patients from avoidable harm. Since humans are prone to error, and the environments in which they work are imperfect, it is not surprising that medication errors are common, occurring more often during the prescribing stage than during dispensing or administration. A commitment to excellence in prescribing includes a continued focus on lifelong learning (including interprofessional learning) in pharmacology and therapeutics. This should be accompanied by improvements in the clinical working environment of prescribers, and the encouragement of a strong safety culture (including reporting of adverse incidents as well as suspected adverse drug reactions whenever appropriate). Finally, members of the clinical team must be prepared to challenge each other, when necessary, to ensure that prescribing combines the highest likelihood of benefit with the lowest potential for harm.

  14. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    PubMed

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  15. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT-(1 - x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  16. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    PubMed Central

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  17. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios

    PubMed Central

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk.; Bharadwaja, Srowthi N.; Zhang, Dongshe; Zheng, Haixing

    2010-01-01

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol–gel solution to PZT powder in the composite solution. Both the remanent polarization, Pr, and transverse piezoelectric coefficient, e31,f, increase with increasing proportion of the sol–gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm2, a dielectric constant of 450 (at 1 kHz), and e31,f = −2.8 C/m2. Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm2, a dielectric constant of 1250 (at 1 kHz) and e31,f = −5.8 C/m2. PMID:20376196

  18. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-02-23

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined.

  19. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-01-01

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined. PMID:28241503

  20. Current status of Development of Mercury Dust Monitor for BepiColombo MMO

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Shibata, H.; Nogami, k.; Fujii, M.; Miyachi, T.; Ohashi, H.; Sasaki, S.; Iwai, T.; Hattori, M.; Kimura, H.; Hirai, T.; Takechi, S.; Yano, H.; Hasegawa, S.; Srama, R.; Grün, E.

    2012-09-01

    The Mercury dust monitor (MDM) will be the BepiColombo/Mercury magnetospheric orbiter (MMO) and be operated to clarify the dust environment around Mercury. The MDM employs lightweight and heat-resistant piezoelectric ceramic sensors made of lead zirconate titanate (PZT). This paper describes the current status of MDM development and ground calibration test using a dust accelerator facility.

  1. Interactive Textiles Front End Analysis. Phase 1

    DTIC Science & Technology

    1998-11-01

    them with a thin film of piezoelectric materials, such as PZT (lead zirconate titanate), PVDF (polyvinyldiflouride) and zinc oxide. In the second...APPROACH: Pursue design, analysis, and testing of three sound reduction schemes: (1) tiles comprising a PVDF actuator, a distributed thin film PVDF ...Structural Composites: Piezoelectric Film Deposition on Intercalated Carbon Fibers Principle Investigator: R. Dillon; Nebraska Univ Engineering (Mech) Dept

  2. Crack Detection in Armor Plates Using Ultrasonic Techniques (PREPRINT)

    DTIC Science & Technology

    2007-03-01

    A method of using piezoelectric lead zirconate titanate (PZT) transducers to characterize the vibrational modes of Vehicle Body Armor Support System...VBASS) plates and its preliminary results are presented. The amplitude of the vibrational modes of undamaged plates are compared to the vibrational

  3. Crack Detection in Armor Plates Using Ultrasonic Techniques

    DTIC Science & Technology

    2008-06-01

    A method of using piezoelectric lead zirconate titanate (PZT) transducers to characterize the vibrational modes of ceramic Vehicle Body Armor Support...System (VBASS) plates for the purpose of crack detection is presented. The amplitudes of the vibrational modes undamaged plates are compared to the

  4. Zircon 4He/3He thermochronometry

    NASA Astrophysics Data System (ADS)

    Tripathy-Lang, Alka; Fox, Matthew; Shuster, David L.

    2015-10-01

    Multiple thermochronometric methods are often required to constrain time-continuous rock exhumation for studying tectonic processes or development of km-scale topography at Earth's surface. Here, we explore 4He/3He thermochronometry of zircon as a method for constraining continuous time-temperature (t-T) paths of individual samples through a temperature range that is complementary to methods such as 40Ar/39Ar thermochronometry of K-feldspar and 4He/3He thermochronometry of apatite. For different cooling rates and diffusion domain size, the temperature sensitivity of zircon 4He/3He thermochronometry ranges from slightly less than 100 °C to slightly greater than 250 °C; a typical sample provides continuous thermal constraints over ∼100 °C within that range. Outside these temperatures, 4He in zircon will either be quantitatively retained or completely lost by volume diffusion. As proof-of-concept, we present stepwise release 4He/3He spectra and associated U and Th concentration maps measured by laser ablation ICP-MS analysis of individual crystal aliquots of Fish Canyon Tuff (FCT) zircon and of a more complex setting in the Sierra Nevada batholith that experienced reheating from a proximal basaltic intrusion, the Little Devil's Postpile (LDP). The FCT zircon 4He/3He release spectra are consistent with a 4He spatial distribution dominated by alpha-ejection from crystal surfaces. The spatial distributions of U and Th measured in the same crystals do not substantially influence 4He/3He release spectra that are predicted for the known thermal history, even when incorporating spatially variable diffusivity due to accumulation of radiation damage. Conversely, the LDP 4He/3He release spectra are strongly influenced by the observed parent nuclide zonation. A three-dimensional (3D) numerical model of 4He production and diffusion, which incorporates crystal geometry, U and Th zonation, and spatially variable He diffusion kinetics, substantially improves the fit between

  5. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  6. High frequency broadband PZT thick film ultrasonic transducers for medical imaging applications.

