Science.gov

Sample records for zirconium alloys approche

  1. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  2. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  3. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  4. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  5. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  6. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  7. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  8. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  9. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    SciT

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  10. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  11. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  12. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  13. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  14. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  15. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  16. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  17. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  18. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  19. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  20. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    SciT

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  1. Electrochemical Study of Corrosion Phenomena in Zirconium Alloys

    DTIC Science & Technology

    2005-06-01

    required reaction rates [1.1]. Based predominantly on this fact, zirconium alloys were chosen to sheath, or clad, the fuel. With the increasing demand...cathode or anode. As the oxidation and reduction reactions occur, a galvanic cell is developed. The electrons on the anode are released from the metallic...matrix as the ions are released into the aqueous solution in the initial half-cell reaction . The second half-cell reaction , taking place on the

  2. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  3. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...

    2015-10-13

    Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less

  4. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  5. The Deformation Mechanism of Fatigue Behaviour in a N36 Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhu

    2018-05-01

    Zirconium alloys are widely used as claddings in nuclear reactor. A N36 zirconium alloy has been deformed into a sheet with highly texture according to the result of electron back scatter diffraction test. Then this N36 zirconium alloy sheet has been cut into small beam samples with 12 x 3 x 3 mm3 in size. In this experiment, a three-point bending test was carried out to investigate the fatigue behaviour of N36 zirconium alloy. Cyclic loadings were applied on the top middle of the beam samples. The region of interest (ROI) is located at the middle bottom of the front face of the beam sample where slip band was observed in deformed beam sample due to strain concentration by using scanning electron microscopy. Twinning also plays an important role to accommodate the plastic deformation of N36 zirconium alloy in fatigue, which displays competition with slip.

  6. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  7. The stability of alloying additions in Zirconium

    NASA Astrophysics Data System (ADS)

    Lumley, S. C.; Murphy, S. T.; Burr, P. A.; Grimes, R. W.; Chard-Tuckey, P. R.; Wenman, M. R.

    2013-06-01

    The interactions of Cr, Fe, Nb, Ni, Sn, V and Y with Zr are simulated using density functional theory. Thermodynamic stabilities of various different Zr based intermetallic compounds, including multiple Laves phase structures and solutions of alloying additions in both α and β-Zr were investigated. The thermodynamic driving forces in this system can be correlated with trends in atomic radii and the relative electronegativities of the different species. Formation energies of Fe, Ni and Sn based intermetallic compounds were found to be negative, and the ZrFe and ZrNi intermetallics were metastable. Most elements displayed negative energies of solution in β-Zr but positive energies in the α-phase, with the exception of Sn (which was negative for both) and Y (which was positive for both). Solutions formed from intermetallics showed a similar trend. Cr -3s23p64s13d5. Fe -4s23d6. Nb -4s24p65s14d4. Ni -4s23d8. Sn -5s25p2. V -3s23p64s23d3. Y -4s24p65s24d1. Zr -4s24p65s24d2. The pseudopotential scheme used is "on-the-fly" generation, in which an isolated all-electron calculation is carried out before the main calculation and used as a starting point to generate a pseudopotential. This was carried out for all pseudopotentials except Cr and V, as the default on-the-fly pseudopotentials for these elements required a much higher cut-off energy. Instead, standard ultrasoft pseudopotentials, as found in the CASTEP pseudopotential library, were used for Cr and V. All pseudopotentials (both on-the-fly and library) are of the ultrasoft type [15], and so are compatible with each-other. Exchange-correlation was modelled using the Perdew, Burke and Ernzerhof formalisation of the Generalised Gradient Approximation [16].A series of simulations were run to establish an appropriate basis set cut-off energy, and the density of sampling in the Brillouin zone. The results were converged to within two decimal places for a cut-off energy of 450 eV and a k-point spacing of 0.003 nm-1. The k

  8. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  9. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  10. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Photo, which appeared on the July cover of `Physics Today', is of the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. In this particular shot, the ESL contains a solid metal sample of titanium-zirconium-nickel alloy. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  11. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  12. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  13. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  14. Transport property correlations for the niobium-1% zirconium alloy

    NASA Astrophysics Data System (ADS)

    Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.

    1990-10-01

    Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.

  15. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  16. Zirconium

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  17. Plate-shaped transformation products in zirconium-base alloys

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Dey, G. K.; Srivastava, D.; Ranganathan, S.

    1997-11-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IPS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 bar 11} α < bar 1123> α slip or twinning on {10 bar 11} α planes. Widmanstätten α precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the α/β interface being decorated with a periodic array of < c + a> dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The α precipitates, forming in the retained β phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103} β — {113} β poles, which are close to the specific variant of the {112} β plane, which transforms into a prismatic plane of the type {1 bar 100} α . The crystallography of the

  18. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciT

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history,more » residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed

  19. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Cochrane, C.; Daymond, M. R.

    2018-05-01

    This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

  20. Characterization of deformation mechanisms in zirconium alloys: effect of temperature and irradiation

    NASA Astrophysics Data System (ADS)

    Long, Fei

    Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion

  1. THE DETERMINATION OF TRACES OF BORON IN ZIRCONIUM METAL AND ZIRCONIUM ALLOYS

    SciT

    Hayes, M.R.; Metcalfe, J.

    1962-01-01

    A general procedure is given for the determination of B, down to 0.2 ppm, in Zr and Zr alloys. Separation of the B is not necessary, the B-curcumin complex being formed directly in an aliquot of the metal sulfate solution. An interference effect has been noted when analyzing Zr alloys containing Sn. The interference is caused by an insoluble compound of curcumin which separates and has similar properties to the B-curcumin complex. This source of interference is, however, readily eliminated during the procedure for the determination of B. The procedure has been applied to the determination of B in puremore » Zr, zr--0.5% Cu-- 0.5% MO, and Zr--1.5% Sn--0.1% Fe--0.1% Cr--0.05% Ni alloys. Results are comparable with those obtained by methods requiring the separation of the B as methyl borate. (auth)« less

  2. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    NASA Astrophysics Data System (ADS)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  3. The role of hydrogen in zirconium alloy corrosion

    NASA Astrophysics Data System (ADS)

    Ensor, B.; Lucente, A. M.; Frederick, M. J.; Sutliff, J.; Motta, A. T.

    2017-12-01

    Hydrogen enters zirconium metal as a result of the corrosion process and forms hydrides when present in quantities above the solubility limit at a given temperature. Zircaloy-4 coupons of different thicknesses (0.4 mm-2.3 mm) but identical chemistry and processing were corroded in autoclave at 360 °C for various times up to 2800 days. Coupons were periodically removed and weighed to determine weight gain, which allows follow of the corrosion kinetics. Coupon thickness differences resulted in different volumetric concentrations of hydrogen, as quantified using hot vacuum extraction. The thinnest coupons, having the highest concentration of hydrogen, demonstrated acceleration in their corrosion kinetics and shorter transition times when compared to thicker coupons. Furthermore, it was seen that the post-transition corrosion rate was increased with increasing hydrogen concentration. Corrosion rates increased only after the terminal solid solubility (TSS) was exceeded for hydrogen in Zircaloy-4 at 360 °C. Therefore, it is hypothesized that the corrosion acceleration is caused by the formation of hydrides. Scanning electron microscope (SEM) examinations of fractured oxide layers demonstrate the oxide morphology changed with hydrogen content, with more equiaxed oxide grains in the high hydrogen samples than in those with lower hydrogen content. Additionally, locations of advanced oxide growth were correlated with locations of hydrides in the metal. A hypothesis is proposed to explain the accelerated corrosion due to the presence of the hydrides, namely that the metal, locally, is less able to accommodate oxide growth stresses and this leads to earlier loss of oxide protectiveness in the form of more frequent oxide kinetic transitions.

  4. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  5. Boron and Zirconium from Crucible Refractories in a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1958-01-01

    In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability.

  6. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2017-04-01

    A continuum model for calculating the time-dependent hydrogen pickup fractions in various Zirconium alloys under steam and pressured water oxidation has been developed in this study. Using only one fitting parameter, the effective hydrogen gas partial pressure at the oxide surface, a qualitative agreement is obtained between the predicted and previously measured hydrogen pickup fractions. The calculation results therefore demonstrate that H diffusion through the dense oxide layer plays an important role in the hydrogen pickup process. The limitations and possible improvement of the model are also discussed.

  7. Effect of oxidation on transport properties of zirconium-1% niobium alloy

    NASA Astrophysics Data System (ADS)

    Peletsky, V. E.; Musayeva, Z. A.

    1995-11-01

    The thermal conductivity and electrical resistivity of zirconium-1 wt% niobium samples were measured before and after the process of their oxidation in air. A special procedure was used to dissolve the gas and to smooth out its concentration in the alloy. The basic experiments were performed under high vacuum under steady-state temperature conditions. The temperature range was 300 1600 K. for the pure alloy and 300 1100 K for the samples containing oxygen. It was found that the thermal conductivity—oxygen concentration relation reverses its sign from negative at low and middle temperatures to positive at temperatures above 900 K. The relation between the electrical resistivity and the oxygen content does not show this feature. The Lorenz function was found to have an anomalous temperature dependence.

  8. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  9. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  10. Performance assessment of femoral knee components made from cobalt-chromium alloy and oxidized zirconium.

    PubMed

    Brandt, J-M; Guenther, L; O'Brien, S; Vecherya, A; Turgeon, T R; Bohm, E R

    2013-12-01

    The surface characteristics of the femoral component affect polyethylene wear in modular total knee replacements. In the present retrieval study, the surface characteristics of cobalt-chromium (CoCr) alloy and oxidized zirconium (OxZr) femoral components were assessed and compared. Twenty-six retrieved CoCr alloy femoral components were matched with twenty-six retrieved OxZr femoral components for implantation period, body-mass index, patient gender, implant type, and polyethylene insert thickness. The surface damage on the retrieved femoral components was evaluated using a semi-quantitative assessment method, scanning electron microscopy, and contact profilometry. The retrieved CoCr alloy femoral components showed less posterior surface gouging than OxZr femoral components; however, at a higher magnification, the grooving damage features on the retrieved CoCr alloy femoral components confirmed an abrasive wear mechanism. The surface roughness values Rp, Rpm, and Rpk for the retrieved CoCr alloy femoral components were found to be significantly higher than those of the retrieved OxZr femoral components (p≤0.031). The surface roughness values were higher on the medial condyles than on the lateral condyles of the retrieved CoCr alloy femoral components; such a difference was not observed on the retrieved OxZr femoral components. The surface roughness of CoCr alloy femoral components increased while the surface roughness of the OxZr femoral components remained unchanged after in vivo service. Therefore, the OxZr femoral components' resistance to abrasive wear may enable lower polyethylene wear and ensure long-term durability in vivo. Level IV. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Zirconium alloys with small amounts of iron and copper or nickel show improved corrosion resistance in superheated steam

    NASA Technical Reports Server (NTRS)

    Greenberg, S.; Youngdahl, C. A.

    1967-01-01

    Heat treating various compositions of zirconium alloys improve their corrosion resistance to superheated steam at temperatures higher than 500 degrees C. This increases their potential as fuel cladding for superheated-steam nuclear-fueled reactors as well as in autoclaves operating at modest pressures.

  12. Oxidation behaviour of zirconium alloys and their precipitates - A mechanistic study

    NASA Astrophysics Data System (ADS)

    Proff, C.; Abolhassani, S.; Lemaignan, C.

    2013-01-01

    The precipitate oxidation behaviour of binary zirconium alloys containing 1 wt.% Fe, Ni, Cr or 0.6 wt.% Nb was characterised in TEM on FIB prepared transverse sections of the oxide and reported in previous studies [1,2]. In the present study the following alloys: Zr1%Cu, Zr0.5%Cu0.5%Mo and pure Zr are analysed to add to the available information. In all cases, the observed precipitate oxidation behaviour in the oxide close to the metal-oxide interface could be described either with delayed oxidation with respect to the matrix or simultaneous oxidation as the surrounding zirconium matrix. Attempt was made to explain these observations, with different parameters such as precipitate size and structure, composition and thermodynamic properties. It was concluded that the thermodynamics with the new approach presented could explain most precisely their behaviour, considering the precipitate stoichiometry and the free energy of oxidation of the constituting elements. The surface topography of the oxidised materials, as well as the microstructure of the oxide presenting microcracks have been examined. A systematic presence of microcracks above the precipitates exhibiting delayed oxidation has been found; the height of these crack calculated using the Pilling-Bedworth ratios of different phases present, can explain their origin. The protrusions at the surface in the case of materials containing large precipitates can be unambiguously correlated to the presence of these latter, and the height can be correlated to the Pilling-Bedworth ratios of the phases present as well as the diffusion of the alloying elements to the surface and their subsequent oxidation. This latter behaviour was much more considerable in the case of Fe and Cu with Fe showing systematically diffusion to the outer surface.

  13. Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics

    NASA Astrophysics Data System (ADS)

    Moore, A. P.; Beeler, B.; Deo, C.; Baskes, M. I.; Okuniewski, M. A.

    2015-12-01

    A semi-empirical Modified Embedded Atom Method (MEAM) potential is developed for application to the high temperature body-centered-cubic uranium-zirconium alloy (γ-U-Zr) phase and employed with molecular dynamics (MD) simulations to investigate the high temperature thermo-physical properties of U-Zr alloys. Uranium-rich U-Zr alloys (e.g. U-10Zr) have been tested and qualified for use as metallic nuclear fuel in U.S. fast reactors such as the Integral Fast Reactor and the Experimental Breeder Reactors, and are a common sub-system of ternary metallic alloys like U-Pu-Zr and U-Zr-Nb. The potential was constructed to ensure that basic properties (e.g., elastic constants, bulk modulus, and formation energies) were in agreement with first principles calculations and experimental results. After which, slight adjustments were made to the potential to fit the known thermal properties and thermodynamics of the system. The potentials successfully reproduce the experimental melting point, enthalpy of fusion, volume change upon melting, thermal expansion, and the heat capacity of pure U and Zr. Simulations of the U-Zr system are found to be in good agreement with experimental thermal expansion values, Vegard's law for the lattice constants, and the experimental enthalpy of mixing. This is the first simulation to reproduce the experimental thermodynamics of the high temperature γ-U-Zr metallic alloy system. The MEAM potential is then used to explore thermodynamics properties of the high temperature U-Zr system including the constant volume heat capacity, isothermal compressibility, adiabatic index, and the Grüneisen parameters.

  14. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  15. Influence of oxide microstructure on corrosion behavior of zirconium-based model alloys

    NASA Astrophysics Data System (ADS)

    Silva, Marcelo Jose Gomes Da

    The extensive utilization of zirconium-based alloys in fuel cladding and other reactor internal components in the nuclear power industry has led to the continuous improvement of these alloys. At the present moment, demands for better performing nuclear fuel cladding materials are increasing. Also, new reactor designs have been proposed that would require the materials to withstand even more rigorous conditions. One of the factors that limit s fuel cladding utilization in nuclear reactors is uniform corrosion and the consequent hydriding of the fuel. In an attempt to develop mechanistic understanding of the role of alloying elements in the growth of a stable protective oxide, a series of model zirconium-based alloys was prepared (Zr-xFe-yCr, Zr-xCu-yMo, Zr-xNb-ySn, for various x and y, pure Zr and Zircaloy-4) and examined with advanced characterization techniques. The alloys were corrosion tested in autoclaves under three different conditions: 360°C water, 500°C steam and 500°C supercritical water in excess of 400 days. These autoclave testing conditions simulate nuclear reactor environment for both current designs (360°C water) and the new supercritical water reactor (500°C steam and 500°C supercritical water) proposed by the generation-IV initiative. The oxide films formed were systematically examined at the Advanced Photon Source using microbeam synchrotron radiation diffraction and fluorescence of cross-sectional samples to determine the oxide phases present and their crystallographic texture as a function of distance from the metal/oxide interface. Also, the overall texture of the oxide layers was investigated using synchrotron radiation diffraction in frontal geometry. The corrosion kinetics is a function of the alloy system and showed a wide range of behaviors, from immediately unstable oxide growth to stable behavior. The corrosion weight gains from testing at high temperature are a factor of five higher than those measured at 360°C but the

  16. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    SciT

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bandsmore » of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.« less

  17. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOEpatents

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  18. Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan

    Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains

  19. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  20. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  1. In situ monitored in-pile creep testing of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.

