Sample records for zirconium ferrite adsorbent

  1. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe 2O 4 (CFO) and CoFe 1.9Zr 0.1O 4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with themore » substitution of Zr suggests the preferential occupation of Zr 4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  2. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    PubMed Central

    Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S

    2012-01-01

    Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524

  3. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    PubMed

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  4. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  5. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  6. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  7. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    DOEpatents

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  8. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    PubMed

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  9. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    PubMed Central

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  10. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Demir, Selçuk; Patat, Şaban

    2017-12-15

    In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. The surface area of MOF-545 was found to be 2192m 2 /g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. The optimal experimental conditions were as follows: the amount of MOF-545, 10mg; pH of sample, 7; adsorption and elution time, 15min; and elution solvent, 2mL of 1molL -1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78μgL -1 , 125 and 2.6%, respectively. The adsorption capacity of the adsorbent for lead was found to be 73mgg -1 . The method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  12. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    PubMed

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    NASA Astrophysics Data System (ADS)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  14. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  15. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  16. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  17. Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Kusaka, T.; Maeda, C.

    1985-01-01

    The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying.

  18. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).

    PubMed

    Gu, Wei; Li, Xiaodi; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2018-04-01

    Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite-based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine-functionalized copper ferrite(CuFe 2 O 4 ) via a single solvothermal synthesis process followed by LaCl 3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N 2 adsorption-desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo-second-order model. Effects of solution pH and coexisting anions (Cl - , NO 3 - , SO 4 2- ) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH - competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  20. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  1. Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide-coated marine sand.

    PubMed

    Khan, Tabrez Alam; Chaudhry, Saif Ali; Ali, Imran

    2013-08-01

    Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100-1,000 μg/L), dose (1-8 g/L), pH of the solution (2-14), contact time (15-150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH 7.0 and 27 ± 2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was -57.782, while the values of ΔG° were -9.460, -12.183, -13.343 and -13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°= -0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10

  2. Characterisation of a new adsorbent (beta cyclodextrin modified hybrid hydrous iron-zirconium oxide) to remove fluoride from aqueous solution

    NASA Astrophysics Data System (ADS)

    Saha, Indranil

    2017-04-01

    Prolonged use of fluoride contaminated water (>1.5mg L-1) causes serious problems to public health and ultimately leads to skeletal fluorosis. There is an urgent need to develop more efficient fluoride scavenging materials for designing water filters. A simple and efficient adsorbent (CHIZO, beta-Cyclodextrin (b-CD) amended hydrous iron-zirconium hybrid oxide), has been developed, characterised and tested. The results indicate the efficacy of CHIZO on fluoride removal from an aqueous solution. The agglomerated micro structured composite material has several new features such as very poor crystallinity confirmed from TEM images. BET experiment reveals a surface area of 0.2070 m2 g-1 and pore volume of 0.0476 cm3 g-1. The findings also indicate the highly pH dependent fluoride adsorption by CHIZO which decreases with an increase in pH, and pseudo-second order kinetics control the reaction.Isotherm study indicates Langmuir isotherm was the best fit model to describe the adsorption equilibrium. Significantly higher monolayer adsorption capacity of fluoride (31.35 mg g-1) than the host hydrous Fe-Zr oxide (8.21 mg g-1) at pH 7.0 and 303 K was observed. Thermodynamic parameter indicates spontaneous nature of CHIZO which is due to the exothermic nature of the reaction. Apart from this phosphate and sulphate have some impact (interference) on fluoride adsorption. b-CD forms inclusion complexes by taking up fluoride ions from water into its central cavity. Several factors are involved regarding high efficacy of the system such as the release of enthalpy-rich water molecules from its cavity, electrostatic interactions, hydrogen bonding and release of conformational strain. However, the regeneration is difficult because of probable entrapping of fluoride inside the cavity of b-CD with hydrogen bonding. It has been found that only 0.9 g of CHIZO is able to reduce the fluoride level to below 1.0 mg L-1 in one-litre of fluoride spiked (5.0 mg L-1) natural water sample. The study

  3. Zirconium and hafnium

    USGS Publications Warehouse

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  4. A study of biochemical route on construction of waste battery ferrite applying for nickel removal.

    PubMed

    Niu, Zhirui; Zhang, Shaokang; Zhu, Lin

    2018-05-21

    Mn-Zn ferrite (Mn 1 - x Zn x Fe 2 O 4 , x = 0.2, 0.4, 0.6, and 0.8) nanomaterials were prepared by bioleaching and hydrothermal synthesis from waste Zn-Mn batteries. The materials were characterized by XRD, SEM, BET, VSM, CEC, and isoelectric point. It turned out when x = 0.4, synthesized Mn-Zn ferrite had best performance which was nanoferrite crystal structure with a specific surface area that reached 37.77 m 2 /g, the saturation magnetization was 62.85 emu/g, and isoelectric point and the CEC value were 7.33 and 43.51 mmol/100 g, respectively. In addition, the adsorption characteristics on Ni 2+ were explored. The results of experiment suggested that data was more in line with the Freundlich model compared with Langmuir and Dubinin-Radushkevich isotherm models. Kinetics studies showed that pseudo-second-order kinetics was more suitable for describing the Ni 2+ adsorption process where the maximum theoretical adsorption quantity was 52.99 mg/g. Thermodynamic parameters indicated the adsorption process can be spontaneous as an endothermic reaction, and warming was advantageous to adsorption. Besides, the adsorbent could be reused for six cycles with high removal efficiency. The magnetic and adsorptive properties of the adsorbent were promising, which had a high application value. Graphical abstract Fabrication process of nanometer ferrite by biological technology and hydrothermal synthesis for removal of Ni2.

  5. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  6. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  7. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  8. Synthesis of hydrous zirconium oxide-impregnated chitosan beads and their application for removal of fluoride and lead

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Wan; Jeon, Byong-Hun; Jeong, Yoojin; Nam, In-Hyun; Choi, Ui-Kyu; Kumar, Rahul; Song, Hocheol

    2016-05-01

    A composite adsorbent capable of simultaneous removal of both cationic and anionic contaminants from aqueous solutions was developed by impregnating hydrous zirconium oxide (HZO) into chitosan beads (CB). The optimal mass ratio of chitosan to HZO was 2:2. The composite adsorbent (HZOCB) had the rugged surface (52.74 m2 g-1) with irregular cracks caused by HZO inclusion and amine functional groups. The rate of Pb2+ adsorption by HZOCB was relatively rapid. Most of Pb2+ (89%) was adsorbed within 2.5 h. A binary sorbate system was noticeably favorable for F- adsorption as compared to single sorbate system. Adsorption of F- and Pb2+ followed pseudo-second order kinetics. The maximum sorption capacities obtained from Langmuir isotherm model were 22.1 and 222.2 mg g-1, respectively. The study demonstrates that the developed composite could be a potential adsorbent for the simultaneous remediation of F- and Pb2+ contamination in water.

  9. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    PubMed

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  11. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  12. Chitosan /Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution.

    PubMed

    Teimouri, Abbas; Nasab, Shima Ghanavati; Vahdatpoor, Niaz; Habibollahi, Saeed; Salavati, Hossein; Chermahini, Alireza Najafi

    2016-12-01

    In the present study, a series of chitosan/Zeolite Y/Nano Zirconium oxide (CTS/ZY/Nano ZrO 2 ) nanocomposites were made by controlling the molar ratio of chitosan (CTS) to Zeolite Y/Nano Zirconium oxide in order to remove nitrate (NO 3 - ) ions in the aqueous solution. The nanocomposite adsorbents were characterized by XRD, FTIR, BET, SEM and TEM. The influence of different molar ratios of CTS to ZY/Nano ZrO 2 , the initial pH value of the nitrate solution, contact time, temperature, the initial concentration of nitrate and adsorbent dose was studied. The adsorption isotherms and kinetics were also analyzed. It was attempted to describe the sorption processes by the Langmuir equation and the theoretical adsorption capacity (Q 0 ) was found to be 23.58mg nitrate per g of the adsorbent. The optimal conditions for nitrate removal were found to be: molar ratio of CTS/ZY/Nano ZrO 2 : 5:1; pH: 3; 0.02g of adsorbent and temperature: 35°C, for 60min. The adsorption capacities of CTS, ZY, Nano ZrO 2 , CTS/Nano ZrO 2 , CTS/ZY and CTS/ZY/Nano ZrO 2 nanocomposites for nitrate removal were compared, showing that the adsorption ability of CTS/ZY/Nano ZrO 2 nanocomposite was higher than the average values of those of CTS (1.95mg/g for nitrate removal), ZY, Nano ZrO 2 , CTS/Nano ZrO 2, and CTS/ZY. Copyright © 2016. Published by Elsevier B.V.

  13. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  14. Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Xu, Wenqian; Nie, Zimin

    2016-09-06

    Efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for alternative treatment is one of the promising options to manage 99Tc in legacy nuclear waste. Safe immobilization of 99Tc is of major importance due to its long half-life (t1/2= 2.13 × 105 yrs) and environmental mobility. Different types of inorganic and solid state ion-exchange materials such as layered double hydroxides have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultra-stable zirconium basedmore » metal-organic framework can adsorb perrhenate (ReO4-) anions, a non-radioactive sur-rogate for TcO4-, from water even in the presence of other common anions. Synchrotron based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework.« less

  15. Nanoscale Zirconium-(oxyhydr)oxide in Contaminated Sediments From Hanford, WA - A New Host for Uranium

    NASA Astrophysics Data System (ADS)

    Stubbs, J. E.; Elbert, D. C.; Veblen, L. A.; Zachara, J. M.; Davis, J. A.; Veblen, D. R.

    2008-12-01

    Zirconium-, uranium-, and copper-bearing wastes have leached from former disposal ponds into vadose zone sediments in the 300 Area at the Department of Energy's Hanford Site. Zirconium is enriched in the shallow portion of the vadose zone, and we have discovered an amorphous Zr-(oxyhydr)oxide that contains 16% of the total uranium budget (84.24 ppm) in one of the shallow samples. We have characterized the oxide using electron microprobe analysis (EMPA), a focused ion beam (FIB) instrument, and transmission electron microscopy (TEM). It occurs in fine-grained coatings found on lithic and mineral fragments in these sediments. The oxide is intimately intergrown with the phyllosilicates and other minerals of the coatings, and in places can be seen coating individual, nano-sized phyllosilicate mineral grains. Electron energy-loss spectroscopy (EELS) shows that the Zr-(oxyhydr)oxide has a P:Zr atomic ratio around 0.2, suggesting it is either intergrown with minor amounts of a Zr-phosphate or has adsorbed a significant amount of phosphate. This material has adsorbed or incorporated a substantial amount of uranium. Thus, understanding its nature is critical to predicting the long-term fate of U in the Hanford vadose zone. While the low-temperature uptake of U by Zr-(oxhydr)oxides and phosphates has been studied for several decades in laboratory settings, to our knowledge ours is the first report of such uptake in the field.

  16. Modification in band gap of zirconium complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  17. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  18. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  19. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  20. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  1. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  2. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  3. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  4. Zirconium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  5. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch

    NASA Astrophysics Data System (ADS)

    Son, S.; Taheri, M.; Carpenter, E.; Harris, V. G.; McHenry, M. E.

