Sample records for zirconia powders production

  1. [Effects of colorants on yttria stabilized tetragonal zirconia polycrystals powder].

    PubMed

    Wang, Bo; Chen, Jianfeng; Zhang, Yanchun; Wang, Ru

    2015-10-01

    To evaluate the effect of Fe2O3 and CeO2 as colorants on yttria stabilized tetragonal zirconia poly-crystals (Y-TZP) powder. The spray granulation slurry of colored zirconia was prepared with different concentrations of Fe2O3 (0.15%) and CeO2 (4%), which were added in Y-TZP. Zirconia powder was made by spray granulation. The powder specimens were divided into three groups: uncolored zirconia, Fe2O3 (0.15%) zirconia, and CeO2 (4%) zirconia. The particle morphologies of the powder specimens were measured with a laser particle size analyzer and an optical microscope. The differences in D50 among the three groups were statistically significant (P<0.05). Group Fe2O3 showed a significant difference from groups CeO2 and uncolored zirconia (P<0.05). Group uncolored zirconia showed no significant difference from group CeO2 (P>0.05). Mostly spherical powder was observed in the three groups. Fe2O3 as a colorant can affect particles, whereas CeO2 has no effect.

  2. Properties of zirconia-toughened-alumina prepared via powder processing and colloidal processing routes.

    PubMed

    Rafferty, A; Alsebaie, A M; Olabi, A G; Prescott, T

    2009-01-15

    Alumina-zirconia composites were prepared by two routes: powder processing, and colloidal processing. Unstabilised zirconia powder was added to alumina in 5 wt%, 10 wt% and 20 wt% quantities. For the colloidal method, zirconium(IV) propoxide solution was added to alumina powder, also in 5 wt%, 10 wt% and 20 wt% quantities. Additions of glacial acetic acid were needed to form stable suspensions. Suspension stability was verified by pH measurements and sedimentation testing. For the powder processed samples Vickers hardness decreased indefinitely with increasing ZrO(2) additions, but for colloidal samples the hardness at first decreased but then increased again above >10 wt% ZrO(2). Elastic modulus (E) values decreased with ZrO(2) additions. However, samples containing 20 wt% zirconia prepared via a colloidal method exhibited a much higher modulus than the powder processed equivalent. This was due to the homogeneous dispersion of zirconia yielding a sample which was less prone to microcracking.

  3. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder

    PubMed Central

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-01-01

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives. PMID:29258227

  4. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder.

    PubMed

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-12-18

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  5. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less

  6. Method of producing high purity zirconia powder from zircon powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funahashi, T.; Uchimura, R.; Oguchi, Y.

    A method is described of producing a zirconia powder from zirconia containing SiO/sub 2/, comprising the steps of: preparing a raw material mixture comprising the zircon powder containing the SiO/sub 2/ and a powdery carbon-containing material such that the mole ratio of C, which is contained in the carbon-containing material and does not gasify at temperatures below 100/sup 0/C. in a nonoxidizing atmosphere, to SiO/sub 2/ contained in the zircon powder is in the range from 0.4 to 2.0; and subjecting the raw material mixture to a desiliconizing heat treatment in a nonoxidizing atmosphere of which the presence is notmore » higher than 0.6 atm, the desiliconizing heat treatment being a combination of a first-stage heat treatment which is performed at a temperature in the range from 1200/sup 0/ to 1550/sup 0/C. for separating silica from the zircon powder and a second-stage heat treatment which is performed at a higher temperature in the range from above 1550/sup 0/C. to 2000/sup 0/C. for completely converting silica in the mixture under heat treatment into gaseous SiO and dissipating the gaseous SiO, wherein the raw material mixture is subjected to the desiliconizing heat treatment in the form of at least one lump whose bulk density is in the range from 0.7 to 2.0.« less

  7. Adsorption of dispersants on zirconia powder in tape-casting slip compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, V.L. II

    This paper reports the determination of adsorption isotherms for menhaden fish oil and glycerol trioleate on doped zirconia powder in solvents composed of 70% methyl ethyl ketone (MEK) and 30% ethanol. In order to approach tape-casting zirconia on a sound technical basis, the correspondence of slip viscosities and tape sintered densities to the adsorption isotherms was studied.

  8. Phase Stabilization of Zirconia.

    DTIC Science & Technology

    1997-01-30

    preparing stabilized zirconia pursuant to this disclosure, an insoluble alumina powder is mixed with zirconia powder using a liquid dispersant, such...in a drying oven or a furnace. When mixing the alumina and zirconia powders , it is not necessary to have zirconia in any particular phase to achieve...phase stabilization, as disclosed herein. When mixed with alumina powder, zirconia powder can be in cubic, tetragonal or 20 monoclinic phases

  9. Influence of thermal treatment on the formation of zirconia nanostructured powder by thermal decomposition of different precursors

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Negrea, Adina; Barvinschi, Floricica

    2013-10-01

    The paper presents some results concerning the preparation of zirconia powders starting from ZrOCl2·8H2O by using two synthesis methods: (a) precipitation with NH3, at 90 °C, and (b) thermal decomposition of carboxylate precursors, obtained in the reaction of zirconium nitrate and two different alcohols, 1,3-propanediol (PD) and poly(vinyl alcohol) (PVA), at 150 °C. The precursors obtained at different temperatures have been characterized by thermal analysis (TG, DTA) and FT-IR spectroscopy. DTA analysis evidenced very clearly the transition temperatures between zirconia crystalline phases. The precursors have been annealed at different temperatures in order to obtain zirconia powders and the as obtained powders have been characterized by means of X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). In case of precipitation method the presence of the tetragonal phase was observed at 400 °C, while the monoclinic phase appears at temperatures higher than 400 °C, becoming major crystalline phase starting with 700 °C. In case of the powders prepared by thermal decomposition of carboxylate precursors, the tetragonal phase was formed at temperatures below 700 °C, when the monoclinic phase begin to crystallize as secondary phase, in a higher proportion for the samples synthesized with 1,3-propanediol. All powders annealed at 1200 °C are pure monoclinic zirconia. SEM images have evidenced for the zirconia powders annealed at 1000 °C particles with diameters up to 150 nm, agglomerated in micrometer-sized aggregates, more individualized and homogenous than that obtained in the case of zirconia powder synthesized with poly(vinyl alcohol).

  10. Effect of acidity on the citrate-nitrate combustion synthesis of alumina-zirconia composite powder

    NASA Astrophysics Data System (ADS)

    Chandradass, J.; Kim, Ki Hyeon

    2009-12-01

    Alumina-zirconia composite powders were produced by sol-gel autocombustion. 20 wt.% ZrO2-Al2O3 mixture precursor solutions were chelated by citric acid ions at different pH. DTA analysis shows sluggish decomposition at low pH, whereas there was rapid decomposition at high pH = 9. XRD patterns of the calcined powders showed that well crystallized powder with 100 % tetragonal phase and α-alumina phase is produced when pH = 0.58 (without ammonia addition). TEM characterization of composite powders revealed homogenous distribution of nanosized zirconia particles in the alumina matrix. FTIR analysis shows peaks at 590 cm-1 and 454 cm-1, which are identified as the characteristic absorption bands of Zr-O and Al-O.

  11. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  12. Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.

    2006-05-01

    Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.

  13. A novel method for the synthesis of zirconia powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohe, A.E.; Pasquevich, D.M.

    A novel method for the synthesis of zirconia powder is presented in this paper. The formation of fine particles of zirconia takes place when metallic zirconium and hematite are heated in the presence of gaseous chlorine. The overall process, which can be described by the following reaction: 3 Zr(s) + 2 Fe{sub 2}O{sub 3}(s) {r_arrow} 3 ZrO{sub 2}(s) + 4 Fe(s), occurs by a mass-transport mechanism through the vapor phase between 723 and 1223 K. The vapor-mass transport among the solid species takes place by means of zirconium and iron chlorides. The fundamentals of synthesis are discussed on the basismore » of a detailed thermodynamic analysis of reactions involved in the process, as well as by a characterization of the solid phases formed at various temperatures at XRD and SEM examinations.« less

  14. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation.

    PubMed

    Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K

    2010-02-15

    For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Experimental Equipment for Powder Processing

    DTIC Science & Technology

    2009-08-20

    for a series of alumina and zirconia powder mixtures by TMDAR, CR-15 (alumina), as well as TZ3YS and CERAC-2003 (zirconia). The proportion of TMDAR...is known to cause abnormal grain growth. Fig.15 shows the seven representative curves obtained for our zirconia powder system. The 10% and 20...various zirconia powder mixtures. The maximum densification rate for each of our zirconia powder mixtures occurs within the relative density range of

  16. Densification of Zirconia with Borates.

    DTIC Science & Technology

    1980-01-24

    solid electrolytes for fuel cell and oxygen sensor applications.1 ’ 2 The sintering temperatures for commercial quality stabilized zirconia powders are...in the temperature range 1450-1500C). A few studies were also made using a much coarser particle size (- 1-2 pm ave.) cubic stabilized zirconia ... powder , "Zircoa B" [Zirconia Corp. of America]. The additives used as sintering aids were reagent grade horic anhydride, calcium metaborate and calcium

  17. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    DTIC Science & Technology

    1979-08-01

    23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3

  18. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae.

    PubMed

    Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun

    2013-05-01

    To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.

  19. Adsorption as a method of doping 3-mol%-yttria-stabilized zirconia powder with copper oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, J.R.; Mayo, M.J.; Osseo-Asare, K.

    The adsorption behavior of Cu[sup 2+] on 3-mol%-yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) powder was studied. There is a window of pH values (10 < pH < 11) where adsorption may be used as a method of doping 3Y-TZP with Cu[sup 2+]. The maximum mole percent of the CuO additions is determined by the specific surface area of the 3Y-TZP powder; a powder with a specific surface area of 16.1 m[sup 2]/g is limited to about 1 mol% CuO. Compacts made from powders doped with CuO using this method exhibited an enhancement in superplasticity comparable to that observed in other studiesmore » using samples doped with CuO by attrition milling.« less

  20. High-power hybrid plasma spraying of large yttria-stabilized zirconia powder

    NASA Astrophysics Data System (ADS)

    Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu

    2006-03-01

    To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).

  1. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    PubMed

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  2. In-situ Preparation of Polymer-Coated Zirconia Nanoparticles by Decomposition of Zirconium-Tert-Butoxide

    DTIC Science & Technology

    2003-01-01

    coated under conditions C are slightly yellow coloured. The zirconia powders collected at position 1 is white. Table I: Plasma parameters of the...pulsed) 99 1 39 40 2,5 2,5 379 400D. 2000 1000 - 20 0 40 4 140 20 [°1 Figure 2: XRD diffractrogram of zirconia powder coated with polymer Zirconia...wave nunter [crn"] Figure 3: FTIR spectra of plasma treated zirconia powders collected at position 2 (coated) prepared under A) continuous plasma B

  3. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  4. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  5. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  6. Studies of the air plasma spraying of zirconia powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varacalle, D.J. Jr.; Wilson, G.C.; Crawmer, D.E.

    As part of an investigation of the dynamics that occur in the air plasma spray process, an experimental and analytical study has been accomplished for the deposition of yttria-stabilized zirconia powder using argon-hydrogen and argon-helium working gases. Numerical models of the plasma dynamics and the related plasma-particle interaction are presented. The analytical studies were conducted to determine the parameter space for the empirical studies. Experiments were then conducted using a Box statistical design-of-experiment approach. A substantial range of plasma processing conditions and their effect on the resultant coating is presented. The coatings were characterized by hardness tests and optical metallographymore » (i.e., image analysis). Coating qualities are discussed with respect to hardness, porosity, surface roughness, deposition efficiency, and microstructure. Attributes of the coatings are correlated with the changes in operating parameters. An optimized coating design predicted by the SDE analysis and verified by the calculations is also presented.« less

  7. Aqueous Combustion Synthesis and Characterization of Nanosized Tetragonal Zirconia Single Crystals

    NASA Astrophysics Data System (ADS)

    Reddy, B. S. B.; Mal, Indrajit; Tewari, Shanideep; Das, Karabi; Das, Siddhartha

    2007-08-01

    Nanocrystalline zirconia powder has been synthesized by an aqueous combustion synthesis route using glycine as fuel and nitrate as oxidizer. The powders have been prepared by using different glycine to zirconyl nitrate molar ratios (G/N). The powders produced with different G/N ratios have been characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to determine the parameters resulting from powder with attractive properties. The theoretical combustion temperature (T ad ) has been calculated for different G/N ratios, and it is correlated with powder characteristics. An attempt is also made to explain the stability of tetragonal zirconia on the basis of extrinsic factors such as the morphology of nanocrystallites. Nanocrystalline metastable tetragonal zirconia (˜25 nm) powder (TZ) with disc-shaped morphology has been produced with a weak agglomeration in fuel deficient mixtures.

  8. In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics

    PubMed Central

    Li, Jing; Wang, Xiaobei; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Zirconia ceramics with porous structure have been prepared by solid-state reaction using yttria-stabilized zirconia and stearic acid powders. Analysis of its microstructure and phase composition revealed that a pure zirconia phase can be obtained. Our results indicated that its porosity and pore size as well as the mechanical characteristics can be tuned by changing the content of stearic acid powder. The optimal porosity and pore size of zirconia ceramic samples can be effective for the increase of surface roughness, which results in higher cell proliferation values without destroying the mechanical properties. PMID:28773341

  9. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  10. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].

    PubMed

    Chen, Yi-Fan; Lu, Dong-Mei; Wan, Qian-Bing; Jin, Yong; Zhu, Ju-Mu

    2006-02-01

    The objective of the present study was to investigate the feasibility and reliability of sintering alumina and zirconia-based all-ceramic materials through a recently introduced microwave heating technique. The variation of crystal phases, the growth of grain sizes and microstructural features of these materials were evaluated after sintering. Four different groups of powder (l00%Al2O3, 60%Al2O3+40%ZrO2, 40% Al2O3+60%ZrO2, 100% ZrO2) were respectively press-compacted to fabricate green disk samples, 5 specimen of each group were prepared. All the samples were surrounded by refractory materials for heat containment and processed at 1 600 degrees C in a domestic microwave oven (850 W, 2 450 MHz), 1 600 degrees C/5 min for heating rate, 10 min for holding time. After sintering, the phase composition and average grain size of these ceramics were examined using X-ray diffraction (XRD). Their microstructure characteristics were studied by scanning electron microscopy (SEM). All the specimens were successfully sintered with the application of microwave heating system in combination with a suitable thermal insulator. No phase change was found in alumina while monoclinic-zirconia was found to be transformed to tetragonal-zirconia. A little grain size growth of Al2O3 and ZrO2 has been observed with Al2O3 24.1 nm/before and 51.8 nm/after; ZrO2 25.3 nm/before and 29.7 nm/after. The SEM photos indicated that the microwave-sintered Al2O3-ZrO2 ceramics had a uniform crystal distribution and their crystal sizes could be maintained within the range of nanometers. It is expected that in the near future microwave heating system could be a promising substitute for conventional processing methods due to its unparalled advantages, including more rapid heating rate, shortened sintering time, superfine grain size, improved microstructure and much less expensive equipment.

  11. The development of Zirconia and Copper toughened Alumina ceramic insert

    NASA Astrophysics Data System (ADS)

    Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman

    2018-04-01

    Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.

  12. Photoluminescent emission of Pr 3+ ions in different zirconia crystalline forms

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Alejo-Armenta, C.; García-Hipólito, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.; Falcony, C.

    2008-08-01

    Polycrystalline praseodymium doped-zirconia powders were synthesized by crystallization of a saturated solution and annealed in air at T a = 950 °C. Monoclinic, tetragonal and cubic crystalline phases of zirconia were obtained. EDS studies showed homogeneous chemical composition over all the powders particles and chemical elemental contents in good agreement with the incorporation of Pr 3+ ion in Zr 4+ sites. XRD patterns showed stabilization of tetragonal and cubic phases at 1.28 and 2.87 at.% of Pr 3+ doping concentrations, respectively. Both unit cells expand when Pr 3+ content increases. All samples showed a crystallite size lower than 27 nm. Diffuse reflectance studies exhibited the presence of the 4f5d absorption band of Pr 3+, and absorption peaks in 440-610 nm region associated with 4f inter-level electronic transitions in Pr 3+ ion. Low temperature (20 K) photo-luminescent spectroscopic measurements over excitation of 488 nm for praseodymium doped zirconia, showed multiple emission peaks in the 520-900 nm range of the electromagnetic spectrum, associated with typical 4f inter-level electronic transition in Pr 3+. Incorporation of Pr 3+ in more than one zirconia crystalline phase and the incorporation in cubic C 2 sites, were observed. Zirconia powders presented significant differences in its emission spectra as a function of the type of crystalline phase compounds.

  13. Thermal analysis of 3-mol%-yttria-stabilized tetragonal zirconia powder doped with copper oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, J.R.; Mayo, M.J.

    Thermal analysis was performed upon 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) which had been doped with CuO using an aqueous adsorption technique. Cyclic differential thermal analysis (DTA) scans indicated that the CuO present on the powder surfaces first transforms to Cu{sub 2}O and then melts. The molten Cu{sub 2}O then reacts with yttria at the powder surfaces to form a new phase containing Y, Cu, and O. Because Y takes time to diffuse to the particle surfaces, the apparent melting point of this new phase appears at higher temperatures in initial DTA scans than in subsequent scans. Vaporization of the moltenmore » copper-oxide-rich phase at the temperatures studied causes a gradual shift in composition from Y{sub 2}Cu{sub 4}O{sub 5} to the less copper-rich Y{sub 2}Cu{sub 2}O{sub 5} phase. The presence of the Y{sub 2}Cu{sub 2}O{sub 5} phase in CuO-doped 3Y-TZP allows for previous sintering and superplasticity results to be explained.« less

  14. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties

    PubMed Central

    Naglieri, Valentina; Palmero, Paola; Montanaro, Laura; Chevalier, Jérôme

    2013-01-01

    Alumina-zirconia (AZ) composites are attractive structural materials, which combine the high hardness and Young’s modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5–20 vol %) were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO2 grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO2 content. The material containing 10 vol % ZrO2 presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip. PMID:28809262

  15. Crystallization stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria

    NASA Astrophysics Data System (ADS)

    Dell'Agli, G.; Mascolo, G.; Mascolo, M. C.; Pagliuca, C.

    2005-06-01

    Mechanical mixtures of zirconia xerogel and crystalline Y 2O 3 were hydrothermally treated by microwave and traditional route, respectively. Some mixtures were used either as powders form or as cylindrical compacts isostatically pressed at 150 MPa. The microwave-hydrothermal treatments were performed at 110, 150 and 200 °C for reaction times up to 2 h, whereas the traditional hydrothermal treatments were performed at 110 °C at increasing reaction times up to 7 days. All the treatments were performed in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3+KOH) mineralizer. The crystallization-stabilization mechanism of synthesized Y-based zirconia powders and the reaction times for the full crystallization at the low temperature of hydrothermal treatments are discussed.

  16. Evaluation of biocompatibility of various ceramic powders with human fibroblasts in vitro.

    PubMed

    Li, J; Liu, Y; Hermansson, L; Söremark, R

    1993-01-01

    Cell reaction to powders of ceramics was studied in vitro. Cultured human fibroblasts were exposed to different types of ceramic powders: zirconia (ZP), alumina (A), tricalcium phosphate (TCP) and hydroxyapatite (HA), at various concentrations. The cell viability at the different exposure times was measured by the colony formation (expressed as colony forming efficiency, CFE), neutral red uptake (NR) and colorimetric tetrazolium (MTT) reduction. Alumina and hydroxyapatite showed no cytotoxic effects at studied doses (1-500 mug/ml) while zirconia and tricalcium phosphate inhibited cell viability, with 50% of CFE reduction at the concentration of about 50 mug/ml. In order to study the cytotoxic mechanism of zirconia powder, two further experiments were included, viz. the cellular response to the sintered zirconia ceramic powders (CZP) which were obtained by crushing the sintered ceramic material; and the measurement of the degradation of zirconia ceramic plate in the different solutions, i.e., either in saline or in 0.02 M lactic acid (pH 2.72). Similar cell reactions were obtained for the CZP and ZP by using MTT and NR assays. Slow releases of ions from zirconia ceramic plate, yttrium in both solutions and zirconium and yttrium in lactic acid, were detected.

  17. Development of alternative oxygen production source using a zirconia solid electrolyte membrane

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Clark, D. J.; Losey, R. W.

    1990-01-01

    The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation.

  18. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    NASA Technical Reports Server (NTRS)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  19. Properties of zirconia after plasma treatment

    NASA Astrophysics Data System (ADS)

    Alekseenko, V. P.; Kulkov, S. N.

    2017-09-01

    The influence of high-frequency plasma treatment on the properties of zirconia powder is shown in the work. The powder was produced by a plasma-chemical method. The powders had a foamy form with the size of agglomerates of 5-10 μm and crystallites of 20-50 nm. The powders were treated by the pulse plasma unit with dielectric barrier discharge generator. It was shown that the plasma processing changes the acidity of water-powder suspensions from 8.1 to 4.3 pH, which signifies the powders' wettability improvement. It was revealed that more intensive mixing using ultrasound influences the acidity level, reducing it in comparison with mixing by paddle-type agitator. It was shown that these changes of surface properties have relaxation by 4% per day and extrapolation of this dependence shows that the powder will have initial properties after 400 hours storage at room conditions.

  20. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  1. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  2. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth.

    PubMed

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  3. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    PubMed Central

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony. PMID:22919390

  4. Weakly-agglomerated nanocrystalline (ZrO 2) 0.9(Yb 2O 3) 0.1 powders hydrothermally synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Gianfranco; Mascolo, Giuseppe; Mascolo, Maria Cristina; Pagliuca, Concetta

    2006-09-01

    Nanocrystalline ytterbia (10 mol%)-doped cubic zirconia powders were synthesized by hydrothermal treatment of either an amorphous co-precipitate of hydrated ytterbia-zirconia or of zirconia xerogel in mixture with crystalline Yb 2O 3. The treatments were performed at 110 °C in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3 + KOH) mineralizer and for different reaction times. The reaction times for the full crystallization of cubic-YbSZ-based products were determined for both the employed precursors and for each mineralizer solution. The various fully crystallized products were characterized in their degree of agglomeration and sintered at 1500 °C for 2 h. The best performance on sintering was achieved with the less agglomerated powder synthesized from the mechanical mixture and in the presence of the diluted solution of the mineralizer. The resulting density was the highest achieved with materials having the same composition.

  5. Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing

    NASA Astrophysics Data System (ADS)

    Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.

    2009-04-01

    The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

  6. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic.

    PubMed

    Covacci, V; Bruzzese, N; Maccauro, G; Andreassi, C; Ricci, G A; Piconi, C; Marmo, E; Burger, W; Cittadini, A

    1999-02-01

    Tetragonal zirconia polycrystal (TZP) is a new interesting ceramic for the manufacture of medical devices. Its wide use in orthopedic and odontoiatric implants was limited till now by the high chemical and radiochemical impurities of the raw materials. Purification processes now available allow to obtain high purity ceramic grade powders suitable for TZP ceramics manufacture, even if their possible mutagenic and transforming effects are still unclear. The aim of this work is to study in vitro the mutagenic and oncogenic effects of a new zirconia ceramic stabilized by yttria (Y-TZP). This ceramic was sintered from high purity powders obtained by a process developed under a project carried out within the Brite EuRam programme. For comparison, ceramics made from unpurified zirconia powder were also tested. Fibroblasts irradiated by a linear accelerator were used as positive control. The results obtained show that Y-TZP ceramic does not elicit either mutagenic or transforming effect on C3H/10T(1/2) (10T(1/2)) cells and demonstrate that ceramic from high purity powders can be considered suitable for biomedical applications from the point of view of the effects of its radioactive impurity content.

  7. [Influence on mechanical properties and microstructure of nano-zirconia toughened alumina ceramics with nano-zirconia content].

    PubMed

    Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei

    2006-10-01

    To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.

  8. Tribochemical Glass Ceramic Coating as a New Approach for Resin Adhesion to Zirconia.

    PubMed

    Wandscher, Vinícius Felipe; Fraga, Sara; Pozzobon, João Luiz; Soares, Fabio Zovico Maxnuck; Foletto, Edson Luiz; May, Liliana Gressler; Valandro, Luiz Felipe

    To investigate the effects of a novel tribochemical silica coating technique with powders made from feldspathic ceramic and leucite-based ceramic on the bond strength of zirconia to resin cement before and after aging. Zirconia blocks were divided into 3 groups according to the material used for airborne-particle abrasion: 1) SP (control): silica-coated alumina particles; 2) FP: feldspathic ceramic powder; 3) LP: leucite glass-ceramic powder. After silanization, composite resin cylinders were cemented on the zirconia surface using a dual-curing resin cement. Prior to the shear bond strength (SBS) test, half of the samples (n = 15) were stored in distilled water for 24 h; the other half (n = 15) were submitted to aging (10,000 thermocycles of 5°C to 55°C; 150 days of water storage). The bond strength data were analyzed using two-way ANOVA and Tukey's test (α = 0.05). Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction analysis were performed. The initial bond strengths did not differ significantly between the groups (p = 0.053). However, after aging procedures, airborne-particle abrasion with feldspathic ceramic powder (FP) resulted in higher values of bond strength (p = 0.0001). SEM and EDS indicated that all the treatments promoted silica deposition on the Y-TZP surface ceramic. Airborne-particle abrasion with FP and LP induced a lower percentage of the monoclinic phase. Airborne abrasion with fine feldspathic ceramic particles is a novel tribochemical technique and appears to be suitable for improving the bond strength between zirconia and resin cements.

  9. International Conference on the Science and Technology of Zirconia (ZrO2IV) (4th) Held in Anaheim, California on Nov 1-3, 1989

    DTIC Science & Technology

    1990-02-01

    niobia-zirconia powder from freshly precipitated hydrous zirconia and niobium- Different ceria stabilized TZP ceram- ammonium oxalate . Zirconia powders...C :1RCONIA, Chen-Feng Kao and Tsu-Meng BY HYDROTHERMAL PRECIPITATION METHOD, S. P Fueng, Dept of Chemical Engineering, Somiya*, Nishi-Tokyo Univ...under Y increased with an increase of pH values. hydrothermal condition. Mixed solutions of b Drain size decreased and sintering density ZrOCl2, YCl 3

  10. [Measurement of chromaticity of five hued zirconia].

    PubMed

    Wen, Ning; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Liu, Hong-chen

    2009-05-01

    To determine the chroma value of sintered IL1-IL5 zirconia materials in comparison with the Vita In-Ceram YZ color shade. Five types of shading dental zirconia ceramics with color gradient were prepared by adding Fe2O3, CeO2, and Bi2O3 to the zirconia powder, and their chroma values were determined using a spectrophotometer and the color difference was calculated. The chroma value ranges were L: 67.76-77.78, a: -2.19-3.80, and b: 12.13-25.01. Slight deltaE was found between IL1 and LL1, IL2 and LL2, and IL3 and LL3. The deltaE between IL4 and LL4 could be compensated by veneering porcelain, whereas deltaL between IL5 and LL5 could not be compensated in this manner. Shading dental zirconia ceramics can be prepared by addition of metal oxides with color similar to the Vita In-Ceram YZ color shades to match that of the veneering porcelain in clinical practice.

  11. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  12. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  13. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae

    PubMed Central

    Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2017-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717

  14. Fracture resistance of inter-joined zirconia abutment of dental implant system with injection molding technique.

    PubMed

    Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan

    2013-11-01

    Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.

  15. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    PubMed

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  16. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.

    PubMed

    Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing

    2012-06-01

    The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface

  17. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  18. Chemically Derived Dense Alumina-Zirconia Composites for Improved Mechanical and Wear Erosion Properties

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.

  19. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  20. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherly, K. B.; Rakesh, K.

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with themore » theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.« less

  1. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template

    NASA Astrophysics Data System (ADS)

    Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin

    2008-03-01

    Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  2. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  3. Method for Production of Powders

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1997-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  4. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  5. Biaxial flexural strength of bilayered zirconia using various veneering ceramics

    PubMed Central

    Chantranikul, Natravee

    2015-01-01

    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength. PMID:26576251

  6. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    NASA Astrophysics Data System (ADS)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  7. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 1: Effect of spray parameters on the performance of several lots of partially stabilized zirconia-yttria powder

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.; Jobe, J. Marcus

    1993-01-01

    Initial experiments conducted on thermal barrier coatings prepared in the newly upgraded research plasma spray facility and the burner rig test facilities are discussed. Part 1 discusses experiments which establish the spray parameters for three baseline zirconia-yttria coatings. The quality of five similar coating lots was judged primarily by their response to burner rig exposure supplemented by data from other sources such as specimen characterizations and thermal diffusivity measurements. After allowing for burner rig variability, although there appears to be an optimum density (i.e., optimum microstructure) for maximum burner rig life, the distribution tends to be rather broad about the maximum. In Part 2, new hafnia-yttria-based coatings were evaluated against both baseline and alternate zirconia-yttria coatings. The hafnia-yttria coatings and the zirconia-yttria coatings that were prepared by an alternate powder vendor were very sensitive to plasma spray parameters, in that high-quality coatings were only obtained when certain parameters were employed. The reasons for this important observation are not understood. Also not understood is that the first of two replicate specimens sprayed for Part 1 consistently performed better than the second specimen. Subsequent experiments did not display this spray order affect, possibly because a chiller was installed in the torch cooling water circuit. Also, large changes in coating density were observed after switching to a new lot of electrodes. Analyses of these findings were made possible, in part, because of the development of a sensitive density measurement technique described herein in detail. The measured thermal diffusivities did not display the expected strong relationship with porosity. This surprising result was believed to have been caused by increased microcracking of the denser coatings on the stainless steel substrates.

  8. Zirconia in dentistry: part 2. Evidence-based clinical breakthrough.

    PubMed

    Koutayas, Spiridon Oumvertos; Vagkopoulou, Thaleia; Pelekanos, Stavros; Koidis, Petros; Strub, Jörg Rudolf

    2009-01-01

    An ideal all-ceramic restoration that conforms well and demonstrates enhanced biocompatibility, strength, fit, and esthetics has always been desirable in clinical dentistry. However, the inherent brittleness, low flexural strength, and fracture toughness of conventional glass and alumina ceramics have been the main obstacles for extensive use. The recent introduction of zirconia-based ceramics as a restorative dental material has generated considerable interest in the dental community, which has been expressed with extensive industrial, clinical, and research activity. Contemporary zirconia powder technology contributes to the fabrication of new biocompatible all-ceramic restorations with improved physical properties for a wide range of promising clinical applications. Especially with the development of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems, high-strength zirconia frameworks can be viable for the fabrication of full and partial coverage crowns, fixed partial dentures, veneers, posts and/or cores, primary double crowns, implant abutments, and implants. Data from laboratory and clinical studies are promising regarding their performance and survival. However, clinical data are considered insufficient and the identified premature complications should guide future research. In addition, different zirconia-based dental auxiliary components (i.e., cutting burs and surgical drills, extra-coronal attachments and orthodontic brackets) can also be technologically feasible. This review aims to present and discuss zirconia manufacturing methods and their potential for successful clinical application in dentistry.