    2014-01-01

    The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.

  2. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciT

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed bymore » Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.« less

  3. In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Maslar, J. E.; Hurst, W. S.; Bowers, W. J.; Hendricks, J. H.

    2001-10-01

    In situ Raman spectroscopy was employed to investigate corrosion of a zirconium-niobium alloy in air-saturated water at a pressure of 15.5 MPa and temperatures ranging from 22 to 407 °C in an optically accessible flow cell. Monoclinic ZrO 2 (m-ZrO 2) was identified under all conditions after the coupon was heated to 255 °C for 19 h. Cubic ZrO 2 (c-ZrO 2) was tentatively identified in situ during heating at temperatures between 306 and 407 °C, but was not observed under any other conditions. Species tentatively identified as α-CrOOH and a Cr VI and/or Cr III/Cr VI compound were observed in situ during heating at temperatures between 255 and 407 °C, but were not observed under any other conditions. The chromium compounds were identified as corrosion products released from the optical cell and/or flow system.

  4. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    PubMed Central

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  5. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Wedge, S.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2015-04-01

    As a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2 μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the Rdq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches.

  6. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciT

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov; Tomé, Carlos, E-mail: tome@lanl.gov; Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC)more » polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.« less

  7. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  8. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  9. Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael Vasily

    In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value

  10. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    SciT

    Glazoff, Michael Vasily

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the criticalmore » value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys

  11. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  12. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  13. Influence of chemical composition of zirconium alloy E110 on embrittlement under LOCA conditions - Part 1: Oxidation kinetics and macrocharacteristics of structure and fracture

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.

    2011-11-01

    Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.

  14. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  15. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

    1990-04-10

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

  16. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.

    1990-01-01

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

  17. Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt

    NASA Astrophysics Data System (ADS)

    Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen

    2017-12-01

    Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.

  18. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  19. Self-repairing vanadium-zirconium composite conversion coating for aluminum alloys

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wu, Xiaosong; Jia, Yuyu; Liu, Yali

    2013-09-01

    In this paper, new self-repairing vanadium-zirconium composite conversion coating was prepared and investigated by Electrochemical impedance spectra (EIS), Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. EIS results showed that V-Zr conversion coating with hydrogen peroxide modified (VZO) revealed an increasing corrosion resistance in corrosive media which meant a certain self-repairing effect. SEM comparison photos also disclosed that VZO treated with scratches was gradually ameliorated from the initial cracked configuration to fewer cracks and more fillers through an immersion of 3.5% NaCl solution. XPS results demonstrated that the content of vanadium on VZO increased and zirconium declined when immersed in the corrosive solution. This explained further that the self-repairing ability could be related to vanadium. From the above results, we inferred possible structures of VZO and proposed that self-repairing effect was achieved through a hydrolysis condensation polymerization process of vanadate in the localized corrosion area.

  20. AN ATTEMPT TO LOCATE INTERMETALLIC PARTICLES IN ZIRCONIUM ALLOYS USING A BITTER FIGURE TECHNIQUE

    SciT

    Cox, B.; Harder, B.R.

    1961-10-01

    The compound ZrFe/sub 2/ is known to be ferromagnetic, and an attempt to locate particles of magnetic material in zircaloy-2 and dilute Zr- Fe alloys by a Bitter figure technlque is described. An Fe/sub 3/O/sub 4/ sol in water-soluble plastic was used to prepare Bitter figures of the alloy surfaces in the form of replicas, which were then examined in an electron microscope. No magnetic particles were located in either zircaloy-2 or a Zr-O.3% Fe alloy. Subsequent work on specimens of ZrFe/sub 2/ showed that the failure to detect it in the dilute alloys arose because the size of themore » intermetallic particles in the latter was smaller than the size of the magnetic domains. (auth)« less

  1. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging

    NASA Astrophysics Data System (ADS)

    Buitrago, N. L.; Santisteban, J. R.; Tartaglione, A.; Marín, J.; Barrow, L.; Daymond, M. R.; Schulz, M.; Grosse, M.; Tremsin, A.; Lehmann, E.; Kaestner, A.; Kelleher, J.; Kabra, S.

    2018-05-01

    Zr-based alloys are used in nuclear power plants because of a unique combination of very low neutron absorption and excellent mechanical properties and corrosion resistance at operating conditions. However, Hydrogen (H) or Deuterium ingress due to waterside corrosion during operation can embrittle these materials. In particular, Zr alloys are affected by Delayed Hydride Cracking (DHC), a stress-corrosion cracking mechanism operating at very low H content (∼100-300 wt ppm), which involves the diffusion of H to the crack tip. H content in Zr alloys is commonly determined by destructive techniques such as inert gas fusion and vacuum extraction. In this work, we have used neutron imaging to non-destructively quantify the spatial distribution of H in Zr alloys specimens with a resolution of ∼5 wt ppm, an accuracy of ∼10 wt ppm and a spatial resolution of ∼25 μm × 5 mm x 10 mm. Non-destructive experiments performed on a comprehensive set of calibrated specimens of Zircaloy-2 and Zr2.5%Nb at four neutron facilities worldwide show the typical precision and repeatability of the technique. We have observed that the microstructure of the alloy plays an important role on the homogeneity of H across a specimen. We propose several strategies for performing H determinations without calibrated specimens, with the most precise results for neutrons having wavelengths longer than 5.7 Å.

  2. THE CREEP BEHAVIOUR OF THE MAGNESIUM-ZIRCONIUM ALLOY ZA AT 400 AND 450 C IN CARBON DIOXIDE CONTAINING /approximately equals/200 PPM MOISTURE

    SciT

    Kent, R.P.; Wells, T.C.

    1963-03-01

    The creep behavior of the magnesium-zirconium alloy ZA was studied in tests of up to 5600 hr duration at 400 deg C and up to 12 600 hr duration at 450 deg C, in an atmosphere of carbon dioxide containing approximately 200 ppm water. The accompanying microstructural changes were observed by optical and electron microscopy. The alloy is stronger at 450 deg C than at 400 deg C and additional strengthening obtains from prestraining at 250 deg C prior to creep-testing. In stress rupture tests at 200 deg C subsequent to creep-testing, the time to rupture and the rupture ductilitymore » are lower in specimens previously tested at 450 deg C than in those tested at 400 deg C. The increase in creep strength at 450 deg C, and subsequent loss of ductility, are attributed principally to the precipitation of a zirconium-rich phase, tentatively identified as epsilon - zirconium hydride, which forms both intragranularly (as ribbons and thin hexagonal plates) and as intergranular particles. (auth)« less

  3. [A surface reacted layer study of titanium-zirconium alloy after dental casting].

    PubMed

    Zhang, Y; Guo, T; Li, Z; Li, C

    2000-10-01

    To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found

  4. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  5. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    PubMed

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  6. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    NASA Astrophysics Data System (ADS)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  7. Zirconium-nickel crystals—hydrogen accumulators: Dissolution and penetration of hydrogen atoms in alloys

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.; Kamenetskaya, E. A.

    2016-07-01

    The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiH x has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption-desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.

  8. Study of corrosion-related defects of zirconium alloys with slow positron beam

    NASA Astrophysics Data System (ADS)

    Zhu, Zhejie; Yao, Meiyi; Shi, Jianjian; Yao, Chunlong; Lu, Eryang; Cao, Xingzhong; Wang, Baoyi; Wu, Yichu

    2018-09-01

    The corrosion behavior of Zr-4 and N5 alloy specimens corroded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa and in super heated steam at 400 °C/10.3 MPa for 1, 3 and 14 days were investigated by slow positron beam based Doppler broadening spectroscopy. Results showed that there was an evident interfacial layer with pre-existed vacancies and voids in uncorroded Zr-4 specimens, while in uncorroded N5 specimen, the interfacial defect layer can not be identified or a thin interfacial layer was only contained. When the specimens were corroded in super heated steam at 400 °C/10.3 MPa for a few days, the existence of the interface layer in the Zr-4 specimen would delay the diffusion rate of the oxygen atoms and decelerated the oxidation rate of the corrosion process. However, at very early stage of the corrosion, as Zr-4 and N5 specimens were corrded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa, the effect of Li+ accelerated the diffusion rate of the oxygen atoms, while the effect of the interface defect layer became a minor effect.

  9. Evaluation of dip and spray coating techniques in corrosion inhibition of AA2024 alloy using a silicon/zirconium sol-gel film as coating

    NASA Astrophysics Data System (ADS)

    Garcia, R. B. R.; Silva, F. S.; Kawachi, E. Y.

    2017-02-01

    For corrosion protection of aluminum alloy AA2024 -T3 a silicon/zirconium films were obtained via sol-gel process, prepared from tetraethoxysilane and zirconium acetate, in acid medium with a 5 wt% of nonionic surfactant in order to replace the pre-treatment based on chromium conversion coatings. A homogeneous film was obtained and deposited, at low viscosity condition of the sol (˜10cP), by dip and spray coating techniques. The films morphology was evaluated by Scanning Electron Microscopy (SEM), and to know more about the used deposition methodology, the deposited mass and the film thickness were measured. The corrosion protection efficiency of deposited films was evaluated by potentiodynamic polarization. The film deposition by both dip and spray coatings were effective for the deposition of a homogeneous film layer, and the results showed the thickness is directly related with the deposited mass, and the film deposited by spray technique presented the lower value. Potentiodynamic polarization indicated that the film deposited by spray coating apparently has a better inert ceramic film due the polarization resistance increased around 57% against 27 and 14% of dip coating samples (4 and 1 layer, respectively).

  10. Zirconium vanadium chromium alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1980-10-14

    A ternary intermetallic compound having the formula Zr(V/sub 1-x/Cr/sub x/)/sub 2/ where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200/sup 0/C, at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  11. A Prospective Case-Control Clinical Study of Titanium-Zirconium Alloy Implants with a Hydrophilic Surface in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Cabrera-Domínguez, José; Castellanos-Cosano, Lizett; Torres-Lagares, Daniel; Machuca-Portillo, Guillermo

    To evaluate prospectively the behavior of narrow-diameter (3.3-mm) titanium-zirconium alloy implants with a hydrophilic surface (Straumann Roxolid SLActive) in patients with type 2 diabetes mellitus in single-unit restorations, compared with a healthy control group (assessed using the glycosylated hemoglobin HbA1c test). The patients evaluated in this study required single-unit implant treatment; 15 patients had type 2 diabetes mellitus, and 14 patients were healthy (control group [CG]). Marginal bone level (MBL) change around the implants was evaluated using conventional, sequential periapical digital radiographs. Patient HbA1c was assessed in each check-up. Normality test (Kolmogorov-Smirnov), univariate and multivariate logistic regression, analysis of variance (ANOVA), and Mann-Whitney U test were used for statistical analysis. No differences in MBL change and implant survival and success rates were found between the diabetes mellitus group (DMG) versus the control group, either during the initial recording (DMG, 0.99 ± 0.56 vs CG, 0.68 ± 0.54; P > .05) or 6 months after restoration (DMG, 1.28 ± 0.38 vs CG, 1.11 ± 0.59; P > .05). No significant correlation between HbA1c levels and MBL change was detected in these patients (P > .05). Patients with glycemic control exhibit similar outcomes to healthy individuals with regard to the investigated parameters. In light of these findings, the titanium-zirconium alloy small-diameter implants can be used in the anterior region of the mouth in type 2 diabetic patients.

  12. Properties of zirconium silicate and zirconium-silicon oxynitride high-k dielectric alloys for advanced microelectronic applications: Chemical and electrical characterizations

    NASA Astrophysics Data System (ADS)

    Ju, Byongsun

    2005-11-01

    As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3

  13. Solution treatment-delayed zirconium-strengthening behavior in Ti-7.5Mo-xZr alloy system

    NASA Astrophysics Data System (ADS)

    Chern Lin, Jiin-Huey; Fu, Yen-Han; Chen, Yen-Chun; Peng, Yu-Po; Ju, Chien-Ping

    2018-01-01

    The present study was devoted to investigate and compare the Zr-strengthening behavior in as-cast (AC) and solution-treated (ST) Ti-7.5Mo-xZr alloys. The experimental results indicated that AC Ti-7.5Mo and AC Ti-7.5Mo-1Zr alloys substantially had an orthorhombic {α }\\prime\\prime phase with a fine, acicular morphology. The content of equi-axed β phase continued to increase with increased Zr content at the expense of {α }\\prime\\prime phase. The threshold Zr content for the formation of β phase in the ST Ti-7.5Mo-xZr alloys was apparently higher than that in the AC Ti-7.5Mo-xZr alloys. The β granular structure was revealed in ST Ti-7.5Mo-5Zr alloy, which increased with increased Zr content. Unlike AC Ti-7.5Mo-9Zr alloy, within each grain of ST Ti-7.5Mo-9Zr alloy were still observed a significant portion of {α }\\prime\\prime morphology. AC Ti-7.5Mo alloy had the lowest YS, lowest tensile modulus and highest elongation among all AC Ti-7.5Mo-xZr alloys. When Zr content increased, both YS and modulus significantly increased while the elongation significantly decreased. Compared to AC Ti-7.5Mo alloy, AC Ti-7.5Mo-9Zr alloy had almost double YS, indicating the effectiveness of Zr-induced strengthening in the AC Ti-7.5Mo-xZr alloys. Compared to AC Ti-7.5Mo, ST Ti-7.5Mo alloys had lower YS, UTS and tensile modulus with almost the same elongation. All the XRD, metallography and tensile test results consistently indicated that the presence of Zr could accelerate the formation of β phase and effectively strengthen the AC Ti-7.5Mo-xZr alloys. A phenomenon of delayed β formation and delayed strengthening was noted in the ST Ti-7.5Mo-xZr alloys, compared to the AC Ti-7.5Mo-xZr alloys.

  14. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  15. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  16. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio < ea > in the range 5.05<=< ea ><=6.40 in fair agreement with previous results for these systems and contrary to the Tc vs < ea > behavior of both amorphous and crystalline transition-metal alloys formed

  17. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    NASA Astrophysics Data System (ADS)

    Xie, Zhuoming; Liu, Rui; Fang, Qianfeng; Zhang, Tao; Jiang, Yan; Wang, Xianping; Liu, Changsong

    2015-12-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C-600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177, 11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)

  18. Development of Zirconium-based Conversion Coatings for the Pretreatment of AZ91D Magnesium Alloy Prior to Electrocoating

    NASA Astrophysics Data System (ADS)

    Reck, James; Wang, Yar-Ming; Kuo, Hong-Hsiang Harry

    This work examines the use of hexafluorozirconic acid based solutions at concentrations from 0.025 M to 0.100 M and pH values of 2.0 to 4.0 for the creation of a zirconia-based conversion coating less than 1 micron thick to protect magnesium alloy AZ91D. Similar coatings have been found to give excellent protection for steel and aluminum alloys, but little research has been conducted on its application to magnesium. Work was performed to gain an understanding of the film formation mechanisms and related kinetics using x-ray photo-electron spectroscopy, scanning electron microscopy, and open circuit potential monitoring techniques. A design of experiments approach was taken to determine the effects of acid concentration, pH, and soak time on the corrosion properties both as-deposited and with an application of electrocoat. It was found that the application of the zirconia-based coating significantly increased corrosion resistance, and allowed for an acceptable e-coat application with excellent adherence.

  19. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  20. STUDY OF THE OXIDATION OF NON-ALLOYED ZIRCONIUM AND OF OXYGEN DIFFUSION IN THE OXIDE FILM AND IN THE METAL (in French)

    SciT

    Debuigne, J.; Lehr, P.

    1963-12-01

    The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)

  1. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  2. CHARACTERISTICS OF ANODIC AND CORROSION FILMS ON ZIRCONIUM

    SciT

    Misch, R.D.