    2002-05-01

    Nanocrystalline (NC) ferrite powders have been synthesized using a 50 kW-3 MHz rf thermal plasma torch for high-frequency soft magnet applications. A mixed powder of Ni and Fe (Ni:Fe=1:2), a NiFe permalloy powder with additional Fe powder (Ni:Fe=1:2), and a NiFe permalloy powder (Ni:Fe=1:1) were used as precursors for synthesis. Airflow into the reactor chamber was the source of oxygen for oxide formation. XRD patterns clearly show that the precursor powders were transformed into NC ferrite particles with an average particle size of 20-30 nm. SEM and TEM studies indicated that NC ferrite particles had well-defined polygonal growth forms with some exhibiting (111) faceting and many with truncated octahedral and truncated cubic shapes. The Ni content in the ferrite particles was observed to increase in going from mixed Ni and Fe to mixed permalloy and iron and finally to only permalloy starting precursor. The plasma-torch synthesized ferrite materials using exclusively the NiFe permalloy precursor had 40%-48% Ni content in the Ni-ferrite particle, differing from the NiFe2O4 ideal stoichiometry. EXAFS was used to probe the cation coordination in low Ni magnetite species. The coercivity and Neel temperature of the high Ni content ferrite sample were 58 Oe and ˜590 °C, respectively.

  6. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  7. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  8. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    PubMed Central

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  9. Oxidized zirconium on ceramic; Catastrophic coupling.

    PubMed

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  11. Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol.

    PubMed

    Cunha, Graziele da C; Dos Santos, Bruna Thaysa; Alves, Jôse Raymara; Alves Silva, Iris Amanda; de Souza Cruz, Daiane Requião; Romão, Luciane P C

    2018-05-01

    The use of industrial waste to synthesize materials of technological interest is a rational way to minimize or solve environmental pollution problems. This work investigates the adsorption of cadmium and lead ions by magnetic hybrid adsorbents synthesized using the in natura biomasses coconut mesocarp (CCFe), sawdust (SAFe), and termite nest (TEFe) for the organic phases and magnetic cobalt ferrite as the inorganic phase. The formation of a cobalt ferrite phase was confirmed by XRD. The use of XRD and FTIR analyses revealed the presence of organic matter in the structure of the material. Removal assays performed at different pH values (2.0-8.0) showed the effectiveness of the adsorbent for the removal of Pb 2+ at pH 3.0 and Cd 2+ at pH 4.0. The adsorption processes showed fast kinetics, with removal of 79-86% of Pb 2+ and 49% of Cd 2+ within only 5 min, and removal of 92-96% of the metal species at equilibrium. In the case of cadmium, the hybrid sorbents (CCFe, SAFe, and TEFe) showed high removal capacity after three reuse cycles, while the removal of lead decreased from 99% to 40%. The adsorbent matrices saturated with the recovered cadmium and lead ions showed excellent catalytic performance in the reduction of 4-nitrophenol, with 99.9% conversion within 43-56 s. The materials showed high capacities for reuse in three successive reduction cycles. The findings highlight the effectiveness of an industrial symbiosis approach to the development of new technologically important materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent.

    PubMed

    Awual, Md Rabiul; Shenashen, M A; Yaita, Tsuyoshi; Shiwaku, Hideaki; Jyo, Akinori

    2012-11-01

    This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework

    DOE PAGES

    Wang, Hao; Wang, Qining; Teat, Simon J.; ...

    2017-02-15

    Porous metal-organic framework (MOF) materials with high thermal and water stability are desirable for various adsorption based applications. Early transition metal based MOFs such as those built on zirconium metal have been well recognized for their excellent stability toward heat and/or moisture. However, the difficulty growing large single crystals makes their structural characterization challenging. Herein we report a porous Zr-MOF, [Zr 6O 4(OH) 4(cca) 6] (Zr-cca), which is assembled from zirconium and 4-carboxycinnamic acid (H 2cca) under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that the structure of Zr-cca is isoreticular to the prototype zirconium based MOF, UiO-66. Zr-ccamore » shows permanent porosity upon removal of solvent molecules initially residing inside the pores, with a BET surface area of 1178 m 2/g. As expected, it exhibits good thermal stability (stable up to 400 °C) and high resistance to acidity over a wide pH range. Evaluation of its gas adsorption performance on various hydrocarbons and fluorocarbons indicates that it preferentially adsorbs C 3 and C 4 hydrocarbons over C 2 analogues. At 30°C Zr-cca takes up more than 50 wt % of perfluorohexane and the adsorption-desorption process is fully recyclable. We have compared this material with UiO-66 and studied the underlying reasons for the difference in their adsorption performance toward perfluorohexane.« less

  14. Separation of Zirconium and Hafnium: A Review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium. This paper provides an overview of the processes for separating hafnium from zirconium. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The current dominant zirconium production route involves pyrometallurgical ore cracking, multi-step hydrometallurgical liquid-liquid extraction for hafnium removal and the reduction of zirconium tetrachloride to the pure metal by the Kroll process. The lengthy hydrometallurgical Zr-Hf separation operations leads to high production cost, intensive labour and heavy environmental burden. Using a compact pyrometallurgical separation method can simplify the whole production flowsheet with a higher process efficiency. The known separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt extraction. The commercially operating extractive distillation process is a significant advance in Zr-Hf separation technology but it suffers from high process maintenance cost. The recently developed new process based on molten salt-metal equilibrium for Zr-Hf separation shows a great potential for industrial application, which is compact for nuclear grade zirconium production starting from crude ore. In the present paper, the available separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  15. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    NASA Astrophysics Data System (ADS)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  16. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  17. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.

    PubMed

    Balow, Robert B; Lundin, Jeffrey G; Daniels, Grant C; Gordon, Wesley O; McEntee, Monica; Peterson, Gregory W; Wynne, James H; Pehrsson, Pehr E

    2017-11-15

    Zirconium hydroxide (Zr(OH) 4 ) has excellent sorption properties and wide-ranging reactivity toward numerous types of chemical warfare agents (CWAs) and toxic industrial chemicals. Under pristine laboratory conditions, the effectiveness of Zr(OH) 4 has been attributed to a combination of diverse surface hydroxyl species and defects; however, atmospheric components (e.g., CO 2 , H 2 O, etc.) and trace contaminants can form adsorbates with potentially detrimental impact to the chemical reactivity of Zr(OH) 4 . Here, we report the hydrolysis of a CWA simulant, dimethyl methylphosphonate (DMMP) on Zr(OH) 4 determined by gas chromatography-mass spectrometry and in situ attenuated total reflectance Fourier transform infrared spectroscopy under ambient conditions. DMMP dosing on Zr(OH) 4 formed methyl methylphosphonate and methoxy degradation products on free bridging and terminal hydroxyl sites of Zr(OH) 4 under all evaluated environmental conditions. CO 2 dosing on Zr(OH) 4 formed adsorbed (bi)carbonates and interfacial carbonate complexes with relative stability dependent on CO 2 and H 2 O partial pressures. High concentrations of CO 2 reduced DMMP decomposition kinetics by occupying Zr(OH) 4 active sites with carbonaceous adsorbates. Elevated humidity promoted hydrolysis of adsorbed DMMP on Zr(OH) 4 to produce methanol and regenerated free hydroxyl species. Hydrolysis of DMMP by Zr(OH) 4 occurred under all conditions evaluated, demonstrating promise for chemical decontamination under diverse, real-world conditions.

  18. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Morphology of Proeutectoid Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  20. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  1. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  2. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  3. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  4. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    PubMed Central

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  5. Quercetin as colorimetric reagent for determination of zirconium

    USGS Publications Warehouse

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  6. CHARACTERISTICS OF ANODIC AND CORROSION FILMS ON ZIRCONIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misch, R.D.

    1960-05-01

    Zirconium anodizes similarly to tungsten in respect to the change of interference colors with applied voltage. However, the oxide layer on tungsten cannot reach as great a thickness. Hafnium does not anodize in the same way as zirconium but is similar to tantalum. By measuring the interference color and capacitative thicknesses on zirconium (Grades I and III) and a 2.5 wt.% tin ailoy, the film was found to grow less rapidly in terms of capacitance than in terms of iaterference colors. This was interpreted to mean that cracks develop in the oxide as it thickens. The effect was most pronouncedmore » on Grade III zirconium and least pronounced on the tin alloy. The reduction in capacitative thickness was especially noticeable when white oxide appeared. Comparative measurements on Grade I zirconium and 2.5 wt.% tin alloy indicated that the thickness of the oxide film on the tin alloy (after 16 hours in water) increased more rapidly with temperature than the film on zirconium. Tin is believed to act in ways to counteract the tendency of the oxide to form cracks, and to produce vacancies which promote ionic diffusion. (auth)« less

  7. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  8. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  9. Barium ferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.

    1996-03-01

    Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.

  10. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  11. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  12. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  13. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  14. A New Grain Refiner for Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Li, Ming; Li, Jian-Min; Zheng, Qing; Qiu, Dong; Wang, Geoff; Zhang, Ming-Xing

    2017-12-01

    A new grain refiner, LaB6, was identified for ferritic steels based on the crystallographic calculation using the edge-to-edge matching model. Addition of 0.5 wt pct LaB6 led to a reduction of the average grain size from 765 to 92 μm and the proportion of the columnar structure from 35 to 8 pct in an as-cast Fe-4Si ferritic alloy. Although LaB6 was supposed to act as an active inoculant for δ-ferrite, thermodynamic calculation indicated that LaB6 is not thermodynamically stable in the melt of the Fe-4Si alloy. It was subject to decompose into La and B solutes. Consequently, both La and B reacted with Fe, O and S, forming different compounds. Microstructural examination at room temperature observed La2SO2 and La2O3 particles within the ferrite grains and Fe2B along the grain boundaries in the samples. Through EBSD analysis, a reproducible orientation relationship between ferrite and La2SO2 was identified. In addition, the edge-to-edge matching calculation also predicted the high potency for La2SO2 to be an effective nucleant for δ-ferrite. It was considered that the grain refinement of LaB6 was attributed to the enhanced heterogeneous nucleation of δ-ferrite by La2SO2, and the solute effect of B due to the high Q-value in ferrite.

  15. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Lopez, Thomas; Laur, Jean-Pierre; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Brunet, Magali

    2013-12-01

    Ferrite-based micro-inductors are proposed for hybrid integration on silicon for low-power medium frequency DC-DC converters. Due to their small coercive field and their high resistivity, soft ferrites are good candidates for a magnetic core working at moderate frequencies in the range of 5-10 MHz. We have studied several soft ferrites including commercial ferrite film and U70 and U200 homemade ferrites. The inductors are fabricated at wafer level using micromachining and assembling techniques. The proposed process is based on a sintered ferrite core placed in between thick electroplated copper windings. The low profile ferrite cores of 1.2 × 2.6 × 0.2 mm3 are produced by two methods from green tape-casted films and ferrite powder. This paper presents the magnetic characterization of the sintered ferrite films cut and printed in rectangular shape and sintered at different temperatures. The comparison is made in order to find out the best material for the core that can reach the required inductance (470 nH at 6 MHz) under 0.6A current DC bias and that generate the smallest losses. An inductance density of 285 nH/ mm2 up to 6 MHz was obtained for ESL 40011 cores that is much higher than the previously reported devices. The small size of our devices is also a prominent point.

