Science.gov

Sample records for zirconium alloy tubes

  1. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  2. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  3. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  4. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  5. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  6. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    SciTech Connect

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  7. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  8. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  9. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  10. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  11. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    SciTech Connect

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  12. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  13. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  14. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  15. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  16. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  17. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  18. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  19. Characterization of deformation mechanisms in zirconium alloys: effect of temperature and irradiation

    NASA Astrophysics Data System (ADS)

    Long, Fei

    Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion

  20. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  1. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  2. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  3. Electrochemical Study of Corrosion Phenomena in Zirconium Alloys

    DTIC Science & Technology

    2005-06-01

    required reaction rates [1.1]. Based predominantly on this fact, zirconium alloys were chosen to sheath, or clad, the fuel. With the increasing demand...cathode or anode. As the oxidation and reduction reactions occur, a galvanic cell is developed. The electrons on the anode are released from the metallic...matrix as the ions are released into the aqueous solution in the initial half-cell reaction . The second half-cell reaction , taking place on the

  4. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  5. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...

    2015-10-13

    Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less

  6. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  7. The Deformation Mechanism of Fatigue Behaviour in a N36 Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhu

    2018-05-01

    Zirconium alloys are widely used as claddings in nuclear reactor. A N36 zirconium alloy has been deformed into a sheet with highly texture according to the result of electron back scatter diffraction test. Then this N36 zirconium alloy sheet has been cut into small beam samples with 12 x 3 x 3 mm3 in size. In this experiment, a three-point bending test was carried out to investigate the fatigue behaviour of N36 zirconium alloy. Cyclic loadings were applied on the top middle of the beam samples. The region of interest (ROI) is located at the middle bottom of the front face of the beam sample where slip band was observed in deformed beam sample due to strain concentration by using scanning electron microscopy. Twinning also plays an important role to accommodate the plastic deformation of N36 zirconium alloy in fatigue, which displays competition with slip.

  8. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  9. The stability of alloying additions in Zirconium

    NASA Astrophysics Data System (ADS)

    Lumley, S. C.; Murphy, S. T.; Burr, P. A.; Grimes, R. W.; Chard-Tuckey, P. R.; Wenman, M. R.

    2013-06-01

    The interactions of Cr, Fe, Nb, Ni, Sn, V and Y with Zr are simulated using density functional theory. Thermodynamic stabilities of various different Zr based intermetallic compounds, including multiple Laves phase structures and solutions of alloying additions in both α and β-Zr were investigated. The thermodynamic driving forces in this system can be correlated with trends in atomic radii and the relative electronegativities of the different species. Formation energies of Fe, Ni and Sn based intermetallic compounds were found to be negative, and the ZrFe and ZrNi intermetallics were metastable. Most elements displayed negative energies of solution in β-Zr but positive energies in the α-phase, with the exception of Sn (which was negative for both) and Y (which was positive for both). Solutions formed from intermetallics showed a similar trend. Cr -3s23p64s13d5. Fe -4s23d6. Nb -4s24p65s14d4. Ni -4s23d8. Sn -5s25p2. V -3s23p64s23d3. Y -4s24p65s24d1. Zr -4s24p65s24d2. The pseudopotential scheme used is "on-the-fly" generation, in which an isolated all-electron calculation is carried out before the main calculation and used as a starting point to generate a pseudopotential. This was carried out for all pseudopotentials except Cr and V, as the default on-the-fly pseudopotentials for these elements required a much higher cut-off energy. Instead, standard ultrasoft pseudopotentials, as found in the CASTEP pseudopotential library, were used for Cr and V. All pseudopotentials (both on-the-fly and library) are of the ultrasoft type [15], and so are compatible with each-other. Exchange-correlation was modelled using the Perdew, Burke and Ernzerhof formalisation of the Generalised Gradient Approximation [16].A series of simulations were run to establish an appropriate basis set cut-off energy, and the density of sampling in the Brillouin zone. The results were converged to within two decimal places for a cut-off energy of 450 eV and a k-point spacing of 0.003 nm-1. The k

  10. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  11. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  12. On the control of the crystallographic texture in cladding tubes from Zr-based alloys for nuclear reactor

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.

    2016-10-01

    This paper summarizes researches of authors, directed to the development of the methodological basis of X-ray studies as applied to zirconium alloys and on the systematization of new experimental results obtained using developed methods. The paper describes regularities of crystallographic texture formation in cladding tubes from zirconium alloys and their substructure inhomogeneity at various stages of manufacture, i.e. at hot and cold deformation, recrystallization, phase transformations and interaction of the above processes. The special attention is payed to possibilities of control the crystallographic texture of tubes at successive stages of their technological treatment.

  13. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Photo, which appeared on the July cover of `Physics Today', is of the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. In this particular shot, the ESL contains a solid metal sample of titanium-zirconium-nickel alloy. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  14. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  15. Alloy 690 for steam generator tubing applications

    SciTech Connect

    Gold, R.E.; Harrod, D.L.; Aspden, R.G.

    1990-10-01

    This report has been prepared to provide background information for Ni-Cr-Fe Alloy 690 which is currently the material of choice for steam generator heat transfer tubing applications. Activities directed toward the qualification of Alloy 690 for these applications are summarized; this includes efforts which focused on optimization of materials procurement specifications. Emphasis is placed on research accomplished primarily in the four year period from June 1985, the time of the first EPRI Workshop on Alloy 690 was held. The topic is treated in a broad sense, and includes review of the physical metallurgy of the alloy, tube manufacturing processes, themore » properties of commercial production tubing, and the corrosion behavior of Alloy 690 in environments appropriate to steam generator service. 12 refs., 7 figs., 8 tabs.« less

  16. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  17. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  18. Torsional Stability of Aluminum Alloy Seamless Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  19. Transport property correlations for the niobium-1% zirconium alloy

    NASA Astrophysics Data System (ADS)

    Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.

    1990-10-01

    Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.

  20. Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element

    NASA Astrophysics Data System (ADS)

    Isaenkova, Margarita; Perlovich, Yuriy; Zhuk, Dmitry; Krymskaya, Olga

    2017-10-01

    The rolling of Zirconium tube is studied by means of the crystal plasticity viscoplastic self-consistent (VPSC) constitutive modeling. This modeling performed by a dislocation-based constitutive model and a spectral solver using open-source simulation of DAMASK kit. The multi-grain representative volume elements with periodic boundary conditions are used to predict the texture evolution and distributions of strain and stresses. Two models for randomly textured and partially rolled material are deformed to 30% reduction in tube wall thickness and 7% reduction in tube diameter. The resulting shapes of the models are shown and distributions of strain are plotted. Also, evolution of grain's shape during deformation is shown.

  1. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    NASA Technical Reports Server (NTRS)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  2. Zirconium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  3. Plate-shaped transformation products in zirconium-base alloys

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Dey, G. K.; Srivastava, D.; Ranganathan, S.

    1997-11-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IPS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 bar 11} α < bar 1123> α slip or twinning on {10 bar 11} α planes. Widmanstätten α precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the α/β interface being decorated with a periodic array of < c + a> dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The α precipitates, forming in the retained β phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103} β — {113} β poles, which are close to the specific variant of the {112} β plane, which transforms into a prismatic plane of the type {1 bar 100} α . The crystallography of the

  4. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history,more » residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed

  5. Influence of chemical composition of zirconium alloy E110 on embrittlement under LOCA conditions - Part 1: Oxidation kinetics and macrocharacteristics of structure and fracture

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.

    2011-11-01

    Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.

  6. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Cochrane, C.; Daymond, M. R.

    2018-05-01

    This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

  7. Effects of the Fabrication Process and Thermal Cycling on the Oxidation of Zirconium-Niobium Pressure Tubes

    NASA Astrophysics Data System (ADS)

    Nam, Cheol

    2009-12-01

    Pressure tubes made of Zr-2.5%Nb alloy are used to contain fuels and coolant in CANDU nuclear power reactors The pressure tube oxidizes during reactor operation and hydrogen ingress through the oxide grown on the tube limits its lifetime. Little attention was paid to the intermediate tube manufacturing processes in enhancing the oxidation resistance. In addition, the oxide grown on the tube experiences various thermal cycles depending on the reactor shutdown and startup cycles. To address these two aspects and to better understand the oxidation process of the Zr-2.5Nb tube, research was conducted in two parts: (i) effects of tube fabrication on oxidation behavior, and (ii) thermal cycling behaviors of oxides grown on a pressure tube. In the first part, the optimum manufacturing process was pursued to improve the corrosion resistance of Zr-2.5Nb tubes. Experimental micro-tubes were fabricated with various manufacturing routes in the stages of billet preparation, hot extrusion and cold drawing. These were oxidized in air at 400°C and 500°C, and in an autoclave at 360°C lithiated water. Microstructure and texture of the tubes and oxides were characterized with X-ray diffraction, scanning electron microscope and optical microscope. Special emphasis was given to examinations of the metal/oxide interface structures. A correlation between the manufacturing process and oxidation resistance was investigated in terms of tube microstructure and the metal/oxide interface structure. As a result, it was consistently observed that uniform interface structures were formed on the tubes which had a fine distribution of secondary phases. These microstructures were found to be beneficial in enhancing the oxidation resistance as opposed to the tubes that had coarse and continuous beta-Zr phases. Based on these observations, a schematic model of the oxidation process was proposed with respect to the oxidation resistance under oxidizing temperatures of 360°C, 400°C and 500°C. In

  8. Production of FR Tubing from Advanced ODS Alloys

    SciTech Connect

    Maloy, Stuart Andrew; Lavender, Curt; Omberg, Ron

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  9. Comparison of palladium and zirconium treated graphite tubes for in-atomizer trapping of hydrogen selenide in hydride generation electrothermal atomization atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.

    1999-02-01

    Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.

  10. THE DETERMINATION OF TRACES OF BORON IN ZIRCONIUM METAL AND ZIRCONIUM ALLOYS

    SciTech Connect

    Hayes, M.R.; Metcalfe, J.

    1962-01-01

    A general procedure is given for the determination of B, down to 0.2 ppm, in Zr and Zr alloys. Separation of the B is not necessary, the B-curcumin complex being formed directly in an aliquot of the metal sulfate solution. An interference effect has been noted when analyzing Zr alloys containing Sn. The interference is caused by an insoluble compound of curcumin which separates and has similar properties to the B-curcumin complex. This source of interference is, however, readily eliminated during the procedure for the determination of B. The procedure has been applied to the determination of B in puremore » Zr, zr--0.5% Cu-- 0.5% MO, and Zr--1.5% Sn--0.1% Fe--0.1% Cr--0.05% Ni alloys. Results are comparable with those obtained by methods requiring the separation of the B as methyl borate. (auth)« less

  11. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    NASA Astrophysics Data System (ADS)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  12. Production of intergranular attack of alloy 600, alloy 690, and alloy 800 tubing in tubesheet crevices: Topical report

    SciTech Connect

    Scott, D.B.; Glaves, C.L.,

    1987-07-01

    Three model boilers, manufactured to simulate full-size tube sheet crevices, were tested with various secondary side environments. The first was faulted with organics representative of the decomposition of humic acid. The second was faulted with sodium carbonate and sodium hydroxide, while the third was faulted with sodium sulfate and sodium hydroxide. Each model contained seven tubes, which included Alloy 600 in the mill-annealed (MA) and thermally-treated (TT) conditions and Alloy 690 in the thermally-treated condition. Two models contained Alloy 800 tubes in the mill-annealed condition and one had Alloy 800 in the mill-annealed/cold-worked/glass-bead-peened condition. Two different sizes of tubesheet crevicesmore » were used in all model boilers. In the organics-faulted boiler, tubes of Alloy 600MA, Alloy 690TT and Alloy 800MA experienced no significant intergranular attack (IGA); however, the Alloy 600TT had intergranular attack (IGA) three to four grains deep. The carbonate-caustic faulted boiler experienced throughwall stress corrosion cracking (SCC) in all tubes of Alloy 600 MA and Alloy 800 MA. Eddy current indications were present in Alloy 690TT, Alloy 600TT and Alloy 800 in the mill-annealed/cold worked/glass-bead-peened condition. Metallographic examination of tubes from the third model boiler, faulted with sodium sulfate and caustic, revealed IGA in the mill-annealed Alloy 600 tubes. The IGA was more extensive in an Alloy 600 tube annealed at 1700/sup 0/F than an Alloy 600 tube annealed at 1875/sup 0/F.« less

  13. The role of hydrogen in zirconium alloy corrosion

    NASA Astrophysics Data System (ADS)

    Ensor, B.; Lucente, A. M.; Frederick, M. J.; Sutliff, J.; Motta, A. T.

    2017-12-01

    Hydrogen enters zirconium metal as a result of the corrosion process and forms hydrides when present in quantities above the solubility limit at a given temperature. Zircaloy-4 coupons of different thicknesses (0.4 mm-2.3 mm) but identical chemistry and processing were corroded in autoclave at 360 °C for various times up to 2800 days. Coupons were periodically removed and weighed to determine weight gain, which allows follow of the corrosion kinetics. Coupon thickness differences resulted in different volumetric concentrations of hydrogen, as quantified using hot vacuum extraction. The thinnest coupons, having the highest concentration of hydrogen, demonstrated acceleration in their corrosion kinetics and shorter transition times when compared to thicker coupons. Furthermore, it was seen that the post-transition corrosion rate was increased with increasing hydrogen concentration. Corrosion rates increased only after the terminal solid solubility (TSS) was exceeded for hydrogen in Zircaloy-4 at 360 °C. Therefore, it is hypothesized that the corrosion acceleration is caused by the formation of hydrides. Scanning electron microscope (SEM) examinations of fractured oxide layers demonstrate the oxide morphology changed with hydrogen content, with more equiaxed oxide grains in the high hydrogen samples than in those with lower hydrogen content. Additionally, locations of advanced oxide growth were correlated with locations of hydrides in the metal. A hypothesis is proposed to explain the accelerated corrosion due to the presence of the hydrides, namely that the metal, locally, is less able to accommodate oxide growth stresses and this leads to earlier loss of oxide protectiveness in the form of more frequent oxide kinetic transitions.

  14. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  15. Boron and Zirconium from Crucible Refractories in a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1958-01-01

    In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability.

  16. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2017-04-01

    A continuum model for calculating the time-dependent hydrogen pickup fractions in various Zirconium alloys under steam and pressured water oxidation has been developed in this study. Using only one fitting parameter, the effective hydrogen gas partial pressure at the oxide surface, a qualitative agreement is obtained between the predicted and previously measured hydrogen pickup fractions. The calculation results therefore demonstrate that H diffusion through the dense oxide layer plays an important role in the hydrogen pickup process. The limitations and possible improvement of the model are also discussed.

  17. Effect of oxidation on transport properties of zirconium-1% niobium alloy

    NASA Astrophysics Data System (ADS)

    Peletsky, V. E.; Musayeva, Z. A.

    1995-11-01

    The thermal conductivity and electrical resistivity of zirconium-1 wt% niobium samples were measured before and after the process of their oxidation in air. A special procedure was used to dissolve the gas and to smooth out its concentration in the alloy. The basic experiments were performed under high vacuum under steady-state temperature conditions. The temperature range was 300 1600 K. for the pure alloy and 300 1100 K for the samples containing oxygen. It was found that the thermal conductivity—oxygen concentration relation reverses its sign from negative at low and middle temperatures to positive at temperatures above 900 K. The relation between the electrical resistivity and the oxygen content does not show this feature. The Lorenz function was found to have an anomalous temperature dependence.

  18. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  19. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  20. Performance assessment of femoral knee components made from cobalt-chromium alloy and oxidized zirconium.