    1960-05-01

    Zirconium anodizes similarly to tungsten in respect to the change of interference colors with applied voltage. However, the oxide layer on tungsten cannot reach as great a thickness. Hafnium does not anodize in the same way as zirconium but is similar to tantalum. By measuring the interference color and capacitative thicknesses on zirconium (Grades I and III) and a 2.5 wt.% tin ailoy, the film was found to grow less rapidly in terms of capacitance than in terms of iaterference colors. This was interpreted to mean that cracks develop in the oxide as it thickens. The effect was most pronouncedmore » on Grade III zirconium and least pronounced on the tin alloy. The reduction in capacitative thickness was especially noticeable when white oxide appeared. Comparative measurements on Grade I zirconium and 2.5 wt.% tin alloy indicated that the thickness of the oxide film on the tin alloy (after 16 hours in water) increased more rapidly with temperature than the film on zirconium. Tin is believed to act in ways to counteract the tendency of the oxide to form cracks, and to produce vacancies which promote ionic diffusion. (auth)« less

  3. Using ToF-SIMS and EIS to evaluate green pretreatment reagent: Corrosion protection of aluminum alloy by silica/zirconium/cerium hybrid coating

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Chao; Wang, Chiung-Chi; Wu, Chia-Wei; Liu, Shou-Ching; Mai, Fu-Der

    2008-12-01

    Increasing environmental concern has led to the restrictive use of chromate conversion coatings to protect Al-alloys from corrosion. Our research is under way to find environmentally compliant substitute coating such as Si/Zr/Ce hybrid coating. The corrosion protection effect of green pretreatment reagent consisted of Si-containing base solution, Ce- and Zr-containing sealing solutions on the corrosion protection of Al-alloys was studied with a 3.5% NaCl aqueous testing solution. The correlation between the corrosion resistance measured by electrochemical impedance spectroscopy (EIS) and surface chemical composition of the hybrid coating measured by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was studied. The proposed green pretreatment reagent was found improve the corrosion protection of Al-alloys, presumably due to the formation of protective oxide film acting as an oxygen barrier.

  4. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  5. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  6. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  7. Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies.

    PubMed

    Li, Chen; Cheng, Guanghua; Sedao, Xxx; Zhang, Wei; Zhang, Hao; Faure, Nicolas; Jamon, Damien; Colombier, Jean-Philippe; Stoian, Razvan

    2016-05-30

    The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

  8. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  9. Zirconium and hafnium

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  10. Fluorometric determination of zirconium in minerals

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  11. Evaluation of a Zirconium Recycle Scrubber System

    SciT

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  12. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  13. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  14. About structural phase state of coating based on zirconium oxide formed by microplasma oxidation method

    NASA Astrophysics Data System (ADS)

    Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.

    2017-12-01

    The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciT

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  16. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciT

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  17. Oxygen stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  18. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  19. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  20. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    DOEpatents

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  1. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  2. Modification in band gap of zirconium complexes

    SciT

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  3. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  4. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  5. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  6. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  7. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  8. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  9. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  10. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  11. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    SciT

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is

  12. Zirconium tetrachloride revisited

    DOE PAGES

    Borjas Nevarez, Rosendo; Balasekaran, Samundeeswari Mariappan; Kim, Eunja; ...

    2018-02-19

    We present that zirconium tetrachloride, ZrCl 4, is a strategic material with wide-ranging applications. Until now, only one crystallographic study on ZrCl 4has been reported [Krebs (1970).Z. Anorg. Allg. Chem.378, 263–272] and that was more than 40 years ago. The compound used for the previous determination was prepared from ZrO 2 and Cl 2–CCl 4, and single-crystal X-ray diffraction (SCXRD) studies on ZrCl 4 obtained from Zr metal have not yet been reported. In this context, we prepared ZrCl 4 from the reaction of Zr metal and Cl 2 gas in a sealed tube and investigated its structure at 100,more » 150, 200, 250, and 300 K. At 300 K, the SCXRD analysis indicates that ZrCl 4 crystallizes in the orthorhombic space group Pca2 1 [a= 6.262 (9),b= 7.402 (11),c= 12.039 (17) Å, andV= 558.0 (14) Å 3] and consists of infinite zigzag chains of edge-sharing ZrCl 6 octahedra. This chain motif is similar to that observed previously in ZrCl 4, but the structural parameters and space group differ. Finally, in the temperature range 100–300 K, no phase transformation was identified, while elongation of intra-chain Zr...Zr [3.950 (1) Å at 100 K and 3.968 (5) Å at 300 K] and inter-chain Cl...Cl [3.630 (3) Å at 100 K and 3.687 (9) Å at 300 K] distances occurred.« less

  13. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  14. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  15. PROCESS OF PREPARING ZIRCONIUM OXYCHLORIDE

    DOEpatents

    Wilhelm, H.A.; Andrews, M.L.

    1960-06-28

    A process is given for preparing zirconyl chloride by mixing solid zirconyl chloride octahydrate and solid zirconium tetrachloride at room temperature whereby both chlorides are converted to zirconyl chloride trinydrate and hydrogen chloride is formed and volatilized by the reaction heat.

  16. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  17. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    PubMed

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  18. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  19. The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh

    2018-04-01

    The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.

  20. Nickel aluminide alloy for high temperature structural use

    DOEpatents

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  1. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  2. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  3. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    SciT

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  4. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGES

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  5. Effect of Copper and Zirconium Addition on Properties of Fe-Co-Si-B-Nb Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ikram, Haris; Khalid, Fazal Ahmad; Akmal, Muhammad; Abbas, Zameer

    2017-07-01

    In this research work, iron-based bulk metallic glasses (BMGs) have been fabricated, characterized and compared with Fe-Si alloy. BMG alloys of composition ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4) were synthesized by suction casting technique using chilled copper die. Effect of copper and zirconium addition on magnetic, mechanical, thermal and electrochemical behavior of ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4 BMGs was investigated. Furthermore, effect of annealing on nano-crystallization and subsequently on magnetic and mechanical behavior was also analyzed. Amorphousness of structure was evidenced by XRD analysis and microscopic visualization, whereas nano-crystallization behavior was identified by peak broadening of XRD patterns. Magnetic properties, measured by vibrating sample magnetometer, were found to be improved for as-cast BMG alloys by copper addition and further enhanced by nano-crystallization after annealing. Mechanical properties were observed to be increased by zirconium addition while slightly declined by copper addition. Potentiodynamic polarization analysis manifested the positive role of zirconium in enhancing corrosion resistance of BMGs in acidic, basic and brine mediums. Moreover, mechanical properties and corrosion analysis results affirmed the superiority of BMG alloys over Fe-Si alloy.

  6. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  7. Separation of Zirconium and Hafnium: A Review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium. This paper provides an overview of the processes for separating hafnium from zirconium. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The current dominant zirconium production route involves pyrometallurgical ore cracking, multi-step hydrometallurgical liquid-liquid extraction for hafnium removal and the reduction of zirconium tetrachloride to the pure metal by the Kroll process. The lengthy hydrometallurgical Zr-Hf separation operations leads to high production cost, intensive labour and heavy environmental burden. Using a compact pyrometallurgical separation method can simplify the whole production flowsheet with a higher process efficiency. The known separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt extraction. The commercially operating extractive distillation process is a significant advance in Zr-Hf separation technology but it suffers from high process maintenance cost. The recently developed new process based on molten salt-metal equilibrium for Zr-Hf separation shows a great potential for industrial application, which is compact for nuclear grade zirconium production starting from crude ore. In the present paper, the available separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  8. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  9. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  10. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  11. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  12. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  13. Oxidized zirconium on ceramic; Catastrophic coupling.

    PubMed

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  15. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  16. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    SciT

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  17. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  18. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  19. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T.

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  20. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  1. Zirconium: biomedical and nephrological applications.

    PubMed

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  2. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  3. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  4. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  5. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  6. Oxygen-stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-06-16

    An oxygen stabilized intermetallic compound is described which has the formula (Zr/sub 1-x/Ti/sub x/)/sub 2-u/(V/sub 1-y/Fe/sub y/)O/sub z/ where x = 0.0 to 0.9, y = 0.01 to 0.9, z = 0.25 to 0.5 and u = 0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196/sup 0/C to 200/sup 0/C at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  7. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  8. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  9. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  10. Observations on the brittle to ductile transition temperatures of B2 nickel aluminides with and without zirconium

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.; Bowman, R.

    1989-01-01

    The effect of a zirconium addition (0.05 at. pct) to a stoichiometric NiAl alloy on the brittle-to-ductile transition temperature (BDTT) of this alloy was investigated. Constant velocity tensile tests were conducted to fracture between 300 and 1100 K under initial strain rate 0.00014/sec, and the true stress and true strain values were determined from plots of load vs time after subtracting the elastic strain. The inelastic strain was measured under a traveling microscope. Microstructural characterization of as-extruded and fractured specimens was carried out by SEM and TEM. It was found that, while the addition of 0.05 at. pct Zr strengthened the NiAl alloy, it increased its BDTT; this shift in the BDTT could not be attributed either to variations in grain size or to impurity contents. Little or no room-temperature ductility was observed for either alloy.

  11. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  12. International strategic minerals inventory summary report; zirconium

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  13. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    SciT

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  14. Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    He, Wei; Chuang, Andrew; Cao, Zheng; Liaw, Peter K.

    2010-07-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials that offer an attractive combination of properties, such as high strength, low modulus, good fatigue limit, and near-net-shape formability. The BMGs have been explored in mechanical, chemical, and magnetic applications. However, little research has been attracted in the biomedical field. In this work, we study the potential of BMGs for the orthopedic repair and replacement. We report the biocompatibility study of zirconium (Zr)-based solid BMGs using mouse osteoblast cells. Cell attachment, proliferation, and differentiation are compared to Ti-6Al-4V, a well-studied alloy biomaterial. Our in-vitro study has demonstrated that cells cultured on the Zr-based BMG substrate showed higher attachment, alkaline phosphatase activity, and bone matrix deposition compared to those grown on the control Ti alloy substrate. Cytotoxicity staining also revealed the remarkable viability of cells growing on the BMG substrates.

  15. Fabrication and Evaluation of Titanium and Zirconium based Wires for use during Extended, Deep Space, Missions

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Novel materials and designs are necessary for transport vessels and propulsion systems to fulfill NASA's vision of easier access to space and the expansion of human exploration beyond low-earth orbit. Spacecraft components must necessarily be lighter and stronger than their predecessors and will likely be required to serve new purposes. Furthermore, they must be resilient to the thermal, vacuum, and radiation environment of space for extended periods of time and may need to perform in the near proximity of a nuclear fuel source. To this end research has been initiated to fabricate novel, composite, wires based on titanium and zirconium pearlitic alloys. It is expected that the fabricated wire will well endure in the space environment with application as tethers, sail components, fasteners, and a myriad of other (including earth-based) uses. A background on pearlitic wire, novel alloy development, microstructural characterization, and initial mechanical testing results will be presented and discussed.

  16. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  17. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  18. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  19. From Zirconium Nanograins to Zirconia Nanoneedles

    PubMed Central

    Zalnezhad, E.; Hamouda, A. M. S.; Jaworski, J.; Do Kim, Young

    2016-01-01

    Combinations of three simple techniques were utilized to gradually form zirconia nanoneedles from zirconium nanograins. First, a physical vapor deposition magnetron sputtering technique was used to deposit pure zirconium nanograins on top of a substrate. Second, an anodic oxidation was applied to fabricate zirconia nanotubular arrays. Finally, heat treatment was used at different annealing temperatures in order to change the structure and morphology from nanotubes to nanowires and subsequently to nanoneedles in the presence of argon gas. The size of the pure zirconium nanograins was estimated to be approximately 200–300 nm. ZrO2 nanotubular arrays with diameters of 70–120 nm were obtained. Both tetragonal and monoclinic ZrO2 were observed after annealing at 450 °C and 650 °C. Only a few tetragonal peaks appeared at 850 °C, while monoclinic ZrO2 was obtained at 900 °C and 950 °C. In assessing the biocompatibility of the ZrO2 surface, the human cell line MDA-MB-231 was found to attach and proliferate well on surfaces annealed at 850 °C and 450 °C; however, the amorphous ZrO2 surface, which was not heat treated, did not permit extensive cell growth, presumably due to remaining fluoride. PMID:27623486

  20. Preparation and Corrosion Resistance of Trivalent Chromium-Zirconium Composite Coating

    NASA Astrophysics Data System (ADS)

    Huang, J. Z.

    2018-05-01

    Aluminum alloys are widely used in the various industries because of its superior advantages. However there will be a thin oxide layer on the surface of the pure aluminum to inhibit corrosion, when adding some other elements, the obtained aluminum alloy is easy to be corroded. Surface protection is an important means to improve the corrosion resistance of aluminum alloys. The formal research had already confirmed that the trivalent chromium conversion coating can significantly improve the corrosion resistance, and the usage of the zirconium solution can also protect the aluminum alloy from corrosion. In this study, we constructed the binary conversion coating with the Cr2(SO4)3 and the K2ZrF6. The optimum reaction conditions are as follows: 10g/L H3PO4, 2g/L K2ZrF6, 28g/L Cr2(SO4)3, pH=2.5∼3.5, temperature 40°C, and reaction time 10 min. Copper sulfate titration experiment confirmed that the corrosion resistance was significantly improved.

  1. [The clinical application of zirconium-dioxide-ceramics. Case report].

    PubMed

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  2. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  3. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  4. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  5. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  6. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  7. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  8. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  9. Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C. A.; Focşăneanu, S. C.

    2017-06-01

    Ti-based alloys are successfully used in the area of orthopedic biomaterials for their enhanced biocompatibility, good corrosion and mechanical properties. The most suitable metals as an alloying element for orthopedic biomaterials are zirconium, molybdenum and tantalum because are non toxic and have good properties. The paper purpose development of two alloys of Ti-Mo-Zr-Ta (TMZT) prepared by arc-melting with several mechanical properties determined by microindentation. The mechanical properties analyzed was Vickers hardness and dynamic elasticity modulus. The investigated alloys presents a low Young’s modulus, an important condition of biomaterials for preventing stress shielding phenomenon.

  10. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  11. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  12. Establishment of the roadmap for chlorination process development for zirconium recovery and recycle

    SciT

    Collins, E.D.; Del Cul, G.D.; Spencer, B.B.

    Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less

  13. Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle

    NASA Astrophysics Data System (ADS)

    Blomqvist, Jakob; Olofsson, Johan; Alvarez, Anna-Maria; Bjerkén, Christina

    Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation buildup in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: δ-ZrH1.6, γ-ZrH, and Є-ZrH2.

  14. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  15. On the control of the crystallographic texture in cladding tubes from Zr-based alloys for nuclear reactor

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.

    2016-10-01

    This paper summarizes researches of authors, directed to the development of the methodological basis of X-ray studies as applied to zirconium alloys and on the systematization of new experimental results obtained using developed methods. The paper describes regularities of crystallographic texture formation in cladding tubes from zirconium alloys and their substructure inhomogeneity at various stages of manufacture, i.e. at hot and cold deformation, recrystallization, phase transformations and interaction of the above processes. The special attention is payed to possibilities of control the crystallographic texture of tubes at successive stages of their technological treatment.

  16. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  17. Phase composition and corrosion resistance of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Morozova, G. I.

    2008-03-01

    The effects of phase composition of castable experimental and commercial alloys based on the Mg-Al, Mg-Al-Mn, Mg-Al-Zn-Mn, and Mg-Zn-Zr systems and of the form of existence of iron and hydrogen admixtures on the rate of corrosion of the alloys in 3% solution of NaCl are studied. The roles of heat treatment in the processes of hydrogen charging and phase formation in alloy ML5pch and of hydrogen in the process of formation of zirconium hydrides and zinc zirconides in alloys of the Mg-Zn-Zr system and their effect on the corrosion and mechanical properties of alloy ML12 are discussed.