    PubMed

    Zhang, Q Q; Djuth, F T; Zhou, Q F; Hu, C H; Cha, J H; Shung, K K

    2006-12-22

    A modified sol-gel method is used to prepare PZT thick film on Pt-coated silicon substrate. A new method of vacuum filling sol-gel precursor solution is introduced to improve film quality. The effects of the filling on PZT thick film structure and ferroelectric properties are discussed. The fabrication of a high frequency transducer with the PZT film as the actuating layer is described. The performance of the transducer is measured and results show that the transducer backed by E-Solder without a matching layer has a center frequency of 103 MHz and a bandwidth of 70%. Beam profile measurements show that the transducer has an axial resolution of 9.2 microm and a lateral resolution of 33 microm.

  7. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    PubMed Central

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-01

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications. PMID:25625905

  8. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  9. Atomistic Simulation of Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-09-01

    Defect production in energetic collision cascades in zircon has been studied by molecular dynamics simulation using a partial charge model combined with the Ziegler-Biersack-Littmark potential. Energy dissipation, defect accumulation, Si-O-Si polymerization, and Zr coordination number were examined for 10 keV and 30 keV U recoils simulated in the constant NVE ensemble. For both energies an amorphous core was produced with features similar to that of melt quenched zircon. Disordered Si ions in this core were polymerized with an average degree of polymerization of 1.5, while disordered Zr ions showed a coordination number of about 6 in agreement with EXAFS results. These results suggest that nano-scale phase separation into silica- and zirconia-rich regions occurs in the amorphous core.

  10. The crystallization age of eucrite zircon.

    PubMed

    Srinivasan, G; Whitehouse, M J; Weber, I; Yamaguchi, A

    2007-07-20

    Eucrites are a group of meteorites that represent the first planetary igneous activity following metal-silicate differentiation on an early planetesimal, similar to Asteroid 4 Vesta, and, thus, help date geophysical processes occurring on such bodies in the early solar system. Using the short-lived radionuclide (182)Hf as a relative chronometer, we demonstrate that eucrite zircon crystallized quickly within 6.8 million years of metal-silicate differentiation. This implies that mantle differentiation on the eucrite parent body occurred during a period when internal heat from the decay of (26)Al and (60)Fe was still available. Later metamorphism of eucrites took place at least 8.9 million years after the zircons crystallized and was likely caused by heating from impacts, or by burial under hot material excavated by impacts, rather than from lava flows. Thus, the timing of eucrite formation and of mantle differentiation is constrained.

  11. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  12. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  13. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  14. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    SciTech Connect

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu; Mohamed, Abdul Aziz; Karim, Julia Abdul

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

  15. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-02-03

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  16. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  17. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  18. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  19. Titan's Chemical Complexity and Dust

    NASA Astrophysics Data System (ADS)

    Vuitton, Véronique

    Titan, Saturn's largest satellite, harbors one of the richest atmospheric chemistry in the solar system, initiated by the dissociation of the major neutral species (nitrogen and methane) by ultraviolet solar radiation and associated photoelectrons. Until recently, it was believed that the dust observed in the stratosphere (i.e. micrometer size organic aerosols) was formed in situ through an intense neutral chemistry involving complex organic molecules. However, this understanding of Titan’s atmospheric chemistry is being strongly challenged by recent measurements from the Cassini spacecraft. They revealed an extraordinarily complex thermospheric composition with positive ions extending up to at least hundreds of u/q and negative ions up to at least thousands of u/q. These observations indicate that molecular growth starts at much higher altitudes than previously anticipated and suggest that new formation processes have to be put forward. We review our recent work on Titan's upper atmospheric chemistry. We base our discussion on Cassini observations as well as on a new generation of photochemical/microphysical models and laboratory experiments. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide, and that radiative neutral-neutral association can efficiently form alkanes. We find that macromolecules (m/z > 100) attach electrons and therefore attract the abundant positive ions, which ultimately leads to the formation of the dust. In order to infer the dust chemical composition and structure, we turn towards the analysis of laboratory analogues by ultra-high resolution mass spectrometry. Finally, we emphasize that another space mission to Titan with a new generation of instruments is required to validate the effort currently under progress in the laboratory.

  20. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  1. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  2. The energetics of Titan's ionosphere

    NASA Technical Reports Server (NTRS)

    Roboz, A.; Nagy, A. F.

    1994-01-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  3. Titan at the edge: 1. Titan's interaction with Saturn's magnetosphere in the prenoon sector

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Winglee, R.; Kidder, A.

    2011-08-01

    The characteristics of Titan's environment at 09:00 Saturn local time (SLT) are studied using a three-dimensional multifluid/multiscale model of Titan embedded in a global model of Saturn's magnetosphere for three cases: a stationary magnetopause, an inward moving magnetopause, and an outward moving magnetopause. The results show that the plasma and magnetic field upstream of Titan are variable and that the variability can be enhanced when Saturn's magnetopause is not stationary. Rotating cold, interchange fingers cause rapid changes in the plasma velocity, density, and composition, while gradual changes are due to the relatively slow compression and expansion of Saturn's magnetopause. Titan enters a boundary layer on the inside of Saturn's magnetopause when Saturn's magnetopause compresses. The boundary layer is characterized by shearing flows and a mix of magnetospheric and magnetosheath plasma. The irregular flows in the boundary layer strongly modify Titan's induced magnetosphere. The results indicate that more ions from Titan are lost from Saturn's magnetosphere during parallel interplanetary magnetic field (IMF) than antiparallel IMF. In addition, we find that Titan's ion tail may be able to prevent the magnetopause from crossing Titan when Titan is in the prenoon sector. Therefore, despite a large increase in solar wind pressure, Titan remained inside of Saturn's magnetosphere. A synthetic trajectory through the simulation is shown to be consistent with magnetometer data from the TA flyby.

  4. Fractal aggregates in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Cabane, M.; Rannou, P.; Chassefiere, E.; Israel, G.

    1993-04-01

    The cluster structure of Titan's atmosphere was modeled by using an Eulerian microphysical model with the specific formulation of microphysical laws applying to fractal particles. The growth of aggregates in the settling phase was treated by introducing the fractal dimension as a parameter of the model. The model was used to obtain a vertical distribution of size and number density of the aggregates for different production altitudes. Results confirm previous estimates of the formation altitude of photochemical aerosols. The vertical profile of the effective radius of aggregates was calculated as a function of the visible optical depth.