    PubMed

    Brandt, J-M; Guenther, L; O'Brien, S; Vecherya, A; Turgeon, T R; Bohm, E R

    2013-12-01

    The surface characteristics of the femoral component affect polyethylene wear in modular total knee replacements. In the present retrieval study, the surface characteristics of cobalt-chromium (CoCr) alloy and oxidized zirconium (OxZr) femoral components were assessed and compared. Twenty-six retrieved CoCr alloy femoral components were matched with twenty-six retrieved OxZr femoral components for implantation period, body-mass index, patient gender, implant type, and polyethylene insert thickness. The surface damage on the retrieved femoral components was evaluated using a semi-quantitative assessment method, scanning electron microscopy, and contact profilometry. The retrieved CoCr alloy femoral components showed less posterior surface gouging than OxZr femoral components; however, at a higher magnification, the grooving damage features on the retrieved CoCr alloy femoral components confirmed an abrasive wear mechanism. The surface roughness values Rp, Rpm, and Rpk for the retrieved CoCr alloy femoral components were found to be significantly higher than those of the retrieved OxZr femoral components (p≤0.031). The surface roughness values were higher on the medial condyles than on the lateral condyles of the retrieved CoCr alloy femoral components; such a difference was not observed on the retrieved OxZr femoral components. The surface roughness of CoCr alloy femoral components increased while the surface roughness of the OxZr femoral components remained unchanged after in vivo service. Therefore, the OxZr femoral components' resistance to abrasive wear may enable lower polyethylene wear and ensure long-term durability in vivo. Level IV. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Zirconium alloys with small amounts of iron and copper or nickel show improved corrosion resistance in superheated steam

    NASA Technical Reports Server (NTRS)

    Greenberg, S.; Youngdahl, C. A.

    1967-01-01

    Heat treating various compositions of zirconium alloys improve their corrosion resistance to superheated steam at temperatures higher than 500 degrees C. This increases their potential as fuel cladding for superheated-steam nuclear-fueled reactors as well as in autoclaves operating at modest pressures.

  2. Oxidation behaviour of zirconium alloys and their precipitates - A mechanistic study

    NASA Astrophysics Data System (ADS)

    Proff, C.; Abolhassani, S.; Lemaignan, C.

    2013-01-01

    The precipitate oxidation behaviour of binary zirconium alloys containing 1 wt.% Fe, Ni, Cr or 0.6 wt.% Nb was characterised in TEM on FIB prepared transverse sections of the oxide and reported in previous studies [1,2]. In the present study the following alloys: Zr1%Cu, Zr0.5%Cu0.5%Mo and pure Zr are analysed to add to the available information. In all cases, the observed precipitate oxidation behaviour in the oxide close to the metal-oxide interface could be described either with delayed oxidation with respect to the matrix or simultaneous oxidation as the surrounding zirconium matrix. Attempt was made to explain these observations, with different parameters such as precipitate size and structure, composition and thermodynamic properties. It was concluded that the thermodynamics with the new approach presented could explain most precisely their behaviour, considering the precipitate stoichiometry and the free energy of oxidation of the constituting elements. The surface topography of the oxidised materials, as well as the microstructure of the oxide presenting microcracks have been examined. A systematic presence of microcracks above the precipitates exhibiting delayed oxidation has been found; the height of these crack calculated using the Pilling-Bedworth ratios of different phases present, can explain their origin. The protrusions at the surface in the case of materials containing large precipitates can be unambiguously correlated to the presence of these latter, and the height can be correlated to the Pilling-Bedworth ratios of the phases present as well as the diffusion of the alloying elements to the surface and their subsequent oxidation. This latter behaviour was much more considerable in the case of Fe and Cu with Fe showing systematically diffusion to the outer surface.

  3. Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics

    NASA Astrophysics Data System (ADS)

    Moore, A. P.; Beeler, B.; Deo, C.; Baskes, M. I.; Okuniewski, M. A.

    2015-12-01

    A semi-empirical Modified Embedded Atom Method (MEAM) potential is developed for application to the high temperature body-centered-cubic uranium-zirconium alloy (γ-U-Zr) phase and employed with molecular dynamics (MD) simulations to investigate the high temperature thermo-physical properties of U-Zr alloys. Uranium-rich U-Zr alloys (e.g. U-10Zr) have been tested and qualified for use as metallic nuclear fuel in U.S. fast reactors such as the Integral Fast Reactor and the Experimental Breeder Reactors, and are a common sub-system of ternary metallic alloys like U-Pu-Zr and U-Zr-Nb. The potential was constructed to ensure that basic properties (e.g., elastic constants, bulk modulus, and formation energies) were in agreement with first principles calculations and experimental results. After which, slight adjustments were made to the potential to fit the known thermal properties and thermodynamics of the system. The potentials successfully reproduce the experimental melting point, enthalpy of fusion, volume change upon melting, thermal expansion, and the heat capacity of pure U and Zr. Simulations of the U-Zr system are found to be in good agreement with experimental thermal expansion values, Vegard's law for the lattice constants, and the experimental enthalpy of mixing. This is the first simulation to reproduce the experimental thermodynamics of the high temperature γ-U-Zr metallic alloy system. The MEAM potential is then used to explore thermodynamics properties of the high temperature U-Zr system including the constant volume heat capacity, isothermal compressibility, adiabatic index, and the Grüneisen parameters.

  4. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  5. Influence of oxide microstructure on corrosion behavior of zirconium-based model alloys

    NASA Astrophysics Data System (ADS)

    Silva, Marcelo Jose Gomes Da

    The extensive utilization of zirconium-based alloys in fuel cladding and other reactor internal components in the nuclear power industry has led to the continuous improvement of these alloys. At the present moment, demands for better performing nuclear fuel cladding materials are increasing. Also, new reactor designs have been proposed that would require the materials to withstand even more rigorous conditions. One of the factors that limit s fuel cladding utilization in nuclear reactors is uniform corrosion and the consequent hydriding of the fuel. In an attempt to develop mechanistic understanding of the role of alloying elements in the growth of a stable protective oxide, a series of model zirconium-based alloys was prepared (Zr-xFe-yCr, Zr-xCu-yMo, Zr-xNb-ySn, for various x and y, pure Zr and Zircaloy-4) and examined with advanced characterization techniques. The alloys were corrosion tested in autoclaves under three different conditions: 360°C water, 500°C steam and 500°C supercritical water in excess of 400 days. These autoclave testing conditions simulate nuclear reactor environment for both current designs (360°C water) and the new supercritical water reactor (500°C steam and 500°C supercritical water) proposed by the generation-IV initiative. The oxide films formed were systematically examined at the Advanced Photon Source using microbeam synchrotron radiation diffraction and fluorescence of cross-sectional samples to determine the oxide phases present and their crystallographic texture as a function of distance from the metal/oxide interface. Also, the overall texture of the oxide layers was investigated using synchrotron radiation diffraction in frontal geometry. The corrosion kinetics is a function of the alloy system and showed a wide range of behaviors, from immediately unstable oxide growth to stable behavior. The corrosion weight gains from testing at high temperature are a factor of five higher than those measured at 360°C but the

  6. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    SciTech Connect

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bandsmore » of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.« less

  7. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOEpatents

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  8. Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan

    Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains

  9. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  10. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  11. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  12. In situ monitored in-pile creep testing of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.

    2014-01-01

    The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.

  13. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciTech Connect

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less

  14. In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Maslar, J. E.; Hurst, W. S.; Bowers, W. J.; Hendricks, J. H.

    2001-10-01

    In situ Raman spectroscopy was employed to investigate corrosion of a zirconium-niobium alloy in air-saturated water at a pressure of 15.5 MPa and temperatures ranging from 22 to 407 °C in an optically accessible flow cell. Monoclinic ZrO 2 (m-ZrO 2) was identified under all conditions after the coupon was heated to 255 °C for 19 h. Cubic ZrO 2 (c-ZrO 2) was tentatively identified in situ during heating at temperatures between 306 and 407 °C, but was not observed under any other conditions. Species tentatively identified as α-CrOOH and a Cr VI and/or Cr III/Cr VI compound were observed in situ during heating at temperatures between 255 and 407 °C, but were not observed under any other conditions. The chromium compounds were identified as corrosion products released from the optical cell and/or flow system.

  15. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.

    A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  16. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  17. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    PubMed Central

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  18. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Wedge, S.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2015-04-01

    As a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2 μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the Rdq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches.

  19. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciTech Connect

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov; Tomé, Carlos, E-mail: tome@lanl.gov; Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC)more » polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.« less

  20. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  1. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  2. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    NASA Astrophysics Data System (ADS)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  3. Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael Vasily

    In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value

  4. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    SciTech Connect

    Glazoff, Michael Vasily

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the criticalmore » value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys

  5. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  6. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  7. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    NASA Astrophysics Data System (ADS)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  8. Simulation studies on Tube End Expansion of AA2014 Alloy Tubes

    NASA Astrophysics Data System (ADS)

    Venugopal, L.; Prasad, N. E. C.; Geeta Krishna, P.; Praveen, L.

    2018-03-01

    End forming is defined as forming the end of tubular forms either by inverting the tube or by expanding it. It finds application in many fields such as in automotive and aerospace sectors as power transmission elements, fuel lines, exhaust pipes etc. The main aim of the present work is to expand the AA2014 alloy tubes with different die sets without any fracture. Deform 2D software was used for performing simulations on expanding the tubes with different die set (punch) values having differed forming angles (α = 15°, 30° and 45°) and expansion ratios (rp/r0 = 1.39, 1.53 and 1.67). Experiments were also conducted and the results correlate with the simulation results. The results shows that for the punch having less cone angle (α) values the linear displacement is more rather than higher cone angles. But in the case of higher cone angles the radial displacement is more than the linear displacement.

  9. Relationship between microstructure and mechanical properties of Alloy 690 tubes for steam generators

    NASA Astrophysics Data System (ADS)

    Diano, P.; Muggeo, A.; Van Duysen, J. C.; Guttmann, M.

    1989-12-01

    Alloy 690 is used to replace Alloy 600 for the fabrication of tubes for steam generators of french pressurized water nuclear reactors. In order to reduce the dispersion in tensile properties observed for the first Alloy 690 industrial tubes, and which had already been noticed for Alloy 600, a joint research programme has been carried out by Electricité de France (Département Etude des Matériaux) and Valinox Montbard. The dispersion in the tensile properties of the first industrial Alloy 690 tubes for PWR steam generators arises from two main factors: - a grain size dispersion which is in particular controlled by the carbon content and by the final heat treatment, - differences in the degree of strain hardening induced by the straightening process with rollers. An improvement of the fabrication processes which have an influence on these two factors has allowed to reduce considerably the dispersion of the tensile properties of the more recent series of tubes.

  10. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  11. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  12. The temperature dependence of the tensile properties of thermally treated Alloy 690 tubing

    SciTech Connect

    Harrod, D.L.; Gold, R.E.; Larsson, B.

    1992-12-31

    Tensile tests were run in air on full tube cross-sections of 22.23 mm OD by 1.27 mm wall thickness Alloy 690 steam generator production tubes from ten (10) heats of material at eight (8) temperatures between room temperature and 760{degrees}C. The tubing was manufactured to specification requirements consistent with the EPRI guidelines for Alloy 690 tubing. The room temperature stress-strain curves are described quite well by the Voce equation. Ductile fracture by dimpled rupture was observed at all test temperatures. The elevated temperature tensile properties are compared with design data given in the ASME Code.

  13. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

    1990-04-10

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

  14. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.

    1990-01-01

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

  15. On the influence of manufacturing practices on the SCC behavior of Alloy 690 steam generator tubing

    SciTech Connect

    Doherty, P.E.; Doyle, D.M.; Sarver, J.M.

    1996-12-31

    Thermally treated (TT) Alloy 690 is the tubing materials of choice for replacement steam generators (RSGs) throughout the world. It is manufactured using a variety of processing methods with regards to melt practice and thermomechanical forming. Studies assessing the IGSCC resistance of Alloy 690 TT SG tubing have identified a variability in the corrosion performance of nominally identical alloys. While tubing of comparable bulk chemistry may exhibit variations in microchemistry as a result of different melt practice, the correlation between melt practice and SCC resistance is difficult to assess due to other contributing factors. The other contributing factors are identifiedmore » in this investigation as microstructural features whose generation is dependent on features of particular strain-anneal forming methods by which SG tubes are fabricated. In this study the microstructural characteristics which appear to affect inservice corrosion performance of Alloy 690 TT SG tubes were evaluated. The studies included extensive microstructural examinations in addition to CERT tests performed on actual Alloy 690 TT nuclear SG tubing. The CERT test results indicate that Alloy 690 TT tubing processed at higher mill anneal temperatures display the highest degree of stress corrosion cracking (SCC) resistance. This observation is discussed with reference to carbide distributions, textural aspects and grain boundary orientation character.« less

  16. Research on Protective Coating on Inner Surface of Alloy Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Liu, Y. H.; Zhou, Z. J.; Zheng, M. M.; Kong, S. Y.; Xia, H. H.; Li, H. L.

    2017-09-01

    Materials are one of the most important factors which limit reactor development. Molten salt not only used as the coolant but used as application in which fissile materials and fission products are dissolved in Molten Salt Reactors (MSRs). Therefore the corrosion resistance of structure materials is the one of most important aspects for application in MSRs. Compatibility and chemical stability with the molten salt should be considered for some common structural alloys such as Incoloy-800H. In this research, the pure nickel coating was obtained by electroplating on the inner surface of nickel alloy to improve the corrosion resistance. However, there are some problems for plating on the inner surface of tube. For example the current is shielded and the anode is easy to passivate. The inner anode was used for solving these problems in this study. Pure nickel coating was obtain and the microstructure and properties of coating were analysed using this method. The thickness, hardness and microstructure of coating were observed by metallographic microscope, micro hardness tester and field emission scanning electron microscope, and the influence of deposition duration and annealing treatment duration on properties were analysed. Thermal shock performance was investigated as well. The results showed that the coating thickness increased linearly with the increasing of plating durations and the size of grain increased with the durations as well, the surface of coating became inhomogeneous correspondingly. The hardness of coating changed as the change of durations of annealing treatment. The thermal shock test showed that bonding strength of coating with substrate was good.

  17. Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt

    NASA Astrophysics Data System (ADS)

    Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen

    2017-12-01

    Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.

  18. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  19. Evaluation of candidate Stirling engine heater tube alloys for 1000 hours at 760 C

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1980-01-01

    Six tubing alloys were endurance tested in a diesel fired, Stirling engine simulator materials test rig for 1000 hours of 760 C while pressurized at 17 to 21 MPa with either hydrogen or helium. The alloys tested were N 155, A 286, Incoloy 800, 19 9DL, Nitronic 40 and 316 stainless steel. The alloys were in the form of thin wall tubing. Hydrogen permeated rapidly through the tube walls of all six alloys when they were heated to 760 C. Helium was readily contained. Creep rupture failures occurred in four of the six alloys pressurized with hydrogen. Only two alloys survived the 1000 hour endurance test with no failures. Simultaneous exposure to either hydrogen or helium and the combustion environment did not seriously degrade the tensile strength of the six alloys in room temperature or 760 C tests after exposure. Decreases in room temperature ductility were observed and are attributed to aging rather than to hydrogen embrittlement in three of the alloys. However, there may be a hydrogen embrittlement effect in the N 155, 19 9DL, and Nitronic 40 alloys.