  18. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  19. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  20. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOEpatents

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  1. Ductile tungsten-nickel-alloy and method for manufacturing same

    DOEpatents

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  2. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  3. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  4. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    PubMed

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  5. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  6. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    SciT

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  7. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  8. Quercetin as colorimetric reagent for determination of zirconium

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  9. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  10. Layer Formation On Metal Surfaces In Lead-Bismuth At High Temperatures In Presence Of Zirconium

    SciT

    Loewen, Eric Paul; Yount, Hannah J.; Volk, Kevin

    If the operating temperature lead–bismuth cooled fission reactor could be extended to 800 °C, they could produce hydrogen directly from water. A key issue for the deployment of this technology at these temperatures is the corrosion of the fuel cladding and structural materials by the lead–bismuth. Corrosion studies of several metals were performed to correlate the interaction layer formation rate as a function of time, temperature, and alloy compositions. The interaction layer is defined as the narrow band between the alloy substrate and the solidified lead–bismuth eutectic on the surface. Coupons of HT-9, 410, 316L, and F22 were tested atmore » 550 and 650 °C for 1000 h inside a zirconium corrosion cell. The oxygen potential ranged from approximately 10-22 to 10-19 Pa. Analyses were performed on the coupons to determine the depth of the interaction layer and the composition, at each time step (100, 300, and 1000 h). The thickness of the interaction layer on F22 at 550 °C was 25.3 µm, the highest of all the alloys tested, whereas at 650 °C, the layer thickness was only 5.6 µm, the lowest of all the alloys tested. The growth of the interaction layer on F22 at 650 °C was suppressed, owing to the presence of Zr (at 1500 wppm) in the LBE. In the case of 316L, the interaction layers of 4.9 and 10.6 µm were formed at 550 and 650 °C, respectively.« less

  11. Understanding the Irradiation Behavior of Zirconium Carbide

    SciT

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  12. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  13. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  14. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  15. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  16. Zirconium oxide surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres

    2018-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.

  17. Dynamic Recrystallization Behavior of Zr-1Sn-0.3Nb Alloy During Hot Rolling Process

    NASA Astrophysics Data System (ADS)

    Zhao, Siyu; Liu, Huiqun; Lin, Gaoyong; Jiang, Yilan; Xun, Jian

    2017-11-01

    Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy's dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.

  18. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  19. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  20. Atomic layer deposition of zirconium silicate films using zirconium tetra-tert-butoxide and silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo

    2003-09-01

    A new precursor combination (SiCl4 and Zr(OtC4H9)4) was used to deposit Zr silicate with Zr(OtC4H9)4 as a zirconium source and oxygen source at the same time. SiCl4 and Zr(OtC4H9)4 have higher vapor pressures than their counterpart, ZrCl4 and tetra-n-butyl orthosilicate (TBOS), and it was expected that the cycle time would be shorter. The deposition temperature of the new combination was about 150 °C lower than that of ZrCl4 and TBOS. The film was zirconium rich while it was silicon rich with ZrCl4 and TBOS. Growth rate (nm/cycle), composition ratio [Zr/(Zr+Si)], and chlorine impurity were decreased with increasing deposition temperature from 125 to 225 °C. The composition ratio of the film deposited at 225 °C was 0.53 and the chlorine content was about 0.4 at. %. No carbon was detected by x-ray photoelectron spectroscopy.

  1. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  2. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    SciT

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100[degree]C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  3. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    SciT

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100{degree}C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  4. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  5. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  6. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  7. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  8. The effects of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces.

    PubMed

    Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan

    2013-11-01

    Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.

  9. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  10. Extractive separation of uranium and zirconium sulfates by amines

    SciT

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  11. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  12. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  13. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  14. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  15. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  16. Synthesis and nonstoichiometry of the zirconium trihalides

    SciT

    Daake, R.L.; Corbett, J.D.

    1978-05-01

    The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less

  17. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  18. DEVELOPMENT OF PLASTICITY MODEL USING NON ASSOCIATED FLOW RULE FOR HCP MATERIALS INCLUDING ZIRCONIUM FOR NUCLEAR APPLICATIONS

    SciT

    Michael V. Glazoff; Jeong-Whan Yoon

    2013-08-01

    In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies alongmore » 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.« less

  19. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  20. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts

    PubMed Central

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473

  1. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  2. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.

  3. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  4. Mineral resource of the month: zirconium and hafnium

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  5. Influence of Crucible Materials on High-temperature Properties of Vacuum-melted Nickel-chromium-cobalt Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1957-01-01

    A study of the effect of induction-vacuum-melting procedure on the high-temperature properties of a titanium-and-aluminum-hardened nickel-base alloy revealed that a major variable was the type of ceramic used as a crucible. Reactions between the melt and magnesia or zirconia crucibles apparently increased high-temperature properties by introducing small amounts of boron or zirconium into the melts. Heats melted in alumina crucibles had relatively low rupture life and ductility at 1,600 F and cracked during hot-working as a result of deriving no boron or zirconium from the crucible.

  6. The shock and spall response of three industrially important hexagonal close-packed metals: magnesium, titanium and zirconium.

    PubMed

    Hazell, P J; Appleby-Thomas, G J; Wielewski, E; Escobedo, J P

    2014-08-28

    Magnesium, titanium and zirconium and their alloys are extensively used in industrial and military applications where they would be subjected to extreme environments of high stress and strain-rate loading. Their hexagonal close-packed (HCP) crystal lattice structures present interesting challenges for optimizing their mechanical response under such loading conditions. In this paper, we review how these materials respond to shock loading via plate-impact experiments. We also discuss the relationship between a heterogeneous and anisotropic microstructure, typical of HCP materials, and the directional dependency of the elastic limit and, in some cases, the strength prior to failure. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  8. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  9. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  10. Some observations on uranium carbide alloy/tungsten compatibility

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.

  11. Some observations on uranium carbide alloy/tungsten compatibility.

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1972-01-01

    Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.

  12. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    SciT

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  13. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  14. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  15. Corrosion Studies on Titanium and Zirconium Metals

    DTIC Science & Technology

    1950-12-01

    respectively 1.08 percent tantalum and 3.70 percent oolumbium. These alloys were in the cold rolled condition. The tantalum metal used was in the annealed ... vo2 iI 1’os th-, n 6 dr s Tal’ V17. C v"-" ’’ 4 Tesi,: s,.li tix , r - :.il s jer ce tr C..C. 73I 5 S1SO) + 5 ]r 0 s U.31 1.36 2, . O Ŗsf4 + 10 H 0...CDCD64 L O 1- V4. .06 14 ct-o to 400 toE La- LOr~ La 10 Go t O 0 d dojtc dtI- d. 0 . W0W44 .OC J 4 . 4d430 to0 0~e-0O ca 1.10t0 bQ 0a002t 0 OK 4140 to

  16. Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pawar, V.; Weaver, C.; Jani, S.

    2011-05-01

    Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.

  17. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  18. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  19. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  20. Conception de lois de pilotage robustes et sequencement de gains par l'approche de systemes lineaires a parametres variants

    NASA Astrophysics Data System (ADS)

    Hentabli, Kamel

    Cette recherche s'inscrit dans le cadre du projet de recherche Active Control Technology entre l'Ecole de Technologie Superieure et le constructeur Bombardier Aeronautique . Le but est de concevoir des strategies de commandes multivariables et robustes pour des modeles dynamiques d'avions. Ces strategies de commandes devraient assurer a l'avion une haute performance et satisfaire des qualites de vol desirees en l'occurrence, une bonne manoeuvrabilite, de bonnes marges de stabilite et un amortissement des mouvements phugoides et rapides de l'avion. Dans un premier temps, nous nous sommes principalement interesses aux methodes de synthese LTI et plus exactement a l'approche Hinfinity et la mu-synthese. Par la suite, nous avons accorde un interet particulier aux techniques de commande LPV. Pour mener a bien ce travail, nous avons envisage une approche frequentielle, typiquement Hinfinity. Cette approche est particulierement interessante, dans la mesure ou le modele de synthese est construit directement a partir des differentes specifications du cahier des charges. En effet, ces specifications sont traduites sous forme de gabarits frequentiels, correspondant a des ponderations en entree et en sortie que l'on retrouve dans la synthese Hinfinity classique. Par ailleurs, nous avons utilise une representation de type lineaire fractionnelle (LFT), jugee mieux adaptee pour la prise en compte des differents types d'incertitudes, qui peuvent intervenir sur le systeme. De plus, cette representation s'avere tres appropriee pour l'analyse de la robustesse via les outils de la mu-analyse. D'autre part, afin d'optimiser le compromis entre les specifications de robustesse et de performance, nous avons opte pour une structure de commande a 2 degres de liberte avec modele de reference. Enfin, ces techniques sont illustrees sur des applications realistes, demontrant ainsi la pertinence et l'applicabilite de chacune d'elle. Mots cles. Commande de vol, qualites de vol et manoeuvrabilite

  1. Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Freche, John C.; Waters, William J.

    1959-01-01

    An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.

  2. Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier

    SciT

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.

    A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatmentmore » on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.« less

  3. Clinical evidence on titanium-zirconium dental implants: a systematic review and meta-analysis.

    PubMed

    Altuna, P; Lucas-Taulé, E; Gargallo-Albiol, J; Figueras-Álvarez, O; Hernández-Alfaro, F; Nart, J

    2016-07-01

    The use of titanium implants is well documented and they have high survival and success rates. However, when used as reduced-diameter implants, the risk of fracture is increased. Narrow diameter implants (NDIs) of titanium-zirconium (Ti-Zr) alloy have recently been developed (Roxolid; Institut Straumann AG). Ti-Zr alloys (two highly biocompatible materials) demonstrate higher tensile strength than commercially pure titanium. The aim of this systematic review was to summarize the existing clinical evidence on dental NDIs made from Ti-Zr. A systematic literature search was performed using the Medline database to find relevant articles on clinical studies published in the English language up to December 2014. Nine clinical studies using Ti-Zr implants were identified. Overall, 607 patients received 922 implants. The mean marginal bone loss was 0.36±0.06mm after 1 year and 0.41±0.09mm after 2 years. The follow-up period ranged from 3 to 36 months. Mean survival and success rates were 98.4% and 97.8% at 1 year after implant placement and 97.7% and 97.3% at 2 years. Narrow diameter Ti-Zr dental implants show survival and success rates comparable to regular diameter titanium implants (>95%) in the short term. Long-term follow-up clinical data are needed to confirm the excellent clinical performance of these implants. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  5. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  6. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  7. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  8. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  9. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  10. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  11. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    PubMed

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Edge-on dislocation loop in anisotropic hcp zirconium thin foil

    NASA Astrophysics Data System (ADS)

    Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan

    2015-10-01

    Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.

  13. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  14. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    NASA Technical Reports Server (NTRS)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  15. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  16. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    SciT

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  17. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  18. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  19. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  20. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  1. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  2. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    DTIC Science & Technology

    2016-05-17

    Zirconium-Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...PUBLISHED/PRESENTED. D 11a. PUBLICATION/JOURNAL (list intended publication/journal.) General Dentistry D 11b. PUBLISHED ABSTRACT (List intended...the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and

  3. Zirconium as a Structural Material for Naval Systems

    DTIC Science & Technology

    1985-03-29

    case with the technologically critical chemical elements chromium and cobalt, for example, from a military perspective. The case, therefore, for...By adding small amounts of tin, iron, nickel, and chromium , the impurities were effectively bound or coalesced within the metal and the corrosion...and nitrogen from the atmosphere, embrittling the weld. The techniques used for zirconium welding are gas tungsten arc welding ( GTAW ), tungsten inert

  4. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.

    PubMed

    do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  5. Synthesis of zirconium oxynitride in air under DC electric fields

    SciT

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less

  6. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    PubMed

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  8. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    NASA Technical Reports Server (NTRS)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  9. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  10. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  11. Approche de prise en charge du trouble du spectre de l’autisme

    PubMed Central

    Lee, Patrick F.; Thomas, Roger E.; Lee, Patricia A.

    2015-01-01

    Résumé Objectif Se pencher sur les critères diagnostiques du trouble du spectre de l’autisme (TSA) comme les définit le Manuel diagnostique et statistique des troubles mentaux, cinquième édition (DSM-V), et concevoir une approche de prise en charge du TSA à l’aide du cadre CanMEDS–Médecine familiale (CanMEDS-MF). Sources d’information Le DSM-V, publié par l’American Psychiatric Association en mai 2013, énonce de nouveaux critères diagnostiques du TSA. Le cadre CanMEDS-MF du Collège des médecins de famille du Canada fournit un plan d’orientation pour la prise en charge complexe du TSA. Nous avons utilisé des données recueillies par le Centers for Disease Control and Prevention afin de déterminer la prévalence du TSA, ainsi que la revue systématique et méta-analyse détaillée effectuée par le National Institute for Health and Care Excellence du R.-U. pour ses lignes directrices sur le TSA dans le but d’évaluer les données probantes issues de plus de 100 interventions. Message principal Selon les données du Centers for Disease Control and Prevention, la prévalence du TSA se chiffrait à 1 sur 88 en 2008 aux États-Unis. La classification du TSA dans la quatrième édition du DSM incluait l’autisme, le syndrome d’Asperger, le trouble envahissant du développement et le trouble désintégratif de l’enfance. La dernière révision du DSM-V réunit tous ces troubles sous la mention TSA, avec différents niveaux de sévérité. La prise en charge du TSA est complexe; elle exige les efforts d’une équipe multidisciplinaire ainsi que des soins continus. Les rôles CanMEDS-MF fournissent un cadre de prise en charge. Conclusion Les médecins de famille sont au cœur de l’équipe de soins multidisciplinaire pour le TSA, et le cadre CanMEDS-MF tient lieu de plan détaillé pour guider la prise en charge d’un enfant atteint de TSA et aider la famille de cet enfant.

  12. Controle d'attitude d'un lanceur en phase atmospherique approche par applications gardiennes

    NASA Astrophysics Data System (ADS)

    Dubanchet, Vincent

    In a first phase, the modelling process underlines the presence of highly time varying parameters during the ascent, due to a fast mass variation along with propellant consumption. Linearizing the dynamical equations at six main flight instants yields linear time invariant models to be considered during control design. Each of them is to be stabilized by one control law, while respecting given specifications. The synthesis becomes even more complex when the bending modes are taken into account. Moreover, scheduling appears necessary to deal with the time variations. Indeed it is shown that no single gain setting is able to respect all the specifications along the trajectory. Furthermore, increasing complexity when modelling a whole launch vehicle pushes one to consider the model's errors and uncertainties. They represent a major issue in this study since it is asked to ensure the nominal performances in a robust fashion. Owing to their properties, guardian maps appear to be the most suitable tool to deal with such a problem of scheduling with robust performances. In light of this, the development of synthesis methods based on guardian maps is the main contribution of the project. It appears that actual state of the art in this field is focused on theoretical issues, whereas practical ones could be improved. Two approches are presented in the memoire. The first one is based on a graphical approach consisting in drawing the vanishing locus of guardian maps. A program using image analysis techniques is devised to check automatically which gain settings satisfy the constraints. The second one is based on an optimisation procedure involving guardian maps. Starting with the open loop system, the iterative process proposed ends up with a satisfactory gain setting for the closed-loop. These methods are tried and tested for the launch vehicle, with specifications from ASTRIUM-ST. Their practical application is motivated by the system complexity, the different kinds of

  13. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  14. Data on the effect of homogenization heat treatments on the cast structure and tensile properties of alloy 718Plus in the presence of grain-boundary elements.

    PubMed

    Hosseini, Seyed Ali; Madar, Karim Zangeneh; Abbasi, Seyed Mehdi

    2017-08-01

    The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.

  15. Effects of cobalt, boron, and zirconium on the microstructure of Udimet 738. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Nakanishi, T. G.

    1984-01-01

    A structural study was carried out on Co modified Udimet 738 alloys containing 0.04, 0.10, and 0.20 wt % Zr at 0.01 and 0.03 wt % B levels. Samples in the as-cast and solution-treated conditions were exposed at 843 C to study structural stability. The structures produced by the interactions of Co, Zr, and B were studied by SEM, X-ray diffraction, and dispersive analysis techniques. The additions of large amounts of Zr and B were found to increase the solidification range of the U-738. Structural changes involved eutectic gamma prime islands, formation of low melting point compounds, and precipitation of borides and Zr rich phases. Boron and zirconium additions did not show substantial changes in mechanical properties. Removal of Co from the alloys resulted in reduction of the matrix solubility for carbon and increase in the gamma prime solvus. Structural instabilities found were continuous grain boundary M23C6 films, MC breakdown, and plate-like phases. Removal of cobalt resulted in a slight decrease in tensile and stress rupture properties. Detailed structural results presented.