  9. Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagherazzi, G.; Canton, P.; Benedetti, A.

    Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}

  10. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  11. Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response

    PubMed Central

    Hadjicharalambous, Chrystalleni; Prymak, Oleg; Loza, Kateryna; Buyakov, Ales; Kulkov, Sergei; Chatzinikolaidou, Maria

    2015-01-01

    It is acknowledged that cellular responses are highly affected by biomaterial porosity. The investigation of this effect is important for the development of implanted biomaterials that integrate with bone tissue. Zirconia and alumina ceramics exhibit outstanding mechanical properties and are among the most popular implant materials used in orthopedics, but few data exist regarding the effect of porosity on cellular responses to these materials. The present study investigates the effect of porosity on the attachment and proliferation of pre-osteoblastic cells on zirconia and alumina. For each composition, ceramics of three different porosities are fabricated by sintering, and characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray powder diffraction. Cell proliferation is quantified, and microscopy is employed to qualitatively support the proliferation results and evaluate cell morphology. Cell adhesion and metabolic activity are found comparable among low porosity zirconia and alumina. In contrast, higher porosity favors better cell spreading on zirconia and improves growth, but does not significantly affect cell response on alumina. Between the highest porosity materials, cell response on zirconia is found superior to alumina. Results show that an average pore size of ~150 μm and ~50% porosity can be considered beneficial to cellular growth on zirconia ceramics. PMID:26579516

  12. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    PubMed Central

    Tuncel, İlkin; Üşümez, Aslıhan

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations. PMID:27350851

  13. Dispersion of nanosized ceramic powders in aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chera, L.; Palcevskis, E.; Berzins, M.; Lipe, A.; Jansone, I.

    2007-12-01

    Seven commercially available dispersants have been applied to produce high concentrated aqueous suspensions of the nanosized alumina and partially stabilized zirconia powders processed by the plasma technique. Simultaneously, the electrokinetic behaviour of powders has been investigated in diluted suspensions by microelectrophoresis method. Zeta potential measurements are used to estimate the influence of selected dispersants on the electrokinetic properties of the powder surface. On the basis of obtained data the correlation between the surface electrokinetic properties in dilute suspensions and reached maximal suspension concentration is discussed.

  14. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming.

    PubMed

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil; Park, Sang-Won

    2010-09-01

    The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

  16. [Effect of two-step sintering method on properties of zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-Qiang; Sun, Jing; Gao, Lian

    2008-04-01

    To study the influence of two-step sintering method on the sintering property, mechanical properties and microstructure of zirconia ceramic. The nano-size zirconia powder were compacted and divided into two groups, one group for one-step sintering method, another group for two-step sintering method. All samples sintered at different temperature. The relative density, three-bend strength, HV hardness, fracture toughness and microstructure of sintered block were investigated. Two-step sintering method influenced the sintering property and mechanical properties of zirconia ceramic. The maximal relative density was 98.49% at 900 degrees C/1,450 degrees C sintering temperature. There were significant difference of mechanical properties between one-step sintering and two-step sintering, the three-bend strength and fracture toughness declined, hardness increased at two-step sintering. The three-bend strength, HV hardness and fracture toughness reached to maximum value as 1,059.08 MPa +/- 75.24 MPa, 1,377.00 MPa +/- 16.37 MPa and 5.92 MPa x m1/2 +/- 0.37 MPa x m1/2 at 900 degrees C/1,450 degrees C sintering temperature respectively. Microscopy revealed the relationship between the porosity and shapes of grains was correlated to strength of the zirconia ceramics. Despite of the two-step sintering method influences the properties of zirconia, it also is a promising esthetic all-ceramic dental material.

  17. [Effects of different surface modifications on micro-structure and adhesion of zirconia ceramic: an in vitro study].

    PubMed

    Siwen, Li; Shishi, Li; Yanhong, Wang; Hongmei, Ma

    2017-02-01

    This study evaluated the effect of different mechanical-chemical surface treatments on the characteristics, microstructure, and composition of zirconia ceramics and on the zirconia-dentin adhesion. The sintered commercial zirconia blocks (IPS e.max ZirCAD) were sectioned into 126 beams (6 mm×6 mm×5 mm) and randomly assigned to seven experimental groups (n=18). The zirconia block specimens were further treated as follows: (A) untreated, as control; (B) sandblasted with 50 μm Al2O3; (C) sandblasted with 50 μm Al2O3+30 μm silica powder; (D) sandblasted with 50 μm Al2O3+30% silica-sol coating; (E) sandblasted with 110 μm Al2O3; (F) sandblasted with 110 μm Al2O3+30 μm silica powder; and (G) sandblasted with 110 μm Al2O3+30% silica-sol coating. The surface roughness (Ra) of zirconia ceramics using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) after seven surface treatments was analyzed. Seventy specimens of dentin surfaces were prepared. A dual-cure resin cement was applied into zirconia surfaces with its corresponding adhesive components to dentin. Shear bond strength (SBS) of each sample was measured using a universal testing machine. The data were analyzed by ANOVA using SPSS 17.0 software. Ra of zirconia were significantly different compared with the control group (P<0.05). The crystalline transformation from tetragonal phase to monoclinic phase was observed after surface modification. Monoclinic volume content of the heat-treated group was highest than that in other groups. The content of element Si in the heat-treated group was higher than that in other treatment groups accompanied by a decrease in elements Zr, Y, and Hf after being treated by two silica-coating methods. Air abrasion significantly increased the micro-cracks in the ceramic surface and caused the grain boundaries to disappear. A serious shrinkage of the thin silica film can be observed after sintering procedure

  18. Defect studies of nanocrystalline zirconia powders and sintered ceramics

    NASA Astrophysics Data System (ADS)

    Čížek, Jakub; Melikhova, Oksana; Procházka, Ivan; Kuriplach, Jan; Kužel, Radomír; Brauer, Gerhard; Anwand, Wolfgang; Konstantinova, Tatyana E.; Danilenko, Igor A.

    2010-01-01

    The main objective of the present paper is to communicate a study of defects behavior in zirconia-based nanomaterials—pressure-compacted yttria-stabilized zirconia (YSZ) nanopowders with different contents of Y2O3 and ceramics obtained by sintering the YZS nanopowders. In addition, YZS single crystals were also investigated. Positron annihilation techniques including positron lifetime and coincidence Doppler broadening with a conventional positron source and Doppler broadening experiments on a monoenergetic positron beam were involved in this study as the principal tools. These techniques were supplemented with transmission electron microscopy and x-ray diffraction observations. In order to get better support of the experimental data interpretation, the state-of-art theoretical calculations of positron parameters were performed for the perfect ZrO2 lattice and selected defect configurations in the YSZ. Theoretical calculations have indicated that neither the oxygen vacancies nor their neutral complexes with substitutional yttrium atoms are capable of positron trapping. On the other hand, the zirconium vacancies are deep positron traps and obviously are responsible for the saturated positron trapping observed in the YSZ single crystals. In the compacted YSZ nanopowders, a majority of positrons is trapped either in the vacancylike defects situated in the negative space-charge layers along grain boundaries (τ1≈185ps) or in vacancy clusters at intersections of grain boundaries (τ2≈370ps) . The intensity ratio I2/I1 was found to be correlated with the mean grain size d as I2/I1˜d-2 . A small fraction of positrons (≈10%) form positronium in large pores (τ3≈2ns,τ4≈30ns) . A significant grain growth during sintering of the YSZ nanopowders above 1000°C was observed.

  19. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.

    PubMed

    Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  20. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; I. Y. Tok, A.; D. Siva Rama, Krishna

    2009-04-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  1. Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing

    NASA Astrophysics Data System (ADS)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen, Rui; Yang, Hong; Jacobs, Stephen D.

    2009-08-01

    Aqueous magnetorheological (MR) polishing fluids used in magnetorheological finishing (MRF) have a high solids concentration consisting of magnetic carbonyl iron particles and nonmagnetic polishing abrasives. The properties of MR polishing fluids are affected over time by corrosion of CI particles. Here we report on MRF spotting experiments performed on optical glasses using a zirconia coated carbonyl iron (CI) particle-based MR fluid. The zirconia coated magnetic CI particles were prepared via sol-gel synthesis in kg quantities. The coating layer was ~50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long term stability against aqueous corrosion. "Free" nano-crystalline zirconia polishing abrasives were co-generated in the coating process, resulting in an abrasivecharged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses over a period of 3 weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  2. Improved Production Of Wrought Articles From Powders

    NASA Technical Reports Server (NTRS)

    Thomas, James R.; Singleton, Ogle R.

    1994-01-01

    Improved technique for consolidation of powders into dense articles developed. Peripheral bands used in consolidation, forging, and rolling operations. Facilitates consolidation of dispersion-hardened aluminous powders and composite mixtures for processing to such useful wrought articles as plates and sheets. Potential use in production of plates and sheets and perhaps other objects from "hard" powders, particularly from powders, objects made from which have propensity to crack when mechanically worked to other forms.

  3. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  4. Improved Zirconia Oxygen-Separation Cell

    NASA Technical Reports Server (NTRS)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  5. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  6. Synthesis of nanocrystalline zirconia by amorphous citrate route: structural and thermal (HTXRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagwat, Mahesh; Ramaswamy, Veda

    Nanocrystalline zirconia powder with a fairly narrow particle size distribution has been synthesized by the amorphous citrate route. The sample obtained has a high BET surface area of 89 m{sup 2} g{sup -1}. Rietveld refinement of the powder X-ray diffraction (XRD) profile of the zirconia sample confirms stabilization of zirconia in the tetragonal phase with around 8% monoclinic impurity. The data show the presence of both anionic as well as cationic vacancies in the lattice. Crystallite size determined from XRD is 8 nm and is in close agreement with the particle size determined by TEM. The in situ high temperature-X-raymore » diffraction (HTXRD) study revealed high thermal stability of the mixture till around 1023 K after which the transformation of tetragonal phase into the monoclinic phase has been seen as a function of temperature till 1473 K. This transformation is accompanied by an increase in the crystallite size of the sample from 8 to 55 nm. The thermal expansion coefficients are 9.14 x 10{sup -6} K{sup -1} along 'a'- and 15.8 x 10{sup -6} K{sup -1} along 'c'-axis. The lattice thermal expansion coefficient in the temperature range 298-1623 K is 34.6 x 10{sup -6} K{sup -1}.« less

  7. [Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics].

    PubMed

    Yi, Yuan-fu; Wang, Chen; Wen, Ning; Lin, Yong-zhao; Tian, Jie-mo

    2009-10-01

    To investigate the structure, mechanical and low temperature aging properties of colored dental zirconia ceramics. 5 graded colored dental zirconia ceramics were made by adding colorants and their combinations into a 3Y-TZP (tetragonal zirconia stabilized by 3mol% yttrium) powder, the green body were compacted at 200 MPa, pre-sinter at 1,050 degrees C and maintained for 2 h, then densely sintered at 1,500 degrees C for 2 h. Specimens were cut from each of the 5 graded colored blocks. Physical, mechanical properties as well as chemical stability were tested, microstructure were observed, crystalline phase were identified by X-ray diffraction (XRD), aging properties were assessed by measurement of the relative content of monoclinic phase and bending strength testing. The overall density of colored zirconia ceramics was over 99.7%, linear shrinkage was about 20%, while thermal expansion coefficient was about 11 x 10(-6) x degrees C(-1), the crystalline phase was tetragonal, bending strength was over 900 MPa which was slightly lowered than that of the uncolored zirconia, fracture toughness was slightly higher. Good chemical stability in acetic acid was observed. After aging treatment, tetragonal-to-monoclinic phase transformation was detected up to 40%, while bending strength was not significantly degraded. The results showed that colored 3Y-TZP ceramics presented good mechanical properties even after aging treatments, and was suitable for dental clinical use.

  8. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering--a comparative study.

    PubMed

    Vasylkiv, Oleg; Demirskyi, Dmytro; Sakka, Yoshio; Ragulya, Andrey; Borodianska, Hanna

    2012-06-01

    Two-stage densification process of nanosized 3 mol% yttria-stabilized zirconia (3Y-SZ) polycrystalline compacts during consolidation via microwave and spark-plasma sintering have been observed. The values of activation energies obtained for microwave and spark-plasma sintering 260-275 kJ x mol(-1) are quite similar to that of conventional sintering of zirconia, suggesting that densification during initial stage is controlled by the grain-boundary diffusion mechanism. The sintering behavior during microwave sintering was significantly affected by preliminary pressing conditions, as the surface diffusion mechanism (230 kJ x mol(-1)) is active in case of cold-isostatic pressing procedure was applied.

  9. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less

  10. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  11. Method and apparatus for production of powders

    NASA Technical Reports Server (NTRS)

    Stolzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1995-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  12. Metal powder production by gas atomization

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  13. Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.

    2013-08-01

    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.

  14. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst

  15. A new powder production route for transparent spinel windows: powder synthesis and window properties

    NASA Astrophysics Data System (ADS)

    Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim

    2005-05-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.

  16. Novel erbia-yttria co-doped zirconia fluorescent thermal history sensor

    NASA Astrophysics Data System (ADS)

    Copin, E. B.; Massol, X.; Amiel, S.; Sentenac, T.; Le Maoult, Y.; Lours, P.

    2017-01-01

    Thermochromic pigments are commonly used for off-line temperature mapping on components from systems operating at a temperature higher than 1073 K. However, their temperature resolution is often limited by the discrete number of color transitions they offer. This paper investigates the potential of erbia-yttria co-doped zirconia as a florescent thermal history sensor alternative to thermochromic pigments. Samples of yttria-stabilized zirconia powder (YSZ, 8.3 mol% YO1.5) doped with 1.5 mol% ErO1.5 and synthesized by a sol-gel route are calcined for 15 minutes under isothermal conditions between 1173 and 1423 K. The effects of temperature on their crystal structure and room temperature fluorescence properties are then studied. Results show a steady increase of the crystallinity of the powders with temperature, causing a significant and permanent increase of the emission intensity and fluorescence lifetime which could be used to determine temperature with a calculated theoretical resolution lower than 1 K for intensity. The intensity ratio obtained using a temperature insensitive YSZ:Eu3+ reference phosphor is proposed as a more robust parameter regarding experimental conditions for determining thermal history. Finally, the possibilities for integrating this fluorescent marker into sol-gel deposited coatings for future practical thermal history sensing applications is also discussed.

  17. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability.

    PubMed

    Palmero, Paola; Fornabaio, Marta; Montanaro, Laura; Reveron, Helen; Esnouf, Claude; Chevalier, Jérôme

    2015-05-01

    In order to fulfill the clinical requirements for strong, tough and stable ceramics used in dental applications, we designed and developed innovative zirconia-based composites, in which equiaxial α-Al2O3 and elongated SrAl12O19 phases are dispersed in a ceria-stabilized zirconia matrix. The composite powders were prepared by an innovative surface coating route, in which commercial zirconia powders were coated by inorganic precursors of the second phases, which crystallize on the zirconia particles surface under proper thermal treatment. Samples containing four different ceria contents (in the range 10.0-11.5 mol%) were prepared by carefully tailoring the amount of the cerium precursor during the elaboration process. Slip cast green bodies were sintered at 1450 °C for 1 h, leading to fully dense materials. Characterization of composites by SEM and TEM analyses showed highly homogeneous microstructures with an even distribution of both equiaxial and elongated-shape grains inside a very fine zirconia matrix. Ce content plays a major role on aging kinetics, and should be carefully controlled: sample with 10 mol% of ceria were transformable, whereas above 10.5 mol% there is negligible or no transformation during autoclave treatment. Thus, in this paper we show the potential of the innovative surface coating route, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites; moreover, its processing costs and environmental impacts are limited, which is beneficial for further scale-up and real use in the biomedical field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.

    PubMed

    Yakout, Sobhy M; Hassan, Hisham S

    2014-07-01

    Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.

  19. Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications

    NASA Astrophysics Data System (ADS)

    Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.

    2017-05-01

    White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.

  20. Fracture resistance and reliability of new zirconia posts.

    PubMed

    Oblak, Cedomir; Jevnikar, Peter; Kosmac, Tomaz; Funduk, Nenad; Marion, Ljubo

    2004-04-01

    The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material. This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments. Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics. Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (P<.05) than those in the other 2 groups for diameters 1.3 mm

  1. Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia.

    PubMed

    Kwon, Min-Seok; Oh, Sang-Yeob; Cho, Sung-Am

    2015-07-01

    Full zirconia crowns have recently been used for dental restorations because of their mechanical properties. However, there is little information about their wear characteristics against enamel, gold, and full zirconia crowns. The purpose of this study was to compare the wear rate of enamel, gold crowns, and zirconia crowns against zirconia blocks using an in vitro wear test. Upper specimens were divided into three groups: 10 enamels (group 1), 10 gold crowns (group 2, Type III gold), and 10 zirconia crowns (group 3, Prettau(®)Zirkon 9H, Zirkonzahn, Italy). Each of these specimens was wear tested against a zirconia block (40×30×3mm(3)) as a lower specimen (30 total zirconia blocks). Each specimen of the groups was abraded against the zirconia block for 600 cycles at 1Hz with 15mm front-to-back movement on an abrading machine. Moreover, the load applied during the abrading test was 50N, and the test was performed in a normal saline emulsion for 10min. Three-dimensional images were taken before and after the test, and the statistical analysis was performed using the Krushal-Wallis test and Mann-Whitney test (p=0.05). The mean volume loss of group 1 was 0.47mm(3), while that of group 2 and group 3 was 0.01mm(3). The wear volume loss of enamels against zirconia was higher than that of gold and zirconia crowns. Moreover, according to this result, zirconia crowns are not recommended for heavy bruxers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants.

    PubMed

    Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon

    2017-07-01

    The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

  3. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  4. Explosion risk evaluation during production of coating powder.

    PubMed

    Li, Gang; Yuan, Chunmiao; Chen, Baozhi

    2007-10-22

    Powder coating is widely used in industry to prevent equipment corrosion. More than 600 companies produce coating powder in China, but most do not understand the explosion hazard of such products. In the present investigation the explosibility parameters of a coating powder were determined. Results showed that the coating powder is explosible, though the ignition energy is higher than those of normal dusts such as coal powder and corn starch. Based on these experimental findings, a systematic explosion protection method is proposed, with explosion isolation and explosion venting being adopted as the main protective methods.

  5. Fabrication and Characterization of Dense Zirconia and Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei

    2011-01-01

    The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1–1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 °C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity–time (η–t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100–300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol–gel electrospinning technology with minimum organic polymer additives. PMID:21133090

  6. Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Gerlach, Juergen W; Maendl, Stephan; Rezwan, Kurosch

    2015-07-01

    An important challenge in the field of dental and orthopedic implantology is the preparation of implant coatings with bioactive functions that feature a high mechanical stability and at the same time mimic structural and compositional properties of native bone for a better bone ingrowth. This study investigates the influence of magnesium addition to zirconia-calcium phosphate coatings. The mixed coatings were prepared with varying additions of either magnesium oxide or magnesium fluoride to yttria-stabilized zirconia and hydroxyapatite. The coatings were deposited on zirconia discs and screw implants by wet powder spraying. Microstructure studies confirm a porous coating with similar roughness and firm adhesion not hampered by the coating composition. The coating morphology, mechanical flexural strength and calcium dissolution showed a magnesium content-dependent effect. Moreover, the in vitro results obtained with human osteoblasts reveal an improved biological performance caused by the presence of Mg(2+) ions. The magnesium-containing coatings exhibited better cell proliferation and differentiation in comparison to pure zirconia-calcium phosphate coatings. In conclusion, these results demonstrate that magnesium addition increases the bioactivity potential of zirconia-calcium phosphate coatings and is thus a highly suitable candidate for bone implant coatings. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    PubMed

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  8. [Effect of five kinds of pigments on the chromaticity of dental zirconia ceramic].

    PubMed

    Huang, Hui; Zheng, Yuan-li; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2007-08-01

    All-ceramic dental restorations should match the colour of the natural teeth in order to fulfill aesthetic demands. The goal of this study was to evaluate the colouration of zirconia ceramic by adding five kinds of pigments. The influence of the pigments concentrations on the chromaticity were also analysed. Different concentrations of five kinds of pigments were added on zirconia powder, then compacted at 200MPa using cold isostatic pressure, sintered to 1400 degrees centigrade and hold for two hours. The chromaticity of sintered bodies were measured with chroma meter. The colours achieved by the different pigments were presented in the CIELab system. The a* value increased with the added amount of Er(2)O(3), while b* value raised with the increasing amount of CeO(2) and Pr(6)O(11). However, three pigments failed to decrease L* value and the sintered body looked too bright. The sintered bodies were brown when adding Fe(2)O(3) to zirconia. Adding MnO2 could decrease the L* value of sintered bodies significantly, but had little influence on the a* and b* value. Five kinds of colorized zirconia ceramic could cover with the chromaticity range of dental ceramic which necessitate further investigation.

  9. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen W.; Smith, Hillary L.; Lan, Tian

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO 2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhatmore » more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  10. On the interfacial fracture resistance of resin-bonded zirconia and glass-infiltrated graded zirconia

    PubMed Central

    Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu

    2015-01-01

    Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987

  11. Zirconia in biomedical applications.

    PubMed

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  12. Highly regioselective terminal alkynes hydroformylation and Pauson-Khand reaction catalysed by mesoporous organised zirconium oxide based powders.

    PubMed

    Goettmann, Frédéric; Le Floch, Pascal; Sanchez, Clément

    2006-01-14

    Zirconia-silica mesoporous powders act as very efficient heterogeneous catalysts for both alkyne hydroformylation and Pauson-Khand reaction and yield regioselectivities opposite to those usually observed.

  13. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250-915 eV.

    PubMed

    Vlachos, Dimitrios; Craven, Alan J; McComb, David W

    2005-03-01

    The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.

  15. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    PubMed

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the

  16. Effects of milling media on the fabrication of melt-derived bioactive glass powder for biomaterial application

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd

    2016-12-01

    The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.

  17. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.

  18. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    PubMed

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    PubMed

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  20. Oxygen production using solid-state zirconia electrolyte technology

    NASA Technical Reports Server (NTRS)

    Suitor, Jerry W.; Clark, Douglas J.

    1991-01-01

    High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.

  1. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  2. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  3. Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield

    DTIC Science & Technology

    2017-10-01

    ARL-RP-0618 ● OCT 2017 US Army Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the...Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield by Marc Pepi Weapons and...REPORT TYPE Reprint 3. DATES COVERED (From - To) June 2016–June 2017 4. TITLE AND SUBTITLE Towards Production of Additive Manufacturing Grade

  4. Stress-State Effects on Strength and Fracture of Partially-Stabilized Zirconia

    DTIC Science & Technology

    1994-03-01

    Ceramics and Test Procedures (1) Ce-TZP/AI 2 0 3 Ceramics A Ce-TZP/A120 3 powder of the nominal composition, 88 wt % of Ce-TZP (12 mol % CeO2 and 88...mol % ZrO2) and 10 wt % A120 3 and 2 wt % of proprietary dopants was obtained from a commercial source#. Billets of the Ce-TZP/A120 3 were prepared by...34Metastability of the Martensitic Transformation in a 12 mol % Ceria-Zirconia Alloy : 1, Deformation and Fracture Observations," J. Am. Ceram. Soc

  5. Synthesis and characterization of mesoporous zirconia and aluminated mesoporous zirconia

    NASA Astrophysics Data System (ADS)

    Zhao, Elizabeth Sun

    Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: namely, dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16) The zirconia. outgassed at 140--150°C has T-plot surface areas higher than 400 M2/g. This outgassing does not remove the surfactant. After calcination in air at 500°C and combustion of the surfactant, the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. The high-resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores structure. It is suggested that the chemistry of the hydrolysis solution is instrumental in determining the pore structure. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results and the fixation of PO4, or SO4 in the walls may help to preserve the porous structure. It is very different from the templating mechanism. From the density obtained from phase transition temperature, and from the mesoporous volume (N2 adsorption), the thickness of the wall can be calculated as well as the pseudo-length of the pores. From the thickness, the T-plot area can be recalculated and agrees well with the measured T-plot surface area for the sample calcined at 500°C. Around 900°C, the walls become thicker and crystallizes into monoclinic zirconia without pore structure. In order to try to modify, the acidity of the mesoporous sulfated and oxo-phosphated zirconia, they were doped with aluminum. The sulfated zirconia only has a coating layer of amorphous alumina, while the phosphated zirconia has aluminum in the lattice and the alumina coat. A maximum ratio of Al/Zr ˜ 0.04 can be reached in the lattice. The introduction of aluminum into the lattice prevents the crystallization of the oxo-phosphate at 900°C, and helps to preserve the surface area and porosity of the sulfated

  6. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, A.; Villanueva, R.; Vie, D.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less

  7. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique

    NASA Astrophysics Data System (ADS)

    Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.

    2018-05-01

    The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.

  8. Assessment and comparison of retention of zirconia copings luted with different cements onto zirconia and titanium abutments: An in vitro study

    PubMed Central

    Menon, Neelima Sreekumar; Kumar, G. P. Surendra; Jnanadev, K. R.; Satish Babu, C. L.; Shetty, Shilpa

    2016-01-01

    Aim: The purpose of this in vitro study was to assess and compare the retention of zirconia copings luted with different luting agents onto zirconia and titanium abutments. Materials and Methods: Titanium and zirconia abutments were torqued at 35 N/cm onto implant analogs. The samples were divided into two groups: Group A consisted of four titanium abutments and 32 zirconia copings and Group B consisted of four zirconia abutments and 32 zirconia copings and four luting agents were used. The cemented copings were subjected to tensile dislodgement forces and subjected to ANOVA test. Results: Zirconia abutments recorded a higher mean force compared to titanium. Among the luting agents, resin cement recorded the highest mean force followed by zinc phosphate, glass ionomer, and noneugenol zinc oxide cement, respectively. Conclusion: Highest mean retention was recorded for zirconia implant abutments compared to titanium abutments when luted with zirconia copings. PMID:27141162

  9. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  10. Zirconia in fixed prosthesis. A literature review

    PubMed Central

    Román-Rodríguez, Juan L.; Ferreiroa, Alberto; Solá-Ruíz, María F.; Fons-Font, Antonio

    2014-01-01

    Statement of problem: Evidence is limited on the efficacy of zirconia-based fixed dental prostheses. Objective: To carry out a literature review of the behavior of zirconium oxide dental restorations. Material and Methods: This literature review searched the Pubmed, Scopus, Medline and Cochrane Library databases using key search words “zirconium oxide,” “zirconia,” “non-metal restorations,” “ceramic oxides,” “veneering ceramic,” “zirconia-based fixed dental prostheses”. Both in vivo and in vitro studies into zirconia-based prosthodontic restoration behavior were included. Results: Clinical studies have revealed a high rate of fracture for porcelain-veneered zirconia-based restorations that varies between 6% and 15% over a 3- to 5-year period, while for ceramo-metallic restorations the fracture rate ranges between 4 and 10% over ten years. These results provoke uncertainty as to the long-term prognosis for this material in the oral medium. The cause of veneering porcelain fractures is unknown but hypothetically they could be associated with bond failure between the veneer material and the zirconia sub-structure. Key words:Veneering ceramic, zirconia-based ceramic restoration, crown, zirconia, tooth-supported fixed prosthesis. PMID:24596638

  11. PAC characterization of Gd and Y doped nanostructured zirconia solid solutions

    NASA Astrophysics Data System (ADS)

    Caracoche, María C.; Martínez, Jorge A.; Pasquevich, Alberto F.; Rivas, Patricia C.; Djurado, Elizabeth; Boulc'h, Florence

    2007-02-01

    A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y 2O 3-ZrO 2 and 2 mol% Gd 2O 3-ZrO 2 nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t‧- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t‧-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.

  12. Liquid Foam Templates Associated with the Sol-Gel Process for Production of Zirconia Ceramic Foams

    PubMed Central

    Beozzo, Cristiane Carolina; Alves-Rosa, Marinalva Aparecida; Pulcinelli, Sandra Helena; Santilli, Celso Valentim

    2013-01-01

    The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. PMID:28809254

  13. Resin adhesion strengths to zirconia ceramics after primer treatment with silane coupling monomer or oligomer.

    PubMed

    Okada, Masahiro; Inoue, Kazusa; Irie, Masao; Taketa, Hiroaki; Torii, Yasuhiro; Matsumoto, Takuya

    2017-09-26

    Resin bonding to zirconia ceramics is difficult to achieve using the standard methods for conventional silica-based dental ceramics, which employ silane coupling monomers as primers. The hypothesis in this study was that a silane coupling oligomer -a condensed product of silane coupling monomers- would be a more suitable primer for zirconia. To prove this hypothesis, the shear bond strengths between a composite resin and zirconia were compared after applying either a silane coupling monomer or oligomer. The shear bond strength increased after applying a non-activated ethanol solution of the silane coupling oligomer compared with that achieved when applying the monomer. Thermal treatment of the zirconia at 110°C after application of the silane coupling agents was essential to improve the shear bond strength between the composite resin cement and zirconia.

  14. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    PubMed Central

    Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  15. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  16. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  17. Production of fine calcium powders by centrifugal atomization with rotating quench bath

    DOE PAGES

    Tian, Liang; Ames Lab. and Iowa State Univ., Ames, IA; Anderson, Iver; ...

    2016-02-08

    Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than ~250 μm) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Camore » composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol. % Ca powder particles smaller than 250 μm. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air.« less

  18. Synthesis of zirconia monoliths for chromatographic separations.

    PubMed

    Randon, Jérôme; Huguet, Samuel; Piram, Anne; Puy, Guillaume; Demesmay, Claire; Rocca, Jean-Louis

    2006-03-17

    The aim of this work is to join the advantages of two different kinds of stationary phases: monolithic columns and zirconia-based supports. On the one hand, silica monolithic columns allow a higher efficiency with a lower back-pressure than traditional packed columns. On the other hand, chromatographic stationary phases based on zirconia have a higher thermal and chemical stability and specific surface properties. Combining these advantages, a zirconia monolith with a macroporous framework could be a real improvement in separation sciences. Two main strategies can be used in order to obtain a zirconia surface on a monolithic skeleton: coating or direct synthesis. The coverage by a zirconia layer of the surface of a silica-based monolith can be performed using the chemical properties of the silanol surface groups. We realized this coverage using zirconium alkoxide and we further grafted n-dodecyl groups using phosphate derivatives. Any loss of efficiency was observed and fast separations have been achieved. The main advance reported in this paper is related to the preparation of zirconia monoliths by a sol-gel process starting from zirconium alkoxide. The synthesis parameters (hydrolysis ratio, porogen type, precursor concentration, drying step, etc.) were defined in order to produce a macroporous zirconia monoliths usable in separation techniques. We produced various homogeneous structures: zirconia rod 2 cm long with a diameter of 2.3 mm, and zirconia monolith inside fused silica capillaries with a 75 microm I.D. These monoliths have a skeleton size of 2 microm and have an average through pore size of 6 microm. Several separations have been reported.