  5. Titan Oceanography from the Cassini

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    While the Cassini-Huygens mission was formulated against the speculative backdrop of a hydrocarbon ocean on Titan, the reality exposed by its measurements a quarter century later has proven more interesting. Instead of a global ocean, Titan has three modest seas, with dozens of small lakes, clustered around its north pole. The south is almost entirely bereft of surface liquids, the probable result of astronomically-forced climate cycles on Titan which are pumping ethane and methane vapor northwards across the equatorial deserts to accumulate in the long rainy season each boreal summer in the present epoch. Cassini’s RADAR instrument mapped the second-largest (~350km) sea, Ligiea Mare, while it was still in winter darkness, and has now covered the sprawling (~1000km) Kraken Mare, revealing shorelines indicating rising sea levels. The mapping allows the construction of numerical models of ocean circulation driven by winds and tides. Radar observations have placed tight limits (mm) on wave heights so far: near-infrared sunglint observations provide separate constraints on surface roughness. We will review latest observations and future plans: it is expected that winds will freshen as we move towards the culmination of the Cassini Solstice Mission in northern midsummer. The Ku-band (2.2cm) radar signals from Cassini penetrate a few meters into the possibly muddy dregs of Ontario Lacus in the south, yet remarkably allowed detection of a bottom echo at Ligeia Mare in a nadir-pointed altimetry observation in summer 2013. This not only allowed a depth estimation of ~170m, but also points to a very ‘clean’ composition, quite possibly rich in methane. This contrasts with near-infrared measurements at Ontario Lacus in the south, which show ethane and possibly an optically-muddy appearance. The stage is now set for detailed modeling of wind-driven and tidal circulations, mixing, stratification, sedimentation and shoreline processes on Titan. Beyond their insights into

  6. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.

  7. Role of zircon in tracing crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Armstrong, R. A.; Claoue-Long, J. C.; Kinny, P. D.; Foster, J. J.; Kroener, A.; Pidgeon, R. T.; Myers, J. S.

    1988-01-01

    Single crystal ion probe ages of zircons is discussed, which allow much better time resolution compared to other geochronological methods, although the technique is not without problems. Rocks from two areas that contain composite zircon populations, including true magmatic zircons as well as a variety of xenocrystic types are described. It is often difficult to distinguish these; xenocrystic zircons, for example, cannot always be identified on the basis of morphology alone. Additional evidence is needed before making age interpretations. Evidence is also presented of zircon growth long after the original time of crystallization, in some cases apparently at temperatures less than 300 C. The spectacular discovery of 4.1 to 4.2 Ga detrital zircons in metaquartzites from the Mount Narryer area of Western Australia is described. Similar zircons with ages as old as 4276 Ma have been found in the nearby Jack Hills area. The source areas or parent lithologies of these zircons have not yet been determined, but the author expects that they may be unrecognized or buried antecedents of the K rich Narryer gneisses. U or Th concentrations of zircon cannot be used to discriminate between felsic and mafic source rocks.

  8. Radioactivity in zircon and building tiles.

    PubMed

    Deng, W; Tian, K; Zhang, Y; Chen, D

    1997-08-01

    Zircon (ZrSiO4) is commonly used in the manufacture of glazed tiles. In this study we found high concentrations of the radionuclides 226Ra, 232Th, 40K in zircon sand. The average radium equivalent (A(Ra) + 1.26 A(Th) + 0.086 A(k)) in zircon sand is 17,500 Bq kg(-1), which is 106 times as much as that in ordinary building materials. The external radiation (gamma + beta) dose rates in air at 5 cm from the surface of piles of zircon sand sacks range from 1.1 to 4.9 x 10(-2) mGy h(-1) with an average of 2.1 x 10(-2) mGy h(-1). Although no elevated gamma-ray radiation or radon exhalation rate was detected in rooms decorated with glazed tiles, which is characteristic of combined alpha, beta and gamma emitting thin materials, the average gamma-ray radiation dose rate at the surface of the tile stacks in shops is 1.5 times as much as the indoor background level. The average area density of total beta emitting radionuclides in glazed floor tiles and glazed wall tiles is 0.30 Bq cm(-2) and 0.28 Bq cm(-2), respectively. It was estimated that the average beta dose rates in tissue at a depth 7 mg cm(-2) with a distance 20-100 cm from the floor tiles were 3.2 to 0.9 x 10(-7) Gy h(-1). The study indicates that the beta-rays from glazed tiles might be one of the main factors leading to an increase in ionizing radiation received by the general public. Workers in glazed tile manufacturing factories and in tile shops or stores may be exposed to elevated levels of both beta-rays and gamma-rays from zircon sand or glazed tile stacks. No elevated radiation from unglazed tiles was detected.

  9. Titan - a New Laboratory for Oceanography

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2001-12-01

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, and quite probably large expanses of liquid hydrocarbons on its surface. The physical processes in these lakes and seas will open new vistas on oceanography and limnology. Although the Voyager-era paradigm of a deep, global ocean is ruled out by radar and infrared data showing that at least part of Titan's surface is icy, the photochemical arguments that originally led to the proposal of hydrocarbon oceans still apply. Even if the methane in the atmosphere is being resupplied by delivery from the interior, the ethane produced by photolysis would still accumulate to form large deposits on the surface. The near-infrared maps of Titan's surface from the Hubble Space Telescope and groundbased adaptive optics consistently show a number of dark (in fact, pitch-black!) regions that are strong candidates for hydrocarbon seas. These could be up to some 500km in extent. Titan promises to be a new laboratory for oceanography. Like in meteorology, many ocean processes are better parameterized than they are understood, and thus the different physical circumstances on Titan may shed new light on them. Titan has a lower gravity and its ocean fluids are of lower density, perhaps of lower viscosity (depending on solutes and suspended material) and probably rather more likely to cavitate. The ratio of atmospheric density to ocean density is much larger on Titan than on Earth, suggesting that liquid motions will be well-coupled to surface winds (although the distance from the sun is such that the energy in such winds is likely to be low.) Titan is also subject to strong tidal forces (the equilibrium tide due to Saturn's gravity is some 400x larger than that of the moon on Earth.) Although the 100m tidal bulge stays almost fixed because Titan rotates synchronously, the eccentricity of Titan's orbit leads to significant libration and variation in the tidal strength. The 500km seas allowed by the IR data may yet have a