  16. Characterization of Austempered Ferritic Ductile Iron

    NASA Astrophysics Data System (ADS)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  18. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  19. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  20. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOEpatents

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  1. Advanced Microwave Ferrite Research (AMFeR): Phase Three

    DTIC Science & Technology

    2008-07-31

    lApril 1, 2006 thru June 30, 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Microwave Ferrite Research (AMFeR): Phase Three 5b. GRANT NUMBER...Advance Microwave Ferrite Research (AMFeR), Phase III project. The purpose of this research endeavor is to devise ferrite materials for microwave, self...biased circulator applications. The central task of the project is to fabricate ferrites that have a high magnetic saturation, high coercivity and low

  2. Implantable ferrite antenna for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fazeli, Maxwell L.

    We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.

  3. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  4. Atomic engineering of mixed ferrite and core-shell nanoparticles.

    PubMed

    Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G

    2005-09-01

    Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.

  5. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  6. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  7. A preliminary ferritic-martensitic stainless steel constitution diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures ofmore » arc welds in ferritic and martensitic stainless steels.« less

  8. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  9. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  10. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism.

    PubMed

    Xiong, Weiping; Tong, Jing; Yang, Zhaohui; Zeng, Guangming; Zhou, Yaoyu; Wang, Dongbo; Song, Peipei; Xu, Rui; Zhang, Chen; Cheng, Min

    2017-05-01

    Phosphate (P) removal is significant for the prevention of eutrophication in natural waters. In this paper, a novel adsorbent for the removal of P from aqueous solution was synthesized by loading zirconium oxide and iron oxide onto activated carbon nanofiber (ACF-ZrFe) simultaneously. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that P adsorption was highly pH dependent and the optimum pH was found to be 4.0. The isotherm of adsorption could be well described by the Langmuir model and the maximum P adsorption capacity was estimated to be 26.3mgP/g at 25°C. The kinetic data were well fitted to the pseudo-second-order equation, indicating that chemical sorption was the rate-limiting step. Moreover, co-existing ions including sulfate (SO 4 2- ), chloride (Cl - ), nitrate (NO 3 - ) and fluoride (F - ) exhibited a distinct effect on P adsorption with the order of F - >NO 3 - >Cl - >SO 4 2- . Further investigations by FT-IR spectroscopy and pH variations associated with the adsorption process revealed that ligands exchange and electrostatic interactions were the dominant mechanisms for P adsorption. The findings reported in this work highlight the potential of using ACF-ZrFe as an effective adsorbent for the removal of P in natural waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  12. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  13. Distributed Ferrite Isolation in Traveling-Wave Tubes.

    DTIC Science & Technology

    coupling to broadband edge modes of ferrite slabs. Evidence of coupling to the lower branch of edge mode, i.e., magnetostatic, has been obtained with L...band helix . Cold tests and analysis suggest coupling to ferrite edge modes from helix is easier at higher microwave frequencies. Plans for a hot...test at the 1-2 kW power level is an L-band TWT incorporating such distributed ferrites are described.

  14. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    PubMed

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  15. Articles comprising ferritic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, James M.

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the articlemore » of manufacture is a fuel cell interconnect for a solid oxide fuel cell.« less

  16. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  17. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  18. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    NASA Astrophysics Data System (ADS)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  20. Synthesis and properties of precipitated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ristic, Mira; Krehula, Stjepko; Reissner, Michael; Jean, Malick; Hannoyer, Beatrice; Musić, Svetozar

    2017-07-01

    The formation and properties of cobalt ferrite were investigated with XRD, FT-IR, FE-SEM, Mössbauer and magnetometry. Cobalt ferrite samples were prepared (a) by combining coprecipitation Co(OH)2/2Fe(OH)3, using NaOH between pH 5.2 and 11.4 and autoclaving, and (b) by autoclaving the Co(OH)2/2Fe(OH)3 coprecipitate in a very strong alkaline medium. XRD and FE SEM showed that both CoFe2O4 crystallites and particles were in the nanosize range. The FT-IR spectra were typical of spinel ferrites. Cobalt ferrite precipitated at pH 7.2 and at 11.4 contained a small fraction of α-Fe2O3, whereas in the sample precipitated at pH 11.4 a very small amount (traces) of α-FeOOH were detected by FT-IR, additionally. Parameters obtained by Mössbauer spectroscopy suggested a structural migration of cobalt and iron ions in prepared cobalt ferrite spinels with the prolonged time of autoclaving. Magnetic measurements showed the magnetic behaviour typical of spinel ferrite nanoparticles.

  1. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  2. International strategic minerals inventory summary report; zirconium

    USGS Publications Warehouse

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  3. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  4. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  5. Ferrite HOM Absorber for the RHIC ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn,H.; Choi, E.M.; Hammons, L.

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurementsmore » of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.« less

  6. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    PubMed

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  8. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less

  9. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  10. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  11. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.

  12. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    NASA Astrophysics Data System (ADS)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  13. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Wang, Xiurong; Bao, Shaopan; Liu, Xiawei; Zhang, Weicheng; Fang, Tao

    2016-12-01

    In this account, a one-step green hydrothermal method for zirconium-loaded reduced graphene oxide (RGO-Zr) adsorbent was developed in pure water. It is based on the formation of initially strong-coupling RGO-Zr nanocomposites followed by in situ reduction of GO to RGO during the hydrothermal treatment. The phosphate adsorption performance of the as-prepared nanocomposites was investigated in aqueous environment under various conditions. The characterization results of RGO-Zr nanocomposites showed that ZrO2 was successfully integrated onto the RGO sheets in amorphous. The data from equilibrium phosphate adsorption on RGO-Zr revealed that the adsorption kinetics followed a pseudo-second-order kinetic model, where the adsorption isotherm fitted the Langmuir isotherm model with a maximum adsorption capacity of 27.71 mg P/g at pH 5 and 298 K. The improved phosphate adsorption on RGO-Zr was caused by the dispersion of ZrO2 on the RGO surface. Furthermore, the phosphate adsorption was found insensitive to the increase in pH while it was sensitive to the increase in temperature. The coexisting anions of SO42-, F-, Cl-, NO3- and CO32- affected the phosphate adsorption in a different way. Results suggest that the present RGO-Zr adsorbent has the potential for controlling phosphorus pollution in water.

  14. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  15. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  16. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  17. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid

    PubMed Central

    Nadeem, Sohail; Mustafa, M. T.

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4—C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4—C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4—C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4—H2O (Nickel zinc ferrite-water), MnZnFe2O4—H2O (manganese zinc ferrite-water), and Fe2O4—H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier’s law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto—thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement. PMID:29320488

  18. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    PubMed

    Muhammad, Noor; Nadeem, Sohail; Mustafa, M T

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4-H2O (Nickel zinc ferrite-water), MnZnFe2O4-H2O (manganese zinc ferrite-water), and Fe2O4-H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  19. Impact of Gd3+/graphene substitution on the physical properties of magnesium ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam E.; Mohamed, Amira T.; Elsayed, Kareem

    2018-04-01

    Magnesium nano ferrite with composition MgFe2O4, MgGd0.05Fe1.95O4 and MgFe2O4 - 5 wt% GO was synthesized using a citrate auto-combustion method. The crystal structure, morphology, and magnetic properties of the investigated samples were studied. High Resolution Transmission Electron Microscopy (HRTEM) images show that the substitution of small amounts of Gd3+/GO causes a considerable reduction of the grain size. Studies on the magnetic properties demonstrate that the coercivity of GO-substituted magnesium nano ferrites is enhanced from 72 Oe to 203 Oe and the magnetocrystalline anisotropy constant increases from 1171 to 3425 emu Oe/gm at 300 K. The direct effects of graphene on morphology, crystal structure as well as the magnetic properties reveal that the studied sample are suitable for turbidity color and removal. The magnetic entropy change is estimated from magnetization data using Maxwell relation. The calculated Curie temperature from the Curie-Weiss law and the maximum entropy change are in good agreement with each other. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range of 1.4-2.15 eV. In addition, the combination of small particle size and good magnetic properties makes the investigated samples act as a potential candidates for superior catalysts, adsorbents, and electromagnetic wave absorbers.

  20. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  1. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  2. Fluorometric determination of zirconium in minerals

    USGS Publications Warehouse

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  3. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  4. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  5. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density

  6. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    NASA Astrophysics Data System (ADS)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  7. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    NASA Astrophysics Data System (ADS)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  8. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water.

    PubMed

    Dou, Xiaomin; Zhang, Yansu; Wang, Hongjie; Wang, Tingjie; Wang, Yili

    2011-06-01

    In this study, a granular zirconium-iron oxide (GZI) was successfully prepared using the extrusion method, and its defluoridation performance was systematically evaluated. The GZI was composed of amorphous and nano-scale oxide particles. The Zr and Fe were evenly distributed on its surface, with a Zr/Fe molar ratio of ∼2.3. The granular adsorbent was porous with high permeability potential. Moreover, it had excellent mechanical stability and high crushing strength, which ensured less material breakage and mass loss in practical use. In batch tests, the GZI showed a high adsorption capacity of 9.80 mg/g under an equilibrium concentration of 10 mg/L at pH 7.0, which outperformed many other reported granular adsorbents. The GZI performed well over a wide pH range, of 3.5-8.0, and especially well at pH 6.0-8.0, which was the preferred range for actual application. Fluoride adsorption on GZI followed pseudo-second-order kinetics and could be well described by the Freundlich equilibrium model. With the exception of HCO(3)(-), other co-existing anions and HA did not evidently inhibit fluoride removal by GZI when considering their real concentrations in natural groundwater, which showed that GZI had a high selectivity for fluoride. In column tests using real groundwater as influent, about 370, 239 and 128 bed volumes (BVs) of groundwater were treated before breakthrough was reached under space velocities (SVs) of 0.5, 1 and 3 h(-1), respectively. Additionally, the toxicity characteristic leaching procedure (TCLP) results suggested that the spent GZI was inert and could be safely disposed of in landfill. In conclusion, this granular adsorbent showed high potential for fluoride removal from real groundwater, due to its high performance and physical-chemical properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  10. Nucleation of intragranular ferrite in Fe-Ni-P alloys

    NASA Astrophysics Data System (ADS)

    Narayan, C.; Goldstein, J. I.

    1984-05-01

    The nucleation of intragranular ferrite from austenite in Fe-Ni-P alloys was investigated in order to understand the development of the Widmanstätten pattern in iron meteorites. Alloys containing 5 to 10 wt pct Ni and 0 to 1 wt pct P were used to simulate iron meteorite compositions. In the isothermal and controlled cooling experiments the reaction path γ → α + γ serves only to nucleate ferrite along austenite grain boundaries. It is necessary for (FeNi)3P to be present within y grains in order to nucleate intragranular ferrite. The reaction path γ → γ + phosphide → α + γ + phosphide yields rod shaped ferrite nuclei that bear a near Kurdjumov-Sachs orientation relationship with the surrounding matrix. The precipitation of ferrite, both along grain boundaries and within the austenite grains, is suppressed in the absence of P.