  20. Self-repairing vanadium-zirconium composite conversion coating for aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wu, Xiaosong; Jia, Yuyu; Liu, Yali

    2013-09-01

    In this paper, new self-repairing vanadium-zirconium composite conversion coating was prepared and investigated by Electrochemical impedance spectra (EIS), Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. EIS results showed that V-Zr conversion coating with hydrogen peroxide modified (VZO) revealed an increasing corrosion resistance in corrosive media which meant a certain self-repairing effect. SEM comparison photos also disclosed that VZO treated with scratches was gradually ameliorated from the initial cracked configuration to fewer cracks and more fillers through an immersion of 3.5% NaCl solution. XPS results demonstrated that the content of vanadium on VZO increased and zirconium declined when immersed in the corrosive solution. This explained further that the self-repairing ability could be related to vanadium. From the above results, we inferred possible structures of VZO and proposed that self-repairing effect was achieved through a hydrolysis condensation polymerization process of vanadate in the localized corrosion area.

  1. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy

    SciTech Connect

    Meredith, S.E.; Benjamin, J.F.

    1993-07-13

    A method is described of manufacturing corrosion resistant tubing from seam welded stock of a titanium or titanium based alloy, comprising: cold pilgering a seam welded tube hollow of titanium or titanium based alloy in a single pass to a final sized tubing, the tube hollow comprising a strip which has been bent and welded along opposed edges thereof to form the tube hollow, the tube hollow optionally being heat treated prior to the cold pilgering step provided the tube hollow is not heated to a temperature which would transform the titanium or titanium alloy into the beta phase, themore » cold pilgering effecting a reduction in cross sectional area of the tube hollow of at least 50% and a reduction of wall thickness of at least 50%, in order to achieve a radially oriented crystal structure; and annealing the final sized tubing at a temperature and time sufficient to effect complete recrystallization and reform grains in a weld area along the seam into smaller, homogeneous grains.« less

  2. Evaluation of candidate stirling engine heater tube alloys at 820 deg and 860 deg C

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Seven commercial alloys were evaluated in Stirling simulator materials rigs. Five iron base alloys (N-155, A-286, Incoloy 800, 19-9DL, and 316 stainless steel), one nickel base alloy (Inconel 718), and one cobalt base alloy (HS-188) were tested in the form of thin wall tubing in a diesel fuel fired test rig. Tubes filled with hydrogen or helium at gas pressure of 21.6 MPa and temperatures of 820 and 860 C were endurance tested for 1000 and 535 hours, respectively. Results showed that under these conditions hydrogen permeated rapidly through the tube walls, thus requiring refilling during each five hour cycle. Helium was readily contained, exhibiting no measurable loss by permeation. Helium filled tubes tested at 860 C all exhibited creep-rupture failures within the 535 hour endurance test. Subsequent tensile test evaluation after removal from the rig indicated reduced room temperature ductility for some hydrogen-filled tubes compared to helium-filled tubes, suggesting possible hydrogen embrittlement in these alloys.

  3. AN ATTEMPT TO LOCATE INTERMETALLIC PARTICLES IN ZIRCONIUM ALLOYS USING A BITTER FIGURE TECHNIQUE

    SciTech Connect

    Cox, B.; Harder, B.R.

    1961-10-01

    The compound ZrFe/sub 2/ is known to be ferromagnetic, and an attempt to locate particles of magnetic material in zircaloy-2 and dilute Zr- Fe alloys by a Bitter figure technlque is described. An Fe/sub 3/O/sub 4/ sol in water-soluble plastic was used to prepare Bitter figures of the alloy surfaces in the form of replicas, which were then examined in an electron microscope. No magnetic particles were located in either zircaloy-2 or a Zr-O.3% Fe alloy. Subsequent work on specimens of ZrFe/sub 2/ showed that the failure to detect it in the dilute alloys arose because the size of themore » intermetallic particles in the latter was smaller than the size of the magnetic domains. (auth)« less

  4. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging

    NASA Astrophysics Data System (ADS)

    Buitrago, N. L.; Santisteban, J. R.; Tartaglione, A.; Marín, J.; Barrow, L.; Daymond, M. R.; Schulz, M.; Grosse, M.; Tremsin, A.; Lehmann, E.; Kaestner, A.; Kelleher, J.; Kabra, S.

    2018-05-01

    Zr-based alloys are used in nuclear power plants because of a unique combination of very low neutron absorption and excellent mechanical properties and corrosion resistance at operating conditions. However, Hydrogen (H) or Deuterium ingress due to waterside corrosion during operation can embrittle these materials. In particular, Zr alloys are affected by Delayed Hydride Cracking (DHC), a stress-corrosion cracking mechanism operating at very low H content (∼100-300 wt ppm), which involves the diffusion of H to the crack tip. H content in Zr alloys is commonly determined by destructive techniques such as inert gas fusion and vacuum extraction. In this work, we have used neutron imaging to non-destructively quantify the spatial distribution of H in Zr alloys specimens with a resolution of ∼5 wt ppm, an accuracy of ∼10 wt ppm and a spatial resolution of ∼25 μm × 5 mm x 10 mm. Non-destructive experiments performed on a comprehensive set of calibrated specimens of Zircaloy-2 and Zr2.5%Nb at four neutron facilities worldwide show the typical precision and repeatability of the technique. We have observed that the microstructure of the alloy plays an important role on the homogeneity of H across a specimen. We propose several strategies for performing H determinations without calibrated specimens, with the most precise results for neutrons having wavelengths longer than 5.7 Å.

  5. THE CREEP BEHAVIOUR OF THE MAGNESIUM-ZIRCONIUM ALLOY ZA AT 400 AND 450 C IN CARBON DIOXIDE CONTAINING /approximately equals/200 PPM MOISTURE

    SciTech Connect

    Kent, R.P.; Wells, T.C.

    1963-03-01

    The creep behavior of the magnesium-zirconium alloy ZA was studied in tests of up to 5600 hr duration at 400 deg C and up to 12 600 hr duration at 450 deg C, in an atmosphere of carbon dioxide containing approximately 200 ppm water. The accompanying microstructural changes were observed by optical and electron microscopy. The alloy is stronger at 450 deg C than at 400 deg C and additional strengthening obtains from prestraining at 250 deg C prior to creep-testing. In stress rupture tests at 200 deg C subsequent to creep-testing, the time to rupture and the rupture ductilitymore » are lower in specimens previously tested at 450 deg C than in those tested at 400 deg C. The increase in creep strength at 450 deg C, and subsequent loss of ductility, are attributed principally to the precipitation of a zirconium-rich phase, tentatively identified as epsilon - zirconium hydride, which forms both intragranularly (as ribbons and thin hexagonal plates) and as intergranular particles. (auth)« less

  6. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    PubMed

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found

  7. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    NASA Astrophysics Data System (ADS)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  8. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  9. High strength Sn-Mo-Nb-Zr alloy tubes and method of making same

    DOEpatents

    Cheadle, Brian A.

    1977-01-01

    Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

  10. Fatigue of Ti-3A1-2.5V Alloy Tube and Rod

    DTIC Science & Technology

    2007-02-28

    during cyclic straining of a 18% nickel maraging steel and attributed it to the presence of a crack. Skelton (reference 6) also attributed a hysteresis...growth, and fracture lives was also defined. The LCF behavior of the alloy tube and rod was investigated, examining the shape change of load...is weldable as the commercially pure grades and has excellent resistance to torsion and corrosion . Therefore, it is used principally as tubing in

  11. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of thesemore » gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.« less

  12. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  13. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    PubMed

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  14. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  15. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  16. Zirconium-nickel crystals—hydrogen accumulators: Dissolution and penetration of hydrogen atoms in alloys

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.; Kamenetskaya, E. A.

    2016-07-01

    The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiH x has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption-desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.

  17. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes

    PubMed Central

    Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng

    2018-01-01

    In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed. PMID:29301316

  18. Study of corrosion-related defects of zirconium alloys with slow positron beam

    NASA Astrophysics Data System (ADS)

    Zhu, Zhejie; Yao, Meiyi; Shi, Jianjian; Yao, Chunlong; Lu, Eryang; Cao, Xingzhong; Wang, Baoyi; Wu, Yichu

    2018-09-01

    The corrosion behavior of Zr-4 and N5 alloy specimens corroded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa and in super heated steam at 400 °C/10.3 MPa for 1, 3 and 14 days were investigated by slow positron beam based Doppler broadening spectroscopy. Results showed that there was an evident interfacial layer with pre-existed vacancies and voids in uncorroded Zr-4 specimens, while in uncorroded N5 specimen, the interfacial defect layer can not be identified or a thin interfacial layer was only contained. When the specimens were corroded in super heated steam at 400 °C/10.3 MPa for a few days, the existence of the interface layer in the Zr-4 specimen would delay the diffusion rate of the oxygen atoms and decelerated the oxidation rate of the corrosion process. However, at very early stage of the corrosion, as Zr-4 and N5 specimens were corrded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa, the effect of Li+ accelerated the diffusion rate of the oxygen atoms, while the effect of the interface defect layer became a minor effect.

  19. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  20. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  1. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  2. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  3. Compression Behavior and Energy Absorption of Aluminum Alloy AA6061 Tubes with Multiple Holes

    NASA Astrophysics Data System (ADS)

    Simhachalam, Bade; Lakshmana Rao, C.; Srinivas, Krishna

    2014-05-01

    In this article, compression behavior and energy absorption of aluminum alloy AA6061 tubes are investigated both experimentally and numerically. Static and dynamic simulations are done using LS-Dyna Software for AA6061 tubes. True stress-plastic strain curves from the tensile test are used in the static and dynamic simulations of AA6061 tubes. The energy absorption values between experimental compression results and numeral simulation are found to be in good agreement. Dynamic simulations are done with drop velocity of up to 10 m/s to understand the inertia effects on energy absorption. The deformed modes from the numerical simulation are compared between tubes with and without holes in static and dynamic conditions.

  4. Oxidation and corrosion resistance of candidate Stirling engine heater-head-tube alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1984-01-01

    Sixteen candidate iron base Stirling engine heater head tube alloys are evaluated in a diesel fuel fired simulator materials test rig to determine their oxidation and corrosion resistance. Sheet specimens are tested at 820 C for 3500 hr in 5 hr heating cycles. Specific weight change data and an attack parameter are used to categorize the alloys into four groups; 10 alloys show excellent for good oxidation and corrosion resistance and six alloys exhibit poor or catastrophic resistance. Metallographic, X-ray, and electron microprobe analyses aid in further characterizing the oxidation and corrosion behavior of the alloys. Alloy compositions, expecially the reactive elements aluminum, titanium, and chromium, play a major role in the excellent oxidation and corrosion behavior of the alloys. The best oxidation resistance is associated with the formation of an iron nickel aluminum outer oxide scale, an intermediate oxide scale rich in chromium and titanium, and an aluminum outer oxide scale adjacent to the metallic substrate, which exhibits a zone of internal oxidation of aluminum and to some extent titanium.

  5. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  6. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  7. Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1943-01-01

    Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.

  8. Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes

    NASA Astrophysics Data System (ADS)

    Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi

    2016-06-01

    Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.

  9. Evaluation of dip and spray coating techniques in corrosion inhibition of AA2024 alloy using a silicon/zirconium sol-gel film as coating

    NASA Astrophysics Data System (ADS)

    Garcia, R. B. R.; Silva, F. S.; Kawachi, E. Y.

    2017-02-01

    For corrosion protection of aluminum alloy AA2024 -T3 a silicon/zirconium films were obtained via sol-gel process, prepared from tetraethoxysilane and zirconium acetate, in acid medium with a 5 wt% of nonionic surfactant in order to replace the pre-treatment based on chromium conversion coatings. A homogeneous film was obtained and deposited, at low viscosity condition of the sol (˜10cP), by dip and spray coating techniques. The films morphology was evaluated by Scanning Electron Microscopy (SEM), and to know more about the used deposition methodology, the deposited mass and the film thickness were measured. The corrosion protection efficiency of deposited films was evaluated by potentiodynamic polarization. The film deposition by both dip and spray coatings were effective for the deposition of a homogeneous film layer, and the results showed the thickness is directly related with the deposited mass, and the film deposited by spray technique presented the lower value. Potentiodynamic polarization indicated that the film deposited by spray coating apparently has a better inert ceramic film due the polarization resistance increased around 57% against 27 and 14% of dip coating samples (4 and 1 layer, respectively).

  10. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing formore » further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large

  11. Inconel 690 is alloy of choice for steam-generator tubing

    SciTech Connect

    Strauss, S.D.

    1996-02-01

    The product of two decades of research and plant application, Inconel 690 promises superior long-term resistance to tube cracking in comparison to alloy 600. Ongoing steam-generator management techniques applied at nuclear pressurized-water-reactor (PWR) plants focus on tube monitoring, inspection, and repair, and on water-chemistry control. Of greatest concern to owner/operators of steam generators (SGs) with recirculating (U-bend) rather than straight through tubes is corrosion of several forms, including pitting, thinning, and cracking. As problems persist and operating and maintenance (O and M) costs become prohibitive, managers must consider the remaining option: complete or partial SG replacement. Although replacement costs canmore » range upward of $100-million, this step restores full-power operation, simplifies inspection, shortens subsequent outages, increases unit availability, and reduces radiation exposure of maintenance personnel. Taken together, these can lead to economies over the long term.« less

  12. Zirconium vanadium chromium alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1980-10-14

    A ternary intermetallic compound having the formula Zr(V/sub 1-x/Cr/sub x/)/sub 2/ where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200/sup 0/C, at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  13. A Prospective Case-Control Clinical Study of Titanium-Zirconium Alloy Implants with a Hydrophilic Surface in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Cabrera-Domínguez, José; Castellanos-Cosano, Lizett; Torres-Lagares, Daniel; Machuca-Portillo, Guillermo

    To evaluate prospectively the behavior of narrow-diameter (3.3-mm) titanium-zirconium alloy implants with a hydrophilic surface (Straumann Roxolid SLActive) in patients with type 2 diabetes mellitus in single-unit restorations, compared with a healthy control group (assessed using the glycosylated hemoglobin HbA1c test). The patients evaluated in this study required single-unit implant treatment; 15 patients had type 2 diabetes mellitus, and 14 patients were healthy (control group [CG]). Marginal bone level (MBL) change around the implants was evaluated using conventional, sequential periapical digital radiographs. Patient HbA1c was assessed in each check-up. Normality test (Kolmogorov-Smirnov), univariate and multivariate logistic regression, analysis of variance (ANOVA), and Mann-Whitney U test were used for statistical analysis. No differences in MBL change and implant survival and success rates were found between the diabetes mellitus group (DMG) versus the control group, either during the initial recording (DMG, 0.99 ± 0.56 vs CG, 0.68 ± 0.54; P > .05) or 6 months after restoration (DMG, 1.28 ± 0.38 vs CG, 1.11 ± 0.59; P > .05). No significant correlation between HbA1c levels and MBL change was detected in these patients (P > .05). Patients with glycemic control exhibit similar outcomes to healthy individuals with regard to the investigated parameters. In light of these findings, the titanium-zirconium alloy small-diameter implants can be used in the anterior region of the mouth in type 2 diabetic patients.

  14. Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes For Hoop Creep Enhancement

    SciTech Connect

    Bimal Kad

    2007-09-30

    Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tubemore » axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program were to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined was iterative and intended to systematically (i) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, to be (ii) evaluated at 'in-service' loads at service temperatures and environments. Our report outlines the significant hoop creep enhancements possible via secondary cross-rolling and/or flow-forming operations. Each

  15. Spring/dimple instrument tube restraint

    DOEpatents

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  16. Spring/dimple instrument tube restraint

    DOEpatents

    DeMario, E.E.; Lawson, C.N.