  16. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  17. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  18. Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Reid, M. A.; Yang, C. Y. (Inventor)

    1981-01-01

    Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell.

  19. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of aerosol cosmetic products containing zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and other organs of experimental animals. When used in aerosol form, some zirconium will reach the...

  20. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  1. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  2. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  3. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  4. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  5. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  6. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  7. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of binary and ternary titanium alloys for dental implants.

    PubMed

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  10. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  11. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  12. The chemistry of PET imaging with zirconium-89.

    PubMed

    Dilworth, Jonathan R; Pascu, Sofia I

    2018-04-23

    This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.

  13. Impedance spectroscopy of water soluble resin modified by zirconium sulphate

    NASA Astrophysics Data System (ADS)

    Joseph, Anandraj; Joshi, Girish M.

    2018-04-01

    We successfully modified water soluble resin polyvinyl alcohol (PVA) by loading zirconium sulphate (ZrSO4). We demonstrated the measurement of electrical properties by using impedance analyser across frequency range (10 Hz-1 MHz) and the temperature range of (30°C to 150°C). The impedance spectroscopy demonstrates decrease in bulk resistance as a function of temperature loading of zirconia 2.5 wt. %. Increase in AC (10-5 S/cm and DC conductivity (10- 2 S/m) observed due to ionic contribution of zirconia. However, the electrical properties of PVA/ZrSO4 composite useful to develop battery electrolyte applications.

  14. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  15. Predicting the solid state phase diagram for glass-forming alloys of copper and zirconium

    NASA Astrophysics Data System (ADS)

    Tang, C.; Harrowell, Peter

    2012-06-01

    The free energies of six crystal structures associated with Cu-Zr alloys—Cu (face centred cubic), Cu2Zr, Cu10Zr7, CuZr, CuZr2 and Zr (hexagonal close packed)—are calculated using the embedded atom potential of Mendelev et al (2009 Phil. Mag. 89 967). We find that the observed low temperature stability of the Cu10Zr7 and CuZr2 phases is not reproduced. Instead, the model predicts that the CuZr phase remains stable down to T = 0 K. This discrepancy is largely removed when the interaction potentials are cut off at a short distance, such as that used by Duan et al (2005 Phys. Rev. B 71 224208). We present evidence, however, that the cut-off distance necessary to achieve the change in phase stability results in pathological artefacts in the energetics of some crystal phases.

  16. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS

    NASA Astrophysics Data System (ADS)

    Yardley, Sean S.; Moore, Katie L.; Ni, Na; Wei, Jang Fei; Lyon, Stuart; Preuss, Michael; Lozano-Perez, Sergio; Grovenor, Chris R. M.

    2013-11-01

    High resolution secondary ion mass spectrometry (SIMS) analysis has been used to study the oxidation mechanisms when commercial low tin ZIRLO™Low tin ZIRLO™ is a trademark of Westinghouse Electric Company LLC in the United States and may be registered in other countries throughout the world. Unauthorized use is strictly prohibited.1 and Zircaloy 4 materials are exposed to corroding environments containing both 18O and 2H isotopes. Clear evidence has been shown for different characteristic distributions of 18O before and after the kinetic transitions, and this behaviour has been correlated with the development of porosity in the oxide which allows the corroding medium to penetrate locally to the metal/oxide interface.

  17. ANALYTICAL METHOD FOR THE DIRECT ABSORPTIOMETRIC DETERMINATION OF BORON IN ZIRCONIUM METAL AND ITS ALLOYS

    SciT

    None

    1962-01-01

    The sample is dissolved in a mixture of ammonium suifate and sulfuric acid. Rosocyanin is formed in the presence of Zr and, after separation from excess curcumin, it is dissolved in ethanol for absorptiometric measurement. (auth)

  18. Analytical electron microscope study of the omega phase transformation in a zirconium-niobium alloy

    SciT

    Zaluzec, N. J.

    1979-01-01

    The study of the as-quenched omega phase morphology shows that the domain size of Zr-15% Nb is on the order of 30 A. No alignment of omega domains along <222>..beta.. directions was observed and samples having undergone thermal cycling in thin foil form, did not develop a long-period structure of alternating ..beta.. and ..omega.. phases below the omega transformation temperature. (FS)

  19. Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies

    NASA Astrophysics Data System (ADS)

    Quevedo Lopez, Manuel Angel

    Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.

  20. Zirconium: The material of the future in modern implantology.

    PubMed

    Kubasiewicz-Ross, Paweł; Dominiak, Marzena; Gedrange, Tomasz; Botzenhart, Ute U

    2017-01-01

    The authors present the contemporary state of knowledge concerning alternative materials for dental implantology. First of all, factors influencing osseointegration are stated. The most important factors seem to be the type of implant surface. Among the numerous parameters describing them, the most important are: average roughness and porous density. Some studies proved that materials with comparable surface roughness provide similar osseointegration. In modern implantology titanium is the material still considered as a "gold standard". However, aesthetic features of titanium still bear several disadvantages, especially in the case of periodontium with a thin biotype in the anterior, aesthetic sensitive area of the jaw. If a titanium implant is used in such a case, the mucosa at the implant's neck may become grayish and, consequently limits the success of the overall treatment. That was the reason for seeking alternative materials to manufacture dental implants. Initiated by general medicine, mainly orthopedics, the search led to the discovery of zirconium dioxide used in dental implantology. A small number of complications, good chemical parameters, anticorrosion, mechanical strength, elasticity module close to the one of steel, and especially biocompatibility made zirconium a perfect material for this purpose, although this material presents several problems in achieving optimal roughness. In this overview one of the probable methods, a process of partial synterization, is presented.

  1. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  2. Wear Analysis in THA Utilizing Oxidized Zirconium and Crosslinked Polyethylene

    PubMed Central

    Garvin, Kevin L.; Mangla, Jimmi; Murdoch, Nathan; Martell, John M.

    2008-01-01

    Oxidized zirconium, a material with a ceramic surface on a metal substrate, and highly cross-linked polyethylene are two materials developed to reduce wear. We measured in vivo femoral head penetration in patients with these advanced bearings. We hypothesized the linear wear rates would be lower than those published for cobalt-chrome and standard polyethylene. We retrospectively reviewed a select series of 56 THAs in a relatively young, active patient population utilizing oxidized zirconium femoral heads and highly cross-linked polyethylene acetabular liners. Femoral head penetration was determined using the Martell computerized edge-detection method. All patients were available for 2-year clinical and radiographic followup. True linear wear was 4 μm/year (95% confidence intervals, ± 59 μm/year). The early wear rates in this cohort of relatively young, active patients were low and we believe justify the continued study of these alternative bearing surfaces. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18946711

  3. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-06-01

    The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.

  4. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  5. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  6. Thermodynamic Analysis and Growth of Zirconium Carbide by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Sun; Hua, Hao Zheng; Xiang, Xiong

    Equilibrium calculations were used to optimize conditions for the chemical vapor deposition of zirconium carbide from zirconium halide + CxHy+H2+Ar system. The results show the CVD-ZrC phase diagram is divided into ZrC+C, ZrC and ZrC+Zr zones by C, Zr generating lines. For the same mole of ZrCl4 reactant, it needs higher concentration of CH4 to generate single ZrC phase than that of C3H6. Using these calculations as a guide, single-phase cubic zirconium carbide coatings were deposited onto graphite substrate.

  7. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex.

    PubMed

    Butler, Michael J; White, Andrew J P; Crimmin, Mark R

    2016-06-06

    Reaction of a zinc/zirconium heterobimetallic complex with 1,5-cyclooctadiene (1,5-COD) results in slow isomerization to 1,3-cyclooctadiene (1,3-COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5-COD to 1,3-COD, only in the case of the zinc species is the cyclooctyne adduct observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex

    PubMed Central

    Butler, Michael J.; White, Andrew J. P.

    2016-01-01

    Abstract Reaction of a zinc/zirconium heterobimetallic complex with 1,5‐cyclooctadiene (1,5‐COD) results in slow isomerization to 1,3‐cyclooctadiene (1,3‐COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5‐COD to 1,3‐COD, only in the case of the zinc species is the cyclooctyne adduct observed. PMID:27071992

  9. PHYSICAL PROPERTIES OF ZIRCONIUM NITRIDE IN THE HOMOGENEITY REGION (in Ukrainian)

    SciT

    Samsonov, G.V.; Verkhoglyadova, T.S.

    1962-01-01

    The x-ray method was used to determine the homogeneity region of zirconium nitride as 40 to 50 at.% (9.5 to 13.3% by weight) of nitrogen. It is also shown that part of the ionic bond in the zirconium nitride lattice increases with a decrease in the nitrogen content in this region, this increase being higher than in the homogeneity region of titunium nitride due to the smaller degree of unfilling of the electron d-shell of the zirconium atom in comparison with that of the titanium atom. (auth)

  10. Reactivity of zirconium basic sulfate in the reactions with carbonate, oxalate, and phosphate reagents

    SciT

    Nekhamkin, L.G.; Kondrashova, I.A.; Kerina, V.R.

    1987-08-20

    The reactivity of zirconium basic sulfate is determined by the possibility of replacement of oxo- and hydroxo-ligands and decreases with increasing temperature of its precipitation. The interaction of the less reactive zirconium basic sulfate with carbonate and oxalate reagents occurs at 25/sup 0/C without any change in basicity and that with phosphate reagents occurs with a decrease in it, up to the formation of a monophosphate with basicity about 20%. In the interaction of the more reactive zirconium basic sulfate, obtained without heating, oxo- and hydroxo groups can be entirely replaced by acido-ligands with the formation of unhydrolyzed compounds.

  11. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    SciT

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  12. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  13. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys

    PubMed Central

    Huan, Z. G.; Leeflang, M. A.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2010-01-01

    Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg–Zn–Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg–Y–RE–Zr) were investigated by means of long-term static immersion testing in Hank’s solution, non-static immersion testing in Hank’s solution and cell-material interaction analysis. It was found that, among these three magnesium alloys, ZK30 had the lowest degradation rate and the least hydrogen evolution. A magnesium calcium phosphate layer was formed on the surface of ZK30 sample during non-static immersion and its degradation caused minute changes in the ion concentrations and pH value of Hank’s solution. In addition, the ZK30 alloy showed insignificant cytotoxicity against bone marrow stromal cells as compared with biocompatible hydroxyapatite (HA) and the WE-type alloy. After prolonged incubation for 7 days, a stimulatory effect on cell proliferation was observed. The results of the present study suggested that ZK30 could be a promising material for biodegradable orthopedic implants and worth further investigation to evaluate its in vitro and in vivo degradation behavior. PMID:20532960

  14. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  15. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  16. Solid solution strengthened duct and cladding alloy D9-B1

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    A modified AISI type 316 stainless steel is described for use in an atmosphere where the alloy will be subject to neutron irradiation. The alloy is characterized by its phase stability in both the annealed as well as cold work condition and above all by its superior resistance to radiation induced swelling. Graphical data is included to demonstrate the superior swelling resistance of the alloy which contains from about 0.5% to 2.2% manganese, from about 0.7% to about 1.1% silicon, from about 12.5% to 14% chromium, from about 14.5% to about 16.5% nickel, from about 1.2% to about 1.6% molybdenum, from 0.15% to 0.30% titanium, from 0.02% to 0.08% zirconium, and the balance iron with incidental impurities.

  17. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  18. Calcification of MC3T3-E1 cells on titanium and zirconium.

    PubMed

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  19. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    SciT

    Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.

    2016-05-23

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less

  20. Defect kinetics and resistance to amorphization in zirconium carbide

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-02-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material.

  1. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  2. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    DTIC Science & Technology

    2016-05-12

    APPROV~, Col Drew W. Fallis Dean, Air Force Postgraduate Dental School r UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES AIR FORCE...POSTGRADUATE DENTAL SCHOOL 2450 Pepperrell Street Lackland AFB Texas, 78236-5345 http://www.usuhs.mil "The author hereby certifies that the use of any...Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  3. Mechanical resistance of zirconium implant abutments: A review of the literature

    PubMed Central

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  4. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  5. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  6. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    SciT

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  7. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    PubMed

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Nanomechanical Characterization of Temperature-Dependent Mechanical Properties of Ion-Irradiated Zirconium with Consideration of Microstructure and Surface Damage

    NASA Astrophysics Data System (ADS)

    Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas

    2015-12-01

    Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.

  9. An Impact of Zirconium Doping of Zn-Al Braze on the Aluminum-Stainless Steel Joints Integrity During Aging

    NASA Astrophysics Data System (ADS)

    Yang, Jinlong; Xue, Songbai; Sekulic, Dusan P.

    2017-01-01

    This work offers an analysis of the microstructure and the growth rate of an intermetallic compound within the aged AA 6061 aluminum alloy-304 stainless steel joint brazed with Zn-15Al and Zn-15Al-0.2Zr filler metals. The effect of zirconium addition on mechanical integrity of the brazed joint was studied. The experimental results confirm that the thickness of the Fe-Al intermetallic layer formed at the brazed seam/stainless steel interface increases with the increase of the aging time. Furthermore, it is established that the growth rate of the intermetallic layer for the Zn-15Al-0.2Zr brazed joint was lower than that for Zn-15Al. The results also indicate that the shear strength of both Zn-15Al and Zn-15Al-0.2Zr brazed joints decreases monotonously during aging. The value of the strength after aging lasting for 800 h for Zn-15Al and Zn-15Al-0.2Zr has decreased by 20 and 17%, respectively. The fracture of joints occurred at the interface between the brazed seam and the Fe4Al13 intermetallic layer. The morphology of the surfaces exhibits a cleavage fracture.

  10. Improvement of GRCop-84 Through the Addition of Zirconium

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Lerch, Bradley A.

    2012-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has excellent strength, creep resistance, low cycle fatigue (LCF) life and stability at elevated temperatures. It suffers in comparison to many commercially available precipitation-strengthened alloys below 500 C (932 F). It was observed that the addition of Zr consistently improved the mechanical properties of Cu-based alloys especially below 500 C. In an effort to improve the low temperature properties of GRCop-84, 0.35 wt.% Zr was added to the alloy. Limited tensile, creep, and LCF testing was conducted to determine if improvements occur. The results showed some dramatic increases in the tensile and creep properties at the conditions tested with the probability of additional improvements being possible through cold working. LCF testing at room temperature did not show an improvement, but improvements might occur at elevated temperatures.

  11. Zirconium nitride precipitation in nominally pure yttria-stabilized zirconia

    SciT

    Gomez-Garcia, D.; Martinez-Fernandez, J.; Dominguez-Rodriguez, A.

    Nominally pure yttria-stabilized zirconia alloys are shown to contain unexpectedly large amounts of dissolved nitrogen. Its presence in the lattice was detected through the observation of large precipitates in alloys with three different concentrations of yttria deformed in compression in argon in the temperature range 1,600--1,800 C. Electron diffraction, EDS and PEELS analyses, and Moire imaging were used to identify the precipitates as ZrN. The possible origin of the nitrogen, its likely effects on properties, and the role of annealing atmosphere are briefly discussed.

  12. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  13. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  14. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    NASA Astrophysics Data System (ADS)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  15. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  17. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    PubMed

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  18. Electronic structure of alloys

    SciT

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references. (GHT)

  19. High temperature alloy

    NASA Technical Reports Server (NTRS)

    Frank, R. G.; Semmel, J. W., Jr.

    1968-01-01

    Molybdenum is substituted for tungsten on an atomic basis in a cobalt-based alloy, S-1, thus enabling the alloy to be formed into various mill products, such as tubing and steels. The alloy is weldable, has good high temperature strength and is not subject to embrittlement produced by high temperature aging.

  20. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  1. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  2. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  3. Quantitative in vivo biocompatibility of new ultralow-nickel cobalt-chromium-molybdenum alloys.