  11. Mechanical resistance of zirconium implant abutments: A review of the literature

    PubMed Central

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  12. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  13. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  14. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  15. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  16. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  17. Performance of ferritic stainless steels for automobile muffler corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarutani, Y.; Hashizume, T.

    1995-11-01

    Corrosion behavior of ferritic stainless steels was studied in artificial exhaust gas condensates containing corrosive ions such as Cl{sup {minus}} and SO{sub 3}{sup 2{minus}}. Continuous immersion tests in flasks and Dip and Dry tests by using the alternate corrosion tester with a heating system clarified the effects of chromium and molybdenum additions on the corrosion resistance of a ferritic stainless steel in the artificial exhaust gas condensates. Effects of surface oxidation on the corrosion behavior were investigated in a temperature range of 573K to 673K. Oxidation of 673K reduced the corrosion resistance of the ferritic stainless steels in the artificialmore » environment of the automobile muffler. Particulate matter deposited on the muffler inner shell from the automobile exhaust gas was also examined. Deposited particulate matter increased the corrosion rate of the ferritic stainless steel. Finally, the authors also investigated the corrosion of the automobile mufflers made of Type 436L ferritic stainless steel with 18% chromium-1.2% molybdenum after 24 months, in Japan. The sets of results clarified that Type 436L ferritic stainless steel as the material for the automobile muffler exhibited acceptable corrosion resistance.« less

  18. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  19. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  20. [The clinical application of zirconium-dioxide-ceramics. Case report].

    PubMed

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  1. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  2. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  3. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  4. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  5. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  6. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  7. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  8. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  9. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  10. The Deformation Mechanism of Fatigue Behaviour in a N36 Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhu

    2018-05-01

    Zirconium alloys are widely used as claddings in nuclear reactor. A N36 zirconium alloy has been deformed into a sheet with highly texture according to the result of electron back scatter diffraction test. Then this N36 zirconium alloy sheet has been cut into small beam samples with 12 x 3 x 3 mm3 in size. In this experiment, a three-point bending test was carried out to investigate the fatigue behaviour of N36 zirconium alloy. Cyclic loadings were applied on the top middle of the beam samples. The region of interest (ROI) is located at the middle bottom of the front face of the beam sample where slip band was observed in deformed beam sample due to strain concentration by using scanning electron microscopy. Twinning also plays an important role to accommodate the plastic deformation of N36 zirconium alloy in fatigue, which displays competition with slip.

  11. Initial Ferritic Wall Mode studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  12. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  13. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  14. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is

  15. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    PubMed

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  16. Mechanism and experimental research on ultra-precision grinding of ferrite

    NASA Astrophysics Data System (ADS)

    Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen

    2017-02-01

    Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.

  17. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhan, Guanghui; Liu, Jingquan; Yang, Bin; Xu, Bin; Feng, Jie; Chen, Xiang; Yang, Chunsheng

    2015-10-01

    Zirconium oxynitrides thin film thermometers were demonstrated to be useful temperature sensors. However, the basic conduction mechanism of zirconium oxynitrides films has been a long-standing issue, which hinders the prediction and optimization of their ultimate performance. In this letter, zirconium oxynitrides films were grown on sapphire substrates by magnetron sputtering and their electric transport mechanism has been systemically investigated. It was found that in high temperatures region (>150 K) the electrical conductivity was dominated by thermal activation for all samples. In the low temperatures range, while Mott variable hopping conduction (VRH) was dominated the transport for films with relatively low resistance, a crossover from Mott VRH conduction to Efros-Shklovskii (ES) VRH was observed for films with relatively high resistance. This low temperature crossover from Mott to ES VRH indicates the presence of a Coulomb gap (~7 meV). These results demonstrate the competing and tunable conduction mechanism in zirconium oxynitrides thin films, which would be helpful for optimizing the performance of zirconium oxynitrides thermometer.

  18. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  19. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  20. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex

    PubMed Central

    Butler, Michael J.; White, Andrew J. P.

    2016-01-01

    Abstract Reaction of a zinc/zirconium heterobimetallic complex with 1,5‐cyclooctadiene (1,5‐COD) results in slow isomerization to 1,3‐cyclooctadiene (1,3‐COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5‐COD to 1,3‐COD, only in the case of the zinc species is the cyclooctyne adduct observed. PMID:27071992

  1. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications

    NASA Technical Reports Server (NTRS)

    Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)

    2008-01-01

    Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.

  2. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  3. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  4. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  5. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  6. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  7. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  8. Structural analysis of aluminium substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, H. S.; Sangwa, Neha

    2018-05-01

    Aluminium substituted nickel ferrite nanoparticles were synthesized by High Energy Ball milling (HEBM) of the mixture of α-NiO, α-Al2O3 and α-Fe2O3 followed by annealing at 1000˚C. X-ray diffraction (XRD) and Energy dispersive spectroscopy analysis (EDS) characterization was done for Aluminium substituted nickel ferrite. The structural analysis reveals the formation of the single phase compound. The average grain size was estimated by X-ray diffraction technique ranges from 30 to 10 nm with the increasing concentration of Aluminium. EDS spectra conforms the homogeneous mixing and purity of ferrite.

  9. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage« less

  10. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex.

    PubMed

    Butler, Michael J; White, Andrew J P; Crimmin, Mark R

    2016-06-06

    Reaction of a zinc/zirconium heterobimetallic complex with 1,5-cyclooctadiene (1,5-COD) results in slow isomerization to 1,3-cyclooctadiene (1,3-COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5-COD to 1,3-COD, only in the case of the zinc species is the cyclooctyne adduct observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. PHYSICAL PROPERTIES OF ZIRCONIUM NITRIDE IN THE HOMOGENEITY REGION (in Ukrainian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsonov, G.V.; Verkhoglyadova, T.S.

    1962-01-01

    The x-ray method was used to determine the homogeneity region of zirconium nitride as 40 to 50 at.% (9.5 to 13.3% by weight) of nitrogen. It is also shown that part of the ionic bond in the zirconium nitride lattice increases with a decrease in the nitrogen content in this region, this increase being higher than in the homogeneity region of titunium nitride due to the smaller degree of unfilling of the electron d-shell of the zirconium atom in comparison with that of the titanium atom. (auth)

  12. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  13. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  14. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PROCESS OF PREPARING ZIRCONIUM OXYCHLORIDE

    DOEpatents

    Wilhelm, H.A.; Andrews, M.L.

    1960-06-28

    A process is given for preparing zirconyl chloride by mixing solid zirconyl chloride octahydrate and solid zirconium tetrachloride at room temperature whereby both chlorides are converted to zirconyl chloride trinydrate and hydrogen chloride is formed and volatilized by the reaction heat.

  16. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  17. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    PubMed

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Influence of thermo-mechanical treatment in ferritic phase field on microstructure and mechanical properties of reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Prakash; Vanaja, J.; Laha, K.; Nageswara Rao, G. V. S.

    2018-03-01

    The present study focuses on the evaluation of microstructure and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel (9Cr-1W-0.06Ta) subjected to thermo-mechanical treatment (TMT) in ferritic phase field. The results obtained were compared with the steel in conventional normalised plus tempered (N+T) condition. The microstructure of the steel in N+T and TMT conditions was assessed by optical and scanning electron microscopes. Hardness, tensile and creep studies were carried out and the results were correlated with the microstructural studies. While the TMT processed steel resulted in coarser prior austenite grains and exhibited ferritic microstructure with large distribution of fine M23C6 and MX precipitates, the N+T steel reveals tempered martensitic structure with finer prior austenitic grains with coarser M23C6 and MX precipitates. Although ferritic structure is present in TMT processed steel, it exhibits better tensile and creep rupture strengths than N+T steel due to the presence of increased dislocation density and finer distribution of precipitates.

  19. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  20. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  1. Ferroelectric like behavior in Cr substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan

    2018-05-01

    The article presents the temperature dependent dielectric behavior of chromium substituted cobalt ferrite (CoFe2-xCrxO4, x = 0.0, 0.1, 0.2, 0.3, 0.4). It is observed that the temperature variation of dielectric constant is similar to that of conventional ferroelectricalmaterials. Two transition temperatures called TD and TM has been observed in the dielectric versus temperature plots. The behavior of the spin flipping frequency with respect to temperature has been analyzedby employing the power law. The present study can help to understand the temperature and frequency variation of dielectric behavior in not only cobalt ferrite, but also it can be extended to other ferrites.

  2. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  3. Thermodynamic Analysis and Growth of Zirconium Carbide by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Sun; Hua, Hao Zheng; Xiang, Xiong

    Equilibrium calculations were used to optimize conditions for the chemical vapor deposition of zirconium carbide from zirconium halide + CxHy+H2+Ar system. The results show the CVD-ZrC phase diagram is divided into ZrC+C, ZrC and ZrC+Zr zones by C, Zr generating lines. For the same mole of ZrCl4 reactant, it needs higher concentration of CH4 to generate single ZrC phase than that of C3H6. Using these calculations as a guide, single-phase cubic zirconium carbide coatings were deposited onto graphite substrate.

  4. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less

  5. Evaluation of a Zirconium Recycle Scrubber System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  6. Ferrite-Ferroelectric Heteroepitaxial Structures and Frequency Agile Multiferroic RF Components

    DTIC Science & Technology

    2012-11-27

    crystal LPE YIG films -PZT. (2) Eutectic bonding techniques for ferrite-piezoelectric bilayer synthesis: Samples of YIG/PMN-PT and hexagonal ferrite...Materials: (1) Growth of ferrite films on piezoelectric substrates by electrophoretic deposition techniques: Studies focused on 1-10 u.m thick...polycrystalline YIG films on PZT. The strength of magneto-electric (ME) interactions measured over 1 -40 GHz was comparable to results for bilayers of single

  7. Extractive separation of uranium and zirconium sulfates by amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  8. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  9. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Harris, V. G.

    2012-10-01

    It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.

  10. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  11. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  12. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  13. From Zirconium Nanograins to Zirconia Nanoneedles

    PubMed Central

    Zalnezhad, E.; Hamouda, A. M. S.; Jaworski, J.; Do Kim, Young

    2016-01-01

    Combinations of three simple techniques were utilized to gradually form zirconia nanoneedles from zirconium nanograins. First, a physical vapor deposition magnetron sputtering technique was used to deposit pure zirconium nanograins on top of a substrate. Second, an anodic oxidation was applied to fabricate zirconia nanotubular arrays. Finally, heat treatment was used at different annealing temperatures in order to change the structure and morphology from nanotubes to nanowires and subsequently to nanoneedles in the presence of argon gas. The size of the pure zirconium nanograins was estimated to be approximately 200–300 nm. ZrO2 nanotubular arrays with diameters of 70–120 nm were obtained. Both tetragonal and monoclinic ZrO2 were observed after annealing at 450 °C and 650 °C. Only a few tetragonal peaks appeared at 850 °C, while monoclinic ZrO2 was obtained at 900 °C and 950 °C. In assessing the biocompatibility of the ZrO2 surface, the human cell line MDA-MB-231 was found to attach and proliferate well on surfaces annealed at 850 °C and 450 °C; however, the amorphous ZrO2 surface, which was not heat treated, did not permit extensive cell growth, presumably due to remaining fluoride. PMID:27623486

  14. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  15. Modified ferrite core-shell nanoparticles magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  16. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  17. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    DTIC Science & Technology

    2016-05-12

    APPROV~, Col Drew W. Fallis Dean, Air Force Postgraduate Dental School r UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES AIR FORCE...POSTGRADUATE DENTAL SCHOOL 2450 Pepperrell Street Lackland AFB Texas, 78236-5345 http://www.usuhs.mil "The author hereby certifies that the use of any...Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  18. Determination of fluoride in water - A modified zirconium-alizarin method

    USGS Publications Warehouse

    Lamar, W.L.