  10. Modeling the polar motion of Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Van Hoolst, Tim; Baland, Rose-Marie; Tokano, Tetsuya

    2016-02-01

    The angular momentum of the atmosphere and of the hydrocarbon lakes of Titan have a large equatorial component that can excite polar motion, a variable orientation of the rotation axis of Titan with respect to its surface. We here use the angular momentum obtained from a General Circulation Model of the atmosphere of Titan and from an Ocean Circulation Model for Titan's polar lakes to model the polar motion of Titan as a function of the interior structure. Besides the gravitational torque exerted by Saturn on Titan's aspherical mass distribution, the rotational model also includes torques arising due to the presence of an ocean under a thin ice shell as well as the influence of the elasticity of the different layers. The Chandler wobble period of a solid and rigid Titan without its atmosphere is about 279 years. The period of the Chandler wobble is mainly influenced by the atmosphere of Titan (-166 years) and the presence of an internal global ocean (+135 to 295 years depending on the internal model) and to a lesser extent by the elastic deformations (+3.7 years). The forced polar motion of a solid and rigid Titan is elliptical with an amplitude of about 50 m and a main period equal to the orbital period of Saturn. It is mainly forced by the atmosphere of Titan while the lakes of Titan are at the origin of a displacement of the mean polar motion, or polar offset. The subsurface ocean can largely increase the polar motion amplitude due to resonant amplification with a wobble free mode of Titan. The amplitudes as well as the main periods of the polar motion depend on whether and which forcing period is close to the period of a free mode. For a thick ice shell, the polar motion mainly has an annual period and an amplitude of about 1 km. For thinner ice shells, the polar motion amplitude can reach several tens of km and shorter periods become dominant. We demonstrate that for thick ice shells, the ice shell rigidity weakly influences the amplitude of the polar motion

  11. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  12. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  13. Future Missions to Titan and Enceladus.

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; Reh, Kim; Lunine, Jonathan; Coustenis, Athena; John, Elliott; Matson, Dennis L.; Lebreton, Jean-Pierre; Waite, Hunter; Turtle, Elizabeth

    A mission to Titan is a high priority for exploration, as recommended by the 2003 NRC report on New Frontiers in the Solar System (Decadal Survey). As anticipated by the NRC subcommittee, recent Cassini-Huygens discoveries have revolution-ized our understanding of Titan and its potential for harboring "ingredients" necessary for life. These discoveries reveal that Titan has a thick atmosphere that is rich in organics, possibly contains a vast liquid water subsurface ocean and has energy sources to drive chemical evolu-tion. Furthermore, insight into Titan's climate is important in understanding the climates of Earth, Venus and Mars. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life. This presentation will provide an overview of the Titan Saturn System Mission (TSSM) concept, a discussion of other potential concepts, and current plans to advance technical readiness. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  14. Chemical investigation of Titan and Triton tholins

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Heinrich, Michael; Khare, Bishun N.; Sagan, Carl

    1994-01-01

    We report chromatographic and spectroscopic analyses of both Titan and Triton tholins, organic solids made from the plasma irradiation of 0.9:0.1 and 0.999:0.001 N2/CH4 gas mixtures, respectively. The lower CH4 mixing ratio leads to a nitrogen-richer tholin (N/C greater than 1), probably including nitrogen heterocyclic compounds. Unlike Titan tholin, bulk Triton tholin is poor in nitriles. From high-pressure liquid chromatography, ultraviolet and infrared spectroscopy, and molecular weight estimation by gel filtration chromatography, we conclude that (1) several H2O-soluble fractions, each with distinct UV and IR spectral signatures, are present, (2) these fractions are not identical in the two tholins, (3) the H2O-soluble fractions of Titan tholins do not contain significant amounts of nitriles, despite the major role of nitriles in bulk Titan tholin, and (4) the H2O-soluble fractions of both tholins are mainly molcules containing about 10 to 50 (C + N) atoms. We report yields of amino acids upon hydrolysis of Titan and Triton tholins. Titan tholin is largely insoluble in the putative hydrocarbon lakes or oceans on Titan, but can yield the H2O-soluble species investigated here upon contact with transient (e.g., impact-generated) liquid water.

  15. Chemical investigation of Titan and Triton tholins

    NASA Astrophysics Data System (ADS)

    McDonald, Gene D.; Thompson, W. R.; Heinrich, Michael; Khare, Bishun N.; Sagan, Carl

    1994-03-01

    We report chromatographic and spectroscopic analyses of both Titan and Triton tholins, organic solids made from the plasma irradiation of 0.9:0.1 and 0.999:0.001 N2/CH4 gas mixtures, respectively. The lower CH4 mixing ratio leads to a nitrogen-richer tholin (N/C greater than 1), probably including nitrogen heterocyclic compounds. Unlike Titan tholin, bulk Triton tholin is poor in nitriles. From high-pressure liquid chromatography, ultraviolet and infrared spectroscopy, and molecular weight estimation by gel filtration chromatography, we conclude that (1) several H2O-soluble fractions, each with distinct UV and IR spectral signatures, are present, (2) these fractions are not identical in the two tholins, (3) the H2O-soluble fractions of Titan tholins do not contain significant amounts of nitriles, despite the major role of nitriles in bulk Titan tholin, and (4) the H2O-soluble fractions of both tholins are mainly molcules containing about 10 to 50 (C + N) atoms. We report yields of amino acids upon hydrolysis of Titan and Triton tholins. Titan tholin is largely insoluble in the putative hydrocarbon lakes or oceans on Titan, but can yield the H2O-soluble species investigated here upon contact with transient (e.g., impact-generated) liquid water.