    1993-11-23

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

  17. Formability Extension of Aerospace Alloys for Tube Hydroforming Applications =

    NASA Astrophysics Data System (ADS)

    Anderson, Melissa

    L'hydroformage de tube est un procede novateur de mise en forme du metal qui utilise la pression d'un fluide, generalement de l'eau, dans une matrice fermee pour deformer plastiquement des pieces d'epaisseur faible et fabriquer ainsi des composants tubulaires de geometries complexes. Ce procede possede de nombreux avantages tels que la reduction du poids des pieces, la diminution des couts lies a l'outillage et l'assemblage, la reduction du nombre d'etapes de fabrication et l'excellent etat de surface des pieces hydroformees. Cependant, malgre tous ces atouts, l'hydroformage reste un procede marginal dans le domaine aerospatial a cause de plusieurs facteurs dont la formabilite limitee des alliages aeronautiques. L'objectif principal de la recherche conduite dans le cadre de cette these est d'etudier une methode pour augmenter la formabilite de deux alliages aeronautiques designes par l'utilisation d'un procede de mise en forme multi-etapes qui inclue des cycles de mise en forme suivis d'etapes de traitement thermique intermediaires. Une revue de litterature exhaustive sur les methodes existantes pour ameliorer la formabilite des materiaux vises ainsi que les traitements thermiques d'adoucissement disponibles a permis d'etablir une procedure experimentale appropriee. Ce procede comprend plusieurs sequences de mise en forme suivie de traitement thermique successives jusqu'a l'obtention de la piece finale. L'insertion d'etapes de traitements thermiques intermediaires ainsi que la combinaison " deformation + traitement thermique " influencent le comportement mecanique et metallurgique des alliages. De ce fait, une caracterisation complete des materiaux a ete conduite a chaque etape du procede. D'un point de vue mecanique, l'effet des traitements thermiques et plus generalement du procede multi-etapes sur les proprietes mecaniques et lois constitutives des alliages a ete etudie en detail. Au niveau metallurgique, l'influence du procede sur les caracteristiques

  18. SCC analysis of Alloy 600 tubes from a retired steam generator

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  19. The influence of manufacturing processes on the microstructure, grain boundary characteristics and SCC behavior of Alloy 690 steam generator tubing

    SciTech Connect

    Sarver, J.M.; Doherty, P.E.; Doyle, D.M.

    1995-12-31

    Thermally treated Alloy 690 is the tubing material of choice for replacement steam generators in the United States. Throughout the world, it is manufactured using different melting and thermomechanical processing methods. The influence of different processing steps on the intergranular stress corrosion cracking (IGSCC) behavior of Alloy 690 has not been thoroughly evaluated. Evaluations were performed on Alloy 690 steam generator tubing produced using several different melting practices and thermomechanical processing procedures. The evaluations included extensive microstructural examinations as well as constant extension rate (CERT) tests. The CERT test results indicated that the thermally treated Alloy 690 tubing which wasmore » subjected to higher annealing temperatures displayed the highest degree of resistance to stress corrosion cracking (SCC). Examination of the microstructures indicated that the microstructural changes which are produced by increased annealing temperatures are subtle. In an attempt to further elucidate and quantify the effect of manufacturing processes on corrosion behavior, grain boundary character distribution (GBCD) measurements were performed on the same materials which were CERT tested. Analysis of GBCDs of the samples used in this study indicate that Alloy 690 exhibits a significantly larger fraction of special boundaries as compared to Alloy 600 and Alloy 800, regardless of the processing history of the tubing. Preliminary results indicate that a correlation may exist between processing method, GBCD`s and degree of IGSCC exhibited by the thermally treated samples examined in this study.« less

  20. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  1. Demonstration of a shape memory alloy torque tube-based morphing radiator

    NASA Astrophysics Data System (ADS)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  2. Properties of zirconium silicate and zirconium-silicon oxynitride high-k dielectric alloys for advanced microelectronic applications: Chemical and electrical characterizations

    NASA Astrophysics Data System (ADS)

    Ju, Byongsun

    2005-11-01

    As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3

  3. Containerless processing of Nb-Ge alloys in a long drop tube

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.

    1982-01-01

    The thirty-two meter drop tube at the Marshall Space Flight Center was used to study the effect of zero gravity containerless processing on the structure and properties of materials. The concept involves the suppression of heterogeneous nucleation of solid in liquid and, therefore, solidification accompanied by large degrees of undercooling. Under these conditions metastable phases can be formed or, at the very least, unique nonequilibrium microstructures (containing equilibrium phases) with unique properties can be produced. The drop tube solidification was applied to niobium base alloys with emphasis on the Nb-Ge binary system in an effort to produce metastable phases with high superconducting transition temperatures in bulk specimens. In the past, only lower Ge alloys (Nb-13 a/o, Nb-18 a/o, and Nb-22 a/o) could be undercooled. Higher Ge alloys (e.g., Nb-25 a/o Ge and Nb-27 a/o Ge) can now be undercooled on a routine basis.

  4. Alloy selection considerations and service experience of the first ''in-service'' 439 stainless steel moisture-separator-reheater tube bundles at Kewaunee nuclear power plant

    SciTech Connect

    Kratz, J.L.; Minard, P.G.; Weinberg, D.E.

    1982-01-01

    The need for an alternate moisture-reheater tubing alloy is explored and the reasoning behind the selection of 439 stainless steel is presented. Significant advantages that are evident by using special tubing chemistry and special tubing heat treatment are discussed in relation to fin-die wear, alloy stabilization, maintaining a fully ferritic structure, and reducing the susceptibility to stress-corrosion cracking. Comparisons made between the fatigue response of 439SS tube-to-tube sheet welded specimens ''in air'' at 525/sup 0/F (274/sup 0/C) show a distinct advantage of the use of the 439SS tubing alloy over previously used tubing alloys. An ''in-service'' record of over twomore » years at Kewaunee shows excellent tubing operating experience.« less

  5. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  6. Solution treatment-delayed zirconium-strengthening behavior in Ti-7.5Mo-xZr alloy system

    NASA Astrophysics Data System (ADS)

    Chern Lin, Jiin-Huey; Fu, Yen-Han; Chen, Yen-Chun; Peng, Yu-Po; Ju, Chien-Ping

    2018-01-01

    The present study was devoted to investigate and compare the Zr-strengthening behavior in as-cast (AC) and solution-treated (ST) Ti-7.5Mo-xZr alloys. The experimental results indicated that AC Ti-7.5Mo and AC Ti-7.5Mo-1Zr alloys substantially had an orthorhombic {α }\\prime\\prime phase with a fine, acicular morphology. The content of equi-axed β phase continued to increase with increased Zr content at the expense of {α }\\prime\\prime phase. The threshold Zr content for the formation of β phase in the ST Ti-7.5Mo-xZr alloys was apparently higher than that in the AC Ti-7.5Mo-xZr alloys. The β granular structure was revealed in ST Ti-7.5Mo-5Zr alloy, which increased with increased Zr content. Unlike AC Ti-7.5Mo-9Zr alloy, within each grain of ST Ti-7.5Mo-9Zr alloy were still observed a significant portion of {α }\\prime\\prime morphology. AC Ti-7.5Mo alloy had the lowest YS, lowest tensile modulus and highest elongation among all AC Ti-7.5Mo-xZr alloys. When Zr content increased, both YS and modulus significantly increased while the elongation significantly decreased. Compared to AC Ti-7.5Mo alloy, AC Ti-7.5Mo-9Zr alloy had almost double YS, indicating the effectiveness of Zr-induced strengthening in the AC Ti-7.5Mo-xZr alloys. Compared to AC Ti-7.5Mo, ST Ti-7.5Mo alloys had lower YS, UTS and tensile modulus with almost the same elongation. All the XRD, metallography and tensile test results consistently indicated that the presence of Zr could accelerate the formation of β phase and effectively strengthen the AC Ti-7.5Mo-xZr alloys. A phenomenon of delayed β formation and delayed strengthening was noted in the ST Ti-7.5Mo-xZr alloys, compared to the AC Ti-7.5Mo-xZr alloys.

  7. IGA resistance of TT Alloy 690 and concentration behavior of Broached Egg Crate tube support configuration

    SciTech Connect

    Suzuki, S.; Kusakabe, T.; Yamamoto, H.

    1992-12-31

    In order to improve the reliability of the Steam Generator (SG), TT Alloy 690 and BEC (Broached Egg Crate) type tube support plate has been developed. Some tests are carried out to heighten the reliability for these improvements all the more and the following results are obtained. (1) SERT test (Slow Extension Rate Test) made clear that TT690 has less IGA susceptibility in comparison with MA600. (2) The alkaline susceptibility on the occurrence of IGA/SCC on TT690 and MA600 obtained by SERT corresponds to that obtained by Model Boiler test. (3) By model boiler test, superior concentration behaviors for BECmore » type tube support plate configuration have been recognized in comparison with Drill type. This result is obtained by the joint research of the five utilities (Kansai Epco, Hokkaido Epco, Shikoku Epco, Kyushu Epco, JAPCO) and MHI.« less

  8. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  9. Measurement of fracture stress for 6000-series extruded aluminum alloy tube using multiaxial tube expansion testing method

    NASA Astrophysics Data System (ADS)

    Nagai, Keisuke; Kuwabara, Toshihiko; Ilinich, Andrey; Luckey, George

    2018-05-01

    A servo-controlled tension-internal pressure testing machine with an optical 3D digital image correlation system (DIC) is used to measure the multiaxial deformation behavior of an extruded aluminum alloy tube for a strain range from initial yield to fracture. The outer diameter of the test sample is 50.8 mm and wall thickness 2.8 mm. Nine linear stress paths are applied to the specimens: σɸ (axial true stress component) : σθ (circumferential true stress component) = 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4, and 0:1. The equivalent strain rate is approximately 5 × 10-4 s-1 constant. The forming limit curve (FLC) and forming limit stress curve (FLSC) are also measured. Moreover, the average true stress components inside a localized necking area are determined for each specimen from the thickness strain data for the localized necking area and the geometry of the fracture surface.

  10. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xia, Shuang; Li, Hui; Liu, Ting Guang; Zhou, Bang Xin

    2011-09-01

    The feasibility of applying the grain boundary engineering (GBE) processing to Alloy 690 tube manufacturing for improving the intergranular corrosion resistance was studied. Through small amount of deformation by cold drawing using a draw-bench on a production line and subsequent short time annealing at high temperature, the proportion of low Σ coincidence site lattice (CSL) grain boundaries of the Alloy 690 tube can be enhanced to about 75% which mainly were of Σ3 n ( n = 1, 2, 3, …) type. In this case, the grain boundary network (GBN) was featured by the formation of highly twinned large size grain-clusters produced by multiple twinning during recrystallization. All of the grains inside this kind of cluster had Σ3 n mutual misorientations, and hence all the boundaries inside the cluster were of Σ3 n type and formed many interconnected Σ3 n type triple junctions. The weight losses due to grain dropping during intergranular corrosion for the samples with the modified GBN were much less than that with conventional microstructure. Based on the characterization by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) technique, it was shown that the highly twinned large size grain-cluster microstructure played a key role in enhancing the intergranular corrosion resistance: (1) the large grain-cluster can arrest the penetration of intergranular corrosion; (2) the large grain-cluster can protect the underlying microstructure.

  11. Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents

    NASA Astrophysics Data System (ADS)

    Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto

    2012-02-01

    Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.

  12. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    PubMed Central

    Cai, Yang; Wang, Xiaosong; Yuan, Shijian

    2017-01-01

    Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658

  13. Effect of different thermal treatments on the corrosion resistance of alloy 690 tubing

    SciTech Connect

    Crum, J.R.; Heck, K.A.; Angeliu, T.M.

    1990-03-01

    A comparison of the carbide precipitation characteristics and corrosion resistance of commercially produced alloy 690 steam generator tubing from various sources, with different thermal treatments, was made. Four thermal treatments within the ranges of 700--720{degree}C (1292--1328{degree}F)/5--5.75 hrs and 871--927{degree}C (1600--1700{degree}F)/10 min were compared to one another and to two as-mill annealed tubes. All tubes were characterized with respect to chemical composition, mechanical properties, and microstructure. Overall carbide precipitation was determined by etching with phosphoric acid/nital, bromine-methanol and glyceregia/oxalic etchants. Scanning transmission electron microscope analysis provided detailed chromium depletion profiles across the grain boundary and carbide composition. Nitric acid intergranular attackmore » (IGA) tests were also conducted. C-ring stress corrosion cracking (SCC) tests, with stresses above the yield strength were then conducted in 350{degree}C (662{degree}F) deaerated 1, 10, and 50% NaOH and unstressed IGA tests were conducted in a NaOH-Na{sub 2}SO{sub 4}--Fe{sub 3}O{sub 4}--Fe{sub 2}O{sub 3} environment, also at 350{degree}C (662{degree}F). 2 tabs.« less

  14. A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wu, Xin

    2007-06-01

    An AZ31 magnesium alloy tube has been deformed by the hot metal gas forming (HMGF) technique. Microstructures before and after deformation have been investigated by using Electron Backscattered Diffraction (EBSD) and Electron Microscopy. Due to the inhomogeneous distribution by induction heating, there is a temperature gradient distribution along the tube axis. Accordingly, the deformation mechanism is also different. In the middle area of deformation zone where the temperature is ˜410 °C, almost no twinning has been found, whereas at the edge areas of deformation zone where the temperature is ˜200 °C, a high density of twins has been found. EBSD experiments show a weak (0001) fiber texture along the radial direction of the tube before and after deformation in the high-temperature zone. EBSD experiments on the low temperature deformation region were not successful due to the high stored energy. Schmid factor analysis on the EBSD data shows that, despite the (0001) fiber texture, there are still many grains favoring basal slip along both the axis direction and hoop direction.

  15. One Dimensional Cold Rolling Effects on Stress Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials

    NASA Astrophysics Data System (ADS)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.

  16. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  17. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio < ea > in the range 5.05<=< ea ><=6.40 in fair agreement with previous results for these systems and contrary to the Tc vs < ea > behavior of both amorphous and crystalline transition-metal alloys formed

  18. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    NASA Astrophysics Data System (ADS)

    Xie, Zhuoming; Liu, Rui; Fang, Qianfeng; Zhang, Tao; Jiang, Yan; Wang, Xianping; Liu, Changsong

    2015-12-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C-600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177, 11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)

  19. Comparison of bio-mineralization behavior of Ti-6Al-4V-1Nb and Zr-1Nb nano-tubes formed by anodization

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Hong, Sun I.

    2014-12-01

    Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.

  20. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  1. Surface preparation of Ti-3Al-2.5V alloy tubes for welding using a fiber laser

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Gupta, Mool C.

    2009-11-01

    Ti-3Al-2.5V tubes are widely used in aircraft hydraulic systems. Meticulous surface preparation before welding is necessary to obtain a sound weld involving these alloy tubes. Conventionally this is done by cleaning with environmentally malign toxic chemicals, such as, hydrofluoric acid and nitric acid. This paper describes the laser-cleaning process of the surface of these tubes with a fiber laser as a preparation for pulsed gas tungsten arc welding and results obtained. A simple one-dimensional heat equation has been solved to evaluate the temperature profile of the irradiated surface. It is shown that surface preparation by laser cleaning can be an environmentally friendly alternative process by producing acceptable welds with laser-processed tubes.

  2. Development of Zirconium-based Conversion Coatings for the Pretreatment of AZ91D Magnesium Alloy Prior to Electrocoating

    NASA Astrophysics Data System (ADS)

    Reck, James; Wang, Yar-Ming; Kuo, Hong-Hsiang Harry

    This work examines the use of hexafluorozirconic acid based solutions at concentrations from 0.025 M to 0.100 M and pH values of 2.0 to 4.0 for the creation of a zirconia-based conversion coating less than 1 micron thick to protect magnesium alloy AZ91D. Similar coatings have been found to give excellent protection for steel and aluminum alloys, but little research has been conducted on its application to magnesium. Work was performed to gain an understanding of the film formation mechanisms and related kinetics using x-ray photo-electron spectroscopy, scanning electron microscopy, and open circuit potential monitoring techniques. A design of experiments approach was taken to determine the effects of acid concentration, pH, and soak time on the corrosion properties both as-deposited and with an application of electrocoat. It was found that the application of the zirconia-based coating significantly increased corrosion resistance, and allowed for an acceptable e-coat application with excellent adherence.