    1945-01-01

    A convenient, rapid colorimetric procedure using the zirconium-alizarin indicator acidified with sulfuric acid for the determination of fluoride in water is described. Since this acid indicator is stable indefinitely, it is more useful than other zirconium-alizarin reagents previously reported. The use of sulfuric acid alone in acidifying the zirconium-alizarin reagent makes possible the maximum suppression of the interference of sulfate. Control of the pH of the samples eliminates errors due to the alkalinity of the samples. The fluoride content of waters containing less than 500 parts per million of sulfate and less than 1000 p.p.m. of chloride may be determined within a limit of 0.1 p.p.m. when a 100-ml. sample is used.

  19. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  20. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  1. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    NASA Astrophysics Data System (ADS)

    Zaspalis, V. T.; Tsakaloudi, V.; Kogias, G.

    2014-07-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz, 200mT, 100°C), (iii) MnZn-ferrites with broad temperature stability (i.e. PV<375 mW cm-3 for 25°Cferrites with high and frequency stable permeability (i.e. μi~12600 at 10 kHz, 0.1 mT, 25°C and tan(δ)/μi=20.5×10-6 at 100 kHz). In a final discussion the importance of defect chemistry for the time stability and stress sensitivity of the magnetic properties is discussed and some important issues are addressed, encountered during the transfer of a laboratory developed material to a large scale industrial production process.

  2. Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil, E-mail: sunil.pph13@iitp.ac.in; Kar, Manoranjan, E-mail: mano@iitp.ac.in

    2016-05-06

    (1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain themore » behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.« less

  3. Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Reid, M. A.; Yang, C. Y. (Inventor)

    1981-01-01

    Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell.

  4. Structuring in fast-quenched ferrite compositions under plasma spraying

    NASA Astrophysics Data System (ADS)

    Lepeshev, A. A.; Karpov, I. V.; Ushakov, A. V.; Nagibin, G. E.; Dorozhkina, E. A.; Karpova, O. N.; Demin, V. G.; Shaikhadinov, A. A.

    2017-06-01

    The influence of the quench rate on structuring in spinel ferrites has been studied. It has been found that, when the quench rate is increased, the equilibrium spinel structure gradually becomes disordered. At the first stage, the statistically homogeneous (or almost homogeneous) redistribution of cations over crystal lattice sites has been observed. Then, the fcc lattice of the anion framework breaks down, the translational symmetry disappears, and topological chaos arises. The resulting cluster structural state is thermodynamically unstable, and heating of quenched ferrites causes stepwise energy liberation. As a result, the activity of ferrite powders in solid-state and catalytic reactions rises.

  5. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  6. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of aerosol cosmetic products containing zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and other organs of experimental animals. When used in aerosol form, some zirconium will reach the...

  7. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  8. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  9. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, A., E-mail: debnathanimesh@gmail.com; Bera, A.; Saha, B.

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneousmore » powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.« less

  10. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles—Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-01

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10-14-10-15/cm3) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  11. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  12. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-02-01

    In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl-, SO42-, NO3- and HCO3-) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO3-, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface sbnd OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its separation convenience and highly adsorption capacity compared to other adsorbents.

  13. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  14. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  15. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  16. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    NASA Astrophysics Data System (ADS)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  17. Nano-crystalline Magnesium Substituted Cadmium Ferrites as X-band Microwave Absorbers

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingawale, H. R.; Shinde, T. J.; Pubby, Kunal; Bindra Narang, Sukhleen; Vasambekar, P. N.

    2017-11-01

    The magnetic and electromagnetic properties of nanocrystalline spinel ferrites with chemical formula MgxCd1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared by oxalate co-precipitation method under microwave sintering technique were studied. The magnetic and dielectric parameters of ferrites were determined by using vibrating sample magnetometer (VSM) and vector network analyzer (VNA) respectively. Magnetic parameters such as saturation magnetizations (Ms), coercive force (Hc), remnant magnetization (Mr), Yafet-Kittel (Y-K) angle of ferrites were determined from hysteresis loops. The variation of real permittivity (ε‧), dielectric loss tangent (tanδe), real permeability (μ‧) and magnetic loss tangent (tanδm) with frequency and Mg2+content were studied in X-band frequency range. The values of ε‧, tanδe, μ‧ and tanδm of ferrites were observed to be in range of 4.2 - 6.12, 2.9 × 10-1 - 6 × 10-2, 0.6 - 1.12 and 4.5 × 10-1 - 2 × 10-3 respectively for the prepared compositions. The study of variation of reflection loss with frequency of all ferrites shows that ferrite with magnesium content x = 0.4 can be potential candidate for microwave applications in X-band.

  18. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.

    2018-02-01

    The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.

  19. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan

    2011-05-01

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Mössbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe 2O 3. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium.

  20. The mechanism of nickel ferrite formation by glow discharge effect

    NASA Astrophysics Data System (ADS)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  1. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L: A comparative study of ferrite number (FN) prediction and measurements

    NASA Astrophysics Data System (ADS)

    Buddu, Ramesh Kumar; Raole, P. M.; Sarkar, B.

    2017-04-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other structural components development. Multipass welding is used for the development of thick plates for the structural components fabrication. Due to the repeated weld thermal cycles, the microstructure adversely alters owing to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influences the mechanical properties like tensile and impact toughness of joints. The present paper reports the detail analysis of delta ferrite phase in welded region of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions. The correlation of delta ferrite microstructure of different type structures acicular and vermicular is observed. The chemical composition of weld samples was used to predict the Ferrite Number (FN), which is representative form of delta ferrite in welds, with Schaeffler’s, WRC-1992 diagram and DeLong techniques by calculating the Creq and Nieq ratios and compared with experimental data of FN from Feritescope measurements. The low heat input conditions (1.67 kJ/mm) have produced higher FN (7.28), medium heat input (1.72 kJ/mm) shown FN (7.04) where as high heat input (1.87 kJ/mm) conditions has shown FN (6.68) decreasing trend and FN data is compared with the prediction methods.

  2. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-07-01

    In this paper, a novel mesoporous sulfated zirconium (M-ZrO2/SO42-) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N2-physisorption and TEM characterization techniques indicated that M-ZrO2/SO42- possessed distinct mesostructure with big specific surface area (133.5 m2 g-1), large pore volume (0.18 cm3 g-1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO42-, improved the textural properties of prepared materials. In addition, the NH3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO2/SO42- even evacuated at 400 °C. Furthermore, the M-ZrO2/SO42- was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  3. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  4. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    PubMed Central

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  5. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  6. Permanent magnetic ferrite based power-tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  7. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  8. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    PubMed

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  9. Five year survival analysis of an oxidised zirconium total knee arthroplasty.

    PubMed

    Holland, Philip; Santini, Alasdair J A; Davidson, John S; Pope, Jill A

    2013-12-01

    Zirconium total knee arthroplasties theoretically have a low incidence of failure as they are low friction, hard wearing and hypoallergenic. We report the five year survival of 213 Profix zirconium total knee arthroplasties with a conforming all polyethylene tibial component. Data was collected prospectively and multiple strict end points were used. SF12 and WOMAC scores were recorded pre-operatively, at three months, at twelve months, at 3 years and at 5 years. Eight patients died and six were "lost to follow-up". The remaining 199 knees were followed up for five years. The mean WOMAC score improved from 56 to 35 and the mean SF12 physical component score improved from 28 to 34. The five year survival for failure due to implant related reasons was 99.5% (95% CI 97.4-100). This was due to one tibial component becoming loose aseptically in year zero. Our results demonstrate that the Profix zirconium total knee arthroplasty has a low medium term failure rate comparable to the best implants. Further research is needed to establish if the beneficial properties of zirconium improve long term implant survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Atomic layer deposition of zirconium silicate films using zirconium tetra-tert-butoxide and silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo

    2003-09-01

    A new precursor combination (SiCl4 and Zr(OtC4H9)4) was used to deposit Zr silicate with Zr(OtC4H9)4 as a zirconium source and oxygen source at the same time. SiCl4 and Zr(OtC4H9)4 have higher vapor pressures than their counterpart, ZrCl4 and tetra-n-butyl orthosilicate (TBOS), and it was expected that the cycle time would be shorter. The deposition temperature of the new combination was about 150 °C lower than that of ZrCl4 and TBOS. The film was zirconium rich while it was silicon rich with ZrCl4 and TBOS. Growth rate (nm/cycle), composition ratio [Zr/(Zr+Si)], and chlorine impurity were decreased with increasing deposition temperature from 125 to 225 °C. The composition ratio of the film deposited at 225 °C was 0.53 and the chlorine content was about 0.4 at. %. No carbon was detected by x-ray photoelectron spectroscopy.

  11. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles - Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian

    2010-12-02

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10{sup -14}-10{sup -15}/cm{sup 3}) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis whilemore » for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.« less

  12. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim H J; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb E M; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Mohd Isa, Norhaszalina; El Zowalaty, Mohamed Ezzat

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.

  13. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6–1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  14. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  15. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  16. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...

    2015-10-13

    Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less

  17. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite.

    PubMed

    Barale, M; Lefèvre, G; Carrette, F; Catalette, H; Fédoroff, M; Cote, G

    2008-12-01

    Zetametric measurements on suspensions of oxide particles (cobalt ferrite, nickel ferrite, and magnetite) representative of corrosion products from primary circuits of pressurized water reactors were performed at 25 and 70 degrees C in the presence of lithium and borate species. No effect of lithium ions was observed. Borate species cause a decrease of the isoelectric point (IEP), attributed to the sorption of borate as a negative complex MOB(OH)3(-). A predictive model based on thermodynamic calculations (2-pK and diffuse layer models) of the surface acidity constants from the data of acid-base titrations combined with an empirical relationship between the surface potential Psi 0 and the zeta potential determined by zetametry was developed. A whole set of parameters valid at 25 degrees C, in a range of ionic strength between 10(-4) and 10(-2) molL(-1) and in a range of pH between 4 and 8, was determined for this model. Increase of temperature to 70 degrees C in the presence of borate results in a decrease of IEP for cobalt ferrite and an increase of the IEP for nickel ferrite.

  18. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  19. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  20. Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Chao, Liu

    Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M

  1. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  2. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  3. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  5. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    PubMed

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hydrous ZrO2 decorated polyaniline nanofibres: Synthesis, characterization and application as an efficient adsorbent for water defluoridation.