  16. Titan as the Abode of Life

    PubMed Central

    McKay, Christopher P.

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan’s atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic—polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  17. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  18. Neutral Chemistry in Titan's Ionospheric Simulated Conditions

    NASA Astrophysics Data System (ADS)

    Dubois, David; Carrasco, Nathalie; Petrucciani, Marie; Tigrine, Sarah; Vettier, Ludovic

    2016-10-01

    Titan's atmospheric gas phase chemistry leading to the formation of organic aerosols can be simulated in laboratory experiments. Typically, plasma reactors can be used to achieve Titan-like conditions. Such a discharge induces dissociation and ionization processes to the N2-CH4 mixture by electron impact. This faithfully reproduces the electron energy range of magnetospheric electrons entering Titan's atmosphere and can also approximate the solar UV input at Titan's ionosphere. In this context, it is deemed necessary to apply and exploit such a technique in order to better understand the chemical reactivity occurring in Titan-like conditions.In the present work, we use the PAMPRE cold dusty plasma experiment with an N2-CH4 gaseous mixture under controlled pressure and gas influx, hence, emphasizing on the gas phase which we know is key to the formation of aerosols on Titan. Besides, an internal cryogenic trap has been developed to accumulate the gas products during their formation and facilitate their detection. These products are identified and quantified by in situ mass spectroscopy and Fourier-Transform Infrared Spectroscopy. We present here results from this experiment in two experimental conditions: 90-10% and 99-1% N2-CH4 mixing ratios respectively. We use a quantitative approach on nitriles and polycyclic aromatic hydrocarbons.Key organic compounds reacting with each other are thus detected and quantified in order to better follow the chemistry occuring in the gas phase of Titan-like conditions. Indeed, these species acting as precursors to the solid phase are assumed to be relevant in the formation of Titan's organic aerosols. These organic aerosols are what make up Titan's hazy atmosphere.

  19. Testing the reliability of information extracted from ancient zircon

    NASA Astrophysics Data System (ADS)

    Kielman, Ross; Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    Studies combining zircon U-Pb chronology, trace element distribution as well as O and Hf isotope systematics are a powerful way to gain understanding of the processes shaping Earth's evolution, especially in detrital populations where constraints from the original host are missing. Such studies of the Hadean detrital zircon population abundant in sedimentary rocks in Western Australia have involved analysis of an unusually large number of individual grains, but also highlighted potential problems with the approach, only apparent when multiple analyses are obtained from individual grains. A common feature of the Hadean as well as many early Archaean zircon populations is their apparent inhomogeneity, which reduces confidence in conclusions based on studies combining chemistry and isotopic characteristics of zircon. In order to test the reliability of information extracted from early Earth zircon, we report results from one of the first in-depth multi-method study of zircon from a relatively simple early Archean magmatic rock, used as an analogue to ancient detrital zircon. The approach involves making multiple SIMS analyses in individual grains in order to be comparable to the most advanced studies of detrital zircon populations. The investigated sample is a relatively undeformed, non-migmatitic ca. 3.8 Ga tonalite collected a few kms south of the Isua Greenstone Belt, southwest Greenland. Extracted zircon grains can be combined into three different groups based on the behavior of their U-Pb systems: (i) grains that show internally consistent and concordant ages and define an average age of 3805±15 Ma, taken to be the age of the rock, (ii) grains that are distributed close to the concordia line, but with significant variability between multiple analyses, suggesting an ancient Pb loss and (iii) grains that have multiple analyses distributed along a discordia pointing towards a zero intercept, indicating geologically recent Pb-loss. This overall behavior has

  20. The commercial evolution of the Titan program

    NASA Astrophysics Data System (ADS)

    Isakowitz, Steven

    1988-07-01

    The present status evaluation of proprietary efforts to turn the once exclusively government-requirements-oriented Titan launch vehicle into a successful commercial competitor is divided into three phases. The first phase notes recent changes in U.S. space transportation policy and the Titan configurations evaluated for commercial feasibility. The second phase is a development history for the current vehicle's marketing organization and the right-to-use agreement for a launch site. Phase three projects the prospective marketing climate for a commercial Titan vehicle and its planned improvements.

  1. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  2. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  3. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  4. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    PubMed Central

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  5. In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT

    SciTech Connect

    Morozov, Maxim I. Einarsrud, Mari-Ann; Tolchard, Julian R.; Grande, Tor; Geiger, Philipp T.; Webber, Kyle G.; Damjanovic, Dragan

    2015-10-28

    Despite the technological importance of hard and soft PZT, Pb(Zr,Ti)O{sub 3}, ceramics, the mechanisms of ferroelectric hardening and softening remain widely discussed in the literature. The hardening and softening phenomena have traditionally been investigated in relation with dielectric manifestations such as aging of the dielectric susceptibility and constriction of the polarization-electric field hysteresis loop. Here, we present a systematic investigation of the ferroelectric and ferroelastic properties of soft and hard PZT in both the tetragonal and rhombohedral phases. A particular focus has been devoted to ferroelastic domain switching by characterizing the macroscopic mechanical constitutive behavior and in-situ synchrotron X-ray diffraction during compression. It is demonstrated that variation of the ordering state of point defects in PZT ceramics affects the switching behavior of both ferroelectric and ferroelastic domains under mechanical or electrical fields. Softening of the mechanical and electrical properties of originally hard PZT ceramics was conferred by quenching the materials from above the Curie temperature. The present findings are discussed with respect to the current understanding of hardening-softening transitions in ferroelectric materials.