  19. CAD/CAM ZIRCONIA VS. SLIP-CAST GLASS-INFILTRATED ALUMINA/ZIRCONIA ALL-CERAMIC CROWNS: 2-YEAR RESULTS OF A RANDOMIZED CONTROLLED CLINICAL TRIAL

    PubMed Central

    Çehreli, Murat Cavit; Kökat, Ali Murat; Akça, Kivanç

    2009-01-01

    The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA) quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73%) and Cercon® Zirconia (80%) restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66%) than Cercon® Zirconia (26%) restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05). This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone. PMID:19148406

  20. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  1. A novel process route for the production of spherical SLS polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particlemore » size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.« less

  2. A review of engineered zirconia surfaces in biomedical applications

    PubMed Central

    Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu

    2017-01-01

    Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influences of the zirconia surface quality on their functional behaviours. It discusses emerging manufacturing techniques and challenges for fabrication of zirconia surfaces in biomedical applications. PMID:29130030

  3. Innovations in bonding to zirconia-based materials: Part I.

    PubMed

    Aboushelib, Moustafa N; Matinlinna, Jukka P; Salameh, Ziad; Ounsi, Hani

    2008-09-01

    Establishing a reliable bond to zirconia-based materials has proven to be difficult which is the major limitation against fabricating adhesive zirconia restorations. This bond could be improved using novel selective infiltration etching conditioning in combination with engineered zirconia primers. Aim of the work was to evaluate resin-to-zirconia bond strength using selective infiltration etching and novel silane-based zirconia primers. Zirconia discs (Procera Zirconia) received selective infiltration etching surface treatment followed by coating with either of five especially engineered experimental zirconia primers. Pre-aged resin-composite discs (Tetric Ivo Ceram) were bonded to the treated surface using an MDP-containing resin-composite (Panavia F 2.0). The bilayered specimens were cut into microbars and the microtensile bond strength (MTBS) was evaluated. 'As-sintered' zirconia discs served as a control (alpha=0.05). The broken microbars were examined using a scanning electron microscope (SEM). The combination of selective infiltration etching with experimental zirconia primers significantly improved (F=3805, P<0.0001) the MTBS values (41+/-5.8 MPa) compared to the 'as-sintered' surface using the same primers which demonstrated spontaneous failure and very low bond strength values (2.6+/-3.1 MPa). SEM analysis revealed that selective infiltration etching surface treatment resulted in a nano-retentive surface where the zirconia primers were able to penetrate and interlock which explained the higher MTBS values observed for the treated specimens.

  4. [Effect of three kinds of rare earth oxides on chromaticity and mechanical properties of zirconia ceramic].

    PubMed

    Huang, Hui; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2006-06-01

    To evaluate the colouration of zirconia ceramic by adding three kinds of rare earth oxides. The influence of the pigments concentration on the mechanical properties and the microstructure was also analyzed. Added different concentrations of CeO(2), Er(2)O(3) and Pr(6)O(11) in tetragonal zirconia poly crystals stabilized with 3 mol% yttria (3Y-T2P) powder, compacted at 200 MPa using cold isostatic pressure, and sintered to 1 400 degrees C. The heating rate was 150 degrees C/h and the dwelling time was 2 hours. The chromaticity of sintered bodies was measured with chroma meter. The relative density, hardness, flexure strength and fracture toughness were investigated as well. The phase stability of the colorized and pure zirconia was evaluated by X-ray diffraction (XRD) using an automated diffractometer. The microstructures of the specimens were evaluated by scanning electron microscope (SEM). Several kinds of color achieved by the different pigments praseodym oxide, cerium oxide and erbium oxide were presented in the CIELab system. The a* value increased with the added amount of Er(2)O(3), while b* value rose with the increasing amount of CeO(2) and Pr(6)O(11). However, three pigments failed to decrease L* value and the sintered body appeared too bright. Adding three pigments influenced flexure strength of zirconia ceramic significantly, but had little influence on the hardness and fracture toughness. Microscopy revealed the relationship between the porosity and shapes of grains was correlated to strength of the diphase ceramics. No additional phase could be detected by XRD, except t-ZrO(2) in all colorized samples after sintering at 1 400 degrees C for 120 min. Zirconia ceramic can be colorized by CeO(2), Er(2)O(3), and Pr(6)O(11). Pigments even in a small amount influence the mechanical properties of the colorized zirconia material, which necessitates further investigation.

  5. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  6. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  7. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics.

    PubMed

    Jevnikar, Peter; Krnel, Kristoffer; Kocjan, Andraz; Funduk, Nenad; Kosmac, Tomaz

    2010-07-01

    The aim of this study was to functionalize the surface of yttria partially stabilized tetragonal zirconia ceramics (Y-TZP) with a nano-structured alumina coating to improve resin bonding. A total of 120 densely sintered disc-shaped specimens (15.5+/-0.03 mm in diameter and 2.6+/-0.03 mm thick) were produced from biomedical-grade TZ-3YB-E zirconia powder (Tosoh, Tokyo, Japan), randomly divided into three groups of 40 and subjected to the following surface treatments: AS - as-sintered; APA - airborne-particle abraded; POL - polished. Half of the discs in each group received an alumina coating that was fabricated by exploiting the hydrolysis of aluminium nitride (AlN) powder (groups AS-C, APA-C, POL-C). The coating was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The shear-bond strength of the self-etching composite resin (RelyX Unicem, 3M ESPE, USA) was then studied for the coated and uncoated surfaces of the as-sintered, polished and airborne-particle abraded specimens before and after thermocycling (TC). The SEM/TEM analyses revealed that the application of an alumina coating to Y-TZP ceramics created a highly retentive surface for resin penetration. The coating showed good surface coverage and a uniform thickness of 240 nm. The resin-bond strength to the groups AS-C, APA-C, POL-C was significantly higher than to the groups AS, APA and POL, both before and after TC (p< or =0.05). During TC all the specimens in the POL and AS groups debonded spontaneously. In contrast, the TC did not affect the bond strength of the AS-C, POL-C and APA-C groups. A non-invasive method has been developed that significantly improves resin-bond strength to Y-TZP ceramics. After surface functionalization the bond survives thermocycling without reduction in strength. The method is relatively simple and has the potential to become an effective conditioning method for zirconia ceramics. Copyright 2010

  8. Design of a Stagnation Heater for the Rarefied Gas Wing Tunnel

    DTIC Science & Technology

    1990-12-01

    parts are ground together with zirconia powder as the medium, then fired to help make a good seal. The zirconia disk size, 6" diameter by 1" thick...pressure vessel, with zirconia powder . This is an interesting concept. With each grain of powder radiating to and from neighboring grains, it could...meets ASTM SA 106 Grade B. " zirconia powder " = Wanted powder with a 30-50 j tm grain size to help make the ground tapered joint between the zirconia tube

  9. Zirconia in dental implantology: A review

    PubMed Central

    Apratim, Abhishek; Eachempati, Prashanti; Krishnappa Salian, Kiran Kumar; Singh, Vijendra; Chhabra, Saurabh; Shah, Sanket

    2015-01-01

    Background: Titanium has been the most popular material of choice for dental implantology over the past few decades. Its properties have been found to be most suitable for the success of implant treatment. But recently, zirconia is slowly emerging as one of the materials which might replace the gold standard of dental implant, i.e., titanium. Materials and Methods: Literature was searched to retrieve information about zirconia dental implant and studies were critically analyzed. PubMed database was searched for information about zirconia dental implant regarding mechanical properties, osseointegration, surface roughness, biocompatibility, and soft tissue health around it. The literature search was limited to English language articles published from 1975 to 2015. Results: A total of 45 papers met the inclusion criteria for this review, among the relevant search in the database. Conclusion: Literature search showed that some of the properties of zirconia seem to be suitable for making it an ideal dental implant, such as biocompatibility, osseointegration, favourable soft tissue response and aesthetics due to light transmission and its color. At the same time, some studies also point out its drawbacks. It was also found that most of the studies on zirconia dental implants are short-term studies and there is a need for more long-term clinical trials to prove that zirconia is worth enough to replace titanium as a biomaterial in dental implantology. PMID:26236672

  10. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  11. Structural, magnetic and luminescent characteristics of Pr3+-doped ZrO2 powders synthesized by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Isasi-Marín, J.; Pérez-Estébanez, M.; Díaz-Guerra, C.; Castillo, J. F.; Correcher, V.; Cuervo-Rodríguez, M. R.

    2009-04-01

    The structural, magnetic and luminescence properties of praseodymium-doped zirconia powders of compositions Pr0.03Zr0.97O2 and Pr0.05Zr0.95O2 synthesized by a sol-gel process have been investigated. X-ray diffraction patterns indicate that these materials crystallize in a tetragonal fluorite-type structure. Scanning electron microscopy shows that the powders exhibit an agglomerated microcrystalline structure and the grain size may be in the order of 5-20 µm. The study of the magnetic properties of these doped metal oxides indicates a Curie-Weiss behaviour in the temperature range (100-300) K that allow us to estimate an effective magnetic moment of 3.51 μB, which indicates the presence of Pr3+ in the grown samples. Cathodoluminescence spectra recorded at temperatures between 85 and 295 K show emission peaks that can be attributed to transitions between different states within the 4f2 configuration of Pr3+ ions incorporated in the zirconia crystal lattice. Thermoluminescence measured at temperatures ranging from 373 to 773 K and at 550 nm wavelength show an intense and broad peak around 653 K for the Pr-doped zirconia which is not observed in the undoped material.

  12. Production of coconut protein powder from coconut wet processing waste and its characterization.

    PubMed

    Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S

    2012-07-01

    Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.

  13. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    PubMed

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Combining monolithic zirconia crowns, digital impressioning, and regenerative cement for a predictable restorative alternative to PFM.

    PubMed

    Griffin, Jack D

    2013-03-01

    Advances in indirect esthetic materials in recent years have provided the dental profession higher levels of strength and esthetics than ever before with products like lithium disilicate and zirconium oxide. Providing excellent fit and versatile performance, and because there is no porcelain to delaminate, chip, or fracture, monolithic zirconia crowns have the potential to outperform other layered restorations such as porcelain-fused-to-metal (PFM). This review of monolithic zirconia highlights a clinical case in which all-zirconia restorations were combined with CAD/CAM technology for a successful esthetic restorative outcome.

  15. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  16. The use of functionalized monoalkyl phosphates and phosphonates in the colloidal processing of oxide ceramic powders

    NASA Astrophysics Data System (ADS)

    Radsick, Timothy Carl

    The purpose of this study was to develop phosphorous-based chemicals that could be used to modify the interparticle pair potential of several oxide ceramic particles, thereby enabling their use in colloidal processing schemes. Several procedures for the synthesis of 11-12 carbon alpha,o-functionalized monoalkyl phosphates and phosphonates were developed. Because of its simplicity and its use of mild reagents, a procedure based on the Michaelis-Arbuzov rearrangement was selected to produce the bulk of the chemicals used in this study. Carboxyl- and hydroxyl-terminated monoalkyl phosphonates were adsorbed onto alumina and zirconia powders using either aqueous-based or solvent-based methods to produce a monolayer of "brushlike" steric molecules. In the aqueous-based methods, powders were processed at pH values below their isoelectric point in order to produce a positive charge on the powder, thereby attracting the negatively charged phosphate or phosphonate group onto the powder surface to form the steric monolayer. In solvent-based methods, powder was suspended in an acetone solution of the phosphonates, heated at reflux, washed, dried and heat treated at 120°C under vacuum. The zeta potential of the coated powders was measured to quantify the degree of steric layer adsorption and the shift in the isoelectric point. Slurries of coated alumina and zirconia were prepared having 20 vol % powder. Rheological behavior was studied by measuring viscosity as a function of shear rate for slurries of various pH values and counterion concentrations. Slurries with powder processed via the solvent method were the least sensitive to changes in slurry pH and were straightforward to prepare. It is thought that the solvent-based coating procedure produced a stronger, multi-dentate powder-phosphonate bond than that of the aqueous-based procedure. Dispersed and coagulated slurries were able to be prepared over a wide pH range, including at the isoelectric point of the uncoated powders

  17. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  18. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    PubMed

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.

  19. Cadmium and lead in cocoa powder and chocolate products in the US Market.

    PubMed

    Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick

    2018-06-01

    Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from product type and geographic origin. Geographic variation was observed for Cd, with higher Cd concentrations found in products reported as originating from Latin America than from Africa. The influence of percent cocoa solids and cocoa origin on Cd levels are relevant to international standards for Cd in chocolate products.

  20. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    PubMed Central

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  1. Effect of imaging powder and CAD/CAM stone types on the marginal gap of zirconia crowns.

    PubMed

    Alghazzawi, Tariq F; Al-Samadani, Khalid H; Lemons, Jack; Liu, Perng-Ru; Essig, Milton E; Bartolucci, Alfred A; Janowski, Gregg M

    2015-02-01

    To compare the marginal gap using different types of die stones and titanium dies with and without powders for imaging. A melamine tooth was prepared and scanned using a laboratory 3-shape scanner to mill a polyurethane die, which was duplicated into different stones (Jade, Lean, CEREC) and titanium. Each die was sprayed with imaging powders (NP, IPS, Optispray, Vita) to form 15 groups. Ten of each combination of stone/titanium and imaging powders were used to mill crowns. A light-bodied impression material was injected into the intaglio surface of each crown and placed on the corresponding die. Each crown was removed, and the monophase material was injected to form a monophase die, which was cut into 8 sections. Digital images were captured using a stereomicroscope to measure marginal gap. Scanning electron microscopy was used to determine the particle size and shape of imaging powders and stones. Marginal gaps ranged from mean (standard deviation) 49.32 to 1.20 micrometers (3.97-42.41 μm). There was no statistical difference (P > .05) in the marginal gap by any combination of stone/titanium and imaging powders. All of the imaging powders had a similar size and rounded shape, whereas the surface of the stones showed different structures. When a laboratory 3-shape scanner is used, all imaging powders performed the same for scanning titanium abutments. However, there was no added value related to the use of imaging powder on die stone. It is recommended that the selection of stone for a master cast be based on the hysical properties. When a laboratory 3-shape scanner is used, the imaging powder is not required for scanning die stone. Whenever scanning titanium implant abutments, select the least expensive imaging powder. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. Rapid plasma quenching for the production of ultrafine metal and ceramic powders

    NASA Astrophysics Data System (ADS)

    Donaldson, Alan; Cordes, Ronald A.

    2005-04-01

    The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.

  3. Straight-chain halocarbon forming fluids for TRISO fuel kernel production - Tests with yttria-stabilized zirconia microspheres

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.

    2015-03-01

    Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  4. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties.

    PubMed

    Panyayong, W; Oshida, Y; Andres, C J; Barco, T M; Brown, D T; Hovijitra, S

    2002-01-01

    Acrylic resins have been used in many different applications in dentistry, especially in the fabrication of provisional fixed partial dentures. Ideally, a provisional crown and bridge material should be easy to handle and should protect teeth against physical, chemical, and thermal injuries. Some of the problems associated with this use are related to the material's poor mechanical properties. It has been demonstrated that acrylic resin can be strengthened through the addition of structural component of different size distributed in the acrylic matrix, thus forming a composite structure. The purpose of this study was to investigate the addition effects of mixtures of titania (titanium dioxide, TiO(2)) powder and zirconia (zirconium dioxide, ZrO(2)) powder being incorporated with pre-polymerized beads mixed in monomer liquid, on some mechanical and physical properties of PMMA resin. The pre-polymerized powder poly(methyl methacrylate) resin was admixed with titania and zirconia powder. A mixing ratio was controlled by volume % of 0, 1.0, 2.0, and 3.0 (samples with 0 v/o served as control groups). For using mixture of titania and zirconia, total amount of the mixture was controlled by volume % of 1.0, 2.0, and 3.0, in which titania and zirconia were mixed at the ratio 1 :1, 1 :2 and 2 :1. Prior to mechanical tests, all rectangular-shaped samples (25 mm x 2 mm x 5 mm) were stored in 37 degrees C distilled water for 7 days after polishing all six sides of samples. Samples were then subjected to the three-point bending flexion test to evaluate the bending strength as well as the modulus of elasticity. Weight gain and exothermic reaction survey were investigated as well. All data were collected and analyzed with one-way analysis of variance (ANOVA) and Sidak method (p=0.05). It was found that the addition of particles generally decreased the water absorbed by the composite system. Only 1 percent by volume concentration of 1 :1 ratio and 2 percent by volume concentration

  5. Effects of cementation surface modifications on fracture resistance of zirconia.

    PubMed

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effects of cementation surface modifications on fracture resistance of zirconia

    PubMed Central

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  7. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less

  8. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  9. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  10. Nanosilica coating for bonding improvements to zirconia.

    PubMed

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.

  11. Nanosilica coating for bonding improvements to zirconia

    PubMed Central

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  12. Preparation of Nanocrystalline Powders of ZrO2, Stabilized by Y2O3 Dobs for Ceramics

    NASA Astrophysics Data System (ADS)

    Petrunin, V. F.; Korovin, S. A.

    The purpose of this study was to develop a synthesis conditions and produce samples of nanocrystalline zirconia powder in a high-temperature phase state. To increase the stability of this state at room temperature, Y2O3 was used as a dop in the two-stages chemical method including coprecipitation mixture of the corresponding hydroxides and air drying. To reduce agglomeration of nanoparticles during heat treatment of precursors the microwave oven instead of a muffle was used. Different characterisation methods have been used to determine that the obtained powders are nano-scale corresponds to a high-temperature tetragonal phase of ZrO2. It is shown that such nanocrystalline powders may be used to produce highly-dense nanoceramics.

  13. Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest.

    PubMed

    Watterson, M J; Kent, D J; Boor, K J; Wiedmann, M; Martin, N H

    2014-01-01

    Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12min (to detect sporeformers) and (2) 100°C for 30min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Fabrication and Performance of Zirconia Electrolysis Cells for Cabon Dioxide Reduction for Mars In Situ Resource Utilization Applications

    NASA Technical Reports Server (NTRS)

    Minh, N. Q.; Chung, B. W.; Doshi, R.; Lear, G. R.; Montgomery, K.; Ong, E. T.

    1999-01-01

    Use of the Martian atmosphere (95% CO2) to produce oxygen (for propellant and life support) can significantly lower the required launch mass and dramatically reduce the total cost for Mars missions. Zirconia electrolysis cells are one of the technologies being considered for oxygen generation from carbon dioxide in Mars In Situ Resource Utilization (ISRU) production plants. The attractive features of the zirconia cell for this application include simple operation and lightweight, low volume system. A zirconia electrolysis cell is an all-solid state device, based on oxygen-ion conducting zirconia electrolytes, that electrochemically reduces carbon dioxide to oxygen and carbon monoxide. The cell consists of two porous electrodes (the anode and cathode) separated by a dense zirconia electrolyte. Typical zirconia cells contain an electrolyte layer which is 200 to 400 micrometer thick. The electrical conductivity requirement for the electrolyte necessitates an operating temperature of 9000 to 10000C. Recently, the fabrication of zirconia cells by the tape calendering has been evaluated. This fabrication process provides a simple means of making cells having very thin electrolytes (5 to 30 micrometers). Thin zirconia electrolytes reduce cell ohmic losses, permitting efficient operation at lower temperatures (8000C or below). Thus, tape-calendered cells provides not only the potential of low temperature operation but also the flexibility in operating temperatures. This paper describes the fabrication of zirconia cells by the tape calendering method and discusses the performance results obtained to date.

  15. [Hygienic evaluation of risk factors on powder metallurgy production].

    PubMed

    2011-01-01

    Complex hygienic, clinical, sociologic and epidemiologic studies revealed reliable relationship between work conditions and arterial hypertension, locomotory system disorders, monocytosis in powder metallurgy production workers. Findings are more probable cardiovascular and respiratory diseases, digestive tract diseases due to influence of lifestyle factors.

  16. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Overview of zirconia with respect to gas turbine applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.

    1984-01-01

    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  18. Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species.

    PubMed

    Ujor, Victor; Bharathidasan, Ashok Kumar; Cornish, Katrina; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Both microorganisms produced 7.3 and 5.8 g/L of butanol respectively, with total ABE concentrations of 10.3 and 8.2 g/L, respectively. Compared to fermentation with glucose, fermentation of milk dust powder increased butanol to acetone ratio by 16% and 36% for C. acetobutylicum and C. beijerinckii, respectively. While these results demonstrate the fermentability of milk dust powder, the physico-chemical properties of milk dust powder appeared to limit sugar utilization, growth and ABE production. Further work aimed at improving the texture of milk dust powder-based medium would likely improve lactose utilization and ABE production.

  19. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    NASA Astrophysics Data System (ADS)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  20. Radiation-Thermal Sintering of Zirconia Powder Compacts Under Conditions of Bilateral Heating Using Beams of Low-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Frangulyan, T. S.; Chernyavskii, A. V.; Goreev, A. K.; Naiden, E. P.

    2015-06-01

    Comparative experiments on sintering zirconia ceramics are performed using colliding beams of low-energy electrons and under conditions of thermal heating. The density and microhardness of ceramic materials manufactured via different processes are determined. The use of a regime of bilateral heating by high-intensity,low-energy electron beams is shown to intensify the sintering process and yield material specimens with improved characteristics compared to those formed by thermal sintering.

  1. Influence of combinations of fenugreek, garlic, and black pepper powder on production traits of the broilers.

    PubMed

    Kirubakaran, A; Moorthy, M; Chitra, R; Prabakar, G

    2016-05-01

    To study the effects of combinations of fenugreek (Trigonella foenum-graecum L.), garlic (Allium sativum), and black pepper (Piper nigrum) powder supplementation on production traits of broiler chickens. A total of 288 commercial broiler chicks were randomly assigned to 1-9 groups with 4 replicates each. An experiment was conducted in broilers with different feed formulations; control feed, with no added fenugreek, garlic, and black pepper powder; and 8 treatment groups receiving feed supplemented with different combinations of fenugreek, garlic, and black pepper powder. The individual broilers' body weight and feed consumption were recorded and calculate the body weight gain and feed conversion ratio (FCR). Broiler's weight gain and FCR were significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Cumulative feed consumption was significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). The combination of garlic and black pepper powder supplemented broiler feed fed groups showed higher production performance. The 5 g/kg garlic powder+1 g/kg black pepper powder and 10 g/kg garlic powder+2 g/kg black pepper powder significantly improved the weight gain and FCR.

  2. Development of an Efficient Micro-Heat Exchanger: The Integration of Design Processing and Testing

    DTIC Science & Technology

    2005-11-01

    together at high temperatures and cooled to room temperature. Additionally, alumina and zirconia powders have a major difference in densification...efficient heat exchanger. The main problem that needed to be resolved was the fact that the zirconia powders shrink much more than alumina powder...been measured. Our measurement in dimensions verifies that zirconia powders shrink substantially more than alumina powder except CR-15 after final

  3. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures - Design and Thermal Structural Analysis

    DTIC Science & Technology

    2007-06-29

    than others. It was found that TZ-3Y-E, which is a partially stabilised zirconia powder , was particularly suitable. The percentage of ceramic powder...layered coatings The current ceramic powder that was being used was a fully stabilised zirconia powder TZ-0Y. However a readily available powder...TZ-3Y-E, partially stabilised zirconia powder , was available and utilised. These tests consisted of a combination of 3, 4 and 5 layers. In the

  4. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    PubMed

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  5. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material

    PubMed Central

    Li, Weiyan

    2018-01-01

    Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449

  6. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  7. Japan Report, Science and Technology.

    DTIC Science & Technology

    1987-03-18

    electromelting and desiliconizing method and the alkali melting method are conventional methods to manufacture zirconia powder . The former method is low...cost, but does not produce high purity zirconia powder . In contrast, the latter method produces high-strength and ultrafine zirconia powder , but is

  8. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    PubMed

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  9. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

    PubMed Central

    2018-01-01

    Objectives The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al2O3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used. PMID:29487838

  10. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. Copyright © 2012. Published by Elsevier Ltd.

  11. Reaction mechanism of electrochemical-vapor deposition of yttria-stabilized zirconia film

    NASA Astrophysics Data System (ADS)

    Sasaki, Hirokazu; Yakawa, Chiori; Otoshi, Shoji; Suzuki, Minoru; Ippommatsu, Masamichi

    1993-10-01

    The reaction mechanism for electrochemical-vapor deposition of yttria-stabilized zirconia was studied. Yttria-stabilized zirconia films were deposited on porous La(Sr)MnOx using the electrochemical-vapor-deposition process. The distribution of yttria concentration through the film was investigated by means of secondary-ion-mass spectroscopy and x-ray microanalysis and found to be nearly constant. The deposition rate was approximately proportional to the minus two-thirds power of the film thickness, the one-third power of the partial pressure of ZrCl4/YCl3 mixed gas, and the two-thirds power of the product of the reaction temperature and the electronic conductivity of yttria-stabilized zirconia film. These experimental results were explained by a model for electron transport through the YSZ film and reaction between the surface oxygen and the metal chloride on the chloride side of the film, both of which affect the deposition rate. If the film thickness is very small, the deposition rate is thought to be controlled by the surface reaction step. On the other hand, if large, the electron transport step is rate controlling.

  12. Cacao seeds are a "Super Fruit": A comparative analysis of various fruit powders and products

    PubMed Central

    2011-01-01

    Background Numerous popular media sources have developed lists of "Super Foods" and, more recently, "Super Fruits". Such distinctions often are based on the antioxidant capacity and content of naturally occurring compounds such as polyphenols within those whole fruits or juices of the fruit which may be linked to potential health benefits. Cocoa powder and chocolate are made from an extract of the seeds of the fruit of the Theobroma cacao tree. In this study, we compared cocoa powder and cocoa products to powders and juices derived from fruits commonly considered "Super Fruits". Results Various fruit powders and retail fruit products were obtained and analyzed for antioxidant capacity (ORAC (μM TE/g)), total polyphenol content (TP (mg/g)), and total flavanol content (TF (mg/g)). Among the various powders that were tested, cocoa powder was the most concentrated source of ORAC and TF. Similarly, dark chocolate was a significantly more concentrated source of ORAC and TF than the fruit juices. Conclusions Cocoa powder and dark chocolate had equivalent or significantly greater ORAC, TP, and TF values compared to the other fruit powders and juices tested, respectively. Cacao seeds thus provide nutritive value beyond that derived from their macronutrient composition and appear to meet the popular media's definition of a "Super Fruit". PMID:21299842

  13. Cacao seeds are a "Super Fruit": A comparative analysis of various fruit powders and products.

    PubMed

    Crozier, Stephen J; Preston, Amy G; Hurst, Jeffrey W; Payne, Mark J; Mann, Julie; Hainly, Larry; Miller, Debra L

    2011-02-07

    Numerous popular media sources have developed lists of "Super Foods" and, more recently, "Super Fruits". Such distinctions often are based on the antioxidant capacity and content of naturally occurring compounds such as polyphenols within those whole fruits or juices of the fruit which may be linked to potential health benefits. Cocoa powder and chocolate are made from an extract of the seeds of the fruit of the Theobroma cacao tree. In this study, we compared cocoa powder and cocoa products to powders and juices derived from fruits commonly considered "Super Fruits". Various fruit powders and retail fruit products were obtained and analyzed for antioxidant capacity (ORAC (μM TE/g)), total polyphenol content (TP (mg/g)), and total flavanol content (TF (mg/g)). Among the various powders that were tested, cocoa powder was the most concentrated source of ORAC and TF. Similarly, dark chocolate was a significantly more concentrated source of ORAC and TF than the fruit juices. Cocoa powder and dark chocolate had equivalent or significantly greater ORAC, TP, and TF values compared to the other fruit powders and juices tested, respectively. Cacao seeds thus provide nutritive value beyond that derived from their macronutrient composition and appear to meet the popular media's definition of a "Super Fruit".

  14. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  15. Influence of combinations of fenugreek, garlic, and black pepper powder on production traits of the broilers

    PubMed Central

    Kirubakaran, A.; Moorthy, M.; Chitra, R.; Prabakar, G.

    2016-01-01

    Aim: To study the effects of combinations of fenugreek (Trigonella foenum-graecum L.), garlic (Allium sativum), and black pepper (Piper nigrum) powder supplementation on production traits of broiler chickens. Materials and Methods: A total of 288 commercial broiler chicks were randomly assigned to 1-9 groups with 4 replicates each. An experiment was conducted in broilers with different feed formulations; control feed, with no added fenugreek, garlic, and black pepper powder; and 8 treatment groups receiving feed supplemented with different combinations of fenugreek, garlic, and black pepper powder. The individual broilers’ body weight and feed consumption were recorded and calculate the body weight gain and feed conversion ratio (FCR). Results: Broiler’s weight gain and FCR were significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Cumulative feed consumption was significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Conclusion: The combination of garlic and black pepper powder supplemented broiler feed fed groups showed higher production performance. The 5 g/kg garlic powder+1 g/kg black pepper powder and 10 g/kg garlic powder+2 g/kg black pepper powder significantly improved the weight gain and FCR. PMID:27284222

  16. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  17. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  18. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    PubMed

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  19. Nano-Forging of Bulk Metallic Glasses

    DTIC Science & Technology

    2006-09-13

    zirconia powder . Arrows indicate the width of ridges on the BMG surface. Fig. 3.3 Imprinted BMG using die made with 250 nm zirconia powder . 9...Fig. 3.4 Imprinted BMG using die made with 50 nm zirconia powder . On each of the imprinted BMG surfaces, linear features

  20. Optical properties of pre-colored dental monolithic zirconia ceramics.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (P<0.001). The color differences between pre-colored monolithic zirconia and veneered zirconia or lithium disilicate glass ceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    PubMed Central

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  2. Internal coating of zirconia restoration with silica-based ceramic improves bonding of resin cement to dental zirconia ceramic.

    PubMed

    Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji

    2010-01-01

    Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.

  3. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    PubMed

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  4. Investigation of Microtubular Ceramic Structures

    DTIC Science & Technology

    1979-02-01

    25 Experiments 05x - Excel ŗ-5 CAL" (Powder D). 25 Experiments 06x - Excel ŗ-5 CAL" (Powder D). 26 Experiments 07x - Stabilized Zirconia ( Powder E...an extremely fine particle size (- 0. 4 jim) for satisfactory sintering. With zirconia powder of this particle size, spherical aggregates formed...firm" packing pressure, sustained large additions (15 to--9 gm/cycle) occurred. Experiments 07x - Stabilized Zirconia ( Powder E) The 07x experiments

  5. An overview of zirconia ceramics: basic properties and clinical applications.

    PubMed

    Manicone, Paolo Francesco; Rossi Iommetti, Pierfrancesco; Raffaelli, Luca

    2007-11-01

    Zirconia (ZrO2) is a ceramic material with adequate mechanical properties for manufacturing of medical devices. Zirconia stabilized with Y2O3 has the best properties for these applications. When a stress occurs on a ZrO2 surface, a crystalline modification opposes the propagation of cracks. Compression resistance of ZrO2 is about 2000 MPa. Orthopedic research led to this material being proposed for the manufacture of hip head prostheses. Prior to this, zirconia biocompatibility had been studied in vivo; no adverse responses were reported following the insertion of ZrO2 samples into bone or muscle. In vitro experimentation showed absence of mutations and good viability of cells cultured on this material. Zirconia cores for fixed partial dentures (FPD) on anterior and posterior teeth and on implants are now available. Clinical evaluation of abutments and periodontal tissue must be performed prior to their use. Zirconia opacity is very useful in adverse clinical situations, for example, for masking of dischromic abutment teeth. Radiopacity can aid evaluation during radiographic controls. Zirconia frameworks are realized by using computer-aided design/manufacturing (CAD/CAM) technology. Cementation of Zr-ceramic restorations can be performed with adhesive luting. Mechanical properties of zirconium oxide FPDs have proved superior to those of other metal-free restorations. Clinical evaluations, which have been ongoing for 3 years, indicate a good success rate for zirconia FPDs. Zirconia implant abutments can also be used to improve the aesthetic outcome of implant-supported rehabilitations. Newly proposed zirconia implants seem to have good biological and mechanical properties; further studies are needed to validate their application.