    PubMed

    Parashar, Kamya; Ballav, Niladri; Debnath, Sushanta; Pillay, Kriveshini; Maity, Arjun

    2017-12-15

    A new hybrid material comprising hydrous zirconium oxide (HZrO 2 ) supported onto polyaniline (PANI) nanofibres (HZrO 2 @PANI NFs) was prepared via the precipitation of HZrO 2 onto as-synthesized PANI NFs and tested for its defluoridation capabilities. The developed adsorbent (HZrO 2 @PANI NFs) was fully characterized by FTIR, BET, XRD, SEM-EDX, TEM-(S)TEM, XPS, and zeta potential measurements. HZrO 2 @PANI NFs achieved 2-fold BET surface area ∼86.64 m 2 /gas compared to PANI NFs ∼44.72 m 2 /g, implying that the incorporation of HZrO 2 onto the PANI nanofibres enhanced the available surface area for effective fluoride adsorption. Moreover, HZrO 2 @PANI NFs was found to be effective over a wide pH range (3-9) as designated by its high pH pzc ∼9.8. The adsorption kinetics obeyed the pseudo-second-order model well with equilibrium attainment in 30min. Adsorption isotherm was best described by the Langmuir model and the maximum adsorption capacities obtained were 83.23 and 28.77mg/g at pH 3 and 6.5, respectively, which is superior to most ZrO 2 based adsorbents reported in the literature and better than that of native PANI. Furthermore, the developed adsorbent manifested quite a selective fluoride uptake at pH 3 as compared to pH 6.5±0.1 wherein significant chemical affinity competition was presented by phosphate ions followed by bicarbonate and sulfate. The recyclability of HZrO 2 @PANI NFs for four cycles and its applicability to fluoride spiked ground water has also been demonstrated. The adsorption mechanism was interpreted with the help of FTIR, XPS and Zeta potential analysis and the results revealed the involvement of both anion exchange and electrostatic attraction in the adsorption of F - ions. Thus, a new efficient adsorbent with reasonably high adsorption capacity and superior pH tolerance has been developed for fluoride removal. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  8. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  9. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  11. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    PubMed Central

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  12. Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles.

    PubMed

    Cao, Derang; Pan, Lining; Li, Jianan; Cheng, Xiaohong; Zhao, Zhong; Xu, Jie; Li, Qiang; Wang, Xia; Li, Shandong; Wang, Jianbo; Liu, Qingfang

    2018-05-21

    Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.

  13. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani V.; Fan, Yueying

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  15. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology.

    PubMed

    Srinivasan, Sumithra Y; Paknikar, Kishore M; Bodas, Dhananjay; Gajbhiye, Virendra

    2018-05-01

    Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe 2 O 4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe 2 O 4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.

  16. Ruthenium(ii)-polypyridyl zirconium(iv) metal-organic frameworks as a new class of sensitized solar cells.

    PubMed

    Maza, W A; Haring, A J; Ahrenholtz, S R; Epley, C C; Lin, S Y; Morris, A J

    2016-01-01

    A series of Ru(ii)L 2 L' (L = 2,2'-bipyridyl, L' = 2,2'-bipyridine-5,5'-dicarboxylic acid), RuDCBPY, -containing zirconium(iv) coordination polymer thin films have been prepared as sensitizing materials for solar cell applications. These metal-organic framework (MOF) sensitized solar cells, MOFSCs, each are shown to generate photocurrent in response to simulated 1 sun illumination. Emission lifetime measurements indicate the excited state quenching of RuDCBPY at the MOF-TiO 2 interface is extremely efficient (>90%), presumably due to electron injection into TiO 2 . A mechanism is proposed in which RuDCBPY-centers photo-excited within the MOF-bulk undergo isotropic energy migration up to 25 nm from the point of origin. This work represents the first example in which a MOFSC is directly compared to the constituent dye adsorbed on TiO 2 (DSC). Importantly, the MOFSCs outperformed their RuDCBPY-TiO 2 DSC counterpart under the conditions used here and, thus, are solidified as promising solar cell platforms.

  17. Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning

    NASA Astrophysics Data System (ADS)

    Askarian Amiri, Mikal

    Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain

  18. Synthesis of zirconium oxynitride in air under DC electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less

  19. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  20. Calcification of MC3T3-E1 cells on titanium and zirconium.

    PubMed

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  1. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. E.; Vilčáková, J.; Křesálek, V.; Sáha, P.; Sapurina, I.; Stejskal, J.

    2004-02-01

    Polycrystalline manganese-zinc ferrite has been coated with polyaniline (PANI) and embedded into a polyurethane matrix. The complex permeability of the composites was studied in the frequency range 1 MHz-3 GHz. The conductivity of PANI coating was adjusted by controlled protonation with picric acid. Large shifts in the resonance frequency were observed as a function of varying PANI conductivity. The changes in the magnetic properties of the PANI-coated composite material are due to the change of the boundary conditions of the microwave field at the interface between the ferrite particle and polymer matrix. This effect is observed especially when the magnetic anisotropy of ferrite is low.

  3. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  4. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  5. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties.

    PubMed

    Cao, Xuebo; Gu, Li

    2005-02-01

    In this paper we describe the preparation of homogeneously needle-shaped cobalt ferrite (CoFe(2)O(4)) nanocrystals on a large scale through the smooth decomposition of urea and the resulting co-precipitation of Co(2+) and Fe(3+) in oleic acid micelles. Furthermore, we found that other ferrite nanocrystals with a needle-like shape, such as zinc ferrite (ZnFe(2)O(4)) and nickel ferrite (NiFe(2)O(4)), can be prepared by the same process. Needle-shaped CoFe(2)O(4) nanocrystals dispersed in an aqueous solution containing oleic acid exhibit excellent stability and the formed colloid does not produce any precipitations after two months, which is of prime importance if these materials are applied in magnetic fluids. X-ray diffraction (XRD) measurements were used to characterize the phase and component of the co-precipitation products, and demonstrate that they are spinel ferrite with a cubic symmetry. Transmission electron microscopy (TEM) observation showed that all the nanocrystals present a needle-like shape with a 22 nm short axis and an aspect ratio of around 6. Varying the concentration of oleic acid did not bring about any obvious influence on the size distribution and shapes of CoFe(2)O(4). The magnetic properties of the needle-shaped CoFe(2)O(4) nanocrystals were evaluated by using a vibrating sample magnetometer (VSM), electron paramagnetic resonance (EPR), and a Mössbauer spectrometer, and the results all demonstrated that CoFe(2)O(4) nanocrystals were superparamagnetic at room temperature.

  6. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  7. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2018-01-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  8. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent wasmore » synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.« less

  9. About structural phase state of coating based on zirconium oxide formed by microplasma oxidation method

    NASA Astrophysics Data System (ADS)

    Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.

    2017-12-01

    The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.

  10. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  11. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  12. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  13. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  14. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    PubMed

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The nature of temper brittleness of high-chromium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separationmore » into layers of high-chromium ferrite and decomposition of the interstitial solid solution.« less

  16. Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qian; Du Piyi; Huang Wenyan

    2007-03-26

    Nickel-zinc ferrites (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with extraordinary electric and dielectric properties were prepared by self-combustion technique. The resistivity of ferrite in the ferric citrate system is on the order of 10{sup 10} {omega} cm, which is about four orders higher than that of ferrite in the ferric nitrate system as well as that of ferrite prepared by the conventional method. The dielectric loss of sample in the ferric citrate system is only 0.008. The amorphous phase and its encapsulation well around the grains have played most important roles in both high resistivity and low dielectric loss of ferritemore » in the ferric citrate system.« less

  17. Transformation Characteristics of Ferrite/Carbide Aggregate in Continuously Cooled, Low Carbon-Manganese Steels

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Thewlis, G.

    2014-02-01

    Transformation characteristics and morphological features of ferrite/carbide aggregate (FCA) in low carbon-manganese steels have been investigated. Work shows that FCA has neither the lamellae structure of pearlite nor the lath structure of bainite and martensite. It consists of a fine dispersion of cementite particles in a smooth ferrite matrix. Carbide morphologies range from arrays of globular particles or short fibers to extended, branched, and densely interconnected fibers. Work demonstrates that FCA forms over similar cooling rate ranges to Widmanstätten ferrite. Rapid transformation of both phases occurs at temperatures between 798 K and 973 K (525 °C and 700 °C). FCA reaction is not simultaneous with Widmanstätten ferrite but occurs at temperatures intermediate between Widmanstätten ferrite and bainite. Austenite carbon content calculations verify that cementite precipitation is thermodynamically possible at FCA reaction temperatures without bainite formation. The pattern of precipitation is confirmed to be discontinuous. CCT diagrams have been constructed that incorporate FCA. At low steel manganese content, Widmanstätten ferrite and bainite bay sizes are significantly reduced so that large amounts of FCA are formed over a wide range of cooling rates.

  18. Gadolinium substitution effect on the thermomagnetic properties of Ni ferrite ferrofluids

    NASA Astrophysics Data System (ADS)

    Jacobo, Silvia E.; Arana, Mercedes; Bercoff, Paula G.

    2016-10-01

    This work is focused on the structural and magnetic characterization of Gd-doped Ni ferrite nanoparticles and the preparation of a ferrofluid for applications in heat-transfer devices. For this purpose, spinel ferrites NiFe2O4, and NiFe1.88Gd0.12O4 were prepared by the self-combustion method. The substituted sample was obtained with a small amount of Gd inclusion and the excess appeared as GdFeO3. The smallest nanoparticles of both samples were properly coated and dispersed in kerosene. Thermal conductivities of the produced ferrofluids were measured at 25 °C under an applied magnetic field. There is a significant enhancement in the thermal conductivity of the ferrofluid prepared with NiGd ferrite with respect to the one with Ni ferrite, in presence of a magnetic field. This effect is directly related to the well-known magnetocaloric effect of Gd.

  19. Electrochemical performance of PVA stabilized nickel ferrite nanoparticles via microwave route

    NASA Astrophysics Data System (ADS)

    William, J. Johnson; Babu, I. Manohara; Muralidharan, G.

    2017-05-01

    Nanosized nickel ferrite nanoparticles were effectively synthesized through microwave route.PVA is used as a stabilizer. The cubic inverse spinel crystal structure was identified from the X-ray diffraction pattern. FTIR spectrum identified the octahedral site vibrations of the Ni2+ ions and tetrahedral sites vibrations of Fe3+ ions, which additionally confirms the existence of nickel ferrite nanoparticles. Nano-granular morphology was observed from scanning electron microscope. The tuning of morphology was clearly seen in SEM images. Electrochemical performance of nickel ferrite nanoparticles was studied using cyclic voltammetry and chronopotentiometry. Highest specific capacitance of 459 F g-1 was achieved through cyclic voltammetry at 2 mV s-1 for NF10. Also, non-linearity was observed in chronopotentiometry which confirms the pseudocapacitance nature of nickel ferrite nanoparticles. The estimated specific capacitance was 341 F g-1 at 2.5 A g-1.

  20. Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors

    NASA Technical Reports Server (NTRS)

    Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)

    1974-01-01

    The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.

  1. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  2. UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases.