  6. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    PubMed

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  7. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  8. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    NASA Astrophysics Data System (ADS)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  9. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  10. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  11. Adjustable stiffness of individual piezoelectric nanofibers by electron beam polarization

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Anton; Yao, Nan; Shi, Yong

    2011-11-01

    We present a method to adjust the stiffness of individual piezoelectric nanofiber by electron beam induced polarization under an in situ scanning electron microscopy. The lead zirconate titanate (PZT) nanofibers were fabricated by an electrospinning process. The Young's modulus was calculated from the resonant frequency excited by an oscillating electric field applied through a nanomanipulator. The stiffness can be adjusted up to 75% by induced polarization under the exposure of an electron beam to control the domain boundaries in single PZT nanofibers. Splitting effect of the resonant frequencies was observed due to anisotropic stiffness in polarized PZT nanofibers.

  12. Optical and mechanical detection of near-field light by atomic force microscopy using a piezoelectric cantilever

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Kobayashi, Kei; Watanabe, Shunji; Fujii, Toru; Matsushige, Kazumi; Yamada, Hirofumi

    2016-08-01

    In this study, we developed an atomic force microscopy (AFM) system with scanning near-field optical microscopy (SNOM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film. Both optical and mechanical detection techniques were adopted in SNOM to detect scattered light induced by the interaction of the PZT cantilever tip apex and evanescent light, and SNOM images were obtained for each detection scheme. The mechanical detection technique did allow for a clear observation of the light scattered from the PZT cantilever without the interference observed by the optical detection technique, which used an objective lens, a pinhole, and a photomultiplier tube.

  13. Exploratory Study of the Acoustic Performance of Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    SantaMaria, O. S.; Thurlow, E. M.; Jones, M. G.

    1989-01-01

    The proposed ducted fan engine has prompted the need for increasingly lightweight and efficient noise control devices. Exploratory tests at the NASA Langley Research Center were conducted to evaluate three piezoelectric specimens as possible control transducers: a Polyvinylidene Flouride (PVDF) piezofilm sample and two composite samples of Lead Zirconate Titanate (PZT) rods embedded in fiberglass. The tests measured the acoustic output efficiency and evaluated the noise control characteristics when interacting with a primary sound source. The results showed that a PZT sample could diminish the reflected acoustic waves. However, the PZT acoustic output must increase by several orders of magnitude to qualify as a control transducer for the ducted fan engine.

  14. Paleomagnetic measurements of Archean and Hadean zircons

    NASA Astrophysics Data System (ADS)

    Cottrell, R. D.; Tarduno, J. A.; Bono, R. K.

    2014-12-01

    The long-term history of the geodynamo can provide important constraints on core and mantle evolution. The oldest paleointensity records on extant rocks suggest a relatively strong magnetic field at 3.45 Ga (Tarduno et al., 2010). Examining an even older magnetic field, however, must rely on igneous components (e.g. zircons hosting magnetic inclusions) now found in younger sedimentary rocks. Here we focus on methods developed to address the challenges posed by the paleointensity measurement of crystals having weak natural remanent magnetizations (NRMs). We use a small bore (6.3 mm) 2G SQUID magnetometer that currently has the highest 3-component moment resolution for measurements, and CO2 laser heating for demagnetization. Use of this 3-component system allows for the direct measurement of full vector natural remanent magnetizations and avoids the non-uniqueness inherent in scanning magnetometer approaches. To reduce sample blank size, we use 0.5 mm fused quartz sample holders. We find that some Archean to Hadean zircons of the Jack Hills (Yilgarn Craton, Western Australia) have NRMs of ca. 1-3 x 10-9 emu, within the resolution of the ultra-high moment resolution SQUID magnetometer. Thermal demagnetization data indicate most the magnetization unblocks between 550 and 580 °C, consistent with a magnetite carrier. Magnetic force microscopy suggests the presence of sub-micron single domain-like magnetic inclusions in the zircon. Thellier-Coe paleointensity data suggest the presence of a magnetic field at 3.55 Ga. We will discuss measurements and criteria to evaluate the presence/absence of an even older Paleoarchean and Hadean magnetic field, and opportunities provided by further increases in moment resolution provided by a new spin exchange relaxation-free magnetometer.

  15. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  16. Fracture of textured iron titanate

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael Henry

    The bulk properties of polycrystalline ceramics are strongly influenced by crystallographic texture. Despite this, and the virtual omnipresence of texture in ceramic microstructures, few studies have examined the influence of texture on the properties of a bulk ceramic. In this work, the role of texture in determining the fracture behavior of a highly anisotropic ceramic, iron titanate, has been examined. By exploiting the anisotropy in its single crystal magnetic susceptibility, crystallographically textured and untextured iron titanate microstructures were formed by processing in the presence and absence of a strong magnetic field, respectively. The magnetic field-assisted processing imparted fiber texture, with the grains' b-axes aligning parallel to the applied field. Despite the presence of a high degree of crystallographic texture, the magnetically-processed specimens exhibited little or no morphological texture, as evidenced by stereological analysis. This allowed changes in the observed properties to be attributed to crystallographic texture alone. Residual stress was evaluated using x-ray diffraction techniques. Both triaxial residual stress and lattice parameter measurements showed that both the untextured and textured materials had undergone significant stress relaxation. Finite element simulations of residual stresses at the grain boundaries of a model microstructure showed that microcracking is still quite likely to occur in a textured material; however, the microcracks would be preferentially oriented so that their planes are parallel to the applied magnetic field. These predictions were confirmed via SANS measurements on highly textured iron titanate samples. Strength in bending and R-curve behavior were evaluated as functions of degree of texture and orientation in the magnetically-processed materials. Strengths remained on the order of that for the control material, except for one orientation, for which the strength decreased with increasing degree

  17. Corona discharge of Titan's troposphere.

    PubMed

    Navarro-Gonzalez, R; Ramirez, S I

    1997-01-01

    The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the

  18. Impact Crater Environments as Potential Sources of Hadean Detrital Zircons

    NASA Astrophysics Data System (ADS)

    Kenny, G. G.; Whitehouse, M. J.; Kamber, B. S.