  3. Study of IGA/SCC behavior of alloy 600 and 690 SG tubing materials in high temperature solutions

    SciTech Connect

    Tsujikawa, S.; Yashima, S.; Hattori, T.

    1996-09-01

    Intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 Steam Generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. Here, IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions was studied using constant extension rate testing (CERT) method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as a function of pH and electrode potential. The IGA/SCC resistance of SG tubing materials were ranked as, MA600 = TT600 {much_lt} TT690 in acidic solutions, and MA600 < TT600 < TT690 in alkaline solutions. TT690 showed higher corrosion resistance than MA600 andmore » TT600 in both acidic and alkaline conditions. To verify the results of CERT test, long term model boiler tests were also carried out. The model boiler which consists of combinations of several SG tubing materials and tube support plate configurations, operated for more than 15,000 hrs under the simulated operating plant conditions. The results of destructive examination showed good correspondence with the results of a fundamental study, CERT test. The improved performance of alternate SG tubing material was confirmed.« less

  4. Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys

    DOE PAGES

    Aydogan, E.; Maloy, S. A.; Anderoglu, O.; ...

    2017-06-06

    In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less

  5. Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys

    SciTech Connect

    Aydogan, E.; Maloy, S. A.; Anderoglu, O.

    In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less

  6. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  7. STUDY OF THE OXIDATION OF NON-ALLOYED ZIRCONIUM AND OF OXYGEN DIFFUSION IN THE OXIDE FILM AND IN THE METAL (in French)

    SciTech Connect

    Debuigne, J.; Lehr, P.

    1963-12-01

    The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)

  8. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    SciTech Connect

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  9. Microstructural characterization and mechanical properties of Excel alloy pressure tube material

    NASA Astrophysics Data System (ADS)

    Sattari, Mohammad

    Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared

  10. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  11. Electron-emission characteristics of tungsten alloys: Mee 492. [No data; plasma anode tube

    SciTech Connect

    Moon, H.M.

    A plasma-anode tube was constructed to investigate the electron-emission characteristics for rhenium, 1% thorium tungsten, and 2% thorium tungsten. The tube consists of cathode, anode, cesium reservoir, and three probes. Inside of tube is a rough vacuum by using a Varian liquid-nitrogen-cooled cryovalve and further vacuum by using a Varian absorption pumpt to 4 X IO/sup -5/ pa. The tube was sealed off from the vacuum pump after the cesium ampoule was broken. The entire plasma-anode tube except the cesiunm reservoir was placed in a Blue M Electric Company furnace whose door had been modified to permit viewing of themore » tube.« less

  12. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    SciTech Connect

    Aydogan, E.; Pal, S.; Anderoglu, O.

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  13. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    DOE PAGES

    Aydogan, E.; Pal, S.; Anderoglu, O.; ...

    2016-03-08

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  14. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  15. Evaluation of dopants in hydrogen to reduce hydrogen permeation in candidate Stirling engine heater head tube alloys at 760 deg and 820 deg

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Alloy tubes filled with hydrogen doped with various amounts of carbon monoxide, carbon dioxide, ethane, ethylene, methane, ammonia, or water were heated in a diesel fuel-fired Stirling engine simulator materials test rig for 100 hours at 21 MPa and 760 or 820 C to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube walls. Ultra high purity (UHP) hydrogen was used for comparison. The tube alloys were N-155, A-286, Incoloy 800, Nitronic 40, 19-9DL, 316 stainless steel, Inconel 718, and HS-188. Carbon dioxide and carbon monoxide in the concentration range 0.2 to 5 vol % were most effective in reducing hydrogen permeation through the hot tube walls for all alloys. Ethane, ethylene, methane, ammonia, and water at the concentrations investigated were not effective in reducing the permeation below that achieved with UHP hydrogen. One series of tests were conducted with UHP hydrogen in carburized tubes. Carburization of the tubes prior to exposure reduced permeation to values similar to those for carbon monoxide; however, carbon dioxide was the most effective dopant.

  16. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    SciTech Connect

    McGregor, R.; Doherty, P.; Hornbach, D.

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less

  17. CHARACTERISTICS OF ANODIC AND CORROSION FILMS ON ZIRCONIUM

    SciTech Connect

    Misch, R.D.

    1960-05-01

    Zirconium anodizes similarly to tungsten in respect to the change of interference colors with applied voltage. However, the oxide layer on tungsten cannot reach as great a thickness. Hafnium does not anodize in the same way as zirconium but is similar to tantalum. By measuring the interference color and capacitative thicknesses on zirconium (Grades I and III) and a 2.5 wt.% tin ailoy, the film was found to grow less rapidly in terms of capacitance than in terms of iaterference colors. This was interpreted to mean that cracks develop in the oxide as it thickens. The effect was most pronouncedmore » on Grade III zirconium and least pronounced on the tin alloy. The reduction in capacitative thickness was especially noticeable when white oxide appeared. Comparative measurements on Grade I zirconium and 2.5 wt.% tin alloy indicated that the thickness of the oxide film on the tin alloy (after 16 hours in water) increased more rapidly with temperature than the film on zirconium. Tin is believed to act in ways to counteract the tendency of the oxide to form cracks, and to produce vacancies which promote ionic diffusion. (auth)« less

  18. Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.

    PubMed

    Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J

    2016-08-01

    Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.

  19. Using ToF-SIMS and EIS to evaluate green pretreatment reagent: Corrosion protection of aluminum alloy by silica/zirconium/cerium hybrid coating

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Chao; Wang, Chiung-Chi; Wu, Chia-Wei; Liu, Shou-Ching; Mai, Fu-Der

    2008-12-01

    Increasing environmental concern has led to the restrictive use of chromate conversion coatings to protect Al-alloys from corrosion. Our research is under way to find environmentally compliant substitute coating such as Si/Zr/Ce hybrid coating. The corrosion protection effect of green pretreatment reagent consisted of Si-containing base solution, Ce- and Zr-containing sealing solutions on the corrosion protection of Al-alloys was studied with a 3.5% NaCl aqueous testing solution. The correlation between the corrosion resistance measured by electrochemical impedance spectroscopy (EIS) and surface chemical composition of the hybrid coating measured by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was studied. The proposed green pretreatment reagent was found improve the corrosion protection of Al-alloys, presumably due to the formation of protective oxide film acting as an oxygen barrier.

  20. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  1. A Hollow Extrusion Die for Big Square Tube Profiles of Al-alloy

    NASA Astrophysics Data System (ADS)

    Huang, Xuemei; Deng, Rurong

    2018-03-01

    The factors on premature failure of the traditional extrusion die for the big square tube profiles were introduced. And the characteristics of the conventional structure were analyzed. A new type of hollow die structure for these profiles was presented. And the composition elements of the new die structure were described, including its advantages. According to the comparison conventional with new die structure in use, it was shown that the new die structure has obvious advantages, it could greatly improve the die life. This is a type of die structure which is worth promoting.

  2. Evaluation of CO2 and CO dopants in hydrogen to reduce hydrogen permeation in the Stirling engine heater head tube alloy CG-27

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1983-01-01

    Tubes of CG-27 alloy, filled with hydrogen doped with various amounts of carbon dioxide and carbon monoxide, were heated in a diesel fuel fired Stirling engine simulator materials test rig for 100 hours at 820 C and at a gas pressure of 15 MPa to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube wall. This was done for clean as-heat treated tubes and also for tubes that had previously been exposed for 100 hours to hydrogen doped with 1.0 volume percent carbon dioxide to determine if the lower levels of dopant could maintain a low hydrogen permeation through the hot tube wall. Carbon dioxide, as a dopant in hydrogen, was most effective in reducing hydrogen permeation through clean tubes and in maintaining low hydrogen permeation after prior exposure to 1.0 volume percent carbon dioxide. Only the lowest level of carbon dioxide (0.05 volume percent) was not as effective in the clean or prior exposed tubes. Carbon monoxide as a dopant in hydrogen was less effective than carbon dioxide at a given concentration level. Of the four dopant levels studied; 1.0, 0.5, 0.2, and 0.05 volume percent carbon monoxide, only the 1.0 and 0.5 volume percent were effective in reducing and maintaining low hydrogen permeation through the CG-27.

  3. Tolerability and performance of BIP endotracheal tubes with noble metal alloy coating--a randomized clinical evaluation study.

    PubMed

    Björling, Gunilla; Johansson, Dorota; Bergström, Linda; Jalal, Shah; Kohn, Ivar; Frostell, Claes; Kalman, Sigridur

    2015-12-01

    Hospital acquired infections worsen the outcome of patients treated in intensive care units and are costly. Coatings with silver or metal alloys may reduce or alter the formation of biofilm on invasive medical devices. An endotracheal tube (ETT) is used to connect the patient to a ventilator and coated tubes have been tested in relation to bacterial colonization and respiratory infection. In the present study, we aimed to evaluate and compare a coated and uncoated ETT for patient symptoms and local tracheal tolerability during short term clinical use. Degree of bacterial colonization was also described. A silver-palladium-gold alloy coating ('Bactiguard®'Infection Protection, BIP) has been extensively used on urinary tract catheters and lately also on central venous catheters. We performed a randomised, single-blinded, controlled, first in man, post Conformité Européenne (EC) certification and CE marking study, focused on Bactiguard® coated ETTs (BIP ETT). Thirty patients at a tertiary university hospital scheduled for upper abdominal elective surgery with an expected duration of anaesthesia of at least 3 h were randomised; BIP ETT (n = 20) or standard ETT (n = 10). The tolerability was assessed with a modified version of Quality of Life Head and Neck Module, QLQ-H&N35 and by inspection of the tracheal mucosa with a fibre-optic bronchoscope before intubation and at extubation. Adverse Events (AE) and bacterial adherence were also studied. Statistical evaluations were carried out with the Fisher's Exact Test, the Clopper-Pearson method, as well as a Proportional Odds Model. Differences between groups were identified in 2 of 8 patient related symptoms with regard to tolerability by QLQ-H&N35 (cough, p = 0.022 and dry mouth, p = 0.014 in the treatment group.). No mucosal damage was identified with bronchoscopy. A low level of bacterial colonization with normal flora, equal between groups, was seen after short-term of intubation (median 5 h). No

  4. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  5. Zirconium tetrachloride revisited

    DOE PAGES

    Borjas Nevarez, Rosendo; Balasekaran, Samundeeswari Mariappan; Kim, Eunja; ...

    2018-02-19

    We present that zirconium tetrachloride, ZrCl 4, is a strategic material with wide-ranging applications. Until now, only one crystallographic study on ZrCl 4has been reported [Krebs (1970).Z. Anorg. Allg. Chem.378, 263–272] and that was more than 40 years ago. The compound used for the previous determination was prepared from ZrO 2 and Cl 2–CCl 4, and single-crystal X-ray diffraction (SCXRD) studies on ZrCl 4 obtained from Zr metal have not yet been reported. In this context, we prepared ZrCl 4 from the reaction of Zr metal and Cl 2 gas in a sealed tube and investigated its structure at 100,more » 150, 200, 250, and 300 K. At 300 K, the SCXRD analysis indicates that ZrCl 4 crystallizes in the orthorhombic space group Pca2 1 [a= 6.262 (9),b= 7.402 (11),c= 12.039 (17) Å, andV= 558.0 (14) Å 3] and consists of infinite zigzag chains of edge-sharing ZrCl 6 octahedra. This chain motif is similar to that observed previously in ZrCl 4, but the structural parameters and space group differ. Finally, in the temperature range 100–300 K, no phase transformation was identified, while elongation of intra-chain Zr...Zr [3.950 (1) Å at 100 K and 3.968 (5) Å at 300 K] and inter-chain Cl...Cl [3.630 (3) Å at 100 K and 3.687 (9) Å at 300 K] distances occurred.« less

  6. Proving the viability of manufacturing of multi-layer steel/vanadium alloy/steel composite tubes by numerical simulations and experiment

    NASA Astrophysics Data System (ADS)

    Nechaykina, T.; Nikulin, S.; Rozhnov, A.; Molotnikov, A.; Zavodchikov, S.; Estrin, Y.

    2018-05-01

    Vanadium alloys are promising structural materials for fuel cladding tubes for fast-neutron reactors. However, high solubility of oxygen and nitrogen in vanadium alloys at operating temperatures of 700 °C limits their application. In this work, we present a novel composite structure consisting of vanadium alloy V-4Ti-4Cr (provides high long-term strength of the material) and stainless steel Fe-0.2C-13Cr (as a corrosion resistant protective layer). It is produced by co-extrusion of these materials forming a three-layered tube. Finite element simulations were utilised to explore the influence of the various co-extrusion parameters on manufacturability of multi-layered tubes. Experimental verification of the numerical modelling was performed using co-extrusion with the process parameters suggested by the numerical simulations. Scanning electron microscopy and microhardness measurements revealed a defect-free diffusion layer at the interfaces between both materials indicating a good quality bonding for these co-extrusion conditions.

  7. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  8. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    NASA Astrophysics Data System (ADS)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-04-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  9. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    NASA Astrophysics Data System (ADS)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-05-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  10. Interfacing VPSC with finite element codes. Demonstration of irradiation growth simulation in a cladding tube

    SciTech Connect

    Patra, Anirban; Tome, Carlos

    This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.

  11. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    PubMed

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  12. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  13. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    SciTech Connect

    Bai, Qin; Zhao, Qing

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3{sup n} coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75%more » by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.« less

  14. Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys

    SciTech Connect

    Hoelzer, David T.; Edmondson, Philip D.; Gussev, Maxim N.

    Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of themore » plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were

  15. Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies.

    PubMed

    Li, Chen; Cheng, Guanghua; Sedao, Xxx; Zhang, Wei; Zhang, Hao; Faure, Nicolas; Jamon, Damien; Colombier, Jean-Philippe; Stoian, Razvan

    2016-05-30

    The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

  16. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    SciTech Connect

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of themore » creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.« less

  17. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  18. Zirconium and hafnium

    USGS Publications Warehouse

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  19. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  20. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    NASA Astrophysics Data System (ADS)

    Saibaba, N.

    2008-12-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.

  1. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  2. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    NASA Astrophysics Data System (ADS)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  3. Fluorometric determination of zirconium in minerals

    USGS Publications Warehouse

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  4. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluation of a Zirconium Recycle Scrubber System

    SciTech Connect

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  6. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  7. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  8. About structural phase state of coating based on zirconium oxide formed by microplasma oxidation method

    NASA Astrophysics Data System (ADS)

    Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.

    2017-12-01

    The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.

  9. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciTech Connect

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  10. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciTech Connect

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  11. Rapid Repairs: Surface Preparation of Ti-3 Al-2.5V Alloy Tubes by Fiber Laser and Welding

    DTIC Science & Technology

    2008-11-01

    processing of titanium 6Al - 4V alloy for potential aerospace component cleaning application, Appl Surf Sci 2005;247:623-630. [11] Turner MW, Crouse...Debroy T, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti- 6Al - 4V , 304 Stainless Steel and Vanadium, J Phy D : Appl Phy...14Titanium alloys are used extensively in aerospace applications mainly due to their superior strength to weight ratio. Different grades of titanium

  12. Microstructure evolution and tensile properties of Zr-2.5 wt.% Nb pressure tubes processed from billets with different microstructures

    SciTech Connect

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Pressurized heavy water reactors (PHWR) use zirconium-base alloys for their low neutron-absorption cross section, good mechanical strength, low irradiation creep, and high corrosion resistance in reactor atmospheres. Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5 wt%Nb pressure tubes., The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structuremore » at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.« less

  13. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  14. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    SciTech Connect

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  15. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  16. Oxygen stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  17. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  18. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication

    DOE PAGES

    Sun, Zhiqian; Yamamoto, Yukinori

    2017-06-10

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  19. Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho

    2018-01-01

    Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.