  6. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    NASA Astrophysics Data System (ADS)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  7. Shear bond strength between resin cement and colored zirconia made with metal chlorides.

    PubMed

    Kim, Ga-Hyun; Park, Sang-Won; Lee, Kwangmin; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-06-01

    Although the application of zirconia in esthetic prostheses has increased, the shear bond strength (SBS) between colored zirconia and resin cement has not been investigated. The purpose of this study was to compare the SBS between resin cement and colored zirconia made with metal chlorides. Sixty-four zirconia specimens were divided into 2 groups: one in which the specimens were bonded with resin cement, including 4-META (4-methacryloxyethyl trimellitic anhydride), and one in which the specimens were bonded with resin cement (SEcure, Sun Medical) after being processed with zirconia primer (Zirconia Liner), including 4-META. Each group was then divided into 4 subgroups depending on the coloring liquid. The subgroups were noncolored (control), commercial coloring liquid VITA In-Ceram 2000 YZ LL1, aqueous chromium chloride solution 0.1 wt%, and aqueous molybdenum chloride solution 0.1 wt%. Composite resin cylinders (Filtek Z250, 3M ESPE) were fabricated and bonded to the surface of the zirconia specimen with resin cement (SEcure). All specimens were stored in 37°C distilled water for 24 hours, and the SBS was measured with a universal testing machine. All data were analyzed statistically with 2-way ANOVA and tested post hoc with the Tukey test (α=.05). Significant differences were observed among the SBS values of the colored zirconia depending on the coloring liquid (P<.001) and whether they were processed with zirconia primer (P<.001). The SBS between colored zirconia and resin cement was significantly higher than that of noncolored zirconia and resin cement in groups processed with zirconia primer (P<.05). Colored zirconia immersed in aqueous molybdenum chloride solution showed a significantly higher SBS. Coloring liquid enhanced the SBS between resin cement and zirconia processed with zirconia primer. In particular, colored zirconia immersed in aqueous molybdenum chloride solution showed the highest SBS. Copyright © 2015 Editorial Council for the Journal of

  8. Chemical interaction mechanism of 10-MDP with zirconia

    PubMed Central

    Nagaoka, Noriyuki; Yoshihara, Kumiko; Feitosa, Victor Pinheiro; Tamada, Yoshiyuki; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart; Hayakawa, Satoshi

    2017-01-01

    Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using 1H and 31P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) 1H → 31P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. 31P-NMR revealed that one P-OH non-deprotonated of the PO3H2 group from 10-MDP chemically bonded strongly to zirconia. 1H-31P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O−). The combination of 1H NMR and 2D 1H-31P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia. PMID:28358121

  9. Bonding effectiveness to different chemically pre-treated dental zirconia.

    PubMed

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  10. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  11. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    PubMed Central

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  12. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks.

    PubMed

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-11-01

    The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words: CAD/CAM restorative materials, CIE Lab, Zirconia ceramics.

  13. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

    PubMed Central

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770

  14. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  15. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  16. pH control of the structure, composition, and catalytic activity of sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.

    2013-02-01

    We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.

  17. Translucency of Zirconia Ceramics before and after Artificial Aging.

    PubMed

    Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis

    2018-03-11

    The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.

  18. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    PubMed

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.

  19. Role of Y2O3, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-01

    Zirconia mullite (MUZ), Y2O3-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y2O3, CaO, MgO added MUZ composites. The Y2O3, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  20. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  1. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-(Y2O3) partially stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging curves were constructed for both the as received and the solution annealed and quenched materials; the curves showed hardness peaks at 1397 and 1517 Kg/sq mm respectively. The rectangular plate shaped tetragonal precipitates were found to have a 110 habit plane. A total of twelve different types of tetragonal precipitates were found. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinc phase, thus indicating that transformation toughening is not a significant mechanism for the material.

  3. Dehydration and crystallization kinetics of zirconia-yttria gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.

    1995-02-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less

  4. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  5. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  6. Nanograin Ceramic Optical Composite Window

    DTIC Science & Technology

    2005-07-15

    parts are sintered in air at 1100 C̊. Table 1: Carbon content of the calcined Alumina- Zirconia powders analyzed by LECO Calcination Temperature Carbon...estimated particle size of the Alumina and Zirconia powders Material name Surface area (m2/g) Estimated particle size (nm) Alumina 315.7 4.7 Zirconia...200 300 400 500 600 700 800 900 1000 2-Theta - Scale 20 30 40 50 60 70 80 Figure 3: XRD patterns of zirconia powder prepared by sonochemical method

  7. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  8. Co nanoparticle effects on the thermoluminescent signal induced by UV and gamma radiation in ZrO2 powders

    NASA Astrophysics Data System (ADS)

    Villa-Sánchez, G.; Mendoza-Anaya, D.; Eufemia Fernández-García, M.; Escobar-Alarcón, L.; Olea-Mejía, O.; González-Martínez, P. R.

    2014-05-01

    Zirconia powders, both pure and doped with Co nanoparticles were prepared by the sol-gel method followed by thermal treatment at 1000 °C. The morphological and crystallographic characteristics were studied by scanning and transmission electron microscopy, X-ray diffraction and the Rietveld refinements method. Analysis of the thermoluminescent (TL) signal induced by UV and gamma radiation was also conducted. According to the results, Co nanoparticles have a strong influence on the growth of ZrO2 particles and favor the formation of monoclinic zirconia. Moreover, an important influence of the added Co nanoparticles was observed on the position of the TL peaks of ZrO2, inducing a shift in the luminescence towards higher temperatures as well as the presence of more TL peaks at higher temperatures.

  9. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks

    PubMed Central

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). Material and Methods All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. Conclusions The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words:CAD/CAM restorative materials, CIE Lab, Zirconia ceramics. PMID:29302281

  10. Multistate Outbreak of Salmonella Virchow Infections Linked to a Powdered Meal Replacement Product - United States, 2015-2016.

    PubMed

    Gambino-Shirley, Kelly J; Tesfai, Adiam; Schwensohn, Colin A; Burnett, Cindy; Smith, Lori; Wagner, Jennifer M; Eikmeier, Dana; Smith, Kirk; Stone, Jolianne P; Updike, Dawn; Hines, Jonas; Shade, Lauren N; Tolar, Beth; Fu, Tong-Jen; Viazis, Stelios; Seelman, Sharon L; Blackshear, Kathryn; Wise, Matthew E; Neil, Karen P

    2018-03-07

    Nontyphoidal Salmonella is the leading cause of bacterial gastroenteritis in the United States. Meal replacement products containing raw and 'superfood' ingredients have gained increasing popularity among consumers in recent years. In January 2016, we investigated a multistate outbreak of infections with a novel strain of Salmonella Virchow. Cases were defined using molecular subtyping procedures. Commonly reported exposures were compared with responses from healthy people interviewed in the 2006-2007 FoodNet Population Survey. Firm inspections and product traceback and testing were performed. Thirty-five cases from 24 states were identified; 6 hospitalizations and no deaths were reported. Thirty-one (94%) of 33 ill people interviewed reported consuming a powdered supplement in the week before illness; of these, 30 (97%) reported consuming Product A, a raw organic powdered shake product consumed as a meal replacement. Laboratory testing isolated the outbreak strain of Salmonella Virchow from: leftover Product A collected from ill people's homes, organic moringa leaf powder (an ingredient in Product A), and finished product retained by the firm. Firm inspections at three facilities linked to Product A production did not reveal contamination at the facilities. Traceback identified that the contaminated moringa leaf powder was imported from South Africa. This investigation identified a novel outbreak vehicle and highlighted the potential risk with similar products not intended to be cooked by consumers before consuming. The company issued a voluntary recall of all implicated products. As this product has a long shelf-life, the recall likely prevented additional illnesses.

  11. Improvements to Zirconia Thick-Film Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Maskell, William C.; Brett, Daniel J. L.; Brandon, Nigel P.

    2013-06-01

    Thick-film zirconia gas sensors are normally screen-printed onto a planar substrate. A sandwich of electrode-electrolyte-electrode is fired at a temperature sufficient to instigate sintering of the zirconia electrolyte. The resulting porous zirconia film acts as both the electrolyte and as the diffusion barrier through which oxygen diffuses. The high sintering temperature results in de-activation of the electrodes so that sensors must be operated at around 800 °C for measurements in the percentage range of oxygen concentration. This work shows that the use of cobalt oxide as a sintering aid allows reduction of the sensor operating temperature by 100-200 °C with clear benefits. Furthermore, an interesting and new technique is presented for the investigation of the influence of dopants and of the through-porosity of ionically-conducting materials.

  12. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, Raghu Nath; Noufi, Rommel; Wang, Li

    1998-01-01

    A process for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu.sub.x Se.sub.n, wherein x=1-2 and n=1-3; (2) Cu.sub.x Ga.sub.y Se.sub.n, wherein x=1-2, y=0-1 and n=1-3; (3) Cu.sub.x In.sub.y Se.sub.n, wherein x=1-2.27, y=0.72-2 and n=1-3; (4) Cu.sub.x (InGa).sub.y Se.sub.n, wherein x=1-2.17, y=0.96-2 and n=1-3; (5) In.sub.y Se.sub.n, wherein y=1-2.3 and n=1-3; (6) Cu.sub.x S.sub.n, wherein x=1-2 and n=1-3; and (7) Cu.sub.x (InGa).sub.y (SeS).sub.n, wherein x=1-2, y=0.07-2 and n=0.663-3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes.

  13. Multinuclear NMR study of silica fiberglass modified with zirconia.

    PubMed

    Lapina, O B; Khabibulin, D F; Terskikh, V V

    2011-01-01

    Silica fiberglass textiles are emerging as uniquely suited supports in catalysis, which offer unprecedented flexibility in designing advanced catalytic systems for chemical and auto industries. During manufacturing fiberglass materials are often modified with additives of various nature to improve glass properties. Glass network formers, such as zirconia and alumina, are known to provide the glass fibers with higher strength and to slow down undesirable devitrification processes. In this work multinuclear (1)H, (23)Na, (29)Si, and (91)Zr NMR spectroscopy was used to characterize the effect of zirconia on the molecular-level fiberglass structure. (29)Si NMR results help in understanding why zirconia-modified fiberglass is more stable towards devitrification comparing with pure silica glass. Internal void spaces formed in zirconia-silica glass fibers after acidic leaching correlate with sodium and water distributions in the starting bulk glass as probed by (23)Na and (1)H NMR. These voids spaces are important for stabilization of catalytically active species in the supported catalysts. Potentials of high-field (91)Zr NMR spectroscopy to study zirconia-containing glasses and similarly disordered systems are illustrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000/sup 0/C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600/sup 0/C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950/sup 0/ to 1,250/sup 0/C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800/sup 0/ to 2000/sup 0/C further improves structural rigidity.

  15. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    1988-05-10

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

  16. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.; Lewis, Jr., John

    1988-01-01

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  17. Twenty-nine-month follow-up of a paediatric zirconia dental crown.

    PubMed

    Lopez Cazaux, Serena; Hyon, Isabelle; Prud'homme, Tony; Dajean Trutaud, Sylvie

    2017-06-14

    The aim of this paper is to present the long-term follow-up of one paediatric zirconia crown on a deciduous molar. Preformed crowns are part of the armamentarium in paediatric dentistry. In recent years, aesthetic alternatives to preformed metal crowns have been developed, first preveneered crowns and then zirconia crowns. This paper describes the restoration of a primary molar with a zirconia crown (EZ-Pedo, Loomis, California, USA) in an 8-year-old boy. In this clinical case, the protocol for the implementation and maintenance of zirconia crowns is detailed. The patient was followed up for 29 months until the natural exfoliation of his primary molar. The adaptation of the zirconia crown, the gingival health and the wear on the opposing tooth were considered. In this case, the paediatric zirconia crown allowed sustainable functional restoration while restoring a natural appearance of the tooth. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Ceramic Technology for Advanced Heat Engines Project Semiannual Progress Report for Period October 1985 Through March 1986

    DTIC Science & Technology

    1986-08-01

    materials (2.2 w/o and 3.0 w/o MgO). The other two batches (2.8 w/o and 3.1 w/o MgO), of higher purity, were made using E-10 zirconia powder from...CID) powders Two methods have been used for the coprecipitation of doped zirconia powders from solutions of chemical precursors. (4) Method I, for...of powder, approximate sample size 3.2 Kg (6.4 Kg for zirconia powder ); 342 3. Random selection of sample; 4. Partial drying of sample to reduce caking

  19. Alumina additions may improve the damage tolerance of soft machined zirconia-based ceramics.

    PubMed

    Oilo, Marit; Tvinnereim, Helene M; Gjerdet, Nils Roar

    2011-01-01

    The aim of this study was to evaluate the damage tolerance of different zirconia-based materials. Bars of one hard machined and one soft machined dental zirconia and an experimental 95% zirconia 5% alumina ceramic were subjected to 100,000 stress cycles (n = 10), indented to provoke cracks on the tensile stress side (n = 10), and left untreated as controls (n = 10). The experimental material demonstrated a higher relative damage tolerance, with a 40% reduction compared to 68% for the hard machined zirconia and 84% for the soft machined zirconia.

  20. Evaluation of experimental coating to improve the zirconia-veneering ceramic bond strength.

    PubMed

    Matani, Jay D; Kheur, Mohit; Jambhekar, Shantanu Subhashchandra; Bhargava, Parag; Londhe, Aditya

    2014-12-01

    To evaluate the shear bond strength (SBS) between zirconia and veneering ceramic following different surface treatments of zirconia. The efficacy of an experimental zirconia coating to improve the bond strength was also evaluated. Zirconia strips were fabricated and were divided into four groups as per their surface treatment: polished (control), airborne-particle abrasion, laser irradiation, and application of the experimental coating. The surface roughness and the residual monoclinic content were evaluated before and after the respective surface treatments. A scanning electron microscope (SEM) analysis of the experimental surfaces was performed. All specimens were subjected to shear force in a universal testing machine. The SBS values were analyzed with one-way ANOVA followed by Bonferroni post hoc for groupwise comparisons. The fractured specimens were examined to observe the failure mode. The SBS (29.17 MPa) and roughness values (0.80) of the experimental coating group were the highest among the groups. The residual monoclinic content was minimal (0.32) when compared to the remaining test groups. SEM analysis revealed a homogenous surface well adhered to an undamaged zirconia base. The other test groups showed destruction of the zirconia surface. The analysis of failure following bond strength testing showed entirely cohesive failures in the veneering ceramic in all study groups. The experimental zirconia surface coating is a simple technique to increase the microroughness of the zirconia surface, and thereby improve the SBS to the veneering ceramic. It results in the least monoclinic content and produces no structural damage to the zirconia substructure. © 2014 by the American College of Prosthodontists.

  1. Effect of nanoparticles dispersion on viscoelastic properties of epoxy–zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  2. Effect of nanoparticles dispersion on viscoelastic properties of epoxy-zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  3. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    PubMed

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  4. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing

    PubMed Central

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-01-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces. PMID:25059249

  5. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  6. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  7. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  8. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    NASA Technical Reports Server (NTRS)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  9. Fabrication and Performance of Zirconia Electrolysis Cells for Carbon Dioxide Reduction for Mars In Situ Resource Utilization Applications

    NASA Technical Reports Server (NTRS)

    Minh, N. Q.; Chung, B. W.; Doshi, R.; Lear, G. R.; Montgomery, K.; Ong, E. T.

    1999-01-01

    The use of the Martian atmosphere (95% CO2) to produce oxygen (for propellant and life support) can significantly lower the required launch mass and dramatically reduce the total cost for Mars missions. Zirconia electrolysis cells are one of the technologies being considered for oxygen generation from carbon dioxide in Mars In Situ Resource Utilization (ISRU) production plants. The attractive features of the zirconia cell for this application include simple operation and lightweight, low volume system.

  10. Energy-conscious production of titania and titanium powders from slag

    NASA Astrophysics Data System (ADS)

    Middlemas, Scott C.

    Titanium dioxide (TiO2) is used as a whitening agent in numerous domestic and technological applications and is mainly produced by the high temperature chloride process. A new hydrometallurgical process for making commercially pure TiO2 pigment is described with the goal of reducing the necessary energy consumption and CO2 emissions. The process includes alkaline roasting of titania slag with subsequent washing, HCl leaching, solvent extraction, hydrolysis, and calcination stages. The thermodynamics of the roasting reaction were analyzed, and the experimental parameters for each step in the new process were optimized with respect to TiO 2 recovery, final product purity, and total energy requirements. Contacting the leach solution with a tertiary amine extractant resulted in complete Fe extraction in a single stage and proved effective in reducing the concentration of discoloring impurities in the final pigment to commercially acceptable levels. Additionally, a new method of producing Ti powders from titania slag is proposed as a potentially more energy efficient and lower cost alternative to the traditional Kroll process. Thermodynamic analysis and initial experimental results validate the concept of reducing titanium slag with a metal hydride to produce titanium hydride (TiH2) powders, which are subsequently purified by leaching and dehydrided to form Ti powders. The effects of reducing agent type, heating time and temperature, ball milling, powder compaction, and eutectic chloride salts on the conversion of slag to TiH2 powders were determined. The purification of reduced powders through NH4Cl, NaOH, and HCl leaching stages was investigated, and reagent concentration, leaching temperature, and time were varied in order to determine the best conditions for maximum impurity removal and recovery of TiH2. A model plant producing 100,000 tons TiO2 per year was designed that would employ the new method of pigment manufacture. A comparison of the new process and the

  11. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.

    PubMed

    Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo

    2016-07-01

    To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.

  12. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less

  13. Assessment of Japanese Technology in Advanced Glass and Ceramic Fibers

    DTIC Science & Technology

    1992-06-01

    powders and crystals by hydrothermal tech- niques, and they have had their process for the preparation of zirconia powder commercial- ized by the...Masahiro Yoshimura. Whisker-Glass Composites, Hydrothermal Zirconia Powders , Hydrothermal Machining, Super-Conducting Thin Films. Professor Eiichi

  14. Production of films and powders for semiconductor device applications

    DOEpatents

    Bhattacharya, R.N.; Noufi, R.; Li Wang

    1998-03-24

    A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

  15. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    PubMed

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.

    PubMed

    Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K

    2003-10-01

    One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.

  17. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  18. Optical properties and light irradiance of monolithic zirconia at variable thicknesses.

    PubMed

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V

    2015-10-01

    The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (p<0.05). Surface gloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRTzirconia and the amount was brand dependent (p<0.05). Brand selection, thickness, and polishing of monolithic zirconia can affect the ultimate clinical outcome of the optical properties of zirconia restorations. FSZ is relatively more polishable and translucent than PSZ. Copyright © 2015 Academy of Dental

  19. Influence of cleaning methods on resin bonding to saliva-contaminated zirconia.

    PubMed

    Yoshida, Keiichi

    2018-02-08

    The aim of this study was to investigate the influence of different cleaning methods on the shear bond strengths of 2 resin cements to saliva-contaminated zirconia. After saliva contamination, alumina-blasted zirconia specimens were cleaned with 1 of 5 methods of water-rinsing (SA), K-etchant GEL phosphoric acid (PA), Ivoclean (IC), AD Gel (ADG), or additional alumina-blasting (AB). Alumina-blasted zirconia without saliva contamination was used as control group (Cont). Composite cylinders were bonded to the zirconia with 1 of 2 dual-cured resin cements. The bond strengths were measured by shear testing after 24 hours (TC0) and after thermal cycling at 4°C-60°C (TC10 000) and specimen surfaces were evaluated using X-ray photoelectron spectroscopy (XPS). Data were statistically analyzed using 3-way analysis of variance and Tukey test (α = 0.05). There were no significant differences in the bond strengths of 2 resin cements between the Cont ADG, and AB groups before and after TCs (P > .05). SA, PA, and IC groups did not exhibit durable resin bonding to zirconia. XPS showed that carbon and nitrogen increased in the SA group in comparison to the Cont group. The concentration of carbon in other 4 groups returned to the concentration range of the Cont group; however, nitrogen was not detected in the only AB group. Saliva contamination significantly reduced the bond strength of 2 resin cements to zirconia. Additional AB or cleaning with ADG resulted in effective cleaning of saliva contamination and preserved resin cement bond strength to zirconia. Saliva contamination occurs during clinical procedures for adjustment of zirconia ceramic restorations in the oral environment. AD Gel application is effective for removing saliva contaminants on the alumina-blasted zirconia surface beforehand by the dental laboratory instead of additional AB since AD Gel application and AB had a similar effect on the removal of organic components of saliva. © 2018 Wiley Periodicals

  20. Effect of synthesis process on the microstructure and electrical conductivity of nickel/yttria-stabilized zirconia powders prepared by urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyung-Dong; Wu, Zhao-Lun

    In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.

  1. Powder Injection Molding for mass production of He-cooled divertor parts

    NASA Astrophysics Data System (ADS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-10-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  2. Infrared wire-grid polarizer with sol-gel zirconia grating

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Ishihara, Yoshiro

    2017-05-01

    The infrared wire-grid polarizer consisting of an Al grating, Si, and sol-gel derived zirconia grating film was fabricated by soft imprint process and Al shadow coating processes. A silicone mold was used because of its low surface energy, flexibility, and capability of transferring submicrosized patterns. As a result, the Al grating with a pitch of 400 nm and a depth of 100 nm was obtained on the zirconia grating film. The fabricated polarizer exhibited a polarization function with the TM transmittance greater than that of the Si substrate in the specific wavelength range of 3.6-8.5 μm, because the zirconia film acted as an antireflection film. The maximum value was 63% at a wavelength of 5.2 μm. This increment of the TM transmission spectrum results in interference within the zirconia film. Also, the extinction ratio exceeded almost 20 dB in the 3-8.8 μm wavelength range.

  3. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.

    PubMed

    Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad

    2009-08-01

    The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.

  4. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  5. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns.

    PubMed

    Kwon, Taek-Ka; Pak, Hyun-Soon; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun; Yeo, In-Sung

    2013-05-01

    All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. THE MEAN FRACTURE STRENGTHS WERE AS FOLLOWS: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

  6. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    PubMed

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  7. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    PubMed

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p < 0.0001). SEM revealed differences on wear characteristics between the glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  8. Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses.

    PubMed

    Kohorst, Philipp; Butzheinen, Lutz Oliver; Dittmer, Marc Philipp; Heuer, Wieland; Borchers, Lothar; Stiesch, Meike

    2010-12-01

    The objective of this investigation was to evaluate the influence of differently shaped preliminary cuts in combination with artificial aging on the load-bearing capacity of four-unit zirconia fixed dental prostheses (FDPs). Forty frameworks were fabricated from white-stage zirconia blanks (InCeram YZ, Vita) by means of a computer-aided design/computer-aided manufacturing system (Cerec inLab, Sirona). Frameworks were divided into four homogeneous groups with ten specimens each. Prior to veneering, frameworks of two groups were "damaged" by defined saw cuts of different dimensions, to simulate accidental flaws generated during shape cutting. After the veneering process, FDPs, with the exception of a control group without preliminary damage, were subjected to thermal and mechanical cycling (TMC) during 200 days storage in distilled water at 36°C. Following the aging procedure, all specimens were loaded until fracture, and forces at fracture were recorded. The statistical analysis of force at fracture data was performed using two-way ANOVA, with the level of significance chosen at 0.05. Neither type of preliminary mechanical damage significantly affected the load-bearing capacity of FDPs. In contrast, artificial aging by TMC proved to have a significant influence on the load-bearing capacity of both the undamaged and the predamaged zirconia restorations (p < 0.001); however, even though load-bearing capacity decreased by about 20% due to simulated aging, the FDPs still showed mean load-bearing capacities of about 1600 N. The results of this study reveal that zirconia restorations have a high tolerance regarding mechanical damages. Irrespective of these findings, damage to zirconia ceramics during production or finishing should be avoided, as this may nevertheless lead to subcritical crack growth and, eventually, catastrophic failure. Furthermore, to ensure long-term clinical success, the design of zirconia restorations has to accommodate the decrease in load

  9. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  10. Autoclave heat treatment for prealloyed powder products

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.

  11. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  13. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants

    PubMed Central

    Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.

    2015-01-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  14. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    PubMed

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  15. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    PubMed

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council

  16. Shear bond strength of indirect composite material to monolithic zirconia.

    PubMed

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

  17. Release of zirconia nanoparticles at the metal stem-bone cement interface in implant loosening of total hip replacements.

    PubMed

    Schunck, Antje; Kronz, Andreas; Fischer, Cornelius; Buchhorn, Gottfried Hans

    2016-02-01

    In a previous failure analysis performed on femoral components of cemented total hip replacements, we determined high volumes of abraded bone cement. Here, we describe the topography of the polished surface of polymethyl methacrylate (PMMA) bone cement containing zirconia radiopacifier, analyzed by scanning electron microscopy and vertical scanning interferometry. Zirconia spikes protruded about 300nm from the PMMA matrix, with pits of former crystal deposition measuring about 400nm in depth. We deduced that the characteristically mulberry-shaped agglomerates of zirconia crystals are ground and truncated into flat surfaces and finally torn out of the PMMA matrix. Additionally, evaluation of in vitro PMMA-on-PMMA articulation confirmed that crystal agglomerations of zirconia were exposed to grain pullout, fatigue, and abrasion. In great quantities, micron-sized PMMA wear and zirconia nanoparticles accumulate in the cement-bone interface and capsular tissues, thereby contributing to osteolysis. Dissemination of nanoparticles to distant lymph nodes and organs of storage has been reported. As sufficient information is lacking, foreign body reactions to accumulated nanosized zirconia in places of long-term storage should be investigated. The production of wear particles of PMMA bone cement in the interface to joint replacement devices, presents a local challenge. The presence of zirconia particles results in frustrated digestion attempts by macrophages, liberation of inflammatory mediators, and necrosis leading to aseptic inflammation and osteolyses. Attempts to minimize wear of articulating joints reduced the attention to the deterioration of cement cuffs. We therefore investigated polished surfaces of retrieved cuffs to demonstrate their morphology and to measure surface roughness. Industrially admixed agglomerates of the radiopacifier are abraded to micron and nano-meter sized particles. The dissemination of zirconia particles in the reticulo-endothelial system to

  18. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar

    PubMed Central

    Kermanshah, H.; Bitaraf, T.; Geramy, A.

    2012-01-01

    Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics. Materials and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. Results: In the connector area, von Mises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures. PMID:23323181

  19. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    PubMed

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  20. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  1. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    PubMed

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p < 0.0001). Also, the bond strength was similar to the sandblasted group (p = 0.34). The sandblasted and control group only showed adhesive failure, but the hydroxyapatite coated group had mixed failures, indicating the better quality of bonding (p < 0.0001). As a final point, hydroxyapatite coating on the zirconia surface improved the bond strength quality and values.

  2. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic.

    PubMed

    Kosmac, T; Oblak, C; Jevnikar, P; Funduk, N; Marion, L

    1999-11-01

    This study was conducted to evaluate the effect of grinding and sandblasting on the microstructure, biaxial flexural strength and reliability of two yttria stabilized tetragonal zirconia (Y-TZP) ceramics. Two Y-TZP powders were used to produce fine grained and coarse grained microstructures. Sixty discs from each material were randomly divided into six groups of ten. For each group, a different surface treatment was applied: dry grinding, wet grinding, sandblasting, dry grinding + sandblasting, sandblasting + dry grinding and a control group. Biaxial flexural strength was determined and data were analyzed using one-way ANOVA, followed by Tukey's HSD test (p < 0.05). In addition, Weibull statistics was used to analyze the variability of flexural strength. The relative amount of transformed monoclinic zirconia, corresponding transformed zone depth (TZD) and the mean critical defect size Ccr were calculated. There was no difference in mean strength between the as sintered fine and coarse grained Y-TZP. Significant differences (p < 0.05) were found between the control group and ground fine grained material for both wet and dry grinding. Sandblasting significantly increased the strength in fine and coarse grained materials. All surface treatment procedures reduced the Weibull modulus of Y-TZP. For both materials, the highest amount of the monoclinic phase and the largest TZD was found after sandblasting. Lower amounts of the monoclinic phase were obtained after both grinding procedures, where the highest mean critical defect size Ccr was also calculated. Our results indicate that sandblasting may provide a powerful technique for strengthening Y-TZP in clinical practice. In contrast, grinding may lead to substantial strength degradation and reduced reliability of prefabricated zirconia elements, therefore, sandblasting of ground surfaces is suggested.

  3. Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-11-30

    Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less

  4. Zirconia-hydroxyapatite composite material with micro porous structure.

    PubMed

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Study, Design and Fabricate a Cold Crucible System

    DTIC Science & Technology

    1975-03-31

    Fritz iuettinger Blektronik GmbH, Freiburg, Germany) tuned to operate at approximately 4 megahertz. Using kilogram charges of zirconia powder , densification...ut’. rho skull was filled with stabilized zirconia powder and approximate’Iy 10 grams of zirconium metal chips (1/8" diameter) were buried In the...show the results of Run M-tO. A 700 gram zirconia powder charge (Johnson Matthey Chemicals, Ltd., 99.992 purity) was used with 10 wt % yttria (Rare Earth

  6. Fracture loads and failure modes of customized and non-customized zirconia abutments.

    PubMed

    Moris, Izabela Cristina Maurício; Chen, Yung-Chung; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Fok, Alex Sui-Lun; Rodrigues, Renata Cristina Silveira

    2018-05-05

    This study aimed to evaluate the fracture load and pattern of customized and non-customized zirconia abutments with Morse-taper connection. 18 implants were divided into 3 groups according to the abutments used: Zr - with non-customized zirconia abutments; Zrc - with customized zirconia abutments; and Ti - with titanium abutments. To test their load capacity, a universal test machine with a 500-kgf load cell and a 0.5-mm/min speed were used. After, one implant-abutment assembly from each group was analyzed by Scanning Electron Microscopy (SEM). For fractographic analysis, the specimens were transversely sectioned above the threads of the abutment screw in order to examine their fracture surfaces using SEM. A significant difference was noted between the groups (Zr=573.7±11.66N, Zrc=768.0±8.72N and Ti=659.1±7.70N). Also, the zirconia abutments fractured while the titanium abutments deformed plastically. Zrc presented fracture loads significantly higher than Zr (p=0.009). All the zirconia abutments fractured below the implant platform, starting from the area of contact between the abutment and implant and propagating to the internal surface of the abutment. All the zirconia abutments presented complete cleavage in the mechanical test. Fractography detected differences in the position and pattern of fracture between the two groups with zirconia abutments, probably because of the different diameters in the transmucosal region. Customization of zirconia abutments did not affect their fracture loads, which were comparable to that of titanium and much higher than the maximum physiological limit for the anterior region of the maxilla. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  7. Development of zirconia based phosphors for application in lighting and as luminescent bioprobes =

    NASA Astrophysics Data System (ADS)

    Soares, Maria Rosa Nunes

    The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure

  8. Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree.