    2016-08-01

    Here we show that contrary to previous suggestions, there is no reason to rule out impact melt sheets as major sources of Hadean detrital zircons. We then explore the potential of other impact crater-related environments in which zircons crystallise.

  19. Atomistic Simulation of Displacement Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.; BP McGrail and GA Cragnolino

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  20. Cyanide Soap? Dissolved material in Titan's Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  1. Titan's South Polar Vortex in Motion

    NASA Video Gallery

    This movie captured by NASA'S Cassini spacecraft shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturn’s moon Titan. The swirling mass appears to exec...

  2. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; ...

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  3. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  4. Taking on Titan: Meet Carrie Anderson

    NASA Video Gallery

    When she was a little girl, Carrie Anderson dreamed of becoming an astronomer. Now, as a space scientist at NASA Goddard Space Flight Center, Carrie studies the atmosphere on Titan: one of Saturn's...

  5. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.

  6. Chem-Prep PZT 95/5 for neutron generator applications : development of laboratory-scale powder processing operations.

    SciTech Connect

    Montoya, Ted V.; Moore, Roger Howard; Spindle, Thomas Lewis Jr.

    2003-12-01

    Chemical synthesis methods are being developed as a future source of PZT 95/5 powder for neutron generator voltage bar applications. Laboratory-scale powder processes were established to produce PZT billets from these powders. The interactions between calcining temperature, sintering temperature, and pore former content were studied to identify the conditions necessary to produce PZT billets of the desired density and grain size. Several binder systems and pressing aids were evaluated for producing uniform sintered billets with low open porosity. The development of these processes supported the powder synthesis efforts and enabled comparisons between different chem-prep routes.

  7. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  8. Parallel contingency statistics with Titan.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  9. Spectral Trends of Titan's Tropical Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin Ann; Penteado, Paulo F.; Turner, Jake; Montiel, Nicholas; Schoenfeld, Ashley; Lopes, Rosaly M. C.; Soderblom, Laurence A.; Neish, Catherine; Radebaugh, Jani

    2016-10-01

    Titan's surface can be observed most clearly at 8 spectral regions that lie in between the strong methane bands in Titan's spectrum. Within these "windows", between 0.9 to 5 microns, the surface is nonetheless obscured by methane and haze, the latter of which is optically thick at lower wavelengths. Thus studies of Titan's surface must eliminate the effects of atmospheric extinction and extract the subtle spectral features that underlie the dominant spectral trends.To determine the subtle spectral features of Titan's tropical surface (30S--30N) we conducted a Principal Components Analysis (PCA) of the I/F at the 1.1, 1.3, 1.6 and 2.0 um wavelength windows, recorded by Cassini/VIMS. The PCA analysis identifies the spectral trend that defines the highest variance in the data (the principal component), as well as successively weaker orthogonal trends, without a priori assumptions about the surface composition, e.g. as needed in radiative transfer analyses.Our analysis derives the spectral features at the four wavelengths that describe Titan's tropical surface. We detect a large almost contiguous region that extends roughly 160 degrees in longitude and which exhibits absorption features at 1.6 and 2.0, as well as 2.8 um (characteristic of water ice). This vast and perhaps tectonic feature is, in part, associated with terrain that is hypothesized to be some of the oldest surfaces on Titan. In addition, the PCA analysis indicates at least 2 separate organic spectra signatures, potentially due to the separation of liquid and refractory sediments or to their chemically alteration over time. Here we discuss the PCA analysis and compare our derived compositional maps of Titan's surface with Radar maps of the topography and morphology, to entertain questions regarding the geology of Titan's surface the age of its atmosphere.

  10. Radar evidence for liquid surfaces on Titan.

    PubMed

    Campbell, Donald B; Black, Gregory J; Carter, Lynn M; Ostro, Steven J

    2003-10-17

    Arecibo radar observations of Titan at 13-centimeter wavelength indicate that most of the echo power is in a diffusely scattered component but that a small specular component is present for about 75% of the subearth locations observed. These specular echoes have properties consistent with those expected for areas of liquid hydrocarbons. Knowledge of the areal extent and depth of any deposits of liquid hydrocarbons could strongly constrain the history of Titan's atmosphere and surface.

  11. Preparation of the Superconductor Substrate: Strontium Titanate

    DTIC Science & Technology

    1988-09-01

    single crystals of strontium titanate is derived from the original method developed by Verneuil . 16 The general procedure for the growth of single... crystals growth are reported. The growth direction was determined to be 5 degrees away from the [2111 direction. ICP-emission spectroscopy irdicates... Growth of Strontium Titanate Crystals 5 2.4 Preparation of Substrates 8 3. RESULTS AND CONCLUSIONS 8 REFERENCES 13 Illustrations 1. Schematic Diagram

  12. Evidence for surface heterogeneity on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    1993-08-01

    Observational results are presented for two rotational periods of Titan which exhibit the albedo difference noted by Lemmon et al. (1993) between this moon's positions at eastern and western elongation relative to Saturn. The persistence of this difference indicates that this heterogeneity is unlikely to be associated with transient features, and must be intrinsic to the surface. The results presented also indicate that Titan is locked in a synchronous orbit around Saturn.