  20. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  1. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    DOEpatents

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  2. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  3. Enhanced Hot Tensile Ductility of Mg-3Al-1Zn Alloy Thin-Walled Tubes Processed Via a Combined Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Fata, A.; Eftekhari, M.; Faraji, G.; Mosavi Mashhadi, M.

    2018-04-01

    In the current study, combined parallel tubular channel angular pressing (PTCAP) and tube backward extrusion (TBE), as a recently developed severe plastic deformation (SPD) method, were applied at 300 °C on a commercial Mg-3Al-1Zn alloy tubes to achieve an ultrafine grained structure. Then, the microstructure, hardness, tensile properties, and fractography evaluations were done at room temperature on the SPD-processed samples. Also, to study the hot tensile ductility of the SPD-processed samples, tensile testing was performed at an elevated temperature of 400 °C, and then, the fractured surface of the tensile samples was studied. It was observed that a bimodal microstructure, with large gains surrounded by many tiny ones, was created in the sample processed by PTCAP followed by TBE. This microstructure led to reach higher hardness and higher strength at room temperature and also led to reach very high elongation to failure ( 181%) at 400 °C. Also, the value of elongation to failure for this sample was 14.1% at room temperature. The fractographic SEM images showed the occurrence of predominately ductile fracture in the samples pulled at 400 °C. This was mostly due to the nucleation of microvoids and their subsequent growth and coalescence with each other.

  4. Enhanced Hot Tensile Ductility of Mg-3Al-1Zn Alloy Thin-Walled Tubes Processed Via a Combined Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Fata, A.; Eftekhari, M.; Faraji, G.; Mosavi Mashhadi, M.

    2018-05-01

    In the current study, combined parallel tubular channel angular pressing (PTCAP) and tube backward extrusion (TBE), as a recently developed severe plastic deformation (SPD) method, were applied at 300 °C on a commercial Mg-3Al-1Zn alloy tubes to achieve an ultrafine grained structure. Then, the microstructure, hardness, tensile properties, and fractography evaluations were done at room temperature on the SPD-processed samples. Also, to study the hot tensile ductility of the SPD-processed samples, tensile testing was performed at an elevated temperature of 400 °C, and then, the fractured surface of the tensile samples was studied. It was observed that a bimodal microstructure, with large gains surrounded by many tiny ones, was created in the sample processed by PTCAP followed by TBE. This microstructure led to reach higher hardness and higher strength at room temperature and also led to reach very high elongation to failure ( 181%) at 400 °C. Also, the value of elongation to failure for this sample was 14.1% at room temperature. The fractographic SEM images showed the occurrence of predominately ductile fracture in the samples pulled at 400 °C. This was mostly due to the nucleation of microvoids and their subsequent growth and coalescence with each other.

  5. Modification in band gap of zirconium complexes

    SciTech Connect

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  6. Feasibility of Shape-Memory Ni/Ti Alloy Wire Containing Tube Elevators for Transcrestal Detaching Maxillary Sinus Mucosa: Ex Vivo Study.

    PubMed

    Li, Yanfeng; Wang, Fuli; Hu, Pin; Fan, Jiadong; Han, Yishi; Liu, Bin; Liu, Tao; Yang, Chunhao; Gu, Xiangmin

    2016-01-01

    Osteotome sinus floor elevation is a less invasive approach to augment an insufficient alveolar bone at the posterior maxilla for dental implantation. However, this approach has some limitations due to the lack of sinus lift tools available for clinical use and the small transcrestal access to the maxillary sinus floor. We recently invented shape-memory Ni/Ti alloy wire containing tube elevators for transcrestal detaching maxillary sinus mucosa, and developed goat ex vivo models for direct visualizing the effectiveness of detaching sinus mucosa in real time during transcrestal maxillary sinus floor elevation. We evaluated our invented elevators, namely elevator 012 and elevator 014, for their effectiveness for transcrestal detaching maxillary sinus mucosa using the goat ex vivo models. We measured the length of sinus mucosa detached in mesial and distal directions or buccal and palatal directions, and the space volume created by detaching maxillary sinus mucosa in mesial, distal, buccal and palatal directions using the invented elevators. Elevator 012 had a shape-memory Ni/Ti alloy wire with a diameter of 0.012 inch, while elevator 014 had its shape-memory Ni/Ti alloy wire with a diameter of 0.014 inch. Elevator 012 could detach the goat maxillary sinus mucosa in the mesial or distal direction for 12.1±4.3 mm, while in the buccal or palatal direction for 12.5±6.7 mm. The elevator 014 could detach the goat maxillary sinus mucosa for 23.0±4.9 mm in the mesial or distal direction, and for 19.0±8.1 mm in the buccal or palatal direction. An average space volume of 1.7936±0.2079 ml was created after detaching the goat maxillay sinus mucosa in both mesial/distal direction and buccal/palatal direction using elevator 012; while the average space volume created using elevator 014 was 1.8764±0.2366 ml. Both two newly invented tube elevators could effectively detach the maxillary sinus mucosa on the goat ex vivo sinus models. Moreover, elevator 014 has advantages over

  7. Combat Maintenance Concepts and Repair Techniques Using Shape Memory Alloys for Fluid Lines, Control Tubes, and Drive Shafts.

    DTIC Science & Technology

    1983-03-01

    BUREAU OF STANDARDS-1963-A ,,...:-. .-. -.’" :.- --. . 4 Iq " USAAVRADCOM-TR-82-D-37 COMBAT MAINTENANCE CONCEPTS AND REPAIR TECHNIQUES USING SHAPE MEMORY...O APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT The results of this effort determined the feasibility of using the full-ring shape memory alloy...specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United

  8. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  9. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  10. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon

    2016-10-01

    The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.

  11. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    SciTech Connect

    Linton, Kory D.; Field, Kevin G.; Petrie, Christian M.

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. Tomore » address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).« less

  12. High temperature alloy

    NASA Technical Reports Server (NTRS)

    Frank, R. G.; Semmel, J. W., Jr.

    1968-01-01

    Molybdenum is substituted for tungsten on an atomic basis in a cobalt-based alloy, S-1, thus enabling the alloy to be formed into various mill products, such as tubing and steels. The alloy is weldable, has good high temperature strength and is not subject to embrittlement produced by high temperature aging.

  13. Undercooling studies on Nb-Pt and Nb-Si alloys using the 105 meter drop tube

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Bayuzick, R. J.; Hofmeister, W. H.

    1988-01-01

    Niobium-platinum samples of compositions ranging from 16 to 32 at. pct have been undercooled to as much as 540 K in the low gravity, containerless environment of a 105 meter drop tube. Undercooling was terminated in the Nb-Pt samples by the nucleation and growth of the Nb3Pt phase. In the 16-18 at. pct Pt samples, this resulted in samples which are completely Nb3Pt, in contrast to both the equilibrium phase diagram and the nonundercooled samples which formed with Nb dendrites and interdendritic Nb3Pt. Undercoolings for the Nb-Si samples were up to 670 K, which corresponds to 27 percent of the liquidus temperature or 80 percent of the estimated hypercooling limit. In the Nb-Si system, a coupled zone was identified as well as a metastable extension of the solubility limit of Si in Nb due to deep undercooling.

  14. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  15. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  17. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  18. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  19. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  20. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  1. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    SciTech Connect

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is

  2. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  3. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  4. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  5. PROCESS OF PREPARING ZIRCONIUM OXYCHLORIDE

    DOEpatents

    Wilhelm, H.A.; Andrews, M.L.

    1960-06-28

    A process is given for preparing zirconyl chloride by mixing solid zirconyl chloride octahydrate and solid zirconium tetrachloride at room temperature whereby both chlorides are converted to zirconyl chloride trinydrate and hydrogen chloride is formed and volatilized by the reaction heat.

  6. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  7. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    PubMed

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  8. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  9. The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh

    2018-04-01

    The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.

  10. Strong, corrosion-resistant aluminum tubing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  11. Nickel aluminide alloy for high temperature structural use

    DOEpatents

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  12. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  13. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  14. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    SciTech Connect

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  15. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGES

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  16. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  17. Effect of Copper and Zirconium Addition on Properties of Fe-Co-Si-B-Nb Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ikram, Haris; Khalid, Fazal Ahmad; Akmal, Muhammad; Abbas, Zameer

    2017-07-01

    In this research work, iron-based bulk metallic glasses (BMGs) have been fabricated, characterized and compared with Fe-Si alloy. BMG alloys of composition ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4) were synthesized by suction casting technique using chilled copper die. Effect of copper and zirconium addition on magnetic, mechanical, thermal and electrochemical behavior of ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4 BMGs was investigated. Furthermore, effect of annealing on nano-crystallization and subsequently on magnetic and mechanical behavior was also analyzed. Amorphousness of structure was evidenced by XRD analysis and microscopic visualization, whereas nano-crystallization behavior was identified by peak broadening of XRD patterns. Magnetic properties, measured by vibrating sample magnetometer, were found to be improved for as-cast BMG alloys by copper addition and further enhanced by nano-crystallization after annealing. Mechanical properties were observed to be increased by zirconium addition while slightly declined by copper addition. Potentiodynamic polarization analysis manifested the positive role of zirconium in enhancing corrosion resistance of BMGs in acidic, basic and brine mediums. Moreover, mechanical properties and corrosion analysis results affirmed the superiority of BMG alloys over Fe-Si alloy.

  18. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  19. Tensile properties from room temperature to 1315 C of tungsten-lined tantalum-alloy (T-111) tubing fabricated by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1974-01-01

    The effects were studied of a thin tungsten liner on the tensile properties of T-111 tubing considered for fuel cladding in a space power nuclear reactor concept. The results indicate that the metallurgically bonded liner had no appreciable effects on the properties of the T-111 tubing. A hot isostatic pressing method used to apply the liners is described along with a means for overcoming the possible embrittling effects of hydrogen contamination.

  20. Separation of Zirconium and Hafnium: A Review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium. This paper provides an overview of the processes for separating hafnium from zirconium. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The current dominant zirconium production route involves pyrometallurgical ore cracking, multi-step hydrometallurgical liquid-liquid extraction for hafnium removal and the reduction of zirconium tetrachloride to the pure metal by the Kroll process. The lengthy hydrometallurgical Zr-Hf separation operations leads to high production cost, intensive labour and heavy environmental burden. Using a compact pyrometallurgical separation method can simplify the whole production flowsheet with a higher process efficiency. The known separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt extraction. The commercially operating extractive distillation process is a significant advance in Zr-Hf separation technology but it suffers from high process maintenance cost. The recently developed new process based on molten salt-metal equilibrium for Zr-Hf separation shows a great potential for industrial application, which is compact for nuclear grade zirconium production starting from crude ore. In the present paper, the available separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  1. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  2. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  3. Synthesis and nonstoichiometry of the zirconium trihalides

    SciTech Connect

    Daake, R.L.; Corbett, J.D.

    1978-05-01

    The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less

  4. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  5. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  6. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  7. Oxidized zirconium on ceramic; Catastrophic coupling.

    PubMed

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Hydrostatic Extrusion of 60mm Mortar Tubes

    DTIC Science & Technology

    1974-10-01

    Transverse "Tensile Test Specimen 16 9. Subsize Charpy and Tensile Test Specimens 17 10. Extruded 718 Alloy Tube Pressure-strain Pressure Test [)ata 18... subsize specimens. (d) Previous studies have shown that the standard size Charpy values are 4.5 times the subsize values. 22 -. •. ., *. ...20 II. Tensile Properties of Extruded and Aged Tube (a) 21 III. Extruded 718 Alloy Pressure Test Data 21 IV. V-Notch Charpy Impact Properties(c) of

  9. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  10. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  11. Copper-acrylic enamel serves as lubricant for cold drawing of refractory metals

    NASA Technical Reports Server (NTRS)

    Beane, C.; Karasek, F.

    1966-01-01

    Acrylic enamel spray containing metallic copper pigment lubricates refractory metal tubing during cold drawing operations so that the tubing surface remains free from scratches and nicks and does not seize in the die. Zirconium alloys, zirconium, tantalum alloys, niobium alloys, vanandium alloys and titanium alloys have been drawn using this lubricant.

  12. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    SciTech Connect

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  13. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  14. Substantially oxygen-free contact tube

    NASA Technical Reports Server (NTRS)

    Pike, James F. (Inventor)

    1993-01-01

    A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.

  15. Substantially Oxygen-Free Contact Tube

    NASA Technical Reports Server (NTRS)

    Pike, James F. (Inventor)

    1991-01-01

    A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.

  16. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  17. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T.

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  18. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  19. Leakproof Swaged Joints in Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  20. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  1. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    SciTech Connect

    Hu, Xunxiang; Ang, Caen K.; Singh, Gyanender P.

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge Nationalmore » Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.« less

  2. Zirconium: biomedical and nephrological applications.

    PubMed

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  3. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  4. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  5. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  6. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  7. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  8. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Oxygen-stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-06-16

    An oxygen stabilized intermetallic compound is described which has the formula (Zr/sub 1-x/Ti/sub x/)/sub 2-u/(V/sub 1-y/Fe/sub y/)O/sub z/ where x = 0.0 to 0.9, y = 0.01 to 0.9, z = 0.25 to 0.5 and u = 0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196/sup 0/C to 200/sup 0/C at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  10. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  11. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  12. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  13. Disposition of Chicago Pile 5 (CP-5) Converter Tubes in the 10-160B Cask

    SciTech Connect

    Pancake, Daniel C.; Rock, Cynthia

    This paper will focus on the unique characterization, packaging, and transportation issues associated with the disposition of the two CP-5 Converter Tube assemblies from Argonne National Laboratory. The converter tubes were constructed of combinations of HEU and alloys of zirconium, and were part of the original research facilities attached to the CP-5 reactor during operating evolutions. These assemblies were heavily irradiated during their operational lifetime, and were segregated from the balance of irradiated test specimens when the reactor was deactivated and slated for Decontamination and Demolition (D&D). In addition, the substantial contribution of fissile material to the assemblies’ inventory mademore » the potential disposition pathways extremely challenging. As a result, these items became part of Argonne’s legacy “nuclear footprint”, and were added to the Nuclear Footprint Reduction Project scope for disposition. The Project was responsible for the size reduction and characterization of these items, as well as the ultimate disposition. After negotiating a disposal pathway for these tubes, there were significant transportation issues that required a small team to overcome, in order to successfully ship these items to the Nevada National Security Site (NNSS). The Project team at Argonne, technical support from transportation specialists, licensing support from the 10-160B license owner, the Savanah River National Lab (SRNL) Packaging Certification Team (PCT, and the DOE EM-33 staff contributed to license and safety analysis report amendments that eventually authorized the shipment of the material. The paper will identify the organizations, and the specific actions, required to successfully make three “one of a kind” shipments of irradiated test specimen material. This will include the unique packaging configurations, contents modification for the cask license (via the Amendment process), criticality evaluations, and associated review and

  14. Observations on the brittle to ductile transition temperatures of B2 nickel aluminides with and without zirconium

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.; Bowman, R.

    1989-01-01

    The effect of a zirconium addition (0.05 at. pct) to a stoichiometric NiAl alloy on the brittle-to-ductile transition temperature (BDTT) of this alloy was investigated. Constant velocity tensile tests were conducted to fracture between 300 and 1100 K under initial strain rate 0.00014/sec, and the true stress and true strain values were determined from plots of load vs time after subtracting the elastic strain. The inelastic strain was measured under a traveling microscope. Microstructural characterization of as-extruded and fractured specimens was carried out by SEM and TEM. It was found that, while the addition of 0.05 at. pct Zr strengthened the NiAl alloy, it increased its BDTT; this shift in the BDTT could not be attributed either to variations in grain size or to impurity contents. Little or no room-temperature ductility was observed for either alloy.