    PubMed

    Wong, Chen Wai; Tan, Hong Hock

    2017-02-01

    This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex ® Ultra SP-L and Celluclast ® 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex ® Ultra SP-L and 0.5% (v/w) Celluclast ® 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.

  9. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  10. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  11. Effect of high intensity ultrasound on the mesostructure of hydrated zirconia

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.

    2012-02-01

    We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.

  12. Comparison of edge chipping resistance of PFM and veneered zirconia specimens

    PubMed Central

    Quinn, Janet B.; Sundar, Veeraraghavan; Parry, Edward E.; Quinn, George D.

    2011-01-01

    Objectives To investigate the chipping resistance of veneered zirconia specimens and compare it to the chipping resistance of porcelain fused to metal (PFM) specimens. Methods Veneered zirconia and PFM bar specimens were prepared in clinically relevant thicknesses. The specimen edges were chipped with different magnitude forces, producing chips of various sizes. The range of sizes included small chips that did not penetrate all the way through the veneers to the substrates, and also chips that were very large and reached the zirconia or metal substrates. The relationship between force magnitude and chip size (edge distance) was graphed. The resulting curves were compared for the veneered zirconia and PFM specimens. Knoop hardness vs. force graphs for the veneers and substrates were also obtained. Results The zirconia and PFM veneer chipping data followed a power law (coefficient of determination, R2 > 0.93) as expected from the literature. The curves overlapped within the combined data scatter, indicating similar resistance to chipping. The chips made in both types of specimens detached and did not penetrate into the substrate when they reached the veneer/substrate intersections. The hardness–load curves for the veneers and substrates all exhibited an indentation size effect (ISE) at low loads. The Knoop hardness values with uncertainties of ±one standard deviation at 4 N loads for the metal, zirconia, and the metal and zirconia veneers are: (2.02 ± 0.08, 12.01 ± 0.39, 4.24 ± 0.16 and 4.36 ± 0.02 GPa), respectively, with no statistically significant difference between the veneers (Tukey pairwise comparison at 0.95 family confidence). Significance This work indicates that a similar resistance to chipping might be expected for veneered zirconia and PFM restorations, in spite of the large difference in substrate hardness. Differences in susceptibility to chip spalling were not detected, but the chips in both specimen types detached off the sides in a similar

  13. Enhanced structural stability of nanoporous zirconia under irradiation of He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tengfei; Huang, Xuejun; Wang, Chenxu

    2012-01-01

    This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited Hemore » via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.« less

  14. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    PubMed

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (p<0.001). The HVs of the Cerabien ZR and Vita VM9 veneering ceramics were similar (p>0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  15. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  16. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  17. Bioactive and thermally compatible glass coating on zirconia dental implants.

    PubMed

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental

  18. Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments.

    PubMed

    Sui, Xinxin; Wei, Huasha; Wang, Dashan; Han, Yan; Deng, Jing; Wang, Yongliang; Wang, Junjun; Yang, Jianjun

    2014-10-01

    The purpose of the study was to investigate the correlation between fit accuracy and fracture resistance of zirconia abutments, as well as its feasibility for clinical applications. Twenty self-made zirconia abutments were tested with 30 Osstem GSII implants. First, 10 Osstem GSII implants were cut into two parts along the long axis and assembled with the zirconia abutments. The microgaps between the implants and the zirconia abutments were measured under a scanning electron microscope. Second, the zirconia abutments were assembled with 20 un-cut implants and photographed before and after being fixed with a central screw of 30-Ncm torque. The dental films were measured by Digora for Windows 2.6 software. Then the fracture resistance of zirconia abutments was measured using the universal testing machine at 90°. All results were analyzed using SPSS13.0 software. The average internal-hexagon microgaps between the implants and zirconia abutments were 19.38±1.34μm. The average Morse taper microgap in the implant-abutment interface was 17.55±1.68μm. The dental film showed that the Morse taper gap in the implant-abutment interface disappeared after being fixed with a central screw of 30-Ncm torque, and the average moving distance of the zirconia abutments to the implants was 0.19±0.02mm. The average fracture resistance of zirconia abutments was 282.93±17.28N. The internal-hexagon microgap between the implants and zirconia abutments was negatively related to the fracture resistance of the abutments (r1=-0.97, p<0.01). The Morse taper microgap in the implant-abutment interface was negatively related to the fracture resistance of the abutments (r2=-0.84, p<0.01). The microgap between implant and abutment was negatively related to the fracture resistance of the abutment, while the internal-hexagon microgap has better correlation than the Morse taper microgap. The closure of microgap is helpful to improve the fracture resistance of zirconia abutments. The fracture

  19. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less

  20. Cleaner Production of Ti Powder by a Two-Stage Aluminothermic Reduction Process

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wang, Yaowu; Feng, Naixiang

    2017-10-01

    A two-stage aluminothermic reduction process for preparing Ti powder under vacuum conditions using Na2TiF6 was investigated. An Al-Ti master alloy and a clean cryolite were simultaneously obtained as co-products. The first-stage reduction was an exothermic process that occurred at approximately 660°C. The Al and O contents of the Ti powder product were 0.18 wt.% and 0.35 wt.%, respectively, with an average particle size <74 μm. Ti(IV), Ti(III), and metallic Ti were present in the Ti-containing cryolite produced by the first-stage reduction, at a total content of approximately 3.13 wt.%. After second-stage reduction, the Ti elemental contents of the clean cryolite were reduced to 0.002 wt.%. The Al-Ti master alloy obtained by second-stage reduction was composed of Al and TiAl3. The mechanisms involved in these reduction processes were also examined.

  1. Synthesis of monodisperse spherical nanometer ZrO{sub 2} (Y{sub 2}O{sub 3}) powders via the coupling route of w/o emulsion with urea homogenous precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ying; Dong, Shijie, E-mail: dongsjsj@163.com; Wang, Huihu

    2012-03-15

    Graphical abstract: In this paper, the weight loss and reaction evolution of ZrO{sub 2} precursor powders are determined by TG-DTA, and 600 Degree-Sign C is the most reasonable calcination temperature of precursor according to the TG-DTA. At the same time, we study the effect of reaction conditions upon the particle sizes, such as concentration of zirconium nitrate solution, reaction temperature and urea content. TEM micrographs of zirconia powders indicated that ZrO{sub 2} nano-powders prepared via the coupling route of w/o emulsion with homogenous precipitation possess spherical shape and excellent dispersing. Highlights: Black-Right-Pointing-Pointer The monodisperse spherical nanometer ZrO{sub 2} (Y{sub 2}O{submore » 3}) powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. Black-Right-Pointing-Pointer The principle of the coupling route of emulsion with homogenous precipitation has been studied. Black-Right-Pointing-Pointer The concentration of zirconium nitrate, reaction temperature of water bath and the quantity of urea effect regularly on the average particle size of products. -- Abstract: Using xylol as the oil phase, span-80 as the surfactant, and an aqueous solution containing zirconium (3 mol% Y{sub 2}O{sub 3}) and urea as the water phase, tetragonal phase ZrO{sub 2} nano-powders have been prepared via the coupling route of w/o emulsion with urea homogenous precipitation. The effects of the zirconium concentration, the reaction temperature and the urea content on the average size of the products have been examined. The as-prepared ZrO{sub 2} powders and the precursor powders were characterized by TGA-DTA, XRD, TEM and BET. Experimental results indicate that ZrO{sub 2} powders prepared via the coupling route of w/o emulsion with urea homogenous precipitation possess some excellent characteristics, such as well-rounded spherical shape and excellent dispersing.« less

  2. Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.

    PubMed

    Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-01-01

    Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study.

  3. [Application of plasma sprayed zirconia coating in dental implant: study in implant].

    PubMed

    Huang, Z F; Wang, Z F; Li, C H; Hao, D; Lan, J

    2018-04-09

    Objective: To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant. Methods: Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo , zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated. Results: The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance. Conclusions: The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo , especially at early stage.

  4. The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain

    PubMed Central

    Lee, Hee-Sung

    2017-01-01

    The adhesion of porcelain to zirconia is a key factor in the success of bilayered restorations. In this study, the efficacy of a novel experimental liner (EL) containing zirconia for improved bonding between zirconia and veneering porcelain was tested. Four ELs containing various concentrations (0, 3.0, 6.0, and 9.0 wt %) of zirconia were prepared. Testing determined the most effective EL (EL3 containing 3.0 wt % zirconia) in terms of shear bond strength value (n = 15). Three different bar-shaped zirconia/porcelain bilayer specimens were prepared for a three-point flexural strength (TPFS) test (n = 15): no-liner (NL), commercial liner (CL), and EL3. Specimens were tested for TPFS with the porcelain under tension and the maximum load was measured at the first sign of fracture. The strength data were analyzed using one-way ANOVA and Tukey’s test (α = 0.05) as well as Weibull distribution. When compared to NL, the CL application had no effect, while the EL3 application had a significant positive effect (p < 0.001) on the flexural strength. Weibull analysis also revealed the highest shape and scale parameters for group EL3. Within the limitations of this study, the novel ceramic liner containing 3.0 wt % zirconia (EL3) significantly enhanced the zirconia/porcelain interfacial bonding. PMID:28869512

  5. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  6. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  7. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    PubMed Central

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  8. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less

  9. Production of functional pita bread using date seed powder.

    PubMed

    Platat, Carine; Habib, Hosam M; Hashim, Isameldin Bashir; Kamal, Hina; AlMaqbali, Fatima; Souka, Usama; Ibrahim, Wissam H

    2015-10-01

    Functional foods represent a novel approach to prevent diet-related diseases. Due to its excellent nutritional and antioxidant properties, date seed was used to develop functional pita bread. Flour was replaced by 5, 10, 15 and 20 % date seed powder. Regular and whole wheat pita breads were the references. Results clearly showed that date seed powder containing bread contained comparable dietary fibers levels as in whole wheat bread and higher levels of flavonoids and phenolics. Date seed powder containing breads were particularly rich in flavan-3-ols whereas reference breads did not contain any of them and only a limited amount of other phenolic compounds. They also exhibited a much higher antioxidant capacity. Additionally, compared to regular bread, acrylamide level was significantly lower in 5 % date seed powder containing bread, and lower in all date seed powder containing breads compared to whole wheat bread. Date seed powder supplemented bread appears as a promising functional ingredient to prevent chronic diseases.

  10. Comparison of shear bond strength of orthodontic brackets using various zirconia primers.

    PubMed

    Lee, Ji-Yeon; Kim, Jin-Seok; Hwang, Chung-Ju

    2015-07-01

    The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm(2). The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.

  11. Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro

    1992-08-01

    A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.

  12. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-Y2O3)-partially-stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging cuves were constructed for both the as-received and the solution-annealed-and-quenched materials; the curves showed hardness peaks at 1397 and 1517 kg/sq mm, respectively. A total of twelve different types of tetragonal precipitates were found. The rectangular plate-shaped tetragonal precipitates were found to have a (110) habit plane. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinic phase, thus indicating that transformation toughening is not a significant mechanism for the material. The fracture toughness of the aged and of the unaged solution-annealed-and-quenched PSZ was found to be between 2 and 3 MN/cu m/2.

  13. Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products.

    PubMed

    Ingle, Prashant D; Christian, Roney; Purohit, Piyush; Zarraga, Veronica; Handley, Erica; Freel, Keith; Abdo, Saleem

    2016-01-01

    Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22-90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85-88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.

  14. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    PubMed

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Zirconia changes after grinding and regeneration firing.

    PubMed

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural

  16. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  17. A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses.

    PubMed

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-10-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Vinyl-polysiloxane impressions of 12 zirconia-ceramic and 6 metal-ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3±2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Among the 12 zirconia-ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal-ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Zirconia-ceramic and metal-ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia-ceramic FDPs relative to their metal-ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia-ceramic FDPs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Development of advanced test methods for the improvement of production standards for ceramic powders used in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ward, Brian

    Solid oxide fuel cells (SOFCs) are energy conversion devices that use ceramic powders as a precursor material for their electrodes. Presently, powder manufacturers are encountering complications producing consistent precursor powders. Through various thermal, chemical and physical tests, such as DSC and XRD, a preliminary production standard will be developed.

  19. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    PubMed

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  20. In vitro fracture resistance of three commercially available zirconia crowns for primary molars.

    PubMed

    Townsend, Janice A; Knoell, Patrick; Yu, Qingzhao; Zhang, Jian-Feng; Wang, Yapin; Zhu, Han; Beattie, Sean; Xu, Xiaoming

    2014-01-01

    The purpose of this study was to measure the fracture resistance of primary mandibular first molar zirconia crowns from three different manufacturers-EZ Pedo (EZP), NuSmile (NSZ), and Kinder Krowns (KK)-and compare it with the thickness of the zirconia crowns and the measured fracture resistance of preveneered stainless steel crowns (SSCs). The thickness of 20 zirconia crowns from three manufacturers were measured. The mean force required to fracture the crowns was determined. Preveneered NuSmile (NSW) SSCs were tested as a control. EZP crowns were significantly thicker in three of the six measured locations. The force required to fracture the EZP crown was significantly higher than that required for NSZ and KK. There was a positive correlation between fracture resistance and crown thickness in the mesial, distal, mesioocclusal, and distoocclusal dimensions. None of the zirconia crowns proved to be as resistant to fracture as the preveneered SSCs. Statistically significant differences were found among the forces required to fracture zirconia crowns by three different manufacturers. The increase in force correlated with crown thickness. The forces required to fracture the preveneered stainless steel crowns were greater than the forces required to fracture all manufacturers' zirconia crowns.

  1. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-03-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others.

  2. Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.

    PubMed

    Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S

    2016-01-01

    This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (p<0.05). Representative scanning electron microscopy (SEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.

  3. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    NASA Astrophysics Data System (ADS)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  4. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nasser, Ali; Kassem, Mohamed A.; Elsayed, Ayman; Gepreel, Mohamed A.; Moniem, Ahmed A.

    2016-11-01

    WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

  5. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P < 0.05), whereas the PLB and CPB + Activator groups had the highest pre- and post-thermocycling bond strengths in ZR-PO-AB and ZR-PO-HF specimens. Among CON disks without opaque material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P < 0.05). Feldspathic porcelain coating of a Katana zirconia framework enhanced the bond strength of Estenia C&B indirect composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect

  6. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy.

    PubMed

    Kohorst, Philipp; Junghanns, Janet; Dittmer, Marc P; Borchers, Lothar; Stiesch, Meike

    2011-08-01

    The aim of the present in vitro study was to evaluate the influence of different processing routes on the fitting accuracy of four-unit zirconia fixed dental prostheses (FDPs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM). Three groups of zirconia frameworks with ten specimens each were fabricated. Frameworks of one group (CerconCAM) were produced by means of a laboratory CAM-only system. The other frameworks were made with different CAD/CAM systems; on the one hand by in-laboratory production (CerconCAD/CAM) and on the other hand by centralized production in a milling center (Compartis) after forwarding geometrical data. Frameworks were then veneered with the recommended ceramics, and marginal accuracy was determined using a replica technique. Horizontal marginal discrepancy, vertical marginal discrepancy, absolute marginal discrepancy, and marginal gap were evaluated. Statistical analyses were performed by one-way analysis of variance (ANOVA), with the level of significance chosen at 0.05. Mean horizontal discrepancies ranged between 22 μm (CerconCAM) and 58 μm (Compartis), vertical discrepancies ranged between 63 μm (CerconCAD/CAM) and 162 μm (CerconCAM), and absolute marginal discrepancies ranged between 94 μm (CerconCAD/CAM) and 181 μm (CerconCAM). The marginal gap varied between 72 μm (CerconCAD/CAM) and 112 μm (CerconCAM, Compartis). Statistical analysis revealed that, with all measurements, the marginal accuracy of the zirconia FDPs was significantly influenced by the processing route used (p < 0.05). Within the limitations of this study, all restorations showed a clinically acceptable marginal accuracy; however, the results suggest that the CAD/CAM systems are more precise than the CAM-only system for the manufacture of four-unit FDPs.

  7. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 6, Section 4: Processing: Matrices and Composites. Part 2

    DTIC Science & Technology

    1989-10-15

    discussed in the context of the above results. [Key words: sintering, densification, zirconia , powder fz irication, grain growth] Member, American...Ceram. Soc. 71 (4) 225-35 (1988). 3. M.A.C.G. van de Graaf, A.J. Burggraaf, ’Wet-Chemical Preparation of Zirconia Powders : Their Microstructure and...40h Zr0-1OY23 30- 1 Oh Zr2IY231WC 2 (A) 1.’DENSIFICATION OF ZIRCONIA POWDER l0 W 0.7-~tr~ TIME bRYST (B CONTAN CEli RSAETL10 w S0.45-- 0.4- 1060 110

  8. Strength degradation and lifetime prediction of dental zirconia ceramics under cyclic normal loading.

    PubMed

    Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue

    2015-01-01

    Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established.

  9. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  10. Zirconia toughened mica glass ceramics for dental restorations.

    PubMed

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Zirconia crowns for rehabilitation of decayed primary incisors: an esthetic alternative.

    PubMed

    Ashima, G; Sarabjot, K Bhatia; Gauba, K; Mittal, H C

    2014-01-01

    Esthetic management of extensively decayed primary maxillary anterior teeth requiring full coronal coverage restoration is usually challenging to the pediatric dentists especially in very young children. Many esthetic options have been tried over the years each having its own advantages, disadvantages and associated technical, functional or esthetic limitations. Zirconia crowns have provided a treatment alternative to address the esthetic concerns and ease of placement of extra-coronal restorations on primary anterior teeth. The present article presents a case where grossly decayed maxillary primary incisors were restored esthetically and functionally with ready made zirconia crowns (ZIRKIZ, HASS Corp; Korea). After endodontic treatment the decayed teeth were restored with zirconia crowns. Over a 30 months period, the crowns have demonstrated good retention and esthetic results. Dealing with esthetic needs in children with extensive loss of tooth structure, using Zirconia crowns would be practical and successful. The treatment described is simple and effective and represents a promising alternative for rehabilitation of decayed primary teeth.

  12. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  13. Utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process.

    PubMed

    You, Shengping; Chang, Hongxing; Yin, Qingdian; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2017-12-01

    Whey powder, a by-product of dairy industry, is an attractive raw material for value-added products. In this study, utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product and ethanol as by-product were investigated by a litre-scale integrated strategy, encompassing fermentation, isolation, permeabilization and spray drying. Firstly, through development of low-cost industrial culture and fed-batch strategies by Kluyveromyces lactis, 119.30U/mL β-galactosidase activity and 16.96mg/mL by-product ethanol were achieved. Afterward, an up-dated mathematic model for the recycling permeabilization was established successfully and 30.4g cells sediment isolated from 5L fermentation broth were permeabilized completely by distilled ethanol from broth supernatant. Then β-galactosidase product with 5.15U/mg from protection of gum acacia by spray drying was obtained. Furthermore, by-product ethanol with 31.08% (v/v) was achieved after permeabilization. Therefore, the integrated strategy using whey powder as substrate is a feasible candidate for industrial-scale implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation and Characterization of Zirconia-Coated Nanodiamonds as a Pt Catalyst Support for Methanol Electro-Oxidation

    PubMed Central

    Lu, Jing; Zang, Jianbing; Wang, Yanhui; Xu, Yongchao; Xu, Xipeng

    2016-01-01

    Zirconia-coated nanodiamond (ZrO2/ND) electrode material was successfully prepared by one-step isothermal hydrolyzing from ND-dispersed ZrOCl2·8H2O aqueous solution. High-resolution transmission electron microscopy reveals that a highly conformal and uniform ZrO2 shell was deposited on NDs by this simple method. The coating obtained at 90 °C without further calcination was mainly composed of monoclinic nanocrystalline ZrO2 rather than common amorphous Zr(OH)4 clusters. The ZrO2/NDs and pristine ND powder were decorated with platinum (Pt) nanoparticles by electrodeposition from 5 mM chloroplatinic acid solution. The electrochemical studies indicate that Pt/ZrO2/ND catalysts have higher electrocatalytic activity and better stability for methanol oxidation than Pt/ND catalysts in acid. PMID:28335361

  15. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

    PubMed Central

    Nawafleh, Noor; Öchsner, Andreas; George, Roy

    2018-01-01

    PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716

  16. The Application of Modern Powder Characterisation Methods in Product and Process Development of Solid Dosage Forms.

    PubMed

    Freeman, Tim; Brockbank, Katrina; Armstrong, Brian

    2015-01-01

    The pharmaceutical industry still produces the vast majority of their products, from powdered ingredients, in the form of solid doses. Despite their ubiquity, powders are difficult materials to characterise and understand, as evidenced by the frequent problems encountered during manufacture. The reason for this is their complex rheological behaviour coupled with numerous environmental variations, such as humidity. Equally, the range of processes used to manipulate powders subject them to extremes of stress from high compaction loads seen in compactors to the dispersed state seen in fluidised bed dryers. Thus, it is evident that ensuring that the powders characteristics are compatible with the way they are to be processed is a clear prerequisite for today's Quality by Design driven manufacturing. Modern, computer controlled instrumental techniques, including the dynamic, bulk and shear property measurements have enabled direct measurements of a powders response to aeration, consolidation and flow rate - all at low stresses - as well as quantifying shear and bulk properties (such as density, compressibility and permeability). In order to demonstrate how fully characterising a powder can be used in the design, operation and troubleshooting of processes, this paper will present examples of common pharmaceutical unit operations and the different powder characteristics that most influence the performance of each.

  17. The bending stress distribution in bilayered and graded zirconia-based dental ceramics

    PubMed Central

    Fabris, Douglas; Souza, Júlio C.M.; Silva, Filipe S.; Fredel, Márcio; Mesquita-Guimarães, Joana; Zhang, Yu; Henriques, Bruno

    2016-01-01

    The purpose of this study was to evaluate the biaxial flexural stresses in classic bilayered and in graded zirconia-feldspathic porcelain composites. A finite element method and an analytical model were used to simulate the piston-on-ring test and to predict the biaxial stress distributions across the thickness of the bilayer and graded zirconia-feldspathic porcelain discs. An axisymmetric model and a flexure formula of Hsueh et al. were used in the FEM and analytical analysis, respectively. Four porcelain thicknesses were tested in the bilayered discs. In graded discs, continuous and stepwise transitions from the bottom zirconia layer to the top porcelain layer were studied. The resulting stresses across the thickness, measured along the central axis of the disc, for the bilayered and graded discs were compared. In bilayered discs, the maximum tensile stress decreased while the stress mismatch (at the interface) increased with the porcelain layer thickness. The optimized balance between both variables is achieved for a porcelain thickness ratio in the range of 0.30–0.35. In graded discs, the highest tensile stresses were registered for porcelain rich interlayers (p=0.25) whereas the zirconia rich ones (p=8) yield the lowest tensile stresses. In addition, the maximum stresses in a graded structure can be tailored by altering compositional gradients. A decrease in maximum stresses with increasing values of p (a scaling exponent in the power law function) was observed. Our findings showed a good agreement between the analytical and simulated models, particularly in the tensile region of the disc. Graded zirconia-feldspathic porcelain composites exhibited a more favourable stress distribution relative to conventional bilayered systems. This fact can significantly impact the clinical performance of zirconia-feldspathic porcelain prostheses, namely reducing the fracture incidence of zirconia and the chipping and delamination of porcelain. PMID:28104926

  18. Zirconia Dental Implants: Investigation of Clinical Parameters, Patient Satisfaction, and Microbial Contamination.

    PubMed

    Holländer, Jens; Lorenz, Jonas; Stübinger, Stefan; Hölscher, Werner; Heidemann, Detlef; Ghanaati, Shahram; Sader, Robert

    2016-01-01

    In recent years, dental implants made from zirconia have been further developed and are considered a reliable treatment method for replacing missing teeth. The aim of this study was to analyze dental implants made from zirconia regarding their clinical performance compared with natural teeth (control). One hundred six zirconia implants in 38 adults were analyzed in a clinical study after 1 year of loading. The plaque index (PI), bleeding on probing (BOP), probing pocket depth (PPD), probing attachment level (PAL), and creeping or recession (CR/REC) of the gingiva were detected and compared with natural control teeth (CT). Furthermore, the papilla index (PAP), Periotest values (PTV), microbial colonization of the implant/dental sulcus fluid, and patient satisfaction were assessed. The survival rate was 100%. No statistical significance was observed between implants and teeth regarding BOP, PPD, and PAL. A statistical significance was detected regarding PI and CR/REC with significantly less plaque accumulation and recession in the study group. Mean PAP was 1.76 ± 0.55, whereas the mean PTV was -1.31 ± 2.24 (range from -5 to +6). A non-statistically significant higher colonization of periodontitis/peri-implantitis bacteria was observed in the implant group. The questionnaire showed that the majority of the patients were satisfied with the overall treatment. One-piece zirconia dental implants exhibited similar clinical results (BOP, PPD, and PAL) compared with natural teeth in regard to adhesion of plaque (PI) and creeping attachment (CR/REC); zirconia implants performed even better. The favorable results for PAL and CR/REC reflect the comparable low affinity of zirconia for plaque adhesion. Patient satisfaction indicated a high level of acceptance for zirconia implants. However, a long-term follow-up is needed to support these findings.

  19. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  20. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    PubMed

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  1. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  2. Efficacy of Moringa oleifera leaf powder as a hand-washing product: a crossover controlled study among healthy volunteers.

    PubMed

    Torondel, Belen; Opare, David; Brandberg, Bjorn; Cobb, Emma; Cairncross, Sandy

    2014-02-14

    Moringa oleifera is a plant found in many tropical and subtropical countries. Many different uses and properties have been attributed to this plant, mainly as a nutritional supplement and as a water purifier. Its antibacterial activity against different pathogens has been described in different in vitro settings. However the potential effect of this plant leaf as a hand washing product has never been studied. The aim of this study is to test the efficacy of this product using an in vivo design with healthy volunteers. The hands of fifteen volunteers were artificially contaminated with Escherichia coli. Moringa oleifera leaf powder was tested as a hand washing product and was compared with reference non-medicated liquid soap using a cross over design following an adaptation of the European Committee for Standardization protocol (EN 1499). In a second part of tests, the efficacy of the established amount of Moringa oleifera leaf powder was compared with an inert powder using the same protocol. Application of 2 and 3 g of dried Moringa oleifera leaf powder (mean log10-reduction: 2.44 ± 0.41 and 2.58 ± 0.34, respectively) was significantly less effective than the reference soap (3.00 ± 0.27 and 2.99 ± 0.26, respectively; p < 0.001). Application of the same amounts of Moringa oleifera (2 and 3 g) but using a wet preparation, was also significantly less effective than reference soap (p < 0.003 and p < 0.02, respectively). However there was no significant difference when using 4 g of Moringa oleifera powder in dried or wet preparation (mean log10-reduction: 2.70 ± 0.27 and 2.91 ± 0.11, respectively) compared with reference soap (2.97 ± 0.28). Application of calcium sulphate inert powder was significantly less effective than the 4 g of Moringa oleifera powder (p < 0.01). Four grams of Moringa oleifera powder in dried and wet application had the same effect as non-medicated soap when used for hand washing. Efficacious

  3. Efficacy of Moringa oleifera leaf powder as a hand- washing product: a crossover controlled study among healthy volunteers

    PubMed Central

    2014-01-01

    Background Moringa oleifera is a plant found in many tropical and subtropical countries. Many different uses and properties have been attributed to this plant, mainly as a nutritional supplement and as a water purifier. Its antibacterial activity against different pathogens has been described in different in vitro settings. However the potential effect of this plant leaf as a hand washing product has never been studied. The aim of this study is to test the efficacy of this product using an in vivo design with healthy volunteers. Methods The hands of fifteen volunteers were artificially contaminated with Escherichia coli. Moringa oleifera leaf powder was tested as a hand washing product and was compared with reference non-medicated liquid soap using a cross over design following an adaptation of the European Committee for Standardization protocol (EN 1499). In a second part of tests, the efficacy of the established amount of Moringa oleifera leaf powder was compared with an inert powder using the same protocol. Results Application of 2 and 3 g of dried Moringa oleifera leaf powder (mean log10-reduction: 2.44 ± 0.41 and 2.58 ± 0.34, respectively) was significantly less effective than the reference soap (3.00 ± 0.27 and 2.99 ± 0.26, respectively; p < 0.001). Application of the same amounts of Moringa oleifera (2 and 3 g) but using a wet preparation, was also significantly less effective than reference soap (p < 0.003 and p < 0.02, respectively). However there was no significant difference when using 4 g of Moringa oleifera powder in dried or wet preparation (mean log10-reduction: 2.70 ± 0.27 and 2.91 ± 0.11, respectively) compared with reference soap (2.97 ± 0.28). Application of calcium sulphate inert powder was significantly less effective than the 4 g of Moringa oleifera powder (p < 0.01). Conclusion Four grams of Moringa oleifera powder in dried and wet application had the same effect as non-medicated soap

  4. Resin cementation of zirconia ceramics with different bonding agents

    PubMed Central

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-01-01

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations. PMID:26019653

  5. Surface fluorination of zirconia: adhesive bond strength comparison to commercial primers.

    PubMed

    Piascik, Jeffrey R; Swift, Edward J; Braswell, Krista; Stoner, Brian R

    2012-06-01

    This study evaluated contact angle and shear bond strength of three commercial zirconia primers and compared them to a recently developed fluorination pre-treatment. Earlier investigations reported that plasma fluorinated zirconia modifies the chemical bonding structure creating a more reactive surface. Yttria-stabilized zirconia (LAVA, 3M ESPE) plates were highly polished using 3μm diamond paste (R(a) ∼200nm) prior to pretreatments. After primer and fluorination treatment, contact angles were measured to quantify surface hydrophobicity before and after ethanol clean. Additionally, simple shear bond tests were performed to measure the adhesion strength to a composite resin. Plasma fluorination produced the lowest contact angle (7.8°) and the highest shear bond strength (37.3MPa) suggesting this pretreatment facilitates a more "chemically" active surface for adhesive bonding. It is hypothesized that plasma fluorination increase hydroxylation at the surface, making it more reactive, thus allowing for covalent bonding between zirconia surface and resin cement. A strong correlation was observed between contact angle and adhesion strength for all specimens; a relationship which may help understand the frequency and modes of failures, clinically. It is also believed that this surface treatment can increase long-term viability of zirconia restorations over other adhesive techniques. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now?

    PubMed Central

    Thompson, Jeffrey Y; Stoner, Brian R.; Piascik, Jeffrey R.; Smith, Robert

    2010-01-01

    Non-silicate ceramics, especially zirconia, have become a topic of great interest in the field of prosthetic and implant dentistry. A clinical problem with use of zirconia-based components is the difficulty in achieving suitable adhesion with intended synthetic substrates or natural tissues. Traditional adhesive techniques used with silica-based ceramics do not work effectively with zirconia. Currently, several technologies are being utilized clinically to address this problem, and other approaches are under investigation. Most focus on surface modification of the inert surfaces of high strength ceramics. The ability to chemically functionalize the surface of zirconia appears to be critical in achieving adhesive bonding. This review will focus on currently available approaches as well as new advanced technologies to address this problem. PMID:21094526

  7. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    NASA Astrophysics Data System (ADS)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-01

    Stereocomplexation between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  8. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    PubMed Central

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240–260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180–210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  9. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency.