    PubMed

    Song, Ji Yoon; Ahmed, Imteaz; Seo, Pill Won; Jhung, Sung Hwa

    2016-10-03

    The metal-organic framework (MOF) UiO-66 was synthesized in one step from zirconium chloride and isophthalic acid (IPA), together with the usual link material, terephthalic acid (TPA). UiO-66 with free -COOH can be obtained in a facile way by replacing up to 30% of the TPA with IPA. However, the chemical and thermal stability of the synthesized MOFs decreased with increasing IPA content used in the syntheses, suggesting an increase in the population of imperfect bonds in the MOFs because of the asymmetrical structure of IPA. The obtained MOFs with free -COOH were applied in liquid-phase adsorptions from both water and model fuel to not only estimate the potential applications but also confirm the presence of -COOH in the MOFs. The adsorbed amounts of several organics (triclosan and oxybenzone from water and indole and pyrrole from fuel) increased monotonously with increasing IPA content applied in MOF synthesis (or -COOH in the MOFs). The favorable contribution of free -COOH to adsorption can be explained by H-bonding, and the direction of H-bonds (adsorbates: H donor; MOFs: H acceptor) was confirmed by the adsorption of oxybenzone in a wide pH range. The versatile applications of the MOFs with -COOH in adsorptions from both polar and nonpolar phases are remarkable considering that hydrophobic and hydrophilic adsorbents are generally required for water and fuel purification, respectively. Finally, the presence of free -COOH in the MOFs was confirmed by liquid-phase adsorptions together with general Fourier transform infrared analyses and decreased chemical and thermal stability.

  3. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    NASA Astrophysics Data System (ADS)

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  4. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  5. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  6. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  7. Reactivity of zirconium basic sulfate in the reactions with carbonate, oxalate, and phosphate reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekhamkin, L.G.; Kondrashova, I.A.; Kerina, V.R.

    1987-08-20

    The reactivity of zirconium basic sulfate is determined by the possibility of replacement of oxo- and hydroxo-ligands and decreases with increasing temperature of its precipitation. The interaction of the less reactive zirconium basic sulfate with carbonate and oxalate reagents occurs at 25/sup 0/C without any change in basicity and that with phosphate reagents occurs with a decrease in it, up to the formation of a monophosphate with basicity about 20%. In the interaction of the more reactive zirconium basic sulfate, obtained without heating, oxo- and hydroxo groups can be entirely replaced by acido-ligands with the formation of unhydrolyzed compounds.

  8. Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory

    NASA Technical Reports Server (NTRS)

    Heckler, H. C.

    1973-01-01

    The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.

  9. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  11. Synthesis and characterization of Zn-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Singh, Shailndra; Barbar, S. K.; Ram, Sahi

    2018-05-01

    The Zn-Mg ferrite sample of general formula Zn0.5Mg0.5Fe2O4 have been prepared by standard solid state reaction technique using high purity oxides. X-ray diffraction analysis shows the formation of a zinc-magnesium ferrite cubic phase at room temperature with space group Fd3m. FTIR spectra show two significant absorption bands first at 665.15 cm-1 corresponding to tetrahedral (A) and second band at 434 cm-1 corresponding to octahedral (B) sites of the spinel. Morphology of the sample determined by the SEM measurement and EDS analysis has confirmed the composition of atoms in the sample.

  12. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  13. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, Raghu N.; Ginley, David S.

    1995-01-01

    A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.

  14. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 10 24 m –3 and 1.2 × 10 24 m –3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y andmore » O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less

  15. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance

    NASA Astrophysics Data System (ADS)

    Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin

    2014-11-01

    A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.

  16. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    PubMed

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  17. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  18. Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels

    DOE PAGES

    Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; ...

    2016-12-19

    Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less

  19. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  20. Effective ligand functionalization of zirconium-based metal-organic frameworks for the adsorption and separation of benzene and toluene: a multiscale computational study.

    PubMed

    Wu, Ying; Chen, Huiyong; Liu, Defei; Xiao, Jing; Qian, Yu; Xi, Hongxia

    2015-03-18

    The adsorption and separation properties of benzene and toluene on the zirconium-based frameworks UiO-66, -67, -68, and their functional analogues UiO-Phe and UiO-Me2 were studied using grand canonical Monte Carlo simulations, density functional theory, and ideal adsorbed solution theory. Remarkable higher adsorption uptakes of benzene and toluene at low pressures on UiO-Phe and -Me2 were found compared to their parent framework UiO-67. It can be ascribed to the presence of functional groups (aromatic rings and methyl groups) that significantly intensified the adsorption, majorly by reducing the effective pore size and increasing the interaction strength with the adsorbates. At high pressures, the pore volumes and accessible surfaces of the frameworks turned out to be the dominant factors governing the adsorption. In the case of toluene/benzene separation, toluene selectivities of UiOs showed a two-stage separation behavior at the measured pressure range, resulting from the greater interaction affinities of toluene at low pressures and steric hindrance effects at high pressures. Additionally, the counterbalancing factors of enhanced π delocalization and suitable pore size of UiO-Phe gave rise to the highest toluene selectivity, suggesting the ligand functionalization strategy could reach both high adsorption capacity and separation selectivity from aromatic mixtures at low concentrations.

  1. Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites

    NASA Astrophysics Data System (ADS)

    Chavan, Pradeep; Naik, L. R.; Belavi, P. B.; Chavan, Geeta; Ramesha, C. K.; Kotnala, R. K.

    2017-01-01

    The semiconducting polycrystalline ferrite materials with the general formula Ni1- x Mg x Fe2O4 were synthesized by using the solid state reaction method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrographs, and atomic force microscopy techniques were utilized to study the structural parameters. XRD confirms the formation of single phase cubic spinel structure of the ferrites. The crystallite sizes of ferrites determined using the Debye-Scherer formula ranges from 0.963 μm to 1.069 μm. The cation distribution of ferrite shows that Mg2+ ions occupy a tetrahedral site ( A-site) and the Ni2+ ion occupy an octahedral site ( B-site) whereas Fe3+ ions occupies an octahedral as well as a tetrahedral site. The study of elastic parameters such as the longitudinal modulus, rigidity modulus, Young's modulus, bulk modulus, and Debye temperature were estimated using the FTIR technique. The decrease of direct current (DC) resistivity with increase in temperature indicates the semiconducting nature of ferrites. The dielectric constant as well as loss tangent decreases with increase in frequency, and at still higher frequencies, they are almost constant. This shows usual dielectric dispersion behavior attributed to the Maxwell-Wagner type of interfacial polarization and is in accordance with Koop's phenomenological theory. The linear increase of alternating current conductivity with increase of frequency shows the small polaron hopping type of conduction mechanism in all the ferrites. The magnetic properties such as saturation magnetization ( M s ), magnetic moment, coercivity, remnant magnetization ( M r ), and the ratio of M r /M s was estimated using the M-H loop.

  2. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    PubMed

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  4. Broadband impedance-matched electromagnetic structured ferrite composite in the megahertz range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, L.; Hibbins, A. P.; Sambles, J. R.

    2014-06-02

    A high refractive-index structured ferrite composite is designed to experimentally demonstrate broadband impedance matching to free-space. It consists of an array of ferrite cubes that are anisotropically spaced, thereby allowing for independent control of the effective complex permeability and permittivity. Despite having a refractive index of 9.5, the array gives less than 1% reflection and over 90% transmission of normally incident radiation up to 70 MHz for one of the orthogonal linear polarisations lying in a symmetry plane of the array. This result presents a route to the design of MHz-frequency ferrite composites with bespoke electromagnetic parameters for antenna miniaturisation.

  5. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and

  6. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    NASA Astrophysics Data System (ADS)

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein - namely the ferritin - in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products.

  7. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin

    PubMed Central

    Volatron, Jeanne; Kolosnjaj-Tabi, Jelena; Javed, Yasir; Vuong, Quoc Lam; Gossuin, Yves; Neveu, Sophie; Luciani, Nathalie; Hémadi, Miryana; Carn, Florent; Alloyeau, Damien; Gazeau, Florence

    2017-01-01

    Metallic nanoparticles have been increasingly suggested as prospective therapeutic nanoplatforms, yet their long-term fate and cellular processing in the body is poorly understood. Here we examined the role of an endogenous iron storage protein – namely the ferritin – in the remediation of biodegradable cobalt ferrite magnetic nanoparticles. Structural and elemental analysis of ferritins close to exogenous nanoparticles within spleens and livers of mice injected in vivo with cobalt ferrite nanoparticles, suggests the intracellular transfer of degradation-derived cobalt and iron, entrapped within endogenous protein cages. In addition, the capacity of ferritin cages to accommodate and store the degradation products of cobalt ferrite nanoparticles was investigated in vitro in the acidic environment mimicking the physiological conditions that are present within the lysosomes. The magnetic, colloidal and structural follow-up of nanoparticles and proteins in the lysosome-like medium confirmed the efficient remediation of nanoparticle-released cobalt and iron ions by ferritins in solution. Metal transfer into ferritins could represent a quintessential process in which biomolecules and homeostasis regulate the local degradation of nanoparticles and recycle their by-products. PMID:28067263

  8. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    DOEpatents

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  9. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  11. Human biokinetic data and a new compartmental model of zirconium--a tracer study with enriched stable isotopes.

    PubMed

    Greiter, Matthias B; Giussani, Augusto; Höllriegl, Vera; Li, Wei Bo; Oeh, Uwe

    2011-09-01

    Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool in nutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope (95)Zr, is relevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuel cladding material. We present a comprehensive set of human data from a tracer study with stable isotopes of zirconium. The data are used to refine a biokinetic model of zirconium. Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete double tracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations. Tracer concentrations were measured in blood plasma and urine collected up to 100 d after tracer administration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240 measured concentration values above detection limits. Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffered drinking solution and 0.007 for zirconium oxalate solution. Biokinetic models were developed based on the linear first-order kinetic compartmental model approach used by the International Commission on Radiological Protection (ICRP). The main differences of the optimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfer compartment made necessary by the observed tracer clearance from plasma, (2) different parameters related to fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretion pathway to urine. The study considerably expands the knowledge on the biokinetics of zirconium, which was until now dominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yet is based on the same principles and fits well into the ICRP radiation protection approach. Copyright © 2011

  12. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-06-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  13. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  14. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  15. Properties of dynamic magnetic loss of ferrite

    NASA Astrophysics Data System (ADS)

    Saotome, Hideo; Azuma, Keisuke; Kizuka, Hiroki; Tanaka, Takuma

    2018-05-01

    The B-H loop of ferrite becomes narrower with a decrease in the excitation frequency. However, even at frequencies lower than 1 kHz, the B-H loop exhibits a certain minimum width, which is referred to as the (DC) hysteresis loop, and its area corresponds to the hysteresis loss. The dynamic magnetic loss is obtained by subtracting the hysteresis loss from the B-H loop area measured at a frequency above 1-10 kHz. The temperature characteristics of the hysteresis and dynamic magnetic losses are determined to be experimentally different, which suggests that the mechanism for the generation of dynamic magnetic loss is not exactly the same as that for the hysteresis loss. The dynamic magnetic loss is expressed using the dynamic magnetic loss parameter, which is a function of B and its time derivative, dB/dt. The dynamic magnetic loss parameter is measured under excitation with a rectangular waveform voltage. A ferrite core of TDK PC47 was used and the maximum magnetic flux density Bm, was set to 350 mT. The measured dynamic magnetic loss parameter was experimentally verified to be one of the intrinsic characteristics of ferrite and was also validated for cases of excitation with sinusoidal waveform voltages.