  15. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  16. International strategic minerals inventory summary report; zirconium

    USGS Publications Warehouse

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  17. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    SciTech Connect

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  18. Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    He, Wei; Chuang, Andrew; Cao, Zheng; Liaw, Peter K.

    2010-07-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials that offer an attractive combination of properties, such as high strength, low modulus, good fatigue limit, and near-net-shape formability. The BMGs have been explored in mechanical, chemical, and magnetic applications. However, little research has been attracted in the biomedical field. In this work, we study the potential of BMGs for the orthopedic repair and replacement. We report the biocompatibility study of zirconium (Zr)-based solid BMGs using mouse osteoblast cells. Cell attachment, proliferation, and differentiation are compared to Ti-6Al-4V, a well-studied alloy biomaterial. Our in-vitro study has demonstrated that cells cultured on the Zr-based BMG substrate showed higher attachment, alkaline phosphatase activity, and bone matrix deposition compared to those grown on the control Ti alloy substrate. Cytotoxicity staining also revealed the remarkable viability of cells growing on the BMG substrates.

  19. Fabrication and Evaluation of Titanium and Zirconium based Wires for use during Extended, Deep Space, Missions

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Novel materials and designs are necessary for transport vessels and propulsion systems to fulfill NASA's vision of easier access to space and the expansion of human exploration beyond low-earth orbit. Spacecraft components must necessarily be lighter and stronger than their predecessors and will likely be required to serve new purposes. Furthermore, they must be resilient to the thermal, vacuum, and radiation environment of space for extended periods of time and may need to perform in the near proximity of a nuclear fuel source. To this end research has been initiated to fabricate novel, composite, wires based on titanium and zirconium pearlitic alloys. It is expected that the fabricated wire will well endure in the space environment with application as tethers, sail components, fasteners, and a myriad of other (including earth-based) uses. A background on pearlitic wire, novel alloy development, microstructural characterization, and initial mechanical testing results will be presented and discussed.

  20. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo

    2017-08-01

    In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.

  1. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  2. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  3. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  4. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  5. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  6. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  7. From Zirconium Nanograins to Zirconia Nanoneedles

    PubMed Central

    Zalnezhad, E.; Hamouda, A. M. S.; Jaworski, J.; Do Kim, Young

    2016-01-01

    Combinations of three simple techniques were utilized to gradually form zirconia nanoneedles from zirconium nanograins. First, a physical vapor deposition magnetron sputtering technique was used to deposit pure zirconium nanograins on top of a substrate. Second, an anodic oxidation was applied to fabricate zirconia nanotubular arrays. Finally, heat treatment was used at different annealing temperatures in order to change the structure and morphology from nanotubes to nanowires and subsequently to nanoneedles in the presence of argon gas. The size of the pure zirconium nanograins was estimated to be approximately 200–300 nm. ZrO2 nanotubular arrays with diameters of 70–120 nm were obtained. Both tetragonal and monoclinic ZrO2 were observed after annealing at 450 °C and 650 °C. Only a few tetragonal peaks appeared at 850 °C, while monoclinic ZrO2 was obtained at 900 °C and 950 °C. In assessing the biocompatibility of the ZrO2 surface, the human cell line MDA-MB-231 was found to attach and proliferate well on surfaces annealed at 850 °C and 450 °C; however, the amorphous ZrO2 surface, which was not heat treated, did not permit extensive cell growth, presumably due to remaining fluoride. PMID:27623486

  8. Ear Tubes

    MedlinePlus

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  9. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  10. Preparation and Corrosion Resistance of Trivalent Chromium-Zirconium Composite Coating

    NASA Astrophysics Data System (ADS)

    Huang, J. Z.

    2018-05-01

    Aluminum alloys are widely used in the various industries because of its superior advantages. However there will be a thin oxide layer on the surface of the pure aluminum to inhibit corrosion, when adding some other elements, the obtained aluminum alloy is easy to be corroded. Surface protection is an important means to improve the corrosion resistance of aluminum alloys. The formal research had already confirmed that the trivalent chromium conversion coating can significantly improve the corrosion resistance, and the usage of the zirconium solution can also protect the aluminum alloy from corrosion. In this study, we constructed the binary conversion coating with the Cr2(SO4)3 and the K2ZrF6. The optimum reaction conditions are as follows: 10g/L H3PO4, 2g/L K2ZrF6, 28g/L Cr2(SO4)3, pH=2.5∼3.5, temperature 40°C, and reaction time 10 min. Copper sulfate titration experiment confirmed that the corrosion resistance was significantly improved.

  11. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºCmore » to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant

  12. Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup

    2003-08-01

    It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.

  13. [The clinical application of zirconium-dioxide-ceramics. Case report].

    PubMed

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  14. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  15. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  16. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  17. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  18. Viability of thin wall tube forming of ATF FeCrAl

    SciTech Connect

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys frommore » ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.« less

  19. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  20. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  1. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  2. Electron tube

    DOEpatents

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  3. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  4. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  5. Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy

    2001-01-01

    This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.

  6. Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C. A.; Focşăneanu, S. C.

    2017-06-01

    Ti-based alloys are successfully used in the area of orthopedic biomaterials for their enhanced biocompatibility, good corrosion and mechanical properties. The most suitable metals as an alloying element for orthopedic biomaterials are zirconium, molybdenum and tantalum because are non toxic and have good properties. The paper purpose development of two alloys of Ti-Mo-Zr-Ta (TMZT) prepared by arc-melting with several mechanical properties determined by microindentation. The mechanical properties analyzed was Vickers hardness and dynamic elasticity modulus. The investigated alloys presents a low Young’s modulus, an important condition of biomaterials for preventing stress shielding phenomenon.

  7. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  8. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  9. Establishment of the roadmap for chlorination process development for zirconium recovery and recycle

    SciTech Connect

    Collins, E.D.; Del Cul, G.D.; Spencer, B.B.

    Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less

  10. Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle

    NASA Astrophysics Data System (ADS)

    Blomqvist, Jakob; Olofsson, Johan; Alvarez, Anna-Maria; Bjerkén, Christina

    Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation buildup in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: δ-ZrH1.6, γ-ZrH, and Є-ZrH2.

  11. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  13. Phase composition and corrosion resistance of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Morozova, G. I.

    2008-03-01

    The effects of phase composition of castable experimental and commercial alloys based on the Mg-Al, Mg-Al-Mn, Mg-Al-Zn-Mn, and Mg-Zn-Zr systems and of the form of existence of iron and hydrogen admixtures on the rate of corrosion of the alloys in 3% solution of NaCl are studied. The roles of heat treatment in the processes of hydrogen charging and phase formation in alloy ML5pch and of hydrogen in the process of formation of zirconium hydrides and zinc zirconides in alloys of the Mg-Zn-Zr system and their effect on the corrosion and mechanical properties of alloy ML12 are discussed.

  14. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  15. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  16. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  17. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOEpatents

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  18. Tubes of rhombohedral boron nitride

    NASA Astrophysics Data System (ADS)

    Bourgeois, L.; Bando, Y.; Sato, T.

    2000-08-01

    The structure of boron nitride bamboo-like tubular whiskers grown from boron nitride powder is investigated by high-resolution transmission electron microscopy. Despite the relatively small size of the tubes (20-200 nm in diameter), they all exhibit rhombohedral-like ordering in their layer stacking. The tubular sheets also tend to have their [10 bar 1 0] direction parallel to the fibre axis. Particles of iron alloys are commonly found encapsulated inside or at the end of the filaments. It is suggested that iron plays an active role in the growth of the fibres.

  19. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  20. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  1. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOEpatents

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  2. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  3. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode.

    PubMed

    Yang, Junqing; Zheng, Mei; Liu, Qiuju; Yang, Meiling Zhu Chushan; Zhang, Yan; Zhu, Zhiqiang

    2017-09-26

    Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS² (the second tandem mass spectrometry) procedure was estimated to be at the level of 10μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0-500 μg/L and 20-200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.

  4. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode

    PubMed Central

    Yang, Junqing; Zheng, Mei; Liu, Qiuju; Zhu, Meiling; Yang, Chushan; Zhang, Yan; Zhu, Zhiqiang

    2017-01-01

    Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry) procedure was estimated to be at the level of 10 μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 μg/L and 20–200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions. PMID:28954404

  5. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  6. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    PubMed

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  7. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  8. Heat removal capability of divertor coaxial tube assembly

    NASA Astrophysics Data System (ADS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications.

  9. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    SciTech Connect

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  10. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  11. Quercetin as colorimetric reagent for determination of zirconium

    USGS Publications Warehouse

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  12. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  13. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  14. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    SciTech Connect

    Pschirer, James; Burgess, Joshua; Schrecengost, Robert

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPamore » (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed

  15. Layer Formation On Metal Surfaces In Lead-Bismuth At High Temperatures In Presence Of Zirconium

    SciTech Connect

    Loewen, Eric Paul; Yount, Hannah J.; Volk, Kevin

    If the operating temperature lead–bismuth cooled fission reactor could be extended to 800 °C, they could produce hydrogen directly from water. A key issue for the deployment of this technology at these temperatures is the corrosion of the fuel cladding and structural materials by the lead–bismuth. Corrosion studies of several metals were performed to correlate the interaction layer formation rate as a function of time, temperature, and alloy compositions. The interaction layer is defined as the narrow band between the alloy substrate and the solidified lead–bismuth eutectic on the surface. Coupons of HT-9, 410, 316L, and F22 were tested atmore » 550 and 650 °C for 1000 h inside a zirconium corrosion cell. The oxygen potential ranged from approximately 10-22 to 10-19 Pa. Analyses were performed on the coupons to determine the depth of the interaction layer and the composition, at each time step (100, 300, and 1000 h). The thickness of the interaction layer on F22 at 550 °C was 25.3 µm, the highest of all the alloys tested, whereas at 650 °C, the layer thickness was only 5.6 µm, the lowest of all the alloys tested. The growth of the interaction layer on F22 at 650 °C was suppressed, owing to the presence of Zr (at 1500 wppm) in the LBE. In the case of 316L, the interaction layers of 4.9 and 10.6 µm were formed at 550 and 650 °C, respectively.« less

  16. Understanding the Irradiation Behavior of Zirconium Carbide

    SciTech Connect

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  17. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  18. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  19. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  20. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  1. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  2. Zirconium oxide surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres

    2018-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.

  3. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  4. Dynamic Recrystallization Behavior of Zr-1Sn-0.3Nb Alloy During Hot Rolling Process

    NASA Astrophysics Data System (ADS)

    Zhao, Siyu; Liu, Huiqun; Lin, Gaoyong; Jiang, Yilan; Xun, Jian

    2017-11-01

    Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy's dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.

  5. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  6. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  7. Atomic layer deposition of zirconium silicate films using zirconium tetra-tert-butoxide and silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo

    2003-09-01

    A new precursor combination (SiCl4 and Zr(OtC4H9)4) was used to deposit Zr silicate with Zr(OtC4H9)4 as a zirconium source and oxygen source at the same time. SiCl4 and Zr(OtC4H9)4 have higher vapor pressures than their counterpart, ZrCl4 and tetra-n-butyl orthosilicate (TBOS), and it was expected that the cycle time would be shorter. The deposition temperature of the new combination was about 150 °C lower than that of ZrCl4 and TBOS. The film was zirconium rich while it was silicon rich with ZrCl4 and TBOS. Growth rate (nm/cycle), composition ratio [Zr/(Zr+Si)], and chlorine impurity were decreased with increasing deposition temperature from 125 to 225 °C. The composition ratio of the film deposited at 225 °C was 0.53 and the chlorine content was about 0.4 at. %. No carbon was detected by x-ray photoelectron spectroscopy.

  8. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  9. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100[degree]C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  10. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100{degree}C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  11. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  12. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  13. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  14. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  15. The effects of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces.

    PubMed

    Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan

    2013-11-01

    Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.

  16. Alloy 690 qualification: Corrosion under prototypic heat flux and temperature conditions. Final report

    SciTech Connect

    Baum, A.J.

    1995-05-01

    The objective of this program was to perform qualification tests of industrial heats of thermally treated alloy 690 steam generator tubing under heat transfer conditions. Primary emphasis was focused on testing of alternate tube to tubesheet expansion processes. In addition, a background report was written to document the evolution of the alloy 690 process specification and the supporting qualification testing. While the testing was able to produce some localized corrosion of alloy 690 in the tube to tubesheet joint transition regions under highly alkaline conditions, the corrosion rates were between two and three orders of magnitude lower than the comparablemore » rates in mill annealed alloy 600 tubing. The corrosion morphology was a combination of intergranular and general corrosion, rather than the stress corrosion cracking typically found in mill annealed alloy 600 tubing.« less

  17. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Pipes and Tubes From India, Thailand, and Turkey; Certain Circular Welded Non-Alloy Steel Pipe From... on (1) certain circular welded carbon steel pipes and tubes from India, Thailand, and Turkey; (2... circular welded carbon steel pipes and tubes from Turkey would likely lead to continuation or recurrence of...

  18. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  19. Extractive separation of uranium and zirconium sulfates by amines

    SciTech Connect

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  20. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  1. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  2. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  3. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  4. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  5. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  6. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  7. Equations of state for crystalline zirconium iodide: The role of dispersion

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  8. DEVELOPMENT OF PLASTICITY MODEL USING NON ASSOCIATED FLOW RULE FOR HCP MATERIALS INCLUDING ZIRCONIUM FOR NUCLEAR APPLICATIONS

    SciTech Connect

    Michael V. Glazoff; Jeong-Whan Yoon

    2013-08-01

    In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies alongmore » 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.« less

  9. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  10. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  11. Chest Tube Thoracostomy

    MedlinePlus

    ... outside the lung, causing its collapse (called a pneumothorax ). Chest tube thoracostomy involves placing a hollow plastic ... a chest tube is needed include: ■ ■ Collapsed lung (pneumothorax)— This occurs when air has built up in ...

  12. Tracheostomy tube - speaking

    MedlinePlus

    ... most of the air from passing through your vocal cords. Instead, your breath (air) goes out through your tracheostomy tube (trach). At the time of your surgery, the first trach tube will have a balloon ( ...

  13. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts

    PubMed Central

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473

  14. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  15. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.

  16. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  17. Mineral resource of the month: zirconium and hafnium

    USGS Publications Warehouse

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  18. PEG tube insertion -- discharge

    MedlinePlus

    ... be treated with medicine. Caring for the PEG-tube Site Drainage from around the PEG tube is common for the first 1 or 2 ... cotton swab or gauze. Try to remove any drainage or crusting on the skin and tube. Be gentle. If you used soap, gently clean ...

  19. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  20. Influence of Crucible Materials on High-temperature Properties of Vacuum-melted Nickel-chromium-cobalt Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1957-01-01

    A study of the effect of induction-vacuum-melting procedure on the high-temperature properties of a titanium-and-aluminum-hardened nickel-base alloy revealed that a major variable was the type of ceramic used as a crucible. Reactions between the melt and magnesia or zirconia crucibles apparently increased high-temperature properties by introducing small amounts of boron or zirconium into the melts. Heats melted in alumina crucibles had relatively low rupture life and ductility at 1,600 F and cracked during hot-working as a result of deriving no boron or zirconium from the crucible.

  1. Grain boundary microstructure, chemistry, and IGSCC in Alloy 600 and Alloy 690

    SciTech Connect

    Norring, K.; Stiller, K.; Nilsson, J.O.