    PubMed

    Sonofuchi, Kazuaki; Hagiwara, Yoshihiro; Koizumi, Yuichiro; Chiba, Akihiko; Kawano, Mitsuko; Nakayama, Masafumi; Ogasawara, Kouetsu; Yabe, Yutaka; Itoi, Eiji

    2016-09-01

    Nickel (Ni) eluted from metallic biomaterials is widely accepted as a major cause of allergies and inflammation. To improve the safety of cobalt-chromium-molybdenum (Co-Cr-Mo) alloy implants, new ultralow-Ni Co-Cr-Mo alloys with and without zirconium (Zr) have been developed, with Ni contents of less than 0.01%. In the present study, we investigated the biocompatibility of these new alloys in vivo by subcutaneously implanting pure Ni, conventional Co-Cr-Mo, ultralow-Ni Co-Cr-Mo, and ultralow-Ni Co-Cr-Mo with Zr wires into the dorsal sides of mice. After 3 and 7 days, tissues around the wire were excised, and inflammation; the expression of IL-1β, IL-6, and TNF-α; and Ni, Co, Cr, and Mo ion release were analyzed using histological analyses, qRT-PCR, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Significantly larger amounts of Ni eluted from pure Ni wires than from the other wires, and the degree of inflammation depended on the amount of eluted Ni. Although no significant differences in inflammatory reactions were identified among new alloys and conventional Co-Cr-Mo alloys in histological and qRT-PCR analyses, ICP-MS analysis revealed that Ni ion elution from ultralow-Ni Co-Cr-Mo alloys with and without Zr was significantly lower than from conventional Co-Cr-Mo alloys. Our study, suggests that the present ultralow-Ni Co-Cr-Mo alloys with and without Zr have greater safety and utility than conventional Co-Cr-Mo alloys. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1505-1513, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. A CAD/CAM Zirconium Bar as a Bonded Mandibular Fixed Retainer: A Novel Approach with Two-Year Follow-Up

    PubMed Central

    Hassan, Rozita; Hanoun, Abdul Fatah

    2017-01-01

    Stainless steel alloys containing 8% to 12% nickel and 17% to 22% chromium are generally used in orthodontic appliances. A major concern has been the performance of alloys in the environment in which they are intended to function in the oral cavity. Biodegradation and metal release increase the risk of hypersensitivity and cytotoxicity. This case report describes for the first time a CAD/CAM zirconium bar as a bonded mandibular fixed retainer with 2-year follow-up in a patient who is subjected to long-term treatment with fixed orthodontic appliance and suspected to have metal hypersensitivity as shown by the considerable increase of nickel and chromium concentrations in a sample of patient's unstimulated saliva. The CAD/CAM design included a 1.8 mm thickness bar on the lingual surface of lower teeth from canine to canine with occlusal rests on mesial side of first premolars. For better retention, a thin layer of feldspathic ceramic was added to the inner surface of the bar and cemented with two dual-cured cement types. The patient's complaint subsided 6 weeks after cementation. Clinical evaluation appeared to give good functional value where the marginal fit of digitized CAD/CAM design and glazed surface offered an enhanced approach of fixed retention. PMID:28819572

  5. A CAD/CAM Zirconium Bar as a Bonded Mandibular Fixed Retainer: A Novel Approach with Two-Year Follow-Up.

    PubMed

    Zreaqat, Maen; Hassan, Rozita; Hanoun, Abdul Fatah

    2017-01-01

    Stainless steel alloys containing 8% to 12% nickel and 17% to 22% chromium are generally used in orthodontic appliances. A major concern has been the performance of alloys in the environment in which they are intended to function in the oral cavity. Biodegradation and metal release increase the risk of hypersensitivity and cytotoxicity. This case report describes for the first time a CAD/CAM zirconium bar as a bonded mandibular fixed retainer with 2-year follow-up in a patient who is subjected to long-term treatment with fixed orthodontic appliance and suspected to have metal hypersensitivity as shown by the considerable increase of nickel and chromium concentrations in a sample of patient's unstimulated saliva. The CAD/CAM design included a 1.8 mm thickness bar on the lingual surface of lower teeth from canine to canine with occlusal rests on mesial side of first premolars. For better retention, a thin layer of feldspathic ceramic was added to the inner surface of the bar and cemented with two dual-cured cement types. The patient's complaint subsided 6 weeks after cementation. Clinical evaluation appeared to give good functional value where the marginal fit of digitized CAD/CAM design and glazed surface offered an enhanced approach of fixed retention.

  6. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    SciT

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmissionmore » electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  7. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    PubMed

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  8. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy

    PubMed Central

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-01-01

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345

  9. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  10. Revisiting Zirconium: New Abundance Determinations with Improved Oscillator Strengths

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.; Jones, M.; Nichols, R.

    2006-12-01

    The element Zirconium is produced via neutron capture (n-capture). It resides in the mass range where there is uncertainty about the production mechanism at early time. The rapid n-capture process (r-process) was believed to be responsible for the production, but no study (Burris et al 2000, Gilroy et al 1988 and others) has been able to successfully use the r-process to reproduce the abundance signature for elements in this mass range for metal-poor halo stars. It has been suggested (Sneden and Cowan 2003) that there may be an undiscovered component to the r-process. New transition probabilities for Zr II have been reported by Malcheva et al (2006). We utilize these values to make new abundance determinations for Zr in the Sun and the metal-poor halo star BD +17 3248. This work is supported in part by the AAS Small Grant Program, the Arkansas Space Grant Consortium and the UCA Undergraduate Research Council.

  11. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  12. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  13. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  14. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-12-01

    The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.

  15. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe 2O 4 (CFO) and CoFe 1.9Zr 0.1O 4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with themore » substitution of Zr suggests the preferential occupation of Zr 4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  16. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhan, Guanghui; Liu, Jingquan; Yang, Bin; Xu, Bin; Feng, Jie; Chen, Xiang; Yang, Chunsheng

    2015-10-01

    Zirconium oxynitrides thin film thermometers were demonstrated to be useful temperature sensors. However, the basic conduction mechanism of zirconium oxynitrides films has been a long-standing issue, which hinders the prediction and optimization of their ultimate performance. In this letter, zirconium oxynitrides films were grown on sapphire substrates by magnetron sputtering and their electric transport mechanism has been systemically investigated. It was found that in high temperatures region (>150 K) the electrical conductivity was dominated by thermal activation for all samples. In the low temperatures range, while Mott variable hopping conduction (VRH) was dominated the transport for films with relatively low resistance, a crossover from Mott VRH conduction to Efros-Shklovskii (ES) VRH was observed for films with relatively high resistance. This low temperature crossover from Mott to ES VRH indicates the presence of a Coulomb gap (~7 meV). These results demonstrate the competing and tunable conduction mechanism in zirconium oxynitrides thin films, which would be helpful for optimizing the performance of zirconium oxynitrides thermometer.

  17. Approche structurée en pratique familiale pour les patients ayant des problèmes de mémoire

    PubMed Central

    Lee, Linda; Weston, W. Wayne; Heckman, George; Gagnon, Micheline; Lee, F. Joseph; Sloka, Scott

    2013-01-01

    Résumé Objectif Présenter aux médecins de famille une approche structurée pour les patients qui présentent des problèmes de mémoire. Sources des données Cette approche se fonde sur un programme agréé de formation clinique sur la mémoire, élaboré par le Centre for Family Medicine Memory Clinic en partenariat avec le Collège des médecins de famille de l’Ontario. Message principal Le recours à une approche structurée de raisonnement clinique peut aider les médecins à poser un diagnostic exact chez des patients qui présentent des problèmes de mémoire. Le délirium, la dépression et les causes réversibles doivent être exclus, pour ensuite faire une différenciation entre le vieillissement cognitif normal, la déficience cognitive légère et la démence. Il est essentiel de procéder à une anamnèse collatérale et à une évaluation fonctionnelle exacte. Les formes courantes de la démence peuvent être cliniquement différenciées par la séquence dans laquelle les symptômes apparaissent et par la façon dont les déficits cognitifs évoluent avec le temps. Habituellement, les signes précoces de la démence d’Alzheimer comportent une déficience de la mémoire épisodique, tandis que la démence due principalement à des causes vasculaires peut se présenter par une perte précoce de la fonction exécutive et de la fonction visuospatiale, ainsi que des caractéristiques cliniques particulières. Conclusion Une approche de raisonnement clinique peut aider les médecins à poser des diagnostics précoces et exacts qui peuvent orienter une prise en charge appropriée et améliorer les soins aux patients qui ont des problèmes de mémoire.

  18. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy

    PubMed Central

    Vasconcellos, Luis Gustavo Oliveira De; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1—commercially pure Ti group (CpTi); G2—Ti-6Al-4V alloy; G3—Ti-13 Niobium-13 Zirconium alloy; G4—Ti-35 Niobium alloy; G5—Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  19. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  20. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  1. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  2. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    NASA Astrophysics Data System (ADS)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  3. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    NASA Astrophysics Data System (ADS)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  4. Structural studies of degradation process of zirconium dioxide tetragonal phase induced by grinding with dental bur

    NASA Astrophysics Data System (ADS)

    Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.

    2017-11-01

    Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.

  5. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    PubMed

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  7. Determination of fluoride in water - A modified zirconium-alizarin method

    Lamar, W.L.

    1945-01-01

    A convenient, rapid colorimetric procedure using the zirconium-alizarin indicator acidified with sulfuric acid for the determination of fluoride in water is described. Since this acid indicator is stable indefinitely, it is more useful than other zirconium-alizarin reagents previously reported. The use of sulfuric acid alone in acidifying the zirconium-alizarin reagent makes possible the maximum suppression of the interference of sulfate. Control of the pH of the samples eliminates errors due to the alkalinity of the samples. The fluoride content of waters containing less than 500 parts per million of sulfate and less than 1000 p.p.m. of chloride may be determined within a limit of 0.1 p.p.m. when a 100-ml. sample is used.

  8. Corrosion Behavior of Zirconium Treated Mild Steel with and Without Organic Coating: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Ghanbari, Alireza; Attar, Mohammadreza Mohammadzade

    2014-10-01

    In this study, the anti-corrosion performance of phosphated and zirconium treated mild steel (ZTMS) with and without organic coating was evaluated using AC and DC electrochemical techniques. The topography and morphology of the zirconium treated samples were studied using atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) respectively. The results revealed that the anti-corrosion performance of the phosphate layer was superior to the zirconium conversion layer without an organic coating due to very low thickness and porous nature of the ZTMS. Additionally, the corrosion behavior of the organic coated substrates was substantially different. It was found that the corrosion protection performance of the phosphate steel and ZTMS with an organic coating is in the same order.

  9. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    PubMed Central

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  10. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Zirconium and hafnium in the southeastern Atlantic States

    Mertie, J.B.

    1958-01-01

    The principal source of zirconium and hafnium is zircon, though a minor source is baddeleyite, mined only in Brazil. Zircon is an accessory mineral in igneous, metamorphic, and sedimentary rocks, but rarely occurs in hardrock in minable quantities. The principal sources of zircon are therefore alluvial deposits, which are mined in many countries of five continents. The principal commercial deposits in the United States are in Florida, though others exist elsewhere in the southeastern Coastal Plain. The evidence indicates that conditions for the accumulation of workable deposits of heavy minerals were more favorable during the interglacial stages of the Pleistocene epoch than during Recent time. Therefore detrital ores of large volume and high tenor are more likely to be found in the terrace deposits than along the present beaches. Other concentrations of heavy minerals, however, are possible at favored sites close to the Fall Line where the Tuscaloosa formation rests upon the crystalline rocks of the Piedmont province. A score of heavy and semiheavy minerals occur in the detrital deposits of Florida, but the principal salable minerals are ilmenite, leucoxene, rutile, and zircon, though monazite and staurolite are saved at some mining plants. Commercial deposits of heavy minerals are generally required to have a tenor of 4 percent, though ores with a lower tenor can be mined at a profit if the content of monazite is notably high. The percentages of zircon in the concentrates ranges from 10 to 16 percent, and in eastern Florida from 13 to 15 percent. Thus the tenor in zircon of the ore-bearing sands ranges from 0.4 to 0.6 percent. The content of hafnium in zircon is immaterial for many uses, but for some purposes very high or very low tenors in hafnium are required. Alluvial zircon cannot be separated into such varieties, which, if needed, must be obtained from sources in bedrock. It thus becomes necessary to determine the Hf : Zr ratios in zircon from many kinds of

  12. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  13. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  14. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    PubMed Central

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  15. Improved Yttrium and Zirconium Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Violante, Renata; Biemont, E.; Cowan, J. J.; Sneden, C.

    2012-01-01

    Abstract We present new abundances of the lighter n-capture elements, Yttrium (Z=39) and Zirconium (Z=40) in the very metal poor, r-process rich stars BD+17 3248 and HD 221170. Very accurate abundances were obtained by use of the new transition probabilities for Y II published by Biémont et al. 2011, and Zr II by Malcheva et al. 2006, and by expanding the number of transitions employed for each element. For example, in BD+17 3248, we find log ɛπσιλον=-0.03 +/- 0.03 (σιγμα=0.15, from 23 lines) for Y II. As for Zr II, log ɛπσιλον = 0.65 +/- 0.03 (σɛγμα = 0.1, from 13 lines). The resulting abundance ratio is log ɛπσιλον [Y/Zr] = -0.68 +/- 0.05. The results for HD 221170 are in accord with those of BD+17 3248. The quantity of lines used to form the abundance means has increased significantly since the original studies of these stars, resulting in more trustworthy abundances. These observed abundance ratios are in agreement with an r-process-only value predicted from stellar models, but is under-abundant compared to an empirical model derived from direct analyses of meteoritic material. This ambiguity should stimulate further nucleosynthetic analysis to explain this abundance ratio. We would like to extend our gratitude to NSF grant AST-0908978 and the University of Texas Astronomy Department Rex G. Baker, Jr. Endowment for their financial support in this project.

  16. Rubidium and Zirconium Production in Massive AGB Stars

    SciT

    Raai, M. A. van; Lugaro, M.; Karakas, A. I.

    2008-04-06

    A recent survey of a large sample of massive Galactic asymptotic giant branch (AGB) stars shows that significant overabundances of rubidium (up to 100 times solar), but merely solar zirconium, are present in these stars. These observations can set constraints on our theoretical notion of the slow neutron capture process (the s process) in AGB stars, as well as on the rates of the neutron capture reactions involved in the production of Rb and Zr. We use the Monash nucleosynthesis code with a recently extended network to try to reproduce these observations. We present results for AGB stars of massesmore » 5, 6, and 6.5 M{center_dot} and solar metallicity. We also show results for different available choices of the neutron capture rates, as well as for the possible inclusion of a partial mixing zone (PMZ), leading to the activation of the {sup 13}C neutron source. We find increasing Rb overabundances with increasing stellar mass, as observed, but we are far from matching the highest observed Rb enhancements. Inclusion of a PMZ increases the Rb abundance, but also produces an overabundance of Zr, contrary to what is observed. Only if the third dredge up efficiency remains as high as before the onset of the superwind phase during the final few pulses of a massive AGB star, can we match the highest [Rb/Fe] ratios observed by Garcia-Hernandez et al. [l]. A better understanding of the third dredge up efficiency with decreasing envelope mass for massive AGB stars is essential for further investigation of this issue.« less

  17. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  18. The visible spectrum of zirconium dioxide, ZrO2

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Gupta, Varun; Rice, Corey A.; Maier, John P.; Lin, Sheng H.; Lin, Chih-Kai

    2011-09-01

    The electronic spectrum of a cold molecular beam of zirconium dioxide, ZrO2, has been investigated using laser induced fluorescence (LIF) in the region from 17 000 cm-1 to 18 800 cm-1 and by mass-resolved resonance enhanced multi-photon ionization (REMPI) spectroscopy from 17 000 cm-1-21 000 cm-1. The LIF and REMPI spectra are assigned to progressions in the tilde A{^1}B_2(ν1, ν2, ν3) ← tilde X{^1}A_1(0, 0, 0) transitions. Dispersed fluorescence from 13 bands was recorded and analyzed to produce harmonic vibrational parameters for the tilde X{^1}A_1 state of ω1 = 898(1) cm-1, ω2 = 287(2) cm-1, and ω3 = 808(3) cm-1. The observed transition frequencies of 45 bands in the LIF and REMPI spectra produce origin and harmonic vibrational parameters for the tilde A{^1}B_2 state of Te = 16 307(8) cm-1, ω1 = 819(3) cm-1, ω2 = 149(3) cm-1, and ω3 = 518(4) cm-1. The spectra were modeled using a normal coordinate analysis and Franck-Condon factor predictions. The structures, harmonic vibrational frequencies, and the potential energies as a function of bending angle for the tilde A{^1}B_2 and tilde X{^1}A_1 states are predicted using time-dependent density functional theory, complete active space self-consistent field, and related first-principle calculations. A comparison with isovalent TiO2 is made.