    PubMed

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-03

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  10. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  11. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    PubMed Central

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-01-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others. PMID:28322343

  12. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Porous zirconia ceramic as an alternative to dentin for in vitro dentin barriers cytotoxicity test.

    PubMed

    Hu, Meng-Long; Lin, Hong; Jiang, Ruo-Dan; Dong, Li-Min; Huang, Lin; Zheng, Gang

    2018-06-01

    This study assessed the potential of porous zirconia ceramic as an alternative to dentin via an in vitro dentin barrier cytotoxicity test. The permeability of dentin and porous zirconia ceramic was measured using a hydraulic-conductance system, and their permeability was divided into two groups: high and low. Using an in vitro dentin barrier test, the cytotoxicity of dental materials by dentin and porous zirconia ceramic was compared within the same permeability group. The L-929 cell viability was assessed by MTT assay. The mean (SD) permeability of the high and low group for dentin was 0.334 (0.0873) and 0.147 (0.0377) μl min -1  cm -2  cm H 2 O -1 and for zirconia porous ceramic was 0.336 (0.0609) and 0.146 (0.0340) μl min -1  cm -2  cm H 2 O -1 . The cell viability of experimental groups which are the low permeability group was higher than that of the high permeability group for both dentin and porous zirconia ceramic as a barrier except for Maxcem Elite ™ by porous zirconia ceramic. There was no significant difference between dentin and porous zirconia ceramic in cell viability, within either the high or low permeability group for all materials. The SD for cell viability of the porous zirconia ceramic was less than that of the dentin, across all materials within each permeability group, except for Maxcem Elite ™ in the high permeability group. Porous zirconia ceramic, having similar permeability to dentin at the same thickness, can be used as an alternative to dentin for in vitro dentin barrier cytotoxicity tests. In vitro dentin barrier cytotoxicity tests when a standardized porous zirconia ceramic was used as a barrier could be useful for assessing the potential toxicity of new dental materials applied to dentin before applying in clinical and may resolve the issue of procuring human teeth when testing proceeds.

  14. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, William H.; Gandy, David; Lannom, Robert

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Departmentmore » of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test

  15. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns

    PubMed Central

    Esquivel-Upshaw, J.F.; Kim, M.J.; Hsu, S.M.; Abdulhameed, N.; Jenkins, R.; Neal, D.; Ren, F.; Clark, A.E.

    2018-01-01

    Objectives To test the hypothesis that there is no difference in the in vivo maximum wear of enamel opposing monolithic zirconia crowns, enamel opposing porcelain fused to metal crowns and enamel opposing enamel. Methods Thirty patients needing single crowns were randomized to receive either a monolithic zirconia or metal-ceramic crown. Two non-restored opposing teeth in the same quadrants were identified to serve as enamel controls. After cementation, quadrants were scanned for baseline data. Polyvinylsiloxane impressions were obtained and poured in white stone. Patients were recalled at six-months and one-year for re-impression. Stone models were scanned using a tabletop laserscanner to determine maximum wear. Statistical analysis was performed using Mann-Whitney U to determine any significant differences between the wear of enamel against zirconia and metal-ceramic crowns. Results Sixteen zirconia and 14 metal-ceramic crowns were delivered. There were no statistical differences in mean wear of crown types (p = 0.165); enamel antagonists (p = 0.235) and enamel controls (p = 0.843) after one year. Conclusion Monolithic zirconia exhibited comparable wear of enamel compared with metal-ceramic crowns and control enamel after one year. Significance This study is clinically significant because the use of polished monolithic zirconia demonstrated comparable wear of opposing enamel to metal-ceramic and enamel antagonists. PMID:29042241

  16. Randomized trial investigating zirconia electroplated telescopic retainers: quality of life outcomes.

    PubMed

    Schwindling, Franz Sebastian; Deisenhofer, Ulrich Karl; Séché, Anne-Christiane; Lehmann, Franziska; Rammelsberg, Peter; Stober, Thomas

    2017-05-01

    The study aims to evaluate the effect of electroplated telescopic removable dental prostheses (E-RDPs) with zirconia primary crowns on oral-health-related quality of life (OHRQoL). For E-RDPs, electroplating is used to produce precisely fitting gold copings on telescopic primary crowns. These copings are bonded intra-orally to the denture framework. Fifty-six participants in need of 60 removable restorations were randomly allocated one of two materials for the primary crowns: cobalt-chromium alloy or zirconia. OHRQoL was assessed by use of the 49-item Oral Health Impact Profile (OHIP-49) and by additional patient self-rating at baseline before treatment, and after 6 and 12 months. Statistical analysis was performed by use of one- and two-sample t-tests and analysis of covariance. Mean OHIP sum score at baseline was 53.4 (SD 37.4, 95 % CI 41.3-62). At follow-ups, it decreased significantly (after 6 months: mean 20, SD 26, 95 % CI 13-27.1; after 12 months: mean 16.4, SD 17.9, 95 % CI 11.6-21.2). The mean reduction in OHIP sum score after 12 months was 25 (SD 31.2, 95 % CI 13.1-36.9) for cobalt-chromium alloy and 44.4 (SD 32.3, 95 % CI 31.1-57.8) for zirconia. However, no statistically significant difference of the two materials on OHIP change or patient self-rating was detected. Although OHRQoL was improved by using both cobalt-chromium alloy and zirconia primary crowns for E-RDPs, post-treatment differences between the groups were not statistically significant. Zirconia E-RDPs enhance OHRQoL. However, zirconia primary crowns do not outperform cobalt-chromium alloy crowns regarding patient satisfaction-despite their tooth-like color.

  17. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  18. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  19. Evaluation of the Virgin Mechanical and Thermal Properties of AVCO 3DCC Heatshield Materials

    DTIC Science & Technology

    1977-03-01

    alumina or zirconia powder . Surrounding the guard is an annulus of distomaceous earth enclosed in an aluminum or transite shell. The specimens and...pa.-ked with either copper granules, graphite or zirconia powder . This packing provides a positive method for centering the calorimeter within the

  20. Powder-Metallurgy Process And Product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  1. In vivo evaluation of zirconia ceramic in the DexAide right ventricular assist device journal bearing.

    PubMed

    Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-06-01

    Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.

  2. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas

    2011-12-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.

  3. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    PubMed Central

    2011-01-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725

  4. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    PubMed

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2017-11-01

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO 2 ) coating, zirconia with sol-gel derived zirconia (ZrO 2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO 2 coated and ZrO 2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO 2 showed significantly lower fibroblast proliferation compared to other groups (p < 0.05). In conclusion, sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO 2 coated specimens showed significantly lower cell proliferation after 12 days than TiO 2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2401-2407, 2017. © 2016 Wiley Periodicals, Inc.

  5. Zirconia-molybdenum disilicide composites

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  6. An analysis of un-dissolved powders of instant powdered soup by using ultrasonographic image

    NASA Astrophysics Data System (ADS)

    Kawaai, Yukinori; Kato, Kunihito; Yamamoto, Kazuhiko; Kasamatsu, Chinatsu

    2008-11-01

    Nowadays, there are many instant powdered soups around us. When we make instant powdered soup, sometimes we cannot dissolve powders perfectly. Food manufacturers want to improve this problem in order to make better products. Therefore, they have to measure the state and volume of un-dissolved powders. Earlier methods for analyzing removed the un-dissolved powders from the container, the state of the un-dissolved power was changed. Our research using ultrasonographic image can measure the state of un-dissolved powders with no change by taking cross sections of the soup. We then make 3D soup model from these cross sections of soup. Therefore we can observe the inside of soup that we do not have ever seen. We construct accurate 3D model. We can visualize the state and volume of un-dissolved powders with analyzing the 3D soup models.

  7. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    PubMed

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental

  8. Micro-feeding and dosing of powders via a small-scale powder pump.

    PubMed

    Besenhard, M O; Fathollahi, S; Siegmann, E; Slama, E; Faulhammer, E; Khinast, J G

    2017-03-15

    Robust and accurate powder micro-feeding (<100mg/s) and micro-dosing (<5 mg) are major challenges, especially with regard to regulatory limitations applicable to pharmaceutical development and production. Since known micro-feeders that yield feed rates below 5mg/s use gravimetric feeding principles, feed rates depend primarily on powder properties. In contrast, volumetric powder feeders do not require regular calibration because their feed rates are primarily determined by the feeder's characteristic volume replacement. In this paper, we present a volumetric micro-feeder based on a cylinder piston system (i.e., a powder pump), which allows accurate micro-feeding and feed rates of a few grams per hours even for very fine powders. Our experimental studies addressed the influence of cylinder geometries, the initial conditions of bulk powder, and the piston speeds. Additional computational studies via Discrete Element Method simulations offered a better understanding of the feeding process, its possible limitations and ways to overcome them. The powder pump is a simple yet valuable tool for accurate powder feeding at feed rates of several orders of magnitude. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns.

    PubMed

    Zunino, Susan J; Keim, Nancy L; Kelley, Darshan S; Bonnel, Ellen L; Souza, Elaine C; Peerson, Janet M

    2017-04-01

    Recently, in a randomized, double-blind crossover study, we reported that consumption of grape powder by obese human subjects increased the production of the proinflammatory cytokines interleukin (IL)-1β and IL-6 by peripheral blood monocytes after ex vivo stimulation with bacterial lipopolysaccharide compared with the placebo treatment. We hypothesized that dietary grape powder increased the production of these cytokines by stimulated monocytes. To test this hypothesis, we used 24-hour dietary recall data to determine if differences in dietary patterns played a role in increased cytokine production. No differences in total energy, protein, carbohydrates, or fat intake in the diets were observed between the grape powder and placebo intervention periods. There were no differences observed in consumption of meats and poultry, eggs, fish, vegetables, grains, total dairy, or nuts and seeds by the participants between the 2 intervention periods. When participants received the grape powder, the recall data showed decreased intakes of butyric and capric acids (P<.05), and a possible trend toward decreased intake of cheese and total fruit (P<.1). Positive associations between the intakes of margaric acid, butter, total dairy, or whole grain and IL-6 production were observed (P<.05). However, path analysis showed that total energy, protein, carbohydrates, and fats, and individual fatty acids did not influence the production of cytokines by monocytes. The path analysis indicated that the increased cytokine production by lipopolysaccharide-stimulated monocytes from obese human subjects was caused by the grape powder and not mediated by differences in dietary intake. Published by Elsevier Inc.

  10. Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction.

    PubMed

    Belotti, Silvia; Rossi, Alessandra; Colombo, Paolo; Bettini, Ruggero; Rekkas, Dimitrios; Politis, Stavros; Colombo, Gaia; Balducci, Anna Giulia; Buttini, Francesca

    2014-08-25

    An amikacin product for convenient and compliant inhalation in cystic fibrosis patients was constructed by spray-drying in order to produce powders of pure drug having high respirability and flowability. An experimental design was applied as a statistical tool for the characterization of amikacin spray drying process, through the establishment of mathematical relationships between six Critical Quality Attributes (CQAs) of the finished product and five Critical Process Parameters (CPPs). The surface-active excipient, PEG-32 stearate, studied for particle engineering, in general did not benefit the CQAs of the spray dried powders for inhalation. The spray drying feed solution required the inclusion of 10% (v/v) ethanol in order to reach the desired aerodynamic performance of powders. All desirable function solutions indicated that the favourable concentration of amikacin in the feed solution had to be kept at 1% w/v level. It was found that when the feed rate of the sprayed solution was raised, an increase in the drying temperature to the maximum value (160 °C) was required to maintain good powder respirability. Finally, the increase in drying temperature always led to an evident increase in emitted dose (ED) without affecting the desirable fine particle dose (FPD) values. The application of the experimental design enabled us to obtain amikacin powders with both ED and FPD, well above the regulatory and scientific references. The finished product contained only the active ingredient, which keeps low the mass to inhale for dose requirement. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites

    PubMed Central

    Palmero, Paola; Montanaro, Laura; Reveron, Helen; Chevalier, Jérôme

    2014-01-01

    Composite and nanocomposite ceramics have achieved special interest in recent years when used for biomedical applications. They have demonstrated, in some cases, increased performance, reliability, and stability in vivo, with respect to pure monolithic ceramics. Current research aims at developing new compositions and architectures to further increase their properties. However, the ability to tailor the microstructure requires the careful control of all steps of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering. This review aims at deepening understanding of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on the key role of the synthesis methods to develop homogeneous and tailored microstructures. In this frame, the authors have developed an innovative method, named “surface-coating process”, in which matrix oxide powders are coated with inorganic precursors of the second phase. The method is illustrated into two case studies; the former, on Zirconia Toughened Alumina (ZTA) materials for orthopedic applications, and the latter, on Zirconia-based composites for dental implants, discussing the advances and the potential of the method, which can become a valuable alternative to the current synthesis process already used at a clinical and industrial scale. PMID:28788117

  12. Composite Matrix Experimental Combustor

    DTIC Science & Technology

    1994-04-01

    utilized zirconia powder prereacted with 12 weight-percent yt- tria stabilizer (12-YSZ) with good results. Subsequent investigations indicated that...YSZ. The choice of material for the ceramic layer also considered work at Allison using 6-8 w/o yttria-stabi- lized zirconia powder obtained from the

  13. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development

    DTIC Science & Technology

    1993-03-31

    the crushed material with additional yttria-stabilized zirconia powder to yield a pressable material of appropriate overall composition. This mixture...sensitivity of the system to oxygen content, a dedicated effort is planned to study the effect of residual oxygen in the zirconia powder on composite growth

  14. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  15. Study of Laser Drilled Hole Quality of Yttria Stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Saini, Surendra K.; Dubey, Avanish K.; Pant, Piyush; Upadhyay, B. N.; Choubey, A.

    2017-09-01

    The Yttria Stabilized Zirconia ceramic is extensively used in aerospace, automotives, medical and microelectronics industries. These applications demand manufacturing of different macro and micro features with close tolerances in this material. To make miniature holes with accurate dimensions in advanced ceramics such as Yttria Stabilized Zirconia is very difficult due to its tailored attributes such as high toughness, hardness, strength, resistance to wear, corrosion and temperature. Due to inherent characteristics of laser drilling, researchers are working to fulfill the requirement of creation of micro holes in advanced ceramics. The present research investigates the laser drilling of 2 mm thick Yttria Stabilized Zirconia with the aim to achieve good micro holes with reduced geometrical inaccuracies and improved hole quality. The results show that multiple quality response comprising hole circularity, hole taper and recast layer thickness has been improved at optimally selected process parameters.

  16. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    PubMed

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  17. A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.

    PubMed

    Abduo, Jaafar; Lyons, Karl; Waddell, Neil; Bennani, Vincent; Swain, Michael

    2012-05-01

    Computer numeric controlled (CNC) milling was proven to be predictable method to fabricate accurately fitting implant titanium frameworks. However, no data are available regarding the fit of CNC-milled implant zirconia frameworks. To compare the precision of fit of implant frameworks milled from titanium and zirconia and relate it to peri-implant strain development after framework fixation. A partially edentulous epoxy resin models received two Branemark implants in the areas of the lower left second premolar and second molar. From this model, 10 identical frameworks were fabricated by mean of CNC milling. Half of them were made from titanium and the other half from zirconia. Strain gauges were mounted close to the implants to qualitatively and quantitatively assess strain development as a result of framework fitting. In addition, the fit of the framework implant interface was measured using an optical microscope, when only one screw was tightened (passive fit) and when all screws were tightened (vertical fit). The data was statistically analyzed using the Mann-Whitney test. All frameworks produced measurable amounts of peri-implant strain. The zirconia frameworks produced significantly less strain than titanium. Combining the qualitative and quantitative information indicates that the implants were under vertical displacement rather than horizontal. The vertical fit was similar for zirconia (3.7 µm) and titanium (3.6 µm) frameworks; however, the zirconia frameworks exhibited a significantly finer passive fit (5.5 µm) than titanium frameworks (13.6 µm). CNC milling produced zirconia and titanium frameworks with high accuracy. The difference between the two materials in terms of fit is expected to be of minimal clinical significance. The strain developed around the implants was more related to the framework fit rather than framework material. © 2011 Wiley Periodicals, Inc.

  18. The effect of subpressure on the bond strength of resin to zirconia ceramic.

    PubMed

    Li, Yong-Mei; Zhuge, Rui-Shen; Zhang, Zu-Tai; Tian, Yue-Ming; Ding, Ning

    2017-01-01

    This study was conducted to investigate the effect of subpressure on the bond strength of resin to zirconia ceramic. The subpressure would create a pressure gradient which could clean out the bubbles in the adhesives or bonding interface. Twenty-eight pre-sintered zirconia discs were fabricated. Half of them were polished (group P, n = 14), and the rest were sandblasted (group S, n = 14). After sintered,the surface roughness of the zirconia discs was measured. Then, they were randomly divided into two subgroups (n = 7). The groups were named as follows: PC: P + no additional treatments; PP: P + 0.04 MPa after application of adhesives; SC: S + no additional treatments; and SP: S + 0.04 MPa after application of adhesives. Resin columns were bonded to the zirconia specimens to determine shear bond strength (SBS). The bonding interfaces were observed and the fracture modes were evaluated. Statistical analysis was performed on all data. The surface roughness of group S was significantly higher than that of group P (P<0.05). The SBS values were PC = 13.48 ± 0.7 MPa, PP = 15.22 ± 0.8 MPa, SC = 17.23 ± 0.7 MPa and SP = 21.68 ± 1.4 MPa. There were significant differences among the groups (P<0.05). Scanning electron microscopy (SEM) results showed that the adhesives of group SP and PP were closer and denser to the zirconia ceramic than that of group PC and SC. The proportion of the mixed fracture mode significantly increased after adding subpressure (P< 0.05). Subpressure can improve the shear bond strength of resin to zirconia ceramics and increase micro-infiltration between the adhesives and the zirconia ceramics, especially on the rough surfaces.

  19. Surface modification for enhanced silanation of zirconia ceramics.

    PubMed

    Piascik, J R; Swift, E J; Thompson, J Y; Grego, S; Stoner, B R

    2009-09-01

    The overall goal of this research was to develop a practical method to chemically modify the surface of high strength dental ceramics (i.e. zirconia) to facilitate viable, robust adhesive bonding using commercially available silanes and resin cements. Investigation focused on a novel approach to surface functionalize zirconia with a Si(x)O(y) "seed" layer that would promote chemical bonding with traditional silanes. ProCAD and ZirCAD blocks were bonded to a dimensionally similar composite block using standard techniques designed for silica-containing materials (silane and resin cement). ZirCAD blocks were treated with SiCl4 by vapor deposition under two different conditions prior to bonding. Microtensile bars were prepared and subjected to tensile forces at a crosshead speed of 1 mm/min scanning electron microscopy was used to analyze fracture surfaces and determine failure mode; either composite cohesive failure (partial or complete cohesive failure within composite) or adhesive failure (partial or complete adhesive failure). Peak stress values were analyzed using single-factor ANOVA (p<0.05). Microtensile testing results revealed that zirconia with a surface treatment of 2.6 nm Si(x)O(y) thick "seed" layer was similar in strength to the porcelain group (control). Analysis of failure modes indicated the above groups displayed higher percentages of in-composite failures. Other groups tested had lower strength values and displayed adhesive failure characteristics. Mechanical data support that utilizing a gas-phase chloro-silane pretreatment to deposit ultra-thin silica-like seed layers can improve adhesion to zirconia using traditional silanation and bonding techniques. This technology could have clinical impact on how high strength dental materials are used today.

  20. Effect of coping thickness and background type on the masking ability of a zirconia ceramic.

    PubMed

    Tabatabaian, Farhad; Taghizade, Fateme; Namdari, Mahshid

    2018-01-01

    The masking ability of zirconia ceramics as copings is unclear. The purpose of this in vitro study was to evaluate the effect of coping thickness and background type on the masking ability of a zirconia ceramic and to determine zirconia coping thickness cut offs for masking the backgrounds investigated. Thirty zirconia disks in 3 thickness groups of 0.4, 0.6, and 0.8 mm were placed on 9 backgrounds to measure CIELab color attributes using a spectrophotometer. The backgrounds included A1, A2, and A3.5 shade composite resin, A3 shade zirconia, nickel-chromium alloy, nonprecious gold-colored alloy, amalgam, black, and white. ΔE values were measured to determine color differences between the specimens on the A2 shade composite resin background and the same specimens on the other backgrounds. The color change (ΔE) values were compared with threshold values for acceptability (ΔE=5.5) and perceptibility (ΔE=2.6). Repeated measures ANOVA, the Bonferroni test, and 1-sample t tests were used to analyze data (α=.05). Mean ΔE values ranged between 1.44 and 7.88. The zirconia coping thickness, the background type, and their interaction affected the CIELab and ΔE values (P<.001). To achieve ideal masking, the minimum thickness of a zirconia coping should be 0.4 mm for A1 and A3.5 shade composite resin, A3 shade zirconia, and nonprecious gold-colored alloy, 0.6 mm for amalgam, and 0.8 mm for nickel-chromium alloy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    PubMed

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Fracture resistance of zirconia-based implant abutments after artificial long-term aging.

    PubMed

    Alsahhaf, Abdulaziz; Spies, Benedikt Christopher; Vach, Kirstin; Kohal, Ralf-Joachim

    2017-02-01

    To investigate the survival rate, fracture strength, bending moments, loading to fracture and fracture modes of different designs of zirconia abutments after dynamic loading with thermocycling, and compare these values to titanium abutments. A total of 80 abutment samples were divided into 5 test groups of 16 samples in each group. The study included the following groups, "Group 1" CAD/CAM produced all-zirconia abutments, "Group 2" titanium abutments, "Group 3" zirconia-abutments adhesively luted to a titanium base, "Group 4" prefabricated all-zirconia abutments and "Group 5" zirconia-abutments glass soldered to a titanium base. Half the number of samples in each group was exposed to 1.2 million loading cycles (5-years simulation) in the chewing simulator. The samples that survived the artificial aging were later tested for fracture strength in a universal testing machine. The remaining 8 samples of the group were directly tested for fracture strength. All samples exposed to the 5-years artificial aging survived except of six samples in one group (Group 1). The surviving samples were later fracture tested in the universal testing machine. The bending moments (Ncm) values were as follow: Exposed groups: "Group 1" 94.5Ncm; "Group 2" 599.2Ncm; "Group 3" 477.5Ncm; "Group 4" 314.4Ncm; "Group 5" 509.4Ncm. Non-exposed groups: "Group 1" 269.3Ncm; "Group 2" 474.2Ncm; "Group 3" 377.6Ncm; "Group 4" 265.4Ncm; "Group 5" 372.4Ncm. Except in Group 1, the values were higher in the exposed groups, although, statistically there was no difference (p>0.05). The one-piece ZrO2-abutment group (Group 1 and Group 4) exhibited lower values, while the two-piece ZrO2-abutment groups (Group 3 and Group 5) showed similar values and fracture modes like the titanium abutment group. The titanium abutment group showed the highest values of bending moments among all groups. The implant-abutment connection area appeared to influence the bending moment value and the fracture mode of the tested

  3. Intergranular metal phase increases thermal shock resistance of ceramic coating

    NASA Technical Reports Server (NTRS)

    Carpenter, H. W.

    1966-01-01

    Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.

  4. Analysis and experimental investigation of ceramic powder coating on aluminium piston

    NASA Astrophysics Data System (ADS)

    Pal, S.; Deore, A.; Choudhary, A.; Madhwani, V.; Vijapuri, D.

    2017-11-01

    Energy conservation and efficiency have always been the quest of engineers concerned with internal combustion engines. The diesel engine generally offers better fuel economy than its counterpart petrol engine. Even the diesel engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection engines aim to do this by reducing the heat lost to the coolant. Thermal Barrier Coatings (TBCs) in diesel engines lead to advantages including higher power density, fuel efficiency, and multifuel capacity due to higher combustion chamber temperature. Using TBC can increase engine power by 8%, decrease the specific fuel consumption by 15-20% and increase the exhaust gas temperature by 200K. Although several systems have been used as TBC for different purposes, yttria stabilized zirconia with 7-8 wt.% yttria has received the most attention. Several factors playing important role in TBC life include thermal conductivity, thermo chemical stability at the service temperature, high thermo mechanical stability to the maximum service temperature and thermal expansion coefficient (TEC). This work mainly concentrates on the behaviour of three TBC powders under the same diesel engine conditions. This work finds out the best powder among yttria, alumina and zirconia to be used as a piston coating material i.e., the one resulting in lowest heat flux and low side skirt and bottom temperature has been chosen for the coating purpose. This work then analyses the coated sample for its surface properties such as hardness, roughness, corrosion resistance and microstructural study. This work aims at making it easier for the manufacturers choose the coating material for engine coating purposes and surface

  5. Effect of modifying the screw access channels of zirconia implant abutment on the cement flow pattern and retention of zirconia restorations.

    PubMed

    Wadhwani, Chandur; Chung, Kwok-Hung

    2014-07-01

    The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P < .05) and closed abutment groups (P < .01). Distinct patterns of cement failure were noted. The weight of the cement that remained in the system differed significantly, with both open abutment and insert abutment being greater than closed abutment (P < .05). Modifying the internal configuration of the screw access channel of an esthetic zirconia implant abutment with a metal

  6. Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia

    NASA Astrophysics Data System (ADS)

    Paul, S.; Cipitria, A.; Golosnoy, I. O.; Xie, L.; Dorfman, M. R.; Clyne, T. W.

    2007-12-01

    Yttria-stabilized zirconia powders, containing different levels of SiO2 and Al2O3, have been plasma sprayed onto metallic substrates. The coatings were detached from their substrates and a dilatometer was used to monitor the dimensional changes they exhibited during prolonged heat treatments. It was found that specimens containing higher levels of silica and alumina exhibited higher rates of linear contraction, in both in-plane and through-thickness directions. The in-plane stiffness and the through-thickness thermal conductivity were also measured after different heat treatments and these were found to increase at a greater rate for specimens with higher impurity (silica and alumina) levels. Changes in the pore architecture during heat treatments were studied using Mercury Intrusion Porosimetry (MIP). Fine scale porosity (< ˜50 nm) was found to be sharply reduced even by relatively short heat treatments. This is correlated with improvements in inter-splat bonding and partial healing of intra-splat microcracks, which are responsible for the observed changes in stiffness and conductivity, as well as the dimensional changes.

  7. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

    NASA Astrophysics Data System (ADS)

    Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf

    2018-04-01

    Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

  8. Adhesion, proliferation and differentiation of osteoblasts on zirconia films prepared by cathodic arc deposition.

    PubMed

    Zhang, Shailin; Sun, Junying; Xu, Ying; Qian, Shi; Wang, Bing; Liu, Fei; Liu, Xuanyong

    2013-01-01

    Zirconia films were prepared on titanium by cathodic arc deposition technique. The surface topography and element composition of the films were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Osteoblast-like MG63 cells were cultured on the surface of the zirconia films in vitro, and cell behaviour was investigated, with titanium as control. The results obtained from scanning electron microscopy and immunofluorescence studies showed that the MG63 cells on ZrO2 films spread better than those on Ti. The CCK8 assay indicated that the zirconia films promoted the proliferation of MG63 cells. The results of alkaline phosphatase (ALP) activity test and the expression of osteogenic marker genes, such as ALP, collagen I and osteocalcin, demonstrated that the differentiation of MG63 cells might be enhanced by zirconia films. In addition, the zirconia films possibly regulated osteoclastogenic gene expression by stimulating the expression of osteoprotegerin and reducing the expression of receptor activator of nuclear factor-kappaB ligand. The present work suggests that the ZrO2 film is worth further consideration for orthopedic implant applications.

  9. Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients.

    PubMed

    Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo

    2013-12-01

    This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.

  10. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  11. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    PubMed

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in

  12. The effect of plasma on shear bond strength between resin cement and colored zirconia

    PubMed Central

    2017-01-01

    PURPOSE To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring. PMID:28435621

  13. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    PubMed

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  14. Antagonist wear of monolithic zirconia crowns after 2 years.

    PubMed

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  15. Powder Production From Waste Polyethylene Terephthalate (PET) Water Bottles

    DTIC Science & Technology

    2014-06-01

    10 5. References 1. Van Brederode, R. A.; Steinkamp, R. A. Crosslinkable Polymer Powder and Laminate . U.S. Patent 42256560A, 1980, http...16. Parquette, B.; Giri, A.; Daniel, J.; O’Brien,D. J.; Brennan,S.; Cho, K.; Tzeng, J. Cryomilling of Thermoplastic Powder for Prepreg Applications

  16. Synthesis of three commercial products from Bayer electrofilter powders.

    PubMed

    Ayala, Julia; Fernández, Begoña; Sancho, José Pedro; García, Purificación

    2010-06-15

    Electrofilter powders, a by-product of the Bayer process for the production of alumina from bauxite, were leached with sulphuric acid to dissolve gibbsite and transition aluminas, thus obtaining a commercial aluminium sulphate solution and a solid residue. This residue is treated again under more drastic conditions with sulphuric acidic in a furnace at a higher temperature, is then leached with water and filtered, a small amount of solid remaining (alpha-alumina). The liquid is a highly acidic aluminium sulphate solution which does not fulfil commercial grade specifications; the liquor is accordingly treated with potassium hydroxide or ammonium hydroxide to obtain potassium or ammonium alum. Experimental tests were conducted to investigate the synthesis of alum by crystallization. The effects on alum formation of various operating conditions, including the amount of potassium or ammonium hydroxide, temperature and seed alum dosage, were examined. The crystallization process was found to be quite effective in obtaining alum. Copyright 2010 Elsevier B.V. All rights reserved.

  17. The effect of partially stabilized zirconia on the biological properties of HA/HDPE composites in vitro.

    PubMed

    Sadi, A Yari; Shokrgozar, M A; Homaeigohar, S Sh; Hosseinalipour, M; Khavandi, A; Javadpour, J

    2006-05-01

    The effect of partially stabilized zirconia (PSZ) on the biological properties of the hyroxyapatite - high density polyethylene (HA/HDPE) composites was studied by investigating the simultaneous effect of hydroxyapatite and PSZ volume fractions on the in vitro response of human osteoblast cells. The biocompatibility of composite samples with different volume fraction of HA and PSZ powders was assessed by proliferation, alkaline phosphatase (ALP) and cell attachment assays on the osteoblast cell line (G-292) in different time periods. The effect of composites on the behavior of G-292 cells was compared with those of HDPE and TPS (Tissue Culture Poly Styrene as negative control) samples. Results showed a higher proliferation rate of G-292 cells in the presence of composite samples as compared to the HDPE sample after 7 and 14 days of incubation period. ALP production rate in all composite samples was higher than HDPE and TPS samples. The number of adhered cells on the composite samples was higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods. These findings indicates that the addition of PSZ does not have any adverse affect on the biocompatibility of HA/HDPE composites. In fact in some experiments PSZ added HA/HDPE composites performed better in proliferation, differentiation and attachment of osteoblastic cells.