    1992-12-31

    The resistance to intergranular stress corrosion cracking of six different Alloy 600 and Alloy 690 steam generator tubes has been investigated. The composition of the materials at grain boundaries has been investigated using analytical transmission electron microscopy and atom probe field ion microscopy techniques. The depletion of chromium at the grain boundaries has been related to the type of grain boundary precipitates. Segregation of carbon and boron to the grain boundaries has been observed and quantified.

  2. The shock and spall response of three industrially important hexagonal close-packed metals: magnesium, titanium and zirconium.

    PubMed

    Hazell, P J; Appleby-Thomas, G J; Wielewski, E; Escobedo, J P

    2014-08-28

    Magnesium, titanium and zirconium and their alloys are extensively used in industrial and military applications where they would be subjected to extreme environments of high stress and strain-rate loading. Their hexagonal close-packed (HCP) crystal lattice structures present interesting challenges for optimizing their mechanical response under such loading conditions. In this paper, we review how these materials respond to shock loading via plate-impact experiments. We also discuss the relationship between a heterogeneous and anisotropic microstructure, typical of HCP materials, and the directional dependency of the elastic limit and, in some cases, the strength prior to failure. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  4. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  5. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  6. Some observations on uranium carbide alloy/tungsten compatibility

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.

  7. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  8. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  9. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  10. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    SciTech Connect

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  11. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  12. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  13. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O.D.

    1986-09-02

    Rods of magnetostrictive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube. 5 figs.

  14. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  15. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  16. Corrosion Studies on Titanium and Zirconium Metals

    DTIC Science & Technology

    1950-12-01

    respectively 1.08 percent tantalum and 3.70 percent oolumbium. These alloys were in the cold rolled condition. The tantalum metal used was in the annealed ... vo2 iI 1’os th-, n 6 dr s Tal’ V17. C v"-" ’’ 4 Tesi,: s,.li tix , r - :.il s jer ce tr C..C. 73I 5 S1SO) + 5 ]r 0 s U.31 1.36 2, . O Ŗsf4 + 10 H 0...CDCD64 L O 1- V4. .06 14 ct-o to 400 toE La- LOr~ La 10 Go t O 0 d dojtc dtI- d. 0 . W0W44 .OC J 4 . 4d430 to0 0~e-0O ca 1.10t0 bQ 0a002t 0 OK 4140 to

  17. Intercostal drainage tube or intracardiac drainage tube?

    PubMed

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  18. Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pawar, V.; Weaver, C.; Jani, S.

    2011-05-01

    Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.

  19. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  20. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  1. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  2. Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Freche, John C.; Waters, William J.

    1959-01-01

    An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.

  3. Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier

    SciTech Connect

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.

    A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatmentmore » on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.« less

  4. Clinical evidence on titanium-zirconium dental implants: a systematic review and meta-analysis.

    PubMed

    Altuna, P; Lucas-Taulé, E; Gargallo-Albiol, J; Figueras-Álvarez, O; Hernández-Alfaro, F; Nart, J

    2016-07-01

    The use of titanium implants is well documented and they have high survival and success rates. However, when used as reduced-diameter implants, the risk of fracture is increased. Narrow diameter implants (NDIs) of titanium-zirconium (Ti-Zr) alloy have recently been developed (Roxolid; Institut Straumann AG). Ti-Zr alloys (two highly biocompatible materials) demonstrate higher tensile strength than commercially pure titanium. The aim of this systematic review was to summarize the existing clinical evidence on dental NDIs made from Ti-Zr. A systematic literature search was performed using the Medline database to find relevant articles on clinical studies published in the English language up to December 2014. Nine clinical studies using Ti-Zr implants were identified. Overall, 607 patients received 922 implants. The mean marginal bone loss was 0.36±0.06mm after 1 year and 0.41±0.09mm after 2 years. The follow-up period ranged from 3 to 36 months. Mean survival and success rates were 98.4% and 97.8% at 1 year after implant placement and 97.7% and 97.3% at 2 years. Narrow diameter Ti-Zr dental implants show survival and success rates comparable to regular diameter titanium implants (>95%) in the short term. Long-term follow-up clinical data are needed to confirm the excellent clinical performance of these implants. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  6. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  7. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  8. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  9. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  10. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  11. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  12. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    PubMed

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Edge-on dislocation loop in anisotropic hcp zirconium thin foil

    NASA Astrophysics Data System (ADS)

    Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan

    2015-10-01

    Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.

  14. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  15. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    NASA Technical Reports Server (NTRS)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  16. Kaumana lava tube

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1974-01-01

    The entrance to Kaumana Lava Tube is in a picnic ground next to Highway 20 (Kaumana Drive) about 6.5 km southwest of Hilo. The area is passed on the way to the Kona Coast via the Saddle Road and is identified by a Hawaii Visitors Bureau sign. Although it is not the largest lava tube in the islands, Kaumana Lava Tube is an interesting geological formation, displaying many of the features typical of lava tube interiors. It is accessible, relatively easy to walk through, and is in an excellent state of preservation. The tube developed in a historic lava flow (1881, from Mauna Loa), and many aspects of lava tube activity are observed.

  17. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  18. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  19. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  20. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  1. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  2. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  3. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  4. Fuel nozzle tube retention

    SciTech Connect

    Cihlar, David William; Melton, Patrick Benedict

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  5. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  6. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    SciTech Connect

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  7. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  8. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  9. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  10. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  11. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  12. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    DTIC Science & Technology

    2016-05-17

    Zirconium-Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...PUBLISHED/PRESENTED. D 11a. PUBLICATION/JOURNAL (list intended publication/journal.) General Dentistry D 11b. PUBLISHED ABSTRACT (List intended...the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and

  13. Zirconium as a Structural Material for Naval Systems

    DTIC Science & Technology

    1985-03-29

    case with the technologically critical chemical elements chromium and cobalt, for example, from a military perspective. The case, therefore, for...By adding small amounts of tin, iron, nickel, and chromium , the impurities were effectively bound or coalesced within the metal and the corrosion...and nitrogen from the atmosphere, embrittling the weld. The techniques used for zirconium welding are gas tungsten arc welding ( GTAW ), tungsten inert

  14. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.

    PubMed

    do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  15. Synthesis of zirconium oxynitride in air under DC electric fields

    SciTech Connect

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less

  16. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    PubMed

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  18. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  19. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking

    SciTech Connect

    Katoh, Yutai; Hu, Xunxiang; Koyanagi, Takaaki

    Driven by the need to enlarge the safety margins of light water reactors in both design-basis and beyond-design-basis accident scenarios, the research and development of accident-tolerant fuel (ATF) has become an importance topic in the nuclear engineering and materials community. Continuous SiC fiber-reinforced SiC matrix ceramic composites are under consideration as a replacement for traditional zirconium alloy cladding owing to their high-temperature stability, chemical inertness, and exceptional irradiation resistance. Among the key technical feasibility issues, potential failure of the fission product containment due to probabilistic penetrating cracking has been identified as one of the two most critical feasibility issues, togethermore » with the radiolysisassisted hydrothermal corrosion of SiC. The experimental capability to evaluate the hermeticity of SiC-based claddings is an urgent need. In this report, we present the development of a comprehensive permeation testing station established in the Low Activation Materials Development and Analysis laboratory at Oak Ridge National Laboratory. Preliminary results for the hermeticity evaluation of un-irradiated monolithic SiC tubes, uncoated and coated SiC/SiC composite tubes, and neutron-irradiated monolithic SiC tubes at room temperature are exhibited. The results indicate that this new permeation testing station is capable of evaluating the hermeticity of SiC-based tubes by determining the helium and deuterium permeation flux as a function of gas pressure at a high resolution of 8.07 x 10 -12 atm-cc/s for helium and 2.83 x 10 -12 atm-cc/s for deuterium, respectively. The detection limit of this system is sufficient to evaluate the maximum allowable helium leakage rate of lab-scale tubular samples, which is linearly extrapolated from the evaluation standard used for a commercial as-manufactured light water reactor fuel rod at room temperature. The un-irradiated monolithic SiC tube is hermetic, as is

  20. Towards the development of a triple SMA actuated vertical tube

    NASA Astrophysics Data System (ADS)

    Karimi, Saeed; Konh, Bardia; Seidi, Ebrahim

    2018-03-01

    In this work an active vertically hung tube has been designed, fabricated and tested. The active tube was made of three separate 3D printed parts assembled and glued together. Shape Memory Alloy (SMA) wires were embedded as actuators in the body of the tube to privilege from their robust actuation and high energy density. Three SMA wires were trained and installed evenly on the exterior peripheral side of the tubes to realize motion in multiple directions. A deadweight was hung to one end of the tube to exert a certain amount of pre-stress on actuators. This design offers a restricted actuation because the two wires on the opposite side always resist the intended deflection. Hence, for a proper actuation, each wire was stressed to a certain level to exhibit either expansion or contraction upon demand. This amount of stress was selected based on rigorous experimental data. Power supply units were integrated and linked to a python program to control the amount of power passed through each SMA wire. The active tube was tested, and its movement was captured via a camera and analyzed by ImageJ software for the two cases free of stress and with an applied external load. The electrical resistance of the each SMA wire was measured and used for controlling the tube's deflection in each direction. This work demonstrated the feasibility of using three evenly distributed SMA wires on a tube to create motion in 3D direction.

  1. Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests

    SciTech Connect

    Miller, Frederick D.; Thomas, Larry E.

    2009-08-03

    A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC wasmore » also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.« less

  2. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  3. Hologram recording tubes

    NASA Technical Reports Server (NTRS)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  4. Pyrotechnic Tubing Connector

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  5. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  6. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  7. Permanent and separable aerospace tubing/ fitting evaluation program, volume 1

    NASA Technical Reports Server (NTRS)

    Ursell, C. R.; Franz, C. R.

    1975-01-01

    The tube fitting evaluation program was conducted to develop a standard overall test program including methods, procedures, and equipment as well as recommended test sequences for qualifying fitting/tubing assemblies. The program consisted of testing the MS flareless (separable) fitting and utilizing the results as baseline data from which all other fittings will be evaluated. Five separable designs and five permanent designs were tested in three sizes with two types of tubing materials. The basic design requirements were 4,000 psi operating pressure within the temperature range of minus 65 F to plus 450 F while also being compatible with 21-6-9 and titanium 3Al-2.5V tubing alloys.

  8. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  9. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  10. Data on the effect of homogenization heat treatments on the cast structure and tensile properties of alloy 718Plus in the presence of grain-boundary elements.

    PubMed

    Hosseini, Seyed Ali; Madar, Karim Zangeneh; Abbasi, Seyed Mehdi

    2017-08-01

    The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.

  11. Effects of cobalt, boron, and zirconium on the microstructure of Udimet 738. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Nakanishi, T. G.

    1984-01-01

    A structural study was carried out on Co modified Udimet 738 alloys containing 0.04, 0.10, and 0.20 wt % Zr at 0.01 and 0.03 wt % B levels. Samples in the as-cast and solution-treated conditions were exposed at 843 C to study structural stability. The structures produced by the interactions of Co, Zr, and B were studied by SEM, X-ray diffraction, and dispersive analysis techniques. The additions of large amounts of Zr and B were found to increase the solidification range of the U-738. Structural changes involved eutectic gamma prime islands, formation of low melting point compounds, and precipitation of borides and Zr rich phases. Boron and zirconium additions did not show substantial changes in mechanical properties. Removal of Co from the alloys resulted in reduction of the matrix solubility for carbon and increase in the gamma prime solvus. Structural instabilities found were continuous grain boundary M23C6 films, MC breakdown, and plate-like phases. Removal of cobalt resulted in a slight decrease in tensile and stress rupture properties. Detailed structural results presented.

  12. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  13. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed ontomore » the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.« less

  14. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  15. Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Reid, M. A.; Yang, C. Y. (Inventor)

    1981-01-01

    Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell.

  16. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of aerosol cosmetic products containing zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and other organs of experimental animals. When used in aerosol form, some zirconium will reach the...

  17. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  18. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  19. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  20. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  1. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  2. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  3. Miniature Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Tward, E.; Nguyen, T.; Godden, J.; Toma, G.

    2004-06-01

    A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.

  4. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Closed-Tube Barcoding.

    PubMed

    Sirianni, Nicky M; Yuan, Huijun; Rice, John E; Kaufman, Ronit S; Deng, John; Fulton, Chandler; Wangh, Lawrence J

    2016-11-01

    Here, we present a new approach for increasing the rate and lowering the cost of identifying, cataloging, and monitoring global biodiversity. These advances, which we call Closed-Tube Barcoding, are one application of a suite of proven PCR-based technologies invented in our laboratory. Closed-Tube Barcoding builds on and aims to enhance the profoundly important efforts of the International Barcode of Life initiative. Closed-Tube Barcoding promises to be particularly useful when large numbers of small or rare specimens need to be screened and characterized at an affordable price. This approach is also well suited for automation and for use in portable devices.

  6. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  7. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of binary and ternary titanium alloys for dental implants.

    PubMed

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  10. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  11. Chest tube insertion

    MedlinePlus

    ... leaks from inside the lung into the chest ( pneumothorax ) Fluid buildup in the chest (called a pleural ... on the reason a chest tube is inserted. Pneumothorax most often improves, but sometimes surgery is needed ...

  12. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  13. Eustachian tube patency

    MedlinePlus

    ... to become blocked. Images Ear anatomy Eustachian tube anatomy References Kerschner JE, Preciado D. Otitis media. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  14. Tube-Forming Assays.

    PubMed

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  15. Bull Moose Tube Company

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Bull Moose Tube Company, a business located at 1819 Clarkson Road, Chesterfield, MO, 63017, for alleged violations at the facility located at 406 East Industrial Drive,

  16. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  17. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  18. Using a nasogastric tube.

    PubMed

    Candy, C

    1986-09-01

    This discussion of the use of a nasogastric tube covers the equipment needed, the method, rehydration and feeding, prolonged nasogastric feeding, and stopping nasogastric feeding. A nasogastric tube is useful when children are unable to drink safely and in sufficient amounts for any of the following reasons: severe dehydration; if intravenous (IV) therapy is unavailable; low birth weight infants; or the child is drowsy or vomiting. Severely malnourished children may be fed initially in this way if they are too weak or anorexic to eat or drink normally. The following equipment is needed: nasogastric tube; lubricating fluid; a syringe; blue litmus paper, if available; adhesive tape; stethoscope if available; and fluid to be given. Explain to the child's parents and the child, if old enough to understand, what will be done; lie infants flat; measure the approximate length from the child's nostril to the ear lobe and then to the top of the abdomen with the tube and mark the position; clean the nostrils to remove the mucus, and lubricate the tip of the tube and gently insert into the nostril; give the child a drink of water if he or she is conscious; continue to pass the tube down until the position marked reaches the nostril; use the syringe to suck up some fluid and test with blue litmus paper to check that the tube is in the stomach; and inject 5-10 ml of fluid (saline or oral rehydration solution, not milk formula) by syringe if satisfied the tube is in the correct position. Where possible, give a continuous drip of fluid. If this is not possible, give frequent small amounts using the syringe as a funnel. If feeding continues for more than 24 hours, clean the nostrils daily with warm water and change the tube to the other nostril every few days. Also keep the mouth very clean with a dilute solution of 8% sodium bicarbonate, if available, or citrus fruit juice. To remove the tube, remove the adhesive tape, take the tube out gently and smoothly, and offer the child a

  19. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  20. Tube Failure Mechanisms.

    DTIC Science & Technology

    studies will be made: ( a ) An investigation of the factors influencing electrical breakdown in a vacuum and across the surface of a dielectric. (b) An...The purpose of this program is to investigate the nature and the principal causes of failures in microwave tubes. In this context, the following...investigation of the various electrical and surface properties of materials commonly used in microwave tubes, i.e., OFHC copper, alumina ceramic, tungsten