  13. Saturn's Titan: Evidence for Current Cryovolcanic Activity

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Cassini VIMS Titan Surface Variability Group

    2009-09-01

    We report evidence suggesting current cryovolcanic activity on Titan. This is based on surface changes seen at selected locations by the Cassini Visual and Infrared Mapping Spectrometer (VIMS). Titan's surface is hard to observe because Titan's atmosphere is opaque at visual wavelengths due to methane absorption. However, VIMS is able to image the surface at selected infrared wavelengths where the methane is relatively transparent[1,2]. VIMS reported surface reflectance variability at Hotei Arcus (26S,78W) and that the variability might be due to deposition followed by coverage or dissipation of ammonia frost. Subsequently, Cassini RADAR images found that Hotei Arcus has lobate "flow” forms, consistent with the morphology of volcanic terrain [3]. Here we report the discovery of lobate "flow” patterns at Hotei Arcus in VIMS infrared images taken during Cassini close flybys during 2008-2009. These data further suggest that the brightness variability at Hotei Arcus is associated with ammonia, a compound expected in Titan's interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. It has not escaped our attention that gaseous ammonia, in association with methane and nitrogen in Titan's atmosphere, is similar to the terrestrial environment at the time that life first emerged. If Titan is currently active, then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan's chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. References: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL

  14. Cassini: A mission to Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    1992-04-01

    The Cassini spacecraft that will carry out a detailed exploration of the Saturnian system is described. The spacecraft is composed of a Saturn orbiter and a Titan atmospheric probe called Huygens. The scientific objectives and investigations developed for the accommodation phase of the mission are discussed. The preferred trajectories available for transit to Saturn are discussed along with Titan specific features of the tour of the Saturnian system.

  15. Time Variability of Titan's Ionosphere Revisited

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Kai; Ip, Wing-Huen; Perryman, Rebecca; Waite, Hunter

    2015-04-01

    Since the Saturn Orbital Insertion in 2004, the Ion Neutral Mass Spectrometer (INMS) experiment aboard the Cassini-Huygens spacecraft has acquired an extensive data set. The decadal coverage of the measurements during numerous close encounters with Titan allows the study of spatial and temporal variations of Titan's nitrogen-rich atmosphere above 1000-km altitude. Titan's ionosphere is quite different to that of Earth's ionosphere. Due to Titan's thick (hundreds of kilometers) and dense atmosphere, the measurable ion density of Titan's nightside ionosphere extends well beyond the terminator. The diurnal variation of the ion density profiles and compositional changes are the result of photoionization and magnetospheric electron ionization (important at the night side). The different time evolutions of the light and heavy species from day to night could be indicative of the effects of flow dynamics and ion-molecule chemistry. From the observations, we can determine the ion content in Titan's night-side and the asymmetry between the dawn and dusk ion density profiles. We have also found in the long term data base the signature of the equatorial expansion of Titan's atmosphere during solar maximum. In addition the global distributions of the major compound N2 and minor species like CH4 and H2 all exhibit significant changes over a solar cycle as the closest approach points of Cassini moved from the northern hemisphere to the southern hemisphere. In this work, we will first compare the diurnal variations between different ion species and simulate the ion densities to study the possible contributing factors. Then we will compare the results of our analysis to those reported by other groups to construct a comprehensive model of Titan's neutral atmosphere and ionosphere under different solar conditions.

  16. Surface of Titan : model and VIMS observations

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Toledo, D.; Adriani, A.; Moriconi, M. L.; D'Aversa, E.; Lemouélic, S.; Sotin, C.; Brown, R. H.

    2015-10-01

    In this presentation we will describe how we explain the surface reflectivity observed by DISR and how we retrieved the surface albedo of Titan from VIMS observation, showing where are the main uncertainties. We show that the reflectivity at the Huygens Landing Site may be explained a layer of liquid methane at the surface. We also show that other zones on Titan may have the same type of surface reflectivity than the HLS.

  17. Near-infrared spectrophotometry of Titan

    NASA Technical Reports Server (NTRS)

    Trafton, L. M.

    1975-01-01

    Several unusual features in the near-IR spectrum of Titan are examined. Observations during four apparitions establish the reality of the S(1) absorption at 8150.7 A, but the existence of the S(O) absorption at 8272.7 A will require further sightings to become definitively established. These two features are particularly important, as they bear on the abundance of H2 in Titan's atmosphere.

  18. Atomic hydrogen distribution. [in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  19. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  20. Co2 On Titan's Surface

    NASA Astrophysics Data System (ADS)

    McCord, Thomas B.; Combe, J.; Hayne, P.; Hansen, G. B.

    2007-10-01

    Evidence is reported for the presence of CO2 on the surface of Titan from the Cassini VIMS (an imaging visual and IR spectrometer) data (McCord et al., 2006, 2007). CO2 can be expected on Titan from basic planetary evolution models. It was also suggested as a plausible spectral component for bright material near the Huygens landing site (Rodriguez et al., 2006), based on structure in the 1.59-µm region. Hartung et al. (2006) searched for CO2 in one hemisphere, but they were able only to set an upper limit on the possible spatial coverage by pure CO2. Barnes et al., (2006) suggested CO2 as a possible candidate material for a 5-µm-bright region, named Tsegihi, based on the high 5-µm reflectance. However, these results are not inconsistent with our report. The evidence we report is three-fold: 1) A weak absorption near 4.9 µm in the 5-µm methane window for the Tui Regio region; 2) The spectral contrast between the 2.7- and 2.8-µm methane subwindows for the regions exhibiting the 4.9-µm absorption, with stronger absorption correlating with stronger contrast; and 3) the overall shape of the CO2 spectrum (for several grain-sizes) is consistent with the spectrum of one of the fundamental surface spectral components, as deduced by spectral mixture analysis modeling. The Tui Regio feature exhibits the strongest evidence in all three categories. Studies of this feature's morphology and albedo markings have suggested to some that it may be an active cryovolcanic feature (Barnes et al., 2006). If so, CO2 could be erupting and depositing as a frost. This likely happened elsewhere and at other times. Thus, CO2 could be a major constituent of the surface, but over time it may be mixed with other constituents, such as spectrally neutral organics raining from the atmosphere, thereby reducing the strength of its spectral signature.