  18. Effect of grinding and polishing on roughness and strength of zirconia.

    PubMed

    Khayat, Waad; Chebib, Najla; Finkelman, Matthew; Khayat, Samer; Ali, Ala

    2018-04-01

    The clinical applications of high-translucency monolithic zirconia restorations have increased. Chairside and laboratory adjustments of these restorations are inevitable, which may lead to increased roughness and reduced strength. The influence of grinding and polishing on high-translucency zirconia has not been investigated. The purpose of this in vitro study was to compare the roughness averages (Ra) of ground and polished zirconia and investigate whether roughness influenced strength after aging. High-translucency zirconia disks were milled, sintered, and glazed according to the manufacturer's recommendations. Specimens were randomized to 4 equal groups. Group G received only grinding; groups GPB and GPK received grinding and polishing with different polishing systems; and group C was the (unground) control group. All specimens were subjected to hydrothermal aging in an autoclave at 134°C at 200 kPa for 3 hours. Roughness average was measured using a 3-dimensional (3D) optical interferometer at baseline (Ra1), after grinding and polishing (Ra2), and after aging (Ra3). A biaxial flexural strength test was performed at a rate of 0.5 mm/min. Statistical analyses were performed using commercial software (α=.05). Group G showed a significantly higher mean value of Ra3 (1.96 ±0.32 μm) than polished and glazed groups (P<.001), which showed no statistically significant difference among them (GPB, 1.12 ±0.31 µm; GPK, 0.88 ±0.31 µm; C: 0.87 ±0.25 μm) (P>.05). Compared with baseline, the roughness of groups G and GPB increased significantly after surface treatments and after aging, whereas aging did not significantly influence the roughness of groups GPK or C. Group G showed the lowest mean value of biaxial flexural strength (879.01 ±157.99 MPa), and the highest value was achieved by group C (962.40 ±113.84 MPa); no statistically significant differences were found among groups (P>.05). Additionally, no significant correlation was detected between the Ra and

  19. [Preliminary evaluation of clinical effect of computer aided design and computer aided manufacture zirconia crown].

    PubMed

    Wang, Yu-guang; Xing, Yan-xi; Sun, Yu-chun; Zhao, Yi-jiao; Lü, Pei-jun; Wang, Yong

    2013-06-01

    To evaluate clinical effects of computer aided design and computer aided manufacturing (CAD/CAM) milled zirconia crown in three aspects: aesthetic, contact wear and fracture. Sixty patients were divided into two groups.In one group, 35 full contour CAD/CAM zirconia crown were made on molars of 30 patients. The manufacturing process of zirconia crown was as follow. First, the three dimensional(3-D) data of working models, antagonist impression and check records were acquired by 3-D laser scanning Dental wings S50. Then full contour zirconia crowns, which had functional occlusal contacts with antagonistic teeth, and appropriate contact with adjacent teeth were designed with Zeno-CAD(V4.2.5.5.12919) software. ZENOSTAR Zr pure zirconia material was milled in digital controlled machine WIELAND 4030 M1.In the end, the zirconia crown were completed with the method of second sintering and polishing. After clinical try-in, the crown was cemented.In the control group, thirty gold alloy full crown were made and cemented on molars of 30 patients. According to the modified U S Public Health Service Criteria(USPHS) evaluation standard, all crowns were evaluated on the same day, at three months, half a year, one year and two years following delivery. There were three aspects we were focusing on in the evaluation: aesthetic, contact wear(restoration and antagonist), and fracture. In all the prosthesis we evaluated during the 24 months, no fracture was found. Contact wear of crowns varies according to different antagonist teeth. The zirconia crowns show privilege in aesthesis, toughness and anti-wearing.However, there is contact wear on antagonistic natural teeth. Thus it is a good choice when full zirconia crowns are indicated on two antagonistic teeth in both jaws.

  20. Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis.

    PubMed

    Hickey, Anthony J; Misra, Amit; Fourie, P Bernard

    2013-11-01

    Inhaled therapies offer a unique approach to the treatment of tuberculosis (TB) using a relevant target organ system as a route of administration. The number of research reports on this topic has been increasing exponentially in the last decade but studies of clinical efficacy have been rare in recent times. The challenge is to take many research findings and translate them into a strategy for product development. Dry powder inhalers are the dominant drug product under consideration by those interested in the inhaled therapy for TB. A range of factors including candidate drug, formulation, device selection, drug product testing for proof of concept, and preclinical and clinical purposes all demand different considerations. The following review is intended to raise awareness of a growing body of evidence, suggesting that inhaled therapy for TB is possible and desirable. In addition, it is intended to outline key elements of the product-development activity for this particular application that has not been discussed elsewhere in the literature. Hopefully, this will encourage those with development expertise to seriously contemplate the steps required to bring such products forward. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Investigations on composition and morphology of electrochemical alumina and alumina yttria stabilised zirconia deposits

    NASA Astrophysics Data System (ADS)

    El Hajjaji, S.; Manov, S.; Roy, J.; Aigouy, T.; Ben Bachir, A.; Aries, L.

    2001-08-01

    Conversion coatings modified by deposits of electrolytic alumina added or not with yttria and/or zirconia, have been studied which are well known for their resistance to chemical attack and high temperature. Conversion coating, characterised by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. Zirconia-alumina coating behaviour at 1000°C is similar to that of alumina coating; from 800°C, the chromium diffuses from the stainless steel through the electrolytic refractory coating up to the external interface, provokes discontinuities and can modify its protective character. Yttrium stabilises the cubic and the tetragonal form of the zirconia; so, during cooling, the phase transformation near 1000°C of tetragonal zirconia to monoclinic form cannot take place.

  2. Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations

    NASA Astrophysics Data System (ADS)

    Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar

    2017-01-01

    Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.

  3. The effect of silica-coating by sol-gel process on resin-zirconia bonding.

    PubMed

    Lung, Christie Ying Kei; Kukk, Edwin; Matinlinna, Jukka Pekka

    2013-01-01

    The effect of silica-coating by sol-gel process on the bond strength of resin composite to zirconia was evaluated and compared against the sandblasting method. Four groups of zirconia samples were silica-coated by sol-gel process under varied reagent ratios of ethanol, water, ammonia and tetraethyl orthosilicate and for different deposition times. One control group of zirconia samples were treated with sandblasting. Within each of these five groups, one subgroup of samples was kept in dry storage while another subgroup was aged by thermocycling for 6,000 times. Besides shear bond testing, the surface topography and surface elemental composition of silica-coated zirconia samples were also examined using scanning electron microscopy and X-ray photoelectron spectroscopy. Comparison of silica coating methods revealed significant differences in bond strength among the Dry groups (p<0.001) and Thermocycled groups (p<0.001). Comparison of sol-gel deposition times also revealed significant differences in bond strength among the Dry groups (p<0.01) and Thermocycled groups (p<0.001). Highest bond strengths were obtained after 141-h deposition: Dry (7.97±3.72 MPa); Thermocycled (2.33±0.79 MPa). It was concluded that silica-coating of zirconia by sol-gel process resulted in weaker resin bonding than by sandblasting.

  4. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

    PubMed

    Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal

    2017-11-01

    The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Effect of a chemical primer on the bond strength of a zirconia ceramic with self-adhesive resin cement].

    PubMed

    Zhang, Hong; Jing, Ye; Nie, Rongrong; Meng, Xiangfeng

    2015-10-01

    To evaluate the bond strength and durability of a self-adhesive resin cement with a zirconia ceramic pretreated by a zirconia primer. Zirconia ceramic (Vita Inceram YZ) plates with a thickness of 2.5 mm were fired, polished, and then cleaned. Half of the polished ceramic plates were sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface compound weight ratios were measured via X-ray fluorescence microscopy. The polished and sandblasted ceramic plates were directly bonded with self-adhesive resin cement (Biscem) or were pretreated by a zirconia primer (Z Primer Plus) before bonding with Biscem. The specimens of each test group were divided into two subgroups (n=10) and subjected to the shear test after 0 and 10,000 thermal cycles. The data were analyzed via three-way ANOVA. After air abrasion, 8.27% weight ratio of alumina attached to the zirconia surface. Compared with air abrasion, primer treatment more significantly improved the primary resin bond strength of the zirconia ceramic. The primary resin bond strength of the zirconia ceramic with no primer treatment was not affected by thermocycling (P>0.05). However, the primary resin bond strength of the zirconia ceramic with primer treatment was significantly decreased by thermocycling (P<0.05). Primer treatment can improve the primary resin bond strengths of zirconia ceramics. However, the bond interface of the primer is not stable and rapidly degraded during thermocycling.

  6. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  7. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  8. Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

    PubMed Central

    Mftah, Ae; Alhassan, Fatah H; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed Ezzat; Webster, Thomas J; Sh-eldin, Mohammed; Rasedee, Abdullah; Taufiq-Yap, Yun Hin; Rashid, Shah Samiur

    2015-01-01

    Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9–1,000 μg/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. PMID:25632233

  9. Comparison of different grinding procedures on the flexural strength of zirconia.

    PubMed

    Işeri, Ufuk; Ozkurt, Zeynep; Yalnız, Ayşe; Kazazoğlu, Ender

    2012-05-01

    The surface of zirconia ceramic is damaged during grinding, which may affect the mechanical properties of the material. The purpose of this study was to compare the biaxial flexural strength of zirconia after different grinding procedures and to measure the temperature rise from grinding. Forty disk-shaped zirconia specimens (15 × 1.2 mm) with a smaller disk in the center of each disk (1 × 3 mm) were divided into 4 groups (n=10). The specimens were ground with a high-speed handpiece and micromotor with 2 different grinding protocols, continual grinding and periodic grinding (10 seconds grinding with 10 seconds duration), until the smaller disk was removed. Control specimens without the center disk (n=10) were analyzed without grinding. The biaxial flexural strengths of the disks were determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture strength (MPa) was recorded, and the results were analyzed using a 1-way ANOVA, Tukey HSD test, Student's t test, and Pearson correlation test (α=05). All grinding procedures significantly decreased flexural strength (P<.01). The mean flexural strength of the high-speed handpiece groups was higher (815 MPa) than that of the micromotor groups (718 MPa). The temperature values obtained from micromotor grinding (127°C) were significantly higher than those from high-speed handpiece grinding (63°C) (P<.01). Grinding zirconia decreased flexural strength. Zirconia material ground with a high-speed handpiece run continually caused the least reduction in flexural strength. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. Processing polymeric powders

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1989-01-01

    The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.

  11. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  12. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  13. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    PubMed

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    PubMed Central

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  15. Ca-P spots modified zirconia by liquid precursor infiltration and the effect on osteoblast-like cell responses.

    PubMed

    Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming

    2018-01-26

    Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.

  16. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    PubMed

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  17. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids.

    PubMed

    Zhu, Shanhui; Zhu, Yulei; Gao, Xiaoqing; Mo, Tao; Zhu, Yifeng; Li, Yongwang

    2013-02-01

    The synthesis of bioadditives for biofuels from glycerol esterification with acetic acid was performed over zirconia supported heteropolyacids catalysts using H(4)SiW(12)O(40) (HSiW), H(3)PW(12)O(40) (HPW) and H(3)PMo(12)O(40) (HPMo) as active compounds. The as-prepared catalysts were characterized by N(2)-physisorption, XRD, Raman spectroscopy, NH(3)-TPD, FTIR of pyridine adsorption and H(2)O-TPD. Among the catalysts tested, HSiW/ZrO(2) achieved the best catalytic performance owing to the better combination of surface Brønsted acid sites and hydrothermal stability. A 93.6% combined selectivity of glyceryl diacetate and glyceryl triacetate with complete glycerol conversion was obtained at 120°C and 4h of reaction time in the presence of HSiW/ZrO(2). This catalyst also presented consistent activity for four consecutive reaction cycles, while HPW/ZrO(2) and HPMo/ZrO(2) exhibited distinct deactivation after reusability tests. In addition, HSiW/ZrO(2) can be resistant to the impurities present in bulk glycerol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Influence of cement thickness on resin-zirconia microtensile bond strength

    PubMed Central

    Lee, Tae-Hoon; Ahn, Jin-Soo; Shim, June-Sung; Han, Chong-Hyun

    2011-01-01

    PURPOSE The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (α=95%). RESULTS All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength. PMID:22053241

  19. Mechanical behavior of single-layer ceramized zirconia abutments for dental implant prosthetic rehabilitation

    PubMed Central

    Jiménez-Melendo, Manuel; Llena-Blasco, Oriol; Bruguera, August; Llena-Blasco, Jaime; Yáñez-Vico, Rosa-María; García-Calderón, Manuel; Vaquero-Aguilar, Cristina; Velázquez-Cayón, Rocío; Gutiérrez-Pérez, José-Luis

    2014-01-01

    Objectives: This study was undertaken to characterize the mechanical response of bare (as-received) and single-layer ceramized zirconia abutments with both internal and external connections that have been developed to enhanced aesthetic restorations. Material and Methods: Sixteen zirconia implant abutments (ZiReal Post®, Biomet 3i, USA) with internal and external connections have been analyzed. Half of the specimens were coated with a 0.5mm-thick layer of a low-fusing fluroapatite ceramic. Mechanical tests were carried out under static (constant cross-head speed of 1mm/min until fracture) and dynamic (between 100 and 400N at a frequency of 1Hz) loading conditions. The failure location was identified by electron microscopy. The removal torque of the retaining screws after testing was also evaluated. Results: The average fracture strength was above 300N for all the abutments, regardless of connection geometry and coating. In most of the cases (94%), failure occurred by abutment fracture. No significant differences were observed either in fatigue behavior and removal torque between the different abutment groups. Conclusions: Mechanical behavior of Zireal zirconia abutments is independent of the type of internal/external connection and the presence/absence of ceramic coating. This may be clinically valuable in dental rehabilitation to improve the aesthetic outcome of zirconia-based dental implant systems. Key words:Dental implant, zirconia, ceramic structure, mechanical properties. PMID:25674313

  20. Effect of an internal coating technique on tensile bond strengths of resin cements to zirconia ceramics.

    PubMed

    Kitayama, Shuzo; Nikaido, Toru; Maruoka, Rena; Zhu, Lei; Ikeda, Masaomi; Watanabe, Akihiko; Foxton, Richard M; Miura, Hiroyuki; Tagami, Junji

    2009-07-01

    This study was conducted to enhance the tensile bond strengths of resin cements to zirconia ceramics. Fifty-six zirconia ceramic specimens (Cercon Base) and twenty-eight silica-based ceramic specimens (GN-1, GN-1 Ceramic Block) were air-abraded using alumina. Thereafter, the zirconia ceramic specimens were divided into two subgroups of 28 each according to the surface pretreatment; no pretreatment (Zr); and the internal coating technique (INT). For INT, the surface of zirconia was coated by fusing silica-based ceramics (Cercon Ceram Kiss). Ceramic surfaces were conditioned with/without a silane coupling agent followed by bonding with one of two resin cements; Panavia F 2.0 (PF) and Superbond C&B (SB). After 24 hours storage in water, the tensile bond strengths were tested (n=7). For both PF and SB, silanization significantly improved the bond strength to GN-1 and INT (p<0.05). The INT coating followed by silanizaton demonstrated enhancement of bonding to zirconia ceramics.

  1. Complications and Clinical Considerations of the Implant-Retained Zirconia Complete-Arch Prosthesis with Various Opposing Dentitions.

    PubMed

    Gonzalez, Jorge; Triplett, Robert G

    To evaluate the performance of the implant-retained zirconia complete-arch prosthesis with various opposing dentitions. The 40 patients included in this retrospective case series study were treated with one or two implant-retained zirconia complete-arch prostheses (ZIRCAP) using the Zirkonzahn protocol. Prettau zirconia frames were created with strategic cutbacks in the structure to extend zirconia incisal coverage of the esthetic anterior sextants and complete monolithic zirconia in the molar areas; subsequent layers of porcelain were applied to nonfunctional and esthetic areas. Patients had three possible occlusal scenarios: (1) maxillary ZIRCAP and mandibular ZIRCAP, (2) maxillary ZIRCAP and mandibular natural dentition, and (3) maxillary ZIRCAP and mandibular conventional hybrid prosthesis. Complications were recorded during follow-up appointments 3, 6, and 12 months after definitive prosthesis delivery. The mean treatment observation period was 33 months. Eight prosthetic complications were noted for the 40 implant-retained zirconia complete-arch prostheses (18.18%), including six cases of minor porcelain chipping and two cases of debonding of the metal insert from the zirconia framework. Maxillary ZIRCAP opposing mandibular ZIRCAP and maxillary ZIRCAP opposing mandibular natural dentition occlusal scenarios presented the same complication ratio of 4. No complications were seen in the maxillary ZIRCAP opposing mandibular conventional hybrid prosthesis group, yet 16 complications were found as denture tooth fractures in 12 mandibular conventional hybrid prostheses (ratio of 0.75). The results indicate that the implant-retained zirconia complete-arch prosthesis offers acceptable performance for use as an alternative to the conventional titanium framework acrylic veneer prosthesis for complete edentulism with a lower incidence of prosthetic complications and fewer maintenance appointments. Chipping of veneering porcelain was the most common complication, but a

  2. Influence of different resin cements and surface treatments on microshear bond strength of zirconia-based ceramics

    PubMed Central

    Petrauskas, Anderson; Novaes Olivieri, Karina Andrea; Pupo, Yasmine Mendes; Berger, Guilherme; Gonçalves Betiol, Ederson Áureo

    2018-01-01

    Aim: This study aims to evaluate the microshear bond strength of zirconia-based ceramics with different resin cement systems and surface treatments. Materials and Methods: Forty blocks of zirconia-based ceramic were prepared and embedded in polyvinyl chloride (PVC) tubes with acrylic resin. After polishing, the samples were washed in an ultrasonic bath and dried in an oven for 10 min. Half of the samples were subjected to sandblasting with aluminum oxide. Blocks were divided into four groups (n = 10) in which two resin cements were used as follows: (1) RelyX™ U100 with surface-polished zirconia; (2) RelyX™ U100 with surface-blasted zirconia; (3) Multilink with surface-polished zirconia; and 4) Multilink with surface-blasted zirconia. After performing these surface treatments, translucent tubes (n = 30 per group) were placed on the zirconia specimens, and resin cement was injected into them and light cured. The PVC tubes were adapted in a universal testing machine; a stiletto blade, which was bolted to the machine, was positioned on the cementation interface. The microshear test was performed at a speed of 0.5 mm/min. Failure mode was analyzed in an optical microscope and classified as adhesive, cohesive, or mixed. Results: The null hypothesis of this study was rejected because there was a difference found between the resin cement and the surface treatment. There was a statistical difference (P < 0.005) in RelyX™ U100 with surface-blasted zirconia, in relation to the other three groups. For Multilink groups, there was no statistical difference between them. Conclusion: Self-adhesive resin cement showed a more significant tendency toward bond strength in the ceramic-based zirconium oxide grit-blasted surfaces. PMID:29674825

  3. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    PubMed

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  4. Spectrochemical determination of thorium in monazite by the powder-d.c. arc technique

    USGS Publications Warehouse

    Dutra, C.V.; Murata, K.J.

    1954-01-01

    Thorium in monazite is determined by a d.c. carbon-arc technique using zirconium as the internal standard. The analytical curve for Th II 2870.413 A??/Zr II 2844-579 A?? is established by means of synthetic standards containing graduated amounts of thoria and 0.500 per cent zirconia in pegmatite base (60 parts quartz, 40 parts microchne, and 1 part ferric oxide). Monazite samples are diluted 14-fold with pegmatite base that contains 0.538 per cent ZrO2, so that the zirconia content of the resulting mixture is also 0.500 per cent. In addition, both the standards and the diluted monazites are mixed with one-half their weight of powdered graphite. Approximately 25 mg of the prepared samples are arced to completion at 15.5 to 17.5 amperes. With the 14-fold dilution employed, the accurate range of the method is 3 to 20 per cent thoria in the original monazite. The coefficient of variation for a single determination is 4 per cent at the 7 per cent thoria level. Tests with synthetic unknowns and chemically analyzed monazites show a maximum error of ??10 per cent of the thoria content. If niobium is substituted for zirconium as the internal standard, there is a loss of precision. Platinum as the internal standard gives results of good precision but introduces a marked sensitivity to matrix effects. ?? 1954.

  5. Study of iodine migration in zirconia using stable and radioactive ion implantation

    NASA Astrophysics Data System (ADS)

    Chevarier, N.; Brossard, F.; Chevarier, A.; Crusset, D.; Moncoffre, N.

    1998-03-01

    The large uranium fission cross section leading to iodine and the behaviour of this element in the cladding tube during energy production and afterwards during waste storage is a crucial problem, especially for 129I which is a very long half-life isotope ( T = 1.59 × 10 7yr). Since a combined external and internal oxidation of the zircaloy cladding tube occurs during the reactor processing, iodine diffusion parameters in zirconia are needed. In order to obtain these data, stable iodine atoms were first introduced by ion implantation into zirconia with an energy of 200 keV and a dose equal to 8 × 10 15at cm -2. Diffusion profiles were measured using 3 MeV alpha-particle Rutherford Backscattering Spectrometry at each step of the annealing procedure between 700°C and 900°C. In such experiments a reduced iodine concentration was observed, which correlated to a diffusion-like process. Similar analysis has been performed using radioactive 131I implanted at a very low dose of 10 9 at cm -2. In this case the iodine release is deduced from gamma-ray spectroscopy measurements. The results are discussed in this paper.

  6. Masking ability of a zirconia ceramic on composite resin substrate shades.

    PubMed

    Tabatabaian, Farhad; Shabani, Sima; Namdari, Mahshid; Sadeghpour, Koroush

    2017-01-01

    Masking ability of a restorative material plays an important role to cover discolored tooth structure; however, this ability has not yet been well understood in zirconia-based restorations. This study assessed the masking ability of a zirconia ceramic on composite resin substrates with different shades. Ten zirconia disc specimens, with 0.5 mm thickness and 10 mm diameter, were fabricated by a computer-aided design/computer-aided manufacturing system. A white substrate (control) and six composite resin substrates with different shades including A1, A2, A3, B2, C2, and D3 were prepared. The substrates had a cylindrical shape with 10 mm diameter and height. The specimens were placed onto the substrates for spectrophotometric evaluation. A spectrophotometer measured the L*, a*, and b* values for the specimens. ΔE values were calculated to determine the color differences between the groups and the control and then were compared with a perceptional threshold (ΔE = 2.6). Repeated measures ANOVA and Bonferroni tests were used for data analysis ( P < 0.05). The mean and standard deviation of ΔE values for A1, A2, A3, B2, C2, and D3 groups were 6.78 ± 1.59, 8.13 ± 1.66, 9.81 ± 2.64, 9.61 ± 1.38, 9.59 ± 2.63, and 8.13 ± 1.89, respectively. A significant difference was found among the groups in the ΔE values ( P = 0.006). The ΔE values were more than the perceptional threshold in all the groups ( P < 0.0001). Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  7. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    NASA Astrophysics Data System (ADS)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  8. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  9. Positron annihilation studies of zirconia doped with metal cations of different valence

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  10. The thermal stability and catalytic application of manganese oxide-zirconium oxide powders

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a

  11. [Translucency of dental zirconia ceramics sintered in conventional and microwave ovens].

    PubMed

    Yuemei, Jiang; Ying, Yang; Wenhui, Zhan; Guoxin, Hu; Qiuxia, Yang

    2015-12-01

    To evaluate the effect of microwave sintering on the translucency of zirconia and to compare these effect with those of conventional sintering. The relationship between the microstructure of specimens and translucency was investigated. A total of 10 disc-shaped specimens were fabricated from 2 commercial brands of zirconia, namely, Zenostar and Lava. Each group included 5 discs. Conventional sintering was performed according to the manufacturers' specifications. The maximum temperature for Zenostar was 1,490 °C, whereas that for Lava was 1,500 °C. The dwelling time was 2 h. The sintering temperature for microwave sintering was 1,420 °C, heating rate was 15 °C · min⁻¹, and dwelling time was 30 min. After sintering, the translucency parameter (TP) of the specimens were measured with ShadeEye NCC. The sintered density of the specimens was determined by Archimedes' method. The grain size and microstructure of the specimens were investigated by scanning electron microscopy. Density and translucency slightly increased by microwave sintering, but no significant difference was found between microwave and conventional sintering (P > 0.05). Small and uniform microstructure were obtained from microwave sintering. The mean TP of Lava was significantly higher than that of Zenostar (P < 0.001). The translucency of zirconia sintered by microwave sintering is similar to that of the zirconia sintered by conventional sintering.

  12. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

    PubMed Central

    Tulapornchai, Chantana; Mamani, Jatuphol; Kamchatphai, Wannaporn; Thongpun, Noparat

    2013-01-01

    PURPOSE The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at α=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS L*, a*, and b* values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ΔE*ab values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION No significant differences were observed between the L*, a*, and b* values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ΔE*ab values. PMID:24049574

  13. Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod

    Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.

  14. Comparison of light transmittance in different thicknesses of zirconia under various light curing units

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem

    2012-01-01

    PURPOSE The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (α=.05). RESULTS ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance (P<.001). CONCLUSION Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials. PMID:22737314

  15. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    PubMed

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.

  16. Talcum powder poisoning

    MedlinePlus

    ... powder As a filler in street drugs, like heroin Other products may also contain talc. ... have developed serious lung damage and cancer. Injecting heroin that contains talc into a vein may lead ...

  17. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  18. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure

  19. Morphology of zirconia particles exposed to D.C. arc plasma jet

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1987-01-01

    Zirconia particles were sprayed into water with an arc plasma gun in order to determine the effect of various gun operating parameters on their morphology. The collected particles were examined by XRD and SEM techniques. A correlation was established between the content of spherical (molten) particles and the operating parameters by visual inspection and regression analysis. It was determined that the composition of the arc gas and the power input were the predominant parameters that affected the melting of zirconia particles.

  20. Ball Powder Production Wastewater Biodegradation Support Studies - With Nitroglycerine

    DTIC Science & Technology

    1989-02-01

    in the wastewater. Characterization of the ball powder wastewater stream showed an actual average NG inlet concentration of 192 mg/L. Pilot test...the first phase of pilot testing, the recommendation was made to conduct an additional pilot test phase to determine the effect of nitroglycerin (NG...NG by aerobic bacteria, a pilot program was undertaken with the following objectives: 1) to determine the concentration of NG in the ball powder

  1. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  2. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems.

    PubMed

    Hamza, Tamer A; Sherif, Rana M

    2017-06-01

    Dental laboratories use different computer-aided design and computer-aided manufacturing (CAD-CAM) systems to fabricate fixed prostheses; however, limited evidence is available concerning which system provides the best marginal discrepancy. The purpose of this in vitro study was to evaluate the marginal fit of 5 different monolithic zirconia restorations milled with different CAD-CAM systems. Thirty monolithic zirconia crowns were fabricated on a custom-designed stainless steel die and were divided into 5 groups according to the type of monolithic zirconia crown and the CAD-CAM system used: group TZ, milled with an MCXL milling machine; group CZ, translucent zirconia milled with a motion milling machine; group ZZ, zirconia milled with a dental milling unit; group PZ, translucent zirconia milled with a zirconia milling unit; and group BZ, solid zirconia milled using an S1 VHF milling machine. The marginal fit was measured with a binocular microscope at an original magnification of ×100. The results were tabulated and statistically analyzed with 1-way ANOVA and post hoc surface range test, and pairwise multiple comparisons were made using Bonferroni correction (α=.05). The type of CAD-CAM used affected the marginal fit of the monolithic restoration. The mean (±SD) highest marginal discrepancy was recorded in group TZI at 39.3 ±2.3 μm, while the least mean marginal discrepancy was recorded in group IZ (22.8 ±8.9 μm). The Bonferroni post hoc test showed that group TZI was significantly different from all other groups tested (P<.05). Within the limitation of this in vitro study, all tested CAD-CAM systems produced monolithic zirconia restorations with clinically acceptable marginal discrepancies; however, the CAD-CAM system with the 5-axis milling unit produced the best marginal fit. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement.

    PubMed

    Pirker, W; Kocher, A

    2008-03-01

    This report demonstrates the successful clinical use of a modified root-analogue zirconia implant for immediate single tooth replacement. A right maxillary premolar was removed and a custom-made, root-analogue, roughened zirconia implant with macro-retentions in the interdental space was fabricated and placed into the extraction socket 4 days later. Four months after root implantation a composite crown was cemented. No complications occurred during the healing period. An excellent esthetic and functional result was achieved with the composite crown. No clinically noticeable bone resorption or soft-tissue recession was observed at 26 months follow up. Significant modifications such as macro-retentions seem to indicate that primary stability and excellent osseointegration of immediate root-analogue zirconia implants can be achieved, while preventing unesthetic bone resorption. The macro-retentions must be limited to the interdental space to avoid fracture of the thin buccal cortex. This successful case warrants further clinical research in well controlled trials.

  4. Marginal and Internal Discrepancies of Posterior Zirconia-Based Crowns Fabricated with Three Different CAD/CAM Systems Versus Metal-Ceramic.

    PubMed

    Ortega, Rocio; Gonzalo, Esther; Gomez-Polo, Miguel; Suárez, María J

    2015-01-01

    The aim of this study was to analyze the marginal and internal fit of metalceramic and zirconia-based crowns. Forty standardized steel specimens were prepared to receive posterior crowns and randomly divided into four groups (n = 10): (1) metal-ceramic, (2) NobelProcera Zirconia, (3) Lava Zirconia, and (4) VITA In-Ceram YZ. All crowns were cemented with glass-ionomer agent and sectioned buccolingually. A scanning electron microscope was used for measurements. Kruskal-Wallis and Wilcoxon signed rank test (α = .05) statistical analyses were conducted. Significant differences (P < .0001) in marginal discrepancies were observed between metal-ceramic and zirconia groups. No differences were found for the axial wall fit (P = .057). Significant differences were shown among the groups in discrepancies at the occlusal cusp (P = .0012) and at the fossa (P = .0062). No differences were observed between surfaces. All zirconia groups showed better values of marginal discrepancies than the metal-ceramic group. Procera Zirconia showed the lowest gaps.

  5. Fabrication of composite films containing zirconia and cationic polyelectrolytes.

    PubMed

    Pang, Xin; Zhitomirsky, Igor

    2004-03-30

    Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.

  6. Emission of diacetyl (2,3 butanedione) from natural butter, microwave popcorn butter flavor powder, paste, and liquid products.

    PubMed

    Rigler, Mark W; Longo, William E

    2010-01-01

    Diacetyl (2,3 butanedione), a butter-flavored diketone, has been linked to a severe lung disease, bronchiolitis obliterans. We tested a total of three natural butters and artificial microwave popcorn butter flavorings (three powders, two pastes, and one liquid) for bulk diacetyl concentration and diacetyl emissions when heated. Pastes and liquid butter flavors contained the highest amount (6% to 10.6%) while natural butter possessed up to 7500 times less diacetyl. All artificial butter flavors studied emitted diacetyl. Dry powders emitted up to 1.62 ppm diacetyl; wetted powders up to 54.7 ppm diacetyl; and pastes emitted up to 34.9 ppm diacetyl. The liquid butter flavor emitted up to 17.2 ppm diacetyl. Microwave popcorn flavoring mixtures emitted up to 11.4 ppm diacetyl. At least 93% of the dry powder particles were inhalable. These studies show that microwave butter flavoring products generate concentrations of diacetyl in the air great enough to endanger those exposed.