  19. Basic principles of creating a new generation of high- temperature brazing filler alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  20. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave

    NASA Astrophysics Data System (ADS)

    Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-12-01

    This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (<1017 cm-3). Molybdenum and TZM were exposed to a basic ammonothermal environment, leading to slight degradation through formation of molybdenum nitride powders on their surface at elevated temperatures (T>560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.

  1. Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.; Merrick, Howard F.; Gibson, Robert C.

    1980-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a morphology of the gamma-double prime phase enveloping the gamma-prime phase and delta phase distributed at or near the grain boundaries. The alloy consists essentially of about 40-50% nickel, 7.5-14% chromium, 1.5-4% niobium, 0.25-0.75% silicon, 1-3% titanium, 0.1-0.5% aluminum, 0.02-0.1% carbon, 0.002-0.015% boron, and the balance iron. Up to 2% manganese and up to 0.01% magnesium may be added to inhibit trace element effects; up to 0.1% zirconium may be added to increase radiation swelling resistance; and up to 3% molybdenum may be added to increase strength.

  2. Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant

    NASA Astrophysics Data System (ADS)

    Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra

    Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.

  3. A promising structure for fabricating high strength and high electrical conductivity copper alloys

    PubMed Central

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-01-01

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application. PMID:26856764

  4. Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    McGhee, Paul

    The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.

  5. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  6. Development of phase analysis methods of impurity elements in alloys based on iron and nickel

    NASA Astrophysics Data System (ADS)

    Andreeva, N. A.; Anuchkin, S. N.; Volchenkova, V. A.; Kazenas, E. K.; Penkina, T. N.; Fomina, A. A.

    2018-04-01

    Using the method of AES with ICP, new methods have been developed for quantifying the content of various forms of existence of impurity elements: Al-Al2O3; Zr-ZrO2 in alloys based on iron (Fe-Sn) and nickel (Ni-Sn). Open systems were used to dissolve Al and Zr. To translate difficult-to-open aluminum oxides (corundum) and zirconium oxide (baddeleyite) into the solution, accelerated techniques were developed using the microwave system Mars 5. To confirm the completeness of the dissolution of oxides, a classical scheme of alloy fusion with alkali metal salts was used. Optimal analytical parameters for determining the elements: Al and Zr were chosen. The influence of matrix elements (iron and nickel) and methods of its elimination were studied. This made it possible to determine the elements in a wide concentration range from 1 • 10-3 to n% Al and from 1 • 10-4 to n% Zr without preliminary separation of the matrix with good metrological characteristics. The relative standard deviation (Sr) does not exceed 0,2. The separate determination of the contents of aluminum and aluminium oxide in the model melt of Fe-Sn-Al2O3 and zirconium and zirconium oxide in the Ni-Sn-ZrO2 model melt allowed us to estimate the number of nanoparticles participating in the heterophase interaction with tin and retired to the interface in the form of ensembles and the number of nanoparticles present in the melt and affecting the crystallization process and the structure of the metal.

  7. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2015-12-01

    As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).

  8. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy

    NASA Astrophysics Data System (ADS)

    Kaiser, Md. Salim

    2018-04-01

    The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.

  9. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    This production route has demonstrated that aluminum alloys with yield strengths in excess of 690 MPa with good elongation (reportedly 8%) are...series of aluminum alloys have poor-to-fair general corrosion resistance and poor-to-good stress corrosion cracking resistance. Wrought 2519...aluminum alloy has good strength, good ballistic performance, good stress corrosion cracking resistance but only fair general corrosion resistance

  10. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  12. Thermodynamics of Alloys: Studies of Nickel-Gallium, Nickel-Germanium and Nickel-Rhodium Alloys.

    DTIC Science & Technology

    NICKEL ALLOYS, *GALLIUM ALLOYS, *GERMANIUM ALLOYS, * RHODIUM ALLOYS, *PHASE STUDIES, THERMODYNAMICS, INTERMETALLIC COMPOUNDS, FREE ENERGY, ENTROPY, HEAT OF FORMATION, CRYSTAL STRUCTURE, UNITED KINGDOM.

  13. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  15. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  16. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  17. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules.

    PubMed

    Sheikhi, A; van de Ven, T G M

    2017-08-11

    A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.

  18. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  19. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    NASA Technical Reports Server (NTRS)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  20. Precision of a CAD/CAM technique for the production of zirconium dioxide copings.

    PubMed

    Coli, Pierluigi; Karlsson, Stig

    2004-01-01

    The precision of a computer-aided design/manufacturing (CAD/CAM) system to manufacture zirconium dioxide copings with a predetermined internal space was investigated. Two master models were produced in acrylic resin. One was directly scanned by the Decim Reader. The Decim Producer then manufactured 10 copings from prefabricated zirconium dioxide blocks. Five copings were prepared, aiming for an internal space to the master of 45 microm. The other five copings were prepared for an internal space of 90 microm. The second test model was used to try in the copings produced. The obtained internal space of the ceramic copings was evaluated by separate measurements of the master models and inner surfaces of the copings. The master models were measured at predetermined points with an optical instrument. The zirconium dioxide copings were measured with a contact instrument at the corresponding sites measured in the masters. The first group of copings had a mean internal space to the scanned master of 41 microm and of 53 microm to the try-in master. In general, the internal space along the axial walls of the masters was smaller than that along the occlusal walls. The second group had a mean internal space of 82 microm to the scanned master and of 90 microm to the try-in master. The aimed-for internal space of the copings was achieved by the manufacturer. The CAD/CAM technique tested provided high precision in the manufacture of zirconium dioxide copings.

  1. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    DOEpatents

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  2. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    PubMed

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  3. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    PubMed

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Five year survival analysis of an oxidised zirconium total knee arthroplasty.

    PubMed

    Holland, Philip; Santini, Alasdair J A; Davidson, John S; Pope, Jill A

    2013-12-01

    Zirconium total knee arthroplasties theoretically have a low incidence of failure as they are low friction, hard wearing and hypoallergenic. We report the five year survival of 213 Profix zirconium total knee arthroplasties with a conforming all polyethylene tibial component. Data was collected prospectively and multiple strict end points were used. SF12 and WOMAC scores were recorded pre-operatively, at three months, at twelve months, at 3 years and at 5 years. Eight patients died and six were "lost to follow-up". The remaining 199 knees were followed up for five years. The mean WOMAC score improved from 56 to 35 and the mean SF12 physical component score improved from 28 to 34. The five year survival for failure due to implant related reasons was 99.5% (95% CI 97.4-100). This was due to one tibial component becoming loose aseptically in year zero. Our results demonstrate that the Profix zirconium total knee arthroplasty has a low medium term failure rate comparable to the best implants. Further research is needed to establish if the beneficial properties of zirconium improve long term implant survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    PubMed Central

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  6. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs... deep portions of the lungs of users. The lung is an organ, like skin, subject to the development of granulomas. Unlike the skin, the lung will not reveal the presence of granulomatous changes until they have...

  7. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  8. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  9. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  10. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  11. Surface composition of alloys

    NASA Astrophysics Data System (ADS)

    Sachtler, W. M. H.

    1984-11-01

    In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.

  12. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  13. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  14. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  15. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  16. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  17. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  18. Structure and Properties of Titanium Tantalum Alloys for Biocompatibility

    NASA Astrophysics Data System (ADS)

    Huber, Daniel E.

    In this thesis, the phase stability and elastic modulus of Ti-Ta simple binary alloys as well as alloys with small additions of ternary elements have been studied. The binary alloy from a nominal 8 to 28 wt.% Ta was first explored using a combinatorial approach. This approach included Laser Engineered Net Shape (LENSTM) processing of materials and subsequent characterization by instrumented indentation and site specific Transmission Electron Microscopy (TEM). The composition range of 15 to 75 wt.% Ta was further explored by more traditional methods that included vacuum arc melting high purity elements, X-Ray Diffraction (XRD) and modulus measurements made by ultrasonic methods. Beyond the simple binary, alloys with low levels of ternary elements, oxygen, aluminum, zirconium and small additions of rare earth oxides were investigated. The crystal structure with space group Cmcm was chosen for it applicability with P63/mmc and Im-3¯m sub group / super group symmetry. This provides a consistent crystal structure framework for the purpose of studying the alpha to beta transformation pathway and associated alpha' and alpha'' martensitic phases. In this case, the pathway is defined by both the lattice parameters and the value of the parameter "y", where the parameter "y" describes the atomic positions of the [002]alpha plane. It was found that the lattice parameter changes in the Ti-Ta binary alloys are similar to structures reported for compositions in the Ti-Nb system of similar atomic percentages. Although samples produced by the LENSTM; process and characterized by instrumented indentation demonstrated the correct trends in modulus behavior, absolute agreement was not seen with modulus values published in literature. Alloys of the binary Ti-Ta system produced from high purity materials do indeed show close agreement with literature where there exist two minima of modulus near the compositions of Ti-28Ta wt.% and Ti-68Ta wt.%. These two minima occur at the discreet

  19. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    SciT

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloymore » optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.« less

  20. Synthesizing Aluminum alloys by double mechanical alloying

    NASA Astrophysics Data System (ADS)

    Froyen, L.; Delaey, L.; Niu, X. P.; Le Brun, P.; Peytour, C.

    1995-03-01

    A new synthesis technique, namely double mechanical alloying (dMA), has been developed to fabricate aluminum alloys containing the finely distributed intermetallic compounds and inert dispersoids Al4C3 and Al2O3 The technique consists mainly of three steps: a primary milling stage of elemental powders (MAI) followed by a heat treatment to promote the formation of intermetallic phases, a secondary milling stage (MA2) to refine the microstructure, and consolidation of the produced powders. The results of mechanical and tribological properties of the resulting materials indicate that the dMA is a promising technique for the fabrication of aluminum alloys for applications requiring wear resistance and high-temperature performance.

  1. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  2. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    NASA Astrophysics Data System (ADS)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  3. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)–n-Propoxide Ions

    PubMed Central

    Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František

    2008-01-01

    We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507

  4. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.

    PubMed

    Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain

    2017-04-14

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  5. Improvements to the strength and corrosion resistance of aluminum-magnesium-manganese alloys of near-AA5083 chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Mark Christopher

    Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these

  6. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  7. Human biokinetic data and a new compartmental model of zirconium--a tracer study with enriched stable isotopes.

    PubMed

    Greiter, Matthias B; Giussani, Augusto; Höllriegl, Vera; Li, Wei Bo; Oeh, Uwe

    2011-09-01

    Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool in nutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope (95)Zr, is relevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuel cladding material. We present a comprehensive set of human data from a tracer study with stable isotopes of zirconium. The data are used to refine a biokinetic model of zirconium. Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete double tracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations. Tracer concentrations were measured in blood plasma and urine collected up to 100 d after tracer administration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240 measured concentration values above detection limits. Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffered drinking solution and 0.007 for zirconium oxalate solution. Biokinetic models were developed based on the linear first-order kinetic compartmental model approach used by the International Commission on Radiological Protection (ICRP). The main differences of the optimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfer compartment made necessary by the observed tracer clearance from plasma, (2) different parameters related to fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretion pathway to urine. The study considerably expands the knowledge on the biokinetics of zirconium, which was until now dominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yet is based on the same principles and fits well into the ICRP radiation protection approach. Copyright © 2011

  8. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  9. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  10. Aluminum-Silicon Alloy Having Improved Properties at Elevated Temperatures and Articles Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2002-01-01

    An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications. having the following composition, by weight percent (wt %): Silicon: 11.0-14.0; Copper: 5.6-8.0; Iron: 0-0.8; Magnesium: 0.5-1.5; Nickel: 0.05-0.9; Manganese: 0.5-1.5; Titanium: 0.05-1.2; Zirconium: 0.12-1.2; Vanadium: 0.05-1.2; Zinc: 0.005-0.9; Strontium: 0.001-0.1; Aluminum: balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.

  11. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  12. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  13. Possible origin and roles of nano-porosity in ZrO2 scales for hydrogen pick-up in Zr alloys

    NASA Astrophysics Data System (ADS)

    Lindgren, Mikaela; Geers, Christine; Panas, Itai

    2017-08-01

    A mechanistic understanding of Wagnerian build-up and subsequent non-Wagnerian break-down of barrier oxide upon oxidation of zirconium alloys by water is reiterated. Hydrogen assisted build-up of nano-porosity is addressed. Growth of sub-nanometer wide stalactitic pores owing to increasing aggregation of neutral oxygen vacancies offering a means to permeate hydrogen into the alloy is explored by density functional theory. The Wagnerian channel utilizes charge separation allowing charged oxygen vacancies and electrons to move separately from nominal anode to nominal cathode. This process becomes increasingly controlled by the charging of the barrier oxide resulting in sub-parabolic rate law for oxide growth. The break-down of the barrier oxide is understood to be preceded by avalanching hydrogen pick-up in the alloy. Pore mediated diffusion allows water to effectively short circuit the barrier oxide.

  14. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  15. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  16. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1985-09-27

    REPORT & PERIOD COVERED -v Semiconductor Alloy Theory Annual 0) 84-9-1 to 85-8-31 M’) 6. PERFORMING O𔃾G. REPORT NUMBER 7. AUTHOR(@) 8. CONTRACT OR...GRANT NUMBER(s) An-Ban Chen AFOSR-84-0282 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & W R UNT NUMBERS Auburn...and the effective mass. We generalized the formula for indirect-gap alloys with multiple bands and applied it to SiGe alloy. Our results, correlated

  17. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  18. The origin of 2.7 eV blue luminescence band in zirconium oxide

    SciT

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Zhuravlev, K. S.; Gritsenko, V. A.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7 eV peak. There is a broad band at 5.2 eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1 eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7 eV blue luminescence excited near 5.2 eV in a zirconium oxide film is associated with the oxygen vacancy.

  19. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  20. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  1. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong

    2007-11-01

    We report here a high-pressure phase-transition induced strengthening in ultrapure zirconium metal. The determined yield strength shows more than sixfold abrupt increase at the transition pressure of Pc=6GPa, from σyα≈180MPa in the low-pressure phase of α-Zr to σyω≈1180MPa in the high-pressure phase of ω-Zr. The observed enhancement provides an alternate route for material strengthening and is the most significant among the known strengthening techniques for metals. Our findings support the theoretical simulations of the substantial covalent bonding and "rougher" corrugation of slip planes for dislocations in the ω-phase of zirconium.

  2. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva.

    PubMed

    Romonti, Daniela E; Gomez Sanchez, Andrea V; Milošev, Ingrid; Demetrescu, Ioana; Ceré, Silvia

    2016-05-01

    The paper is focused on elaboration of ZrO2 films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO2. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    PubMed

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    PubMed

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p < 0.001). In the HXLPE series, the median steady-state penetration rate from 1 year onward was 0.02 mm/year (range, -0.32 to

  5. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model

    NASA Astrophysics Data System (ADS)

    Panigrahi, M.; Panda, R. N.; Kumar, Bharat; Patra, S. K.

    In the framework of relativistic mean-field theory, the ground state properties like binding energy, charge radius and quadrupole deformation parameter for various isotopes of zirconium from the valley of stability to drip-line region have been studied. The results are compared with the experimental data and we found reasonable agreement. The calculations are carried out for β-decay energy and β-decay half-life up to the drip-line. Total reaction and elastic differential cross-sections are also studied for few zirconium isotopes as projectiles with 12C as target, using different parameter sets namely NL3*, DD-ME2 and DD-PC1 in conjunction with Glauber model.