  7. Effects of porcelain thickness on the flexural strength and crack propagation in a bilayered zirconia system.

    PubMed

    Figueiredo, Viviane Maria Gonçalves de; Pereira, Sarina Maciel Braga; Bressiani, Eduardo; Valera, Márcia Carneiro; Bottino, Marco Antônio; Zhang, Yu; Melo, Renata Marques de

    2017-01-01

    This study evaluated the influence of porcelain (VM9, VITA Zahnfabrik, Germany) thickness on the flexural strength and crack propagation in bilayered zirconia systems (YZ, VITA Zahnfabrik, Germany). Thirty zirconia bars (20.0x4.0x1.0 mm) and six zirconia blocks (12.0x7.5x1.2 mm) were prepared and veneered with porcelain with different thickness: 1 mm, 2 mm, or 3 mm. The bars of each experimental group (n=10) were subjected to four-point flexural strength testing. In each ceramic block, a Vickers indentation was created under a load of 10 kgf for 10 seconds, for the propagation of cracks. The results of flexural strength were evaluated by One-way ANOVA and Tukey's test, with a significance level of 5%. The factor "thickness of the porcelain" was statistically significant (p=0.001) and the l-mm group presented the highest values of flexural strength. The cracks were predominant among the bending specimens with 1 and 2 mm of porcelain, and catastrophic failures were found in 50% of 3-mm-thick porcelain. After the indentation of blocks, the most severe defects were observed in blocks with 3-mm-thick porcelain. The smallest (1 mm) thickness of porcelain on the zirconia infrastructure presented higher values of flexural strength. Better resistance to defect propagation was observed near the porcelain/ zirconia interface for all groups. Higher flexural strength was found for a thinner porcelain layer in a bilayered zirconia system. The damage caused by a Vickers indentation near and far the interface with the zirconia shows that the stress profiles are different.

  8. Effects of porcelain thickness on the flexural strength and crack propagation in a bilayered zirconia system

    PubMed Central

    de Figueiredo, Viviane Maria Gonçalves; Pereira, Sarina Maciel Braga; Bressiani, Eduardo; Valera, Márcia Carneiro; Bottino, Marco Antônio; Zhang, Yu; de Melo, Renata Marques

    2017-01-01

    Abstract Objective: This study evaluated the influence of porcelain (VM9, VITA Zahnfabrik, Germany) thickness on the flexural strength and crack propagation in bilayered zirconia systems (YZ, VITA Zahnfabrik, Germany). Material and Methods: Thirty zirconia bars (20.0x4.0x1.0 mm) and six zirconia blocks (12.0x7.5x1.2 mm) were prepared and veneered with porcelain with different thickness: 1 mm, 2 mm, or 3 mm. The bars of each experimental group (n=10) were subjected to four-point flexural strength testing. In each ceramic block, a Vickers indentation was created under a load of 10 kgf for 10 seconds, for the propagation of cracks. Results: The results of flexural strength were evaluated by One-way ANOVA and Tukey's test, with a significance level of 5%. The factor “thickness of the porcelain” was statistically significant (p=0.001) and the l-mm group presented the highest values of flexural strength. The cracks were predominant among the bending specimens with 1 and 2 mm of porcelain, and catastrophic failures were found in 50% of 3-mm-thick porcelain. After the indentation of blocks, the most severe defects were observed in blocks with 3-mm-thick porcelain. Conclusion: The smallest (1 mm) thickness of porcelain on the zirconia infrastructure presented higher values of flexural strength. Better resistance to defect propagation was observed near the porcelain/ zirconia interface for all groups. Higher flexural strength was found for a thinner porcelain layer in a bilayered zirconia system. The damage caused by a Vickers indentation near and far the interface with the zirconia shows that the stress profiles are different. PMID:29069155

  9. [Crown color match of implant-supported zirconia and porcelain-fused-to-metal restorations: a spectrophotometric comparison].

    PubMed

    Peng, Min; Fei, Wei; Hosseini, Mandana; Gotfredsen, Klaus

    2014-02-01

    This study aimed to compare the crown color match of implant-supported zirconia restorations and porcelain-fused-to-metal (PFM) restorations in the anterior maxillary region through spectrophotometric evaluation. Eighteen patients with 29 implant-supported single crowns in the anterior maxillary area were recruited. Eleven of the implant crowns were zirconia restorations and 18 were PFM restorations. Color matching of the implant crown with contra-lateral/ neighboring tooth at the position of body 1/3 of the crown was assessed using a spectrophotometer (SpectroShade) in CIE L* a* b* coordinates. Subjective crown color match scores were evaluated. Independent sample t test of SPSS 17.0 was used to compare the difference between zirconia restoration and PFM restoration. Spearman correlation was used to analyze the relationship between the spectrophotometric color difference and the subjective crown color match score. Descriptive statistics was used to analyze the distribution of color coordinates of natural anterial teeth. The crown color of the implant-supported zirconia restorations and PFM restorations were both lighter than that of natural teeth (delta L, 4.5 +/- 3.2, 1.0 +/- 2.6). The lightness difference induced by zirconia restorations was significantly larger than that induced by PFM restorations (P=0.004). The spectrophotometric crown color difference (delta E) induced by zirconia restorations (7.0 +/- 2.8) was significantly larger than that induced by PFM restorations (4.0 +/- 1.9) (P=0.002), and both values were beyond the clinical thresholds (3.7). The spectrophotometric crown color difference induced by zirconia restorations was significantly larger than that induced by PFM restorations. However, they were indistinguishable in subjective evaluation.

  10. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    PubMed

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  12. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    PubMed

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    PubMed

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). The lithium disilicate glass ceramic crown (IPS e.max®press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  14. OIL SOLUTIONS POWDER

    EPA Pesticide Factsheets

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  15. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    NASA Astrophysics Data System (ADS)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  16. [The effect of firing times on the chroma of tetragonal zirconia polycrystal by adding rare-earth oxides].

    PubMed

    Gao, Yan; Zhang, Fu-qiang; Huang, Hui; Gui, Lin-hua

    2010-10-01

    The aim of this study is to evaluate whether the firing times affect the chroma of zirconia by adding rare-earth oxides. Six kinds (S1, S2, S3, S4, S5, S6) of tooth-like yttria stabilized tetragonal zirconia polycrystal (Y-TZP) were available by introducing internal colorating technology, the color were gauged with ShadeEye NCC chromatometry instrument, and one-way ANOVA was used to analysis the color of each kind of tooth-like zirconia after 1, 2, 3, 4, 5 times firing individually. After 1, 2, 3, 4, 5 times firing respectively, the chromatic aberration ranged between 0.10-1.47 merely. The luminosity of three kinds (S1, S2, S6) of tooth-like zirconia were decreased (P < 0.05), the luminosity of the other three kinds (S3, S4, S5) of tooth-like zirconia were not obviously changed (P > 0.05), as for the hue and chroma, no significant differences were found (P > 0.05). There are no significant influence on the color of tooth-like Y-TZP after 1, 2, 3, 4, 5 times firing respectively, the chroma of yttria stabilized tetragonal zirconia polycrystal by adding rare-earth oxides are with high stability.

  17. Fracture resistance and failure mode of posterior fixed dental prostheses fabricated with two zirconia CAD/CAM systems

    PubMed Central

    López-Suárez, Carlos; Gonzalo, Esther; Peláez, Jesús; Rodríguez, Verónica

    2015-01-01

    Background In recent years there has been an improvement of zirconia ceramic materials to replace posterior missing teeth. To date little in vitro studies has been carried out on the fracture resistance of zirconia veneered posterior fixed dental prostheses. This study investigated the fracture resistance and the failure mode of 3-unit zirconia-based posterior fixed dental prostheses fabricated with two CAD/CAM systems. Material and Methods Twenty posterior fixed dental prostheses were studied. Samples were randomly divided into two groups (n=10 each) according to the zirconia ceramic analyzed: Lava and Procera. Specimens were loaded until fracture under static load. Data were analyzed using Wilcoxon´s rank sum test and Wilcoxon´s signed-rank test (P<0.05). Results Partial fracture of the veneering porcelain occurred in 100% of the samples. Within each group, significant differences were shown between the veneering and the framework fracture resistance (P=0.002). The failure occurred in the connector cervical area in 80% of the cases. Conclusions All fracture load values of the zirconia frameworks could be considered clinically acceptable. The connector area is the weak point of the restorations. Key words:Fixed dental prostheses, zirconium-dioxide, zirconia, fracture resistance, failure mode. PMID:26155341

  18. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    PubMed

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  19. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    PubMed

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  20. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    PubMed Central

    Karygianni, Lamprini; Jähnig, Andrea; Schienle, Stefanie; Bernsmann, Falk; Adolfsson, Erik; Kohal, Ralf J.; Chevalier, Jérôme; Hellwig, Elmar; Al-Ahmad, Ali

    2013-01-01

    Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a), B1a with zirconium oxide (ZrO2) coating (B2a), B1a with zirconia-based composite coating (B1b) and B1a with zirconia-based composite and ZrO2 coatings (B2b). Bovine enamel slabs (BES) served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM); DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22%) were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80%) were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential. PMID:28788415

  1. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro.

    PubMed

    Karygianni, Lamprini; Jähnig, Andrea; Schienle, Stefanie; Bernsmann, Falk; Adolfsson, Erik; Kohal, Ralf J; Chevalier, Jérôme; Hellwig, Elmar; Al-Ahmad, Ali

    2013-12-04

    Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro . Four implant biomaterials were incubated with Enterococcus faecalis , Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a), B1a with zirconium oxide (ZrO₂) coating (B2a), B1a with zirconia-based composite coating (B1b) and B1a with zirconia-based composite and ZrO₂ coatings (B2b). Bovine enamel slabs (BES) served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM); DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22%) were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80%) were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  2. Bruxism in prospective studies of veneered zirconia restorations-a systematic review.

    PubMed

    Schmitter, Marc; Boemicke, Wolfgang; Stober, Thomas

    2014-01-01

    The objectives of this work were to systematically review the effect of bruxism on the survival of zirconia restorations on teeth and to assess the prevalence of nocturnal masseter muscle activity in a clinical sample. A Medline search was performed independently and in triplicate using the term "zirconia" and activating the filter "clinical trial." Furthermore, three other electronic databases were searched using the same term. Only papers published in English on prospective studies of veneered zirconia frameworks on teeth were included. To estimate the prevalence of sleep bruxism in clinical settings, subjects with no clinical signs of bruxism and who did not report grinding and/or clenching were examined by use of a disposable electromyographic device. The initial search resulted in 107 papers, of which 22 were included in the analysis. Bruxers were excluded in 20 of these articles. In 1 study bruxers were not excluded, and 1 study did not provide information regarding this issue. The methods used to identify bruxers were heterogeneous/not described, and no study used reliable, valid methods. Of 33 subjects without clinical signs of bruxism, nocturnal muscle activity exceeded predefined muscle activity for 63.8% of the subjects. There is a lack of information about the effect of bruxism on the incidence of technical failure of veneered zirconia restorations because all available studies failed to use suitable instruments for diagnosis of bruxism. Nocturnal muscle activity without clinical symptoms/report of bruxism was observed for a relevant number of patients.

  3. [Comparison of the shear bond strength by using nano silica sol to zirconia basement and veneer porcelain].

    PubMed

    Wang, Si-qian; Zhang, Da-feng; Zhen, Tie-li; Yang, Jing-yuan; Lin, Ting-ting; Ma, Jian-feng

    2016-04-01

    To investigate the feasibility of using sol gel technique to produce thin layer nano silicon dioxide on zirconia ceramic surface and the effect of improving shear bond strength between zirconia and veneer porcelain. The presintered zirconia specimen was cut into a rectangle block piece (15 mm×10 mm×2.5 mm), a total of 40 pieces were obtained and divided into 4 groups, each group had 10 pieces. Four different treatments were used in each group respectively. Pieces in group A (control group) were only sintered at 1450°C to crystallization; pieces in group B underwent 30% nano silica sol infiltration first and then were sintered at 1450°C to crystallization; piece in group C underwent crystallization first at 1450°C, then 30% nano silica sol infiltration and were sintered at 1450°C again; pieces in group D was coated by nano silica sol and then sintered at 1450°C to crystallization; ten rectangle block pieces (12 mm×8 mm×2 mm) in group E were made. Cylinder veneers 5 mm in diameter and 4 mm in height were produced in each group and the shear bond strength was tested. Data were statistically analyzed by SPSS 19.0 software package. The shear bond strength of the 5 group specimens were: (28.12±2.95) MPa in group A, (31.09±3.94) MPa in group B, (25.60±2.45) MPa in group C, (31.75±4.90) MPa in group D, (28.67±3.95) MPa in group E, respectively. Significant differences existed between the 5 groups, and group C had significant difference compared with group B and D. CONCLUSIONS:① Use of nano silicon sol gel on presintered zirconia surface to make thin layer of nano silicon dioxide can improve the shear bond strength between zirconia and veneer; ②Using nano silicon sol gel on crystallization zirconia surface to make thin layer of nano silicon dioxide will decrease the shear bond strength between zirconia and veneer; ③ Zirconia veneer bilayer ceramic has the same shear bond strength with porcelain fused to Ni Cr alloy; ④Use of sol gel technique to

  4. 21 CFR 522.1085 - Guaifenesin powder for injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Guaifenesin powder for injection. 522.1085 Section... § 522.1085 Guaifenesin powder for injection. (a) Specifications. The product is a sterile powder containing guaifenesin. A solution is prepared by dissolving the drug in sterile water for injection to make...

  5. CORROSION EXPERIENCE WITH ALUMINUM POWDER PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draley, J.E.; Ruther, W.E.; Greenberg, S.

    1963-11-01

    Extrusions of aluminum alloy powder products were obtained from several sources and evaluated for corrosion resistance to high-temperature (260-- 350 deg C) water. Several types of tubing impact-extruded by ALCOA were tested. The stronger tabing (M655) failed very rapidly. The weaker tubing suffered extensive localized surface attack and penetration of the corrosion attack along the extrusion direction after prolonged ( approximates 3 months) exposure to 290 deg C water. A precorrosion heat treatment was effective in reducing both types of attack on the weaker tubing. Armour Research Foundation supplied several types of tubing extraded through a bridge die. All tubesmore » failed on prolonged ( approximates 8 months) corrosion in 290 deg C water at the longitudinal bond lines. These lines were formed by the rejoining of the metal streams passing over the mandrel supports in the die during extrusion. Directly extruded tubing supplied by the Torrance Brass Company also failed on extended exposure to 290 deg C water. Many experimental rod extrusions (from Armour Research Foundation and Trefimetaux) exhibited corrosion resistance to static 290 deg C water equivalent to that of wrought alloys. The Trefimetaux specimens were also tested in rapidly flowing water at 315 deg C. Under these conditions a corrosion rate significantly faster than for the wrought alloy was measured. (auth)« less

  6. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    PubMed

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p<0.001). Thermal cycling significantly reduced TBS for all groups (p<0.001) excluding groups: AAP(p>0.05), CAAP(p>0.05) and SC(p>0

  7. Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.

    2018-02-01

    Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.

  8. Fracture of Reduced-Diameter Zirconia Dental Implants Following Repeated Insertion.

    PubMed

    Karl, Matthias; Scherg, Stefan; Grobecker-Karl, Tanja

    Achievement of high insertion torque values indicating good primary stability is a goal during dental implant placement. The objective of this study was to evaluate whether or not two-piece implants made from zirconia ceramic may be damaged as a result of torque application. A total of 10 two-piece zirconia implants were repeatedly inserted into polyurethane foam material with increasing density and decreasing osteotomy size. The insertion torque applied was measured, and implants were checked for fractures by applying the fluorescent penetrant method. Weibull probability of failure was calculated based on the recorded insertion torque values. Catastrophic failures could be seen in five of the implants from two different batches at insertion torques ranging from 46.0 to 70.5 Ncm, while the remaining implants (all belonging to one batch) survived. Weibull probability of failure seems to be low at the manufacturer-recommended maximum insertion torque of 35 Ncm. Chipping fractures at the thread tips as well as tool marks were the only otherwise observed irregularities. While high insertion torques may be desirable for immediate loading protocols, zirconia implants may fracture when manufacturer-recommended insertion torques are exceeded. Evaluating bone quality prior to implant insertion may be useful.

  9. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  10. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  11. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  12. Comparison between five CAD/CAM systems for fit of zirconia copings.

    PubMed

    Habib, Syed Rashid; Al Otaibi, Asim Khaled; Al Anazi, Talal Ali; Al Anazi, Samer Mosleh

    2018-01-01

    The aim of this in-vitro study was to investigate the marginal and internal fit of zirconia copings fabricated by five CAD/CAM (computer-aided design/computer-assisted manufacture) systems. A typodont mandibular right first molar was prepared according to ideal parameters for a zirconia crown, scanned digitally, and 100 identical resin dies fabricated by 3D printing. Samples were randomly divided into five groups and sent to CAD/CAM systems for zirconia copings (A, Ceramill-Motion 2, Amann Girrbach; B, Weiland, Ivoclar Vivadent; C, Cerec, Ivoclar Vivadent; D, Prettau Zirconia, Zirkonzahn; E, Cad4dent). CAD of the copings included standardized cement space of 30 µm and CAM was carried out. Copings were tried/adjusted on the respective dies and embedded under a standardized load of 20 N in self-curing resin. Samples were sectioned mesiodistally into two halves. Marginal and internal gap values were measured with a digital microscope at 50 to 200 × magnification at nine sites. The lowest and highest mean gap values of 46.93 ± 13.50 and 101.65 ± 35.56 μm were found for Group A and Group D, respectively. ANOVA showed a statistically significant difference between the mean values of all the groups (P = .000). Multiple comparisons with post hoc Tukey test indicated a statistically significant difference (P < .05) between: Group A and all groups except B; B with D; C with A; D with A; and B and E with A. Mean buccal/lingual gap value was found to be 51.54 ± 58.54 μm. Of the nine sites, the least gap resulted at the buccal axial wall and the greatest at the central groove. The overall mean gap recorded for the copings was 72.43 ± 57.56 μm. Marginal and internal adaptations of CAD/CAM zirconia copings is influenced by manufacturing technique, and variations exist for different systems. Measurement sites showed different levels. CAD/CAM systems investigated showed a clinically acceptable level of gap values (< 120 µm).

  13. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  14. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.

    PubMed

    Alhasanyah, Abdulrahman; Vaidyanathan, Tritala K; Flinton, Robert J

    2013-07-01

    Despite the excellent esthetics of veneered zirconia crowns, the incidence of chipping and fracture of veneer porcelain on zirconia crowns has been recognized to be higher than in metal ceramic crowns. The objective of this investigation was to study the effect of selected variations in core thickness on the post-fatigue fracture resistance of veneer porcelain on zirconia crowns. Zirconia crowns for veneering were prepared with three thickness designs of (a) uniform 0.6-mm thick core (group A), (b) extra-thick 1.7 mm occlusal core support (group B), and (c) uniform 1.2-mm thick core (group C). The copings were virtually designed and milled by the CAD/CAM technique. Metal ceramic copings (group D) with the same design as in group C were used as controls. A sample size of N = 20 was used for each group. The copings were veneered with compatible porcelain and fatigue tested under a sinusoidal loading regimen. Loading was done with a 200 N maximum force amplitude under Hertzian axial loading conditions at the center of the crowns using a spherical tungsten carbide indenter. After 100,000 fatigue cycles, the crowns were axially loaded to fracture and maximum load levels before fracture was recorded. One-way ANOVA (P < 0.05) and post hoc Tukey tests (α = 0.05) were used to determine significant differences between means. The mean fracture failure load of group B was not significantly different from that of control group D. In contrast, the mean failure loads of groups A and C were significantly lower than that of control group D. Failure patterns also indicated distinct differences in failure mode distributions. The results suggest that proper occlusal core support improves veneer chipping fracture resistance in zirconia crowns. Extra-thick occlusal core support for porcelain veneer may significantly reduce the veneer chipping and fracture of zirconia crowns. This is suggested as an important consideration in the design of copings for zirconia crowns. © 2013 by the

  15. Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength

    PubMed Central

    Lv, Pin; Yang, Xin; Jiang, Ting

    2015-01-01

    This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement. PMID:28793699

  16. A study on the production of titanium carbide nano-powder in the nanostate and its properties

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.

    2016-09-01

    The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.

  17. POWDER COAT APPLICATIONS

    EPA Science Inventory

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  18. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Nath, M.; Ghosh, A.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less

  19. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  20. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  1. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin.

    PubMed

    Sar, Taner; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2017-03-04

    Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.

  2. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin

    PubMed Central

    Sar, Taner; Stark, Benjamin C.; Yesilcimen Akbas, Meltem

    2017-01-01

    ABSTRACT Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48–96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli. PMID:27579556

  3. Structural comparison of sintering products made of "TiC + Ti" composite powders and "Ti + C" powder mixtures

    NASA Astrophysics Data System (ADS)

    Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.

    2017-12-01

    In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.

  4. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G powder. 520.1696b Section 520.1696b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to 1.54 million units of...

  5. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G powder. 520.1696b Section 520.1696b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to 1.54 million units of...

  6. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals.more » Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.« less

  7. The Effect of Femtosecond Laser Treatment on the Effectiveness of Resin-Zirconia Adhesive: An In Vitro Study

    PubMed Central

    Vicente Prieto, María; Gomes, Ana Luisa Caseiro; Montero Martín, Javier; Alvarado Lorenzo, Alfonso; Seoane Mato, Vicente; Albaladejo Martínez, Alberto

    2016-01-01

    Introduction: When aesthetics is compromised, dental ceramics are excellent materials for dental restorations; owing to their optical properties and biocompatibility, zirconia ceramics are particularly interesting. Self-adhesive resin cements are the most suitable for bonding to zirconia ceramics, but traditional adhesive chemistry is ineffective and surface treatments are required to improve the adhesive bonding between resin and zirconia. The aim of this study was to evaluate the effect of femtosecond laser treatment on the shear bond strength (SBS) of self-adhesive resin cement on zirconia surfaces and to contrast it with other different surface conditioning methods. Methods: Sixty square-shaped zirconia samples were divided randomly into four groups (n = 15) according to their surface conditioning method: the NT group - no surface treatment; the APA25 group - airborne abrasion with 25 μm alumina particles; the TSC group - tribochemical silica coating, and the FS group - femtosecond laser irradiation (800 nm, 4 mJ, 40 fs/pulse, 1 kHz). Self-adhesive resin cements were bonded at the centre of samples, and after 72 hours, they were tested for SBS with a universal testing machine at a crosshead speed of 0.5 mm/min, until fracture. Five zirconia surfaces for each group were subjected to a surface morphology analysis by scanning electron microscopy (SEM). The failure modes were noted and a third of the specimens were prepared to morphological analysis. Results: The NT group showed lower SBS values than the other groups. Femtosecond laser treatment demonstrated higher values than the control and APA25 groups and similar values to those of the TSC group. In the APA25 group, the surface conditioning method had values close to those of the TSC group, but lower than those obtained with femtosecond laser treatment. Conclusion: The treatment of zirconia with femtosecond laser irradiation created a consistent and profound surface roughness, improving the adhesive

  8. Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients

    PubMed Central

    Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Özcan, Mutlu; Lassila, Lippo

    2013-01-01

    This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core–veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min−1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)−(39.7±4.7) and (27.4±5.6)−(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia–veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal–ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core–veneer adhesion. Metal–ceramic adhesion was more reliable than all zirconia–veneer ceramics tested. PMID:24158142

  9. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    PubMed

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (P<0.001). On the other hand, VS glass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (P<0.05). VS demonstrated a homogeneous fine crystalline structure while, IC revealed a structure with needle-shaped fine-grained crystals embedded in a glassy matrix. The VS glass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    PubMed Central

    Ewais, Ola H.; Al Abbassy, Fayza; Ghoneim, Mona M.; Aboushelib, Moustafa N.

    2014-01-01

    Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE), fusion sputtering (FS), and low pressure particle abrasion (LPPA). The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness) received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α = 0.05). Results. There were significant differences between all groups regarding surface roughness (F = 1678, P < 0.001), porosity (F = 3278, P < 0.001), and hardness (F = 1106.158, P < 0.001). Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered. PMID:25349610

  11. Technological aspects of lactose-hydrolyzed milk powder.

    PubMed

    Torres, Jansen Kelis Ferreira; Stephani, Rodrigo; Tavares, Guilherme M; de Carvalho, Antônio Fernandes; Costa, Renata Golin Bueno; de Almeida, Carlos Eduardo Rocha; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa; Schuck, Pierre; Perrone, Ítalo Tuler

    2017-11-01

    Few reports describe the effect of lactose hydrolysis on the properties of milk powder during production and storage. Hence, the aim of this study was to evaluate the effects of five different levels of enzymatic lactose hydrolysis during the production and storage of milk powder. As the lactose hydrolysis rate increased, adhesion to the drying chamber also increased, due to higher levels of particle agglomeration. Additionally, more brown powder was obtained when the lactose hydrolysis rate was increased, which in turn negatively affected rehydration ability. Using Raman spectroscopy, crystallization of the lactose residues in various samples was assessed over 6weeks of accelerated aging at a room temperature environment with 75.5% of air moisture. Products with 25% or greater lactose hydrolysis showed no signs of crystallization, in contrast to the non-hydrolyzed sample. Copyright © 2017. Published by Elsevier Ltd.

  12. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  13. The effect of various veneering techniques on the marginal fit of zirconia copings.

    PubMed

    Torabi, Kianoosh; Vojdani, Mahroo; Giti, Rashin; Taghva, Masumeh; Pardis, Soheil

    2015-06-01

    This study aimed to evaluate the fit of zirconia ceramics before and after veneering, using 3 different veneering processes (layering, press-over, and CAD-on techniques). Thirty standardized zirconia CAD/CAM frameworks were constructed and divided into three groups of 10 each. The first group was veneered using the traditional layering technique. Press-over and CAD-on techniques were used to veneer second and third groups. The marginal gap of specimens was measured before and after veneering process at 18 sites on the master die using a digital microscope. Paired t-test was used to evaluate mean marginal gap changes. One-way ANOVA and post hoc tests were also employed for comparison among 3 groups (α=.05). Marginal gap of 3 groups was increased after porcelain veneering. The mean marginal gap values after veneering in the layering group (63.06 µm) was higher than press-over (50.64 µm) and CAD-on (51.50 µm) veneered groups (P<.001). Three veneering methods altered the marginal fit of zirconia copings. Conventional layering technique increased the marginal gap of zirconia framework more than pressing and CAD-on techniques. All ceramic crowns made through three different veneering methods revealed clinically acceptable marginal fit.

  14. The effect of various veneering techniques on the marginal fit of zirconia copings

    PubMed Central

    Torabi, Kianoosh; Vojdani, Mahroo; Giti, Rashin; Pardis, Soheil

    2015-01-01

    PURPOSE This study aimed to evaluate the fit of zirconia ceramics before and after veneering, using 3 different veneering processes (layering, press-over, and CAD-on techniques). MATERIALS AND METHODS Thirty standardized zirconia CAD/CAM frameworks were constructed and divided into three groups of 10 each. The first group was veneered using the traditional layering technique. Press-over and CAD-on techniques were used to veneer second and third groups. The marginal gap of specimens was measured before and after veneering process at 18 sites on the master die using a digital microscope. Paired t-test was used to evaluate mean marginal gap changes. One-way ANOVA and post hoc tests were also employed for comparison among 3 groups (α=.05). RESULTS Marginal gap of 3 groups was increased after porcelain veneering. The mean marginal gap values after veneering in the layering group (63.06 µm) was higher than press-over (50.64 µm) and CAD-on (51.50 µm) veneered groups (P<.001). CONCLUSION Three veneering methods altered the marginal fit of zirconia copings. Conventional layering technique increased the marginal gap of zirconia framework more than pressing and CAD-on techniques. All ceramic crowns made through three different veneering methods revealed clinically acceptable marginal fit. PMID:26140175

  15. Electrostatic powder coating: Principles and pharmaceutical applications.

    PubMed

    Prasad, Leena Kumari; McGinity, James W; Williams, Robert O

    2016-05-30

    A majority of pharmaceutical powders are insulating materials that have a tendency to accumulate charge. This phenomenon has contributed to safety hazards and issues during powder handling and processing. However, increased understanding of this occurrence has led to greater understanding and control of processing and product performance. More recently, the charging of pharmaceutical powders has been employed to adopt electrostatic powder coating as a pharmaceutical process. Electrostatic powder coating is a mature technology used in the finishing industry and much of that knowledge applies to its use in pharmaceutical applications. This review will serve to summarize the principles of electrostatic powder coating and highlight some of the research conducted on its use for the preparation of pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework.

    PubMed

    Takaba, Masayuki; Tanaka, Shinpei; Ishiura, Yuichi; Baba, Kazuyoshi

    2013-07-01

    Recently, fixed dental prostheses (FDPs) with a hybrid structure of CAD/CAM porcelain crowns adhered to a CAD/CAM zirconia framework (PAZ) have been developed. The aim of this report was to describe the clinical application of a newly developed implant-supported FDP fabrication system, which uses PAZ, and to evaluate the outcome after a maximum application period of 36 months. Implants were placed in three patients with edentulous areas in either the maxilla or mandible. After the implant fixtures had successfully integrated with bone, gold-platinum alloy or zirconia custom abutments were first fabricated. Zirconia framework wax-up was performed on the custom abutments, and the CAD/CAM zirconia framework was prepared using the CAD/CAM system. Next, wax-up was performed on working models for porcelain crown fabrication, and CAD/CAM porcelain crowns were fabricated. The CAD/CAM zirconia frameworks and CAD/CAM porcelain crowns were bonded using adhesive resin cement, and the PAZ was cemented. Cementation of the implant superstructure improved the esthetics and masticatory efficiency in all patients. No undesirable outcomes, such as superstructure chipping, stomatognathic dysfunction, or periimplant bone resorption, were observed in any of the patients. PAZ may be a potential solution for ceramic-related clinical problems such as chipping and fracture and associated complicated repair procedures in implant-supported FDPs. © 2012 by the American College of Prosthodontists.

  17. Large dielectric constant in zirconia polypyrrole hybrid nanocomposites.

    PubMed

    Dey, Ashis; De, S K

    2007-06-01

    Zirconia nanoparticles have been synthesized by a novel two-reverse emulsion technique and combined with polypyrrole (PPY) to form ZrO2-PPY nanocomposites. Complex impedance and dielectric permittivity of ZrO2-PPY nanocomposite have been investigated as a function of frequency and temperature for different compositions. The composite samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. The composites reveal ordered semiconducting behaviour. Polypyrrole is the major component in electrical transport process of the samples. A very large dielectric constant of about 12,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of zirconia nanoparticles. The broad peak at high frequency is due to Maxwell-Wagner type polarization.

  18. In-vitro bioactivity of zirconia doped borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Rajkumar; Azeem, P. Abdul, E-mail: rk.satyaswaroop@gmail.com, E-mail: drazeem2002@yahoo.com

    2015-06-24

    Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that,more » in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.« less

  19. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  20. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.