  7. Electrotransport and diffusivity of molybdenum, rhenium, tungsten, and zirconium in beta-thorium

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Beck, M. S.; Rehbein, D. K.; Conzemius, R. J.; Carlson, O. N.

    1984-01-01

    The electric mobilities, diffusivities, and effective valences were determined for molybdenum, rhenium, tungsten, and zirconium in beta-thorium. All four solutes migrated in the same direction as the electron flow. Rhenium and molybdenum were found to be very mobile, with tungsten somewhat slower. Zirconium was found to move at a rate near that of the self-diffusion of beta-thorium, viz., about 10 to the -11th sq m/s at 1500 C. The electromigration velocities showed a similar trend. A comparison was made between experimental data obtained by scanning laser mass spectrometry and theoretical transport equations for two purification experiments. Good agreement was obtained with both the concentration profile predicted by DeGroot and the purification ratio predicted by Verhoeven.

  8. Optical properties and emissivities of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Nordine, Paul C.

    1993-01-01

    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated.

  9. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  10. Corrosion-electrochemical behavior of zirconium in molten alkali metal carbonates

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.

    2016-08-01

    The corrosion and electrochemical characteristics of zirconium during its interaction with molten lithium, sodium, and potassium carbonates containing from 1 to 5 wt % additives to the salt phase are studied in a temperature range of 500-800°C using gravimetry, corrosion potential measurement, and anodic polarization. The substances decreasing the corrosion losses due to the strengthening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used as passivators. Sodium chloride, fluoride, and sulfate serve as corrosion stimulators (activators).

  11. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  12. Formation of heterobimetallic zirconium/cobalt diimido complexes via a four-electron transformation.

    PubMed

    Wu, Bing; Hernández Sánchez, Raúl; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M

    2014-10-06

    The reactivity of the reduced heterobimetallic complex Zr((i)PrNP(i)Pr2)3CoN2 (1) toward aryl azides was examined, revealing a four-electron redox transformation to afford unusual heterobimetallic zirconium/cobalt diimido complexes. In the case of p-tolyl azide, the diamagnetic C3-symmetric bis(terminal imido) complex 3 is formed, but mesityl azide instead leads to asymmetric complex 4 featuring a bridging imido fragment.

  13. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  14. The production of metallocarbohedrenes by the direct laser vaporization of the carbides of titanium and zirconium

    NASA Astrophysics Data System (ADS)

    Cartier, S. F.; May, B. D.; Toleno, B. J.; Purnell, J.; Wei, S.; Castleman, A. W., Jr.

    1994-03-01

    Metallocarbohedrenes (Met-Cars) of titanium and zirconium have been produced by the direct laser vaporization of their respective pure carbides. Time-of-flight mass spectra of both ionic and neutral metallocarbohedrenes formed in the laser-induced plasma are presented and compared to spectra of the same systems generated under laser vaporization/molecular beam conditions. Potential mechanisms of formation of these clusters are presented and discussed.

  15. Total knee arthroplasty with an oxidised zirconium femoral component: ten-year survivorship analysis.

    PubMed

    Ahmed, I; Salmon, L J; Waller, A; Watanabe, H; Roe, J P; Pinczewski, L A

    2016-01-01

    Oxidised zirconium was introduced as a material for femoral components in total knee arthroplasty (TKA) as an attempt to reduce polyethylene wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected database to assess the ten year survival and clinical and radiological outcomes of an oxidised zirconium total knee arthroplasty with the Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and a patient satisfaction scale were used to assess outcome. A total of 303 consecutive TKAs were performed in 278 patients with a mean age of 68 years (45 to 89). The rate of survival ten years post-operatively as assessed using Kaplan-Meier analysis was 97% (95% confidence interval 94 to 99) with revision for any reason as the endpoint. There were no revisions for loosening, osteolysis or failure of the implant. There was a significant improvement in all components of the WOMAC score at final follow-up (p < 0.001). The mean individual components of the KOOS score for symptoms (82.4 points; 36 to 100), pain (87.5 points; 6 to 100), activities of daily life (84.9 points; 15 to 100) and quality of life (71.4 points; 6 to 100) were all at higher end of the scale. This study provides further supportive evidence that the oxidised zirconium TKA gives comparable rates of survival with other implants and excellent functional outcomes ten years post-operatively. Total knee arthroplasty with an oxidised zirconium femoral component gives comparable long-term rates of survival and functional outcomes with conventional implants. ©2016 The British Editorial Society of Bone & Joint Surgery.

  16. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications.

    PubMed

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    PubMed

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  18. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  19. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  20. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  1. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  2. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, Raghu N.; Ginley, David S.

    1995-01-01

    A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.

  3. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1995-10-31

    A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.

  4. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    PubMed

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty: Patellofemoral outcomes.

    PubMed

    Matassi, Fabrizio; Paoli, Tommaso; Civinini, Roberto; Carulli, Christian; Innocenti, Massimo

    2017-10-01

    Oxidized zirconium (OxZr) has demonstrated excellent mechanical properties in vitro when used against articular cartilage; less coefficient of friction and less chondral damage have been found when compared with cobalt-chromium (CoCr) implants. However, controversy exists as to whether implants with a zirconium femoral component articulate safely with a native patella in total knee arthroplasty (TKA). To answer this question, the clinical and radiographic results were analysed from a group of patients who underwent a TKA with patella retention; the OxZr versus CoCr femoral components were compared. The present study prospectively evaluated 83 knees of 74 patients from 2009 to 2010. Each patient was evaluated clinically (visual analogue scale, Knee Society score, patellar score) and radiographically (long leg standing radiograph, anterior-posterior and latero-lateral projections, axial view of the patella) pre-operatively and postoperatively with a mean follow-up of 4.47years. The patellar tilt and shift, and progression of patellofemoral osteoarthritis were calculated with the axial view. There were no patient reported adverse reactions and none of the evaluated prostheses failed. Both the clinical and radiographic evaluations showed no statistically significant between-group differences. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component associated with patellar retention in TKA. Published by Elsevier B.V.

  6. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  7. Selective separation of zirconium from uranium in carbonate solutions by ion flotation

    SciT

    Jdid, E.A.; Blazy, P.; Mahamadou, A.

    1990-05-01

    Separation of zirconium from uranium in carbonate media was undertaken by ion flotation. The collector chosen was octylhydroxamic acid (HOHX). It gave a well-flocculated precipitate with zirconium which floated in less than 5 min. The stoichiometry of the reaction is HOHX/Zr = 3.9/1, and the selectivity in the presence of uranium is very high. In fact, for a ratio {Phi} = (HOHX),M/(Zr),M, which is just stoichiometric and is close to 4, the zirconium removal rate reaches 99%, even in industrial media. The loss of uranium is only 0.5% although its concentration is 37.4 g/L. Mechanisms of separation are not affectedmore » by a variation of pH between 6.7 and 9.8, of temperature up to 60{degree}C, and of carbonate concentration within the 15 to 60 g/L Na{sub 2}CO{sub 3} range.« less

  8. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  9. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  10. Automated Software Generation Approaches for the Design and Development of Guidance and Control Systems Software (Les Differentes Approches Generation pour la Conception et le Developpement de Logiciels de Guidage et de Pilotage)

    DTIC Science & Technology

    1992-03-01

    de Logiciels") etaient en cours de developpement pour resoudre des problimes similaires dans le monde de la gestion . le Panel... gestion des sp cifications, d’algorithmes et de reprtsentations. Techniques et Sciences Informatiques, 4(3), 1985. 4-21 R. Jacquart, M. Lemoine, and G...Guidance and Control Systems Software (Les Diff~rentes Approches "G6neration" pour la Conception et le D~veloppement de Logiciels de Guidage et de

  11. Nouvelles approches en theorie du champ moyen dynamique: le cas du pouvoir thermoelectrique et celui de l'effet orbital d'un champ magnetique

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-Francois

    Les applications reliees a la generation d'energie motivent la recherche de materiaux ayant un fort pouvoir thermoelectrique (S). De plus, S nous renseigne sur certaines proprietes fondamentales des materiaux, comme, par exemple, la transition entre l'etat coherent et incoherent des quasi-particules lorsque la temperature augmente. Empiriquement, la presence de fortes interactions electron-electron peut mener a un pouvoir thermoelectrique geant. Nous avons donc etudie le modele le plus simple qui tient compte de ces fortes interactions, le modele de Hubbard. La theorie du champ moyen dynamique (DMFT) est tout indiquee dans ce cas. Nous nous sommes concentres sur un systeme tridimensionnel (3d) cubique a face centree (fcc), et ce, pour plusieurs raisons. A) Ce type de cristal est tres commun dans la nature. B) La DMFT donne de tres bons resultats en 3d et donc ce choix sert aussi de preuve de principe de la methode. C) Finalement, a cause de la frustration electronique intrinseque au fcc, celui-ci ne presente pas de symetrie particule-trou, ce qui est tres favorable a l'apparition d'une grande valeur de S. Ce travail demontre que lorsque le materiau est un isolant a demi-remplissage a cause des fortes interactions (isolant de Mott), il est possible d'obtenir de grands pouvoirs thermoelectriques en le dopant legerement. C'est un resultat pratique important. Du point de vue methodologique, nous avons montre comment la limite de frequence infinie de S et l'approche dite de Kelvin, qui considere la limite de frequence nulle avant la limite thermodynamique pour S, donnent des estimations fiables de la vraie limite continue (DC) dans les domaines de temperature appropriee. Ces deux approches facilitent grandement les calculs en court-circuit ant la necessite de recourir a de problematiques prolongements analytiques. Nous avons trouve que la methode de calcul a frequence infinie fonctionne bien lorsque les echelles d'energie sont relativement faibles. En d'autres termes

  12. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    PubMed

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p < 0.001). The highest ∆E* ab value was recorded for the zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p < 0.001). The luting cement, the presence of titanium, and the color of zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  13. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  14. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  15. Conception, elaboration et mise a l'essai d'un simulateur interactif permettant une approche modelisante: Application aux lois de la genetique mendelienne

    NASA Astrophysics Data System (ADS)

    Lasri, Abdel-Halim

    Dans cette recherche-developpement, nous avons concu, developpe et mis a l'essai un simulateur interactif pour favoriser l'apprentissage des lois probabilistes impliqees dans la genetique mendelienne. Cet environnement informatise devra permettre aux etudiants de mener des experiences simulees, utilisant les statistiques et les probebilites comme outils mathematiques pour modeliser le phenomene de la transmission des caracteres hereditaires. L'approche didactique est essentiellement orientee vers l'utilisation des methodes quantitatives impliquees dans l'experimentation des facteurs hereditaires. En incorporant au simulateur le principe de la "Lunette cognitive" de Nonnon (1986), l'etudiant fut place dans une situation ou il a pu synchroniser la perception de la representation iconique (concrete) et symbolique (abstraite) des lois probabilistes de Mendel. A l'aide de cet environnement, nous avons amene l'etudiant a identifier le(s) caractere(s) hereditaire(s) des parents a croiser, a predire les frequences phenotypiques probables de la descendance issue du croisement, a observer les resultats statistiques et leur fluctuation au niveau de l'histogramme des frequences, a comparer ces resultats aux predictions anticipees, a interpreter les donnees et a selectionner en consequence d'autres experiences a realiser. Les etapes de l'approche inductive sont privilegiees du debut a la fin des activites proposees. L'elaboration, du simulateur et des documents d'accompagnement, a ete concue a partir d'une vingtaine de principes directeurs et d'un modele d'action. Ces principes directeurs et le modele d'action decoulent de considerations theoriques psychologiques, didactiques et technologiques. La recherche decrit la structure des differentes parties composant le simulateur. L'architecture de celui-ci est construite autour d'une unite centrale, la "Principale", dont les liens et les ramifications avec les autres unites confere a l'ensemble du simulateur sa souplesse et sa

  16. Diffusion and the Thermal Stability of Amorphous Copper-Zirconium

    NASA Astrophysics Data System (ADS)

    Stelter, Eric Carl

    Measurements have been made of diffusion and thermal relaxation in amorphous Cu(,50)Zr(,50). Samples were prepared by melt-spinning under vacuum. Diffusion measurements were made over the temperature range from 317 to 385 C, using Ag and Au as substitutional impurities, by means of Auger electron spectrometry (AES) and Rutherford backscattering spectrometry (RBS). Thermal measurements were made by differential scanning calorimetry (DSC) up to 550 C. The diffusion coefficients of Ag and Au in amorphous Cu(,50)Zr(,50) are found to be somewhat higher than, but very close in magnitude to the coefficient of self-diffusion in crystalline Cu at the same temperatures. The activation energies for diffusion in the amorphous alloy are 0.72 to 1.55 eV/atom, much closer to the activation energy for self-diffusion in liquid Cu, 0.42 eV/atom, than that for the crystalline solid, 2.19 eV/atom. The mechanism for diffusion in the amorphous metal is presumably quite different from the monovacancy mechanism dominant in the crystalline solid. The pre-exponential terms are found to be extremely small, on the order of 10('-10) to 10('-11) cm('2)/sec for Ag diffusion. This indicates that diffusion in amorphous Cu(,50)Zr(,50) may involve an extended defect of 10 or more atoms. Analysis of the data in terms of the free -volume model also lends strength to this conclusion and indicates that the glass is composed of liquid-like clusters of 15 to 20 atoms. The initial stage of relaxation in amorphous CuZr occurs with a spectrum of activation energies. The lowest activation energy involved, 0.78 eV/atom, is almost identical to the average activation energy of Ag diffusion in the glass, 0.77 eV/atom, indicating that relaxation occurs primarily through diffusion. The activation energy of crystallization, determined by Kissinger's method, is 3.10 eV/atom. The large difference, on the order of 2.3 eV/atom, between the activation energies of crystallization and diffusion is attributed to the energy

  17. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial.

    PubMed

    Kosiborod, Mikhail; Rasmussen, Henrik S; Lavin, Philip; Qunibi, Wajeh Y; Spinowitz, Bruce; Packham, David; Roger, Simon D; Yang, Alex; Lerma, Edgar; Singh, Bhupinder

    2014-12-03

    Hyperkalemia is a common electrolyte abnormality that may be difficult to manage because of a lack of effective therapies. Sodium zirconium cyclosilicate is a nonabsorbed cation exchanger that selectively binds potassium in the intestine. To evaluate the efficacy and safety of zirconium cyclosilicate for 28 days in patients with hyperkalemia. HARMONIZE was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial evaluating zirconium cyclosilicate in outpatients with hyperkalemia (serum potassium ≥5.1 mEq/L) recruited from 44 sites in the United States, Australia, and South Africa (March-August 2014). Patients (n = 258) received 10 g of zirconium cyclosilicate 3 times daily in the initial 48-hour open-label phase. Patients (n = 237) achieving normokalemia (3.5-5.0 mEq/L) were then randomized to receive zirconium cyclosilicate, 5 g (n = 45 patients), 10 g (n = 51), or 15 g (n = 56), or placebo (n = 85) daily for 28 days. The primary end point was mean serum potassium level in each zirconium cyclosilicate group vs placebo during days 8-29 of the randomized phase. In the open-label phase, serum potassium levels declined from 5.6 mEq/L at baseline to 4.5 mEq/L at 48 hours. Median time to normalization was 2.2 hours, with 84% of patients (95% CI, 79%-88%) achieving normokalemia by 24 hours and 98% (95% CI, 96%-99%) by 48 hours. In the randomized phase, serum potassium was significantly lower during days 8-29 with all 3 zirconium cyclosilicate doses vs placebo (4.8 mEq/L [95% CI, 4.6-4.9], 4.5 mEq/L [95% CI, 4.4-4.6], and 4.4 mEq/L [95% CI, 4.3-4.5] for 5 g, 10 g, and 15 g; 5.1 mEq/L [95% CI, 5.0-5.2] for placebo; P < .001 for all comparisons). The proportion of patients with mean potassium <5.1 mEq/L during days 8-29 was significantly higher in all zirconium cyclosilicate groups vs placebo (36/45 [80%], 45/50 [90%], and 51/54 [94%] for the 5-g, 10-g, and 15-g groups, vs 38/82 [46%] with placebo; P < .001 for each dose

  18. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    PubMed Central

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  19. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    PubMed

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  20. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.