  16. Effect of Er doping on the structural and magnetic properties of cobalt-ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prathapani, Sateesh; Vinitha, M.; Das, D., E-mail: ddse@uohyd.ernet.in

    2014-05-07

    Nanocrystalline particulates of Er doped cobalt-ferrites CoFe{sub (2−x)}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400–600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite.more » The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er{sup +3} compared to Fe{sup +3}. Greater than two-fold increase in coercivity (∼66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe{sub 2}O{sub 4} (∼29 kA/m)« less

  17. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  18. Synthesis of ferrites obtained from heavy metal solutions using wet method.

    PubMed

    Yang, Ji; Peng, Juan; Liu, Kaicheng; Guo, Rui; Xu, Dianliang; Jia, Jinping

    2007-05-08

    Wet method was employed to the treatment of heavy metal-contaminated wastewater, and Zn(x)Fe(3-x)O(4), Ni(x)Fe(3-x)O(4) and Cr(x)Fe(3-x)O(4) (0ferrite products synthesized is 0.1-0.4 microm. Thermostability of the products was characterized by differential thermal analysis (DTA) and thermal gravimetric analysis (TGA). It was found that when the doped ferrite is qualified, the highest content of doped ion (Zn(2+), Ni(2+) and Cr(3+)) that could enter ferrite lattice is: 0.08, 0.049 and 0.02, respectively. At low concentration the capability of doped ions entering ferrite product is Ni(2+) approximately Zn(2+)>Cr(3+) and the influence of the three ions on sample thermostability is Zn(2+)>Ni(2+)>Cr(3+).

  19. Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers

    PubMed Central

    Thompson, Zanshe; Rahman, Shekh; Yarmolenko, Sergey; Sankar, Jagannathan; Kumar, Dhananjay

    2017-01-01

    Composite nanofibers of biopolymers and inorganic materials have been widely explored as tissue engineering scaffolds because of their superior structural, mechanical and biological properties. In this study, magnesium ferrite (Mg-ferrite) based composite nanofibers were synthesized using an electrospinning technique. Mg-ferrite nanoparticles were first synthesized using the reverse micelle method, and then blended in a mixture of polycaprolactone (PCL), a synthetic polymer, and Aloe vera, a natural polymer, to create magnetic nanofibers by electrospinning. The morphology, structural and magnetic properties, and cellular compatibility of the magnetic nanofibers were analyzed. Mg-ferrite/PCL/Aloe vera nanofibers showed good uniformity in fiber morphology, retained their structural integrity, and displayed magnetic strength. Experimental results, using cell viability assay and scanning electron microscopy imaging showed that magnetic nanofibers supported 3T3 cell viability. We believe that the new composite nanofibrous membranes developed in this study have the ability to mimic the physical structure and function of tissue extracellular matrix, as well as provide the magnetic and soluble metal ion attributes in the scaffolds with enhanced cell attachment, and thus improve tissue regeneration. PMID:28800071

  20. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  1. Magnetic properties of cobalt ferrite synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Dedi, Idayanti, Novrita; Kristiantoro, Tony; Alam, Ginanjar Fajar Nur; Sudrajat, Nanang

    2018-05-01

    Cobalt ferrite (CoFe2O4) is a well-known hard magnetic material with high coercivity and moderate magnetization. These properties, along with their great physical and chemical stability, make CoFe2O4 suitable for many applications such as generator, audio, video-tape etc. In this study, the magnetic properties of cobalt ferrite synthesized via the mechanical alloying using α-Fe2O3 of Hot Strip Mill (HSM) waste and cobalt carbonate as the precursors have been investigated. Structural and magnetic properties were systematically investigated. The X-ray diffraction (XRD) pattern exhibited the single phase of cobalt ferrite when the sintering temperature was 1000 °C. Permagraph measurements of the sintered sample revealed a saturation magnetization (Ms) of 77-83 emu/g and coercivity (Hc) of 575 Oe which closely to the magnetic properties of references; Ms = 47.2-56.7 emu/g and Hc =233-2002 Oe.

  2. Study of Zn-Cu Ferrite Nanoparticles for LPG Sensing

    PubMed Central

    Jain, Anuj; Baranwal, Ravi Kant; Bharti, Ajaya; Vakil, Z.; Prajapati, C. S.

    2013-01-01

    Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. XRD patterns of different compositions of zinc-copper ferrite, Zn(1−x)CuxFe2O4 (x = 0.0, 0.25, 0.50, 0.75), revealed single phase inverse spinel ferrite in all the samples synthesized. With increasing copper concentration, the crystallite size was found to be increased from 28 nm to 47 nm. The surface morphology of all the samples studied by the Scanning Electron Microscopy there exhibits porous structure of particles throughout the samples. The pellets of the samples are prepared for LPG sensing characteristics. The sensing is carried out at different operating temperatures (200, 225, and 250°C) with the variation of LPG concentrations (0.2, 0.4, and 0.6 vol%). The maximum sensitivity of 55.33% is observed at 250°C operating for the 0.6 vol% LPG. PMID:23864833

  3. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  4. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1995-10-31

    A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.

  5. Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Cheng, Guoguang

    2017-10-01

    The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.

  6. Selective separation of zirconium from uranium in carbonate solutions by ion flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jdid, E.A.; Blazy, P.; Mahamadou, A.

    1990-05-01

    Separation of zirconium from uranium in carbonate media was undertaken by ion flotation. The collector chosen was octylhydroxamic acid (HOHX). It gave a well-flocculated precipitate with zirconium which floated in less than 5 min. The stoichiometry of the reaction is HOHX/Zr = 3.9/1, and the selectivity in the presence of uranium is very high. In fact, for a ratio {Phi} = (HOHX),M/(Zr),M, which is just stoichiometric and is close to 4, the zirconium removal rate reaches 99%, even in industrial media. The loss of uranium is only 0.5% although its concentration is 37.4 g/L. Mechanisms of separation are not affectedmore » by a variation of pH between 6.7 and 9.8, of temperature up to 60{degree}C, and of carbonate concentration within the 15 to 60 g/L Na{sub 2}CO{sub 3} range.« less

  7. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq

    2016-12-01

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  8. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    NASA Astrophysics Data System (ADS)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  9. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  10. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    PubMed

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  11. Sol gel method for synthesis of semiconducting ferrite and the study of FTIR, DTA, SEM and CV

    NASA Astrophysics Data System (ADS)

    Alva, Sagir; Hua, Tang Ing; Kalmar Nizar, Umar; Wahyudi, Haris; Sundari, Rita

    2018-03-01

    In this study, a sol gel method using citric acid as anionic surfactant is used for synthesis of magnesium ferrite. Calcinations of magnesium ferrite at temperature (300°C, 600°C and 800°C) have been conducted after sol gel process. Characterization study of the prepared magnesium ferrite related to calcinations using Fourier transform infrared spectrometry (FTIR), Differential thermogravic analysis (DTA), and Scanning electron microscope (SEM) has been discussed. The study of Cyclic voltammetry (CV) of the prepared magnesium ferrite has been examined to assay the semiconducting behavior of magnesium ferrite in relation to its electrochemical behavior.

  12. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    NASA Astrophysics Data System (ADS)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  13. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.

    PubMed

    Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain

    2017-04-14

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  14. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  15. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    PubMed

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  16. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  17. Glassy behavior of diluted Cu-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Akhter, Shahida; Hakim, M. A.; Hoque, S. M.; Mathieu, R.; Nordblad, P.

    2018-04-01

    The magnetic behavior of Zn substituted Cu-Zn spinel ferrites having chemical formula Cu1-xZnxFe2O4 (x = 0.7, 0.8, 0.9 and 1.0) has been studied by SQUID magnetometry, by means of magnetic hysteresis, field-cooled (FC) and zero-field-cooled (ZFC) magnetization, memory effect and low field ac susceptibility measurements. These measurements suggest that the ferrimagnetic phase of the x ≤ 0.8 samples is gradually turned into a spin glass (x ≥ 0.9). The compound with x = 0.9 exhibits the typical dynamical behavior of spin glasses, with indication of aging, rejuvenation and memory effects. The evolution of the magnetic properties of Cu-Zn spinel ferrites with substitution of Zn for Cu is discussed.

  18. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-12-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y2O3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained.

  19. EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P; Santella, Michael L; Wilson, Keely A

    2008-01-01

    Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate thesemore » materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.« less

  20. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. An influence of a Glass Braze Composition on the Properties of Li-Ti Ferrite Joints

    NASA Astrophysics Data System (ADS)

    Lin, Panpan; Lin, Tiesong; He, Peng; Sekulic, Dusan P.; Zhao, Mengyuan; Wang, Shulei

    2017-04-01

    The influence of the chemical composition of Bi2O3-B2O3-SiO2-ZnO glass brazes on (i) the microstructure, (ii) the mechanical and (iii) the dielectric properties of Li-Ti ferrite joints was systematically investigated. The Bi5(Ti3Fe)O15 whisker and a white block phase consisting of Bi12SiO2 and Bi24B2O39 were observed in the joints of Li-Ti ferrite/Bi25-Ba and Li-Ti ferrite/glass brazes, respectively, containing a higher content of Bi2O3. No crystalline phase was detected in the Li-Ti ferrite/Bi25 and Li-Ti ferrite/Bi20 joints. The joint strength reached the maximum of 48 MPa in the Li-Ti ferrite/Bi25-Ba couples. It is assumed that this is mainly due to the strengthening effect of Bi5(Ti3Fe)O15 whiskers. The bonding temperature (700°C) had little effect on the dielectric properties of Li-Ti ferrite. Moreover, compared to the Bi25-Ba glass brazes, the Bi25 and Bi20 glass brazes had a less pronounced influence on the dielectric properties of joints. Different glass brazes can be tailored to different requirements depending on specific application and joint property requirements.

  2. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  3. Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.

    2014-12-15

    Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less

  4. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Eltabey, M. M.; Ibrahim, Samia. E.; El-Deen, L. M. Sharaf; Elkholy, M. M.

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na2O-B2O3-SiO2) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO3 and BO4 are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100-100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization MS and coercive field HC were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of MS and HC increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  5. Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films

    NASA Astrophysics Data System (ADS)

    Yan, Q. Y.; Gambino, R. J.; Sampath, S.; Huang, Q.

    2005-02-01

    The magnetic properties of MnZn ferrites are affected by the plasma spray process. It is found that improvements can be made by annealing the ferrite films at 500°C-800°C. The annealing induced magnetic property changes are studied by neutron diffraction and ferromagnetic resonance techniques. The increase of the saturation magnetization is attributed to the cation ordering within the spinel lattice, which increases the magnetic moment per ferrite formula. The refinements on the neutron diffraction data suggest that the redistribution of the cation during annealing neither starts from a fully disordered state nor ends to a fully ordered state. The decrease of the coercivity is analyzed with the domain wall pinning model. The measurements on the magnetostriction and residual stress indicate that coercive mechanisms arising from the magnetoelastic energy term are not dominant in these ferrite films. The decrease of the coercivity for annealed ferrite films is mainly attributed to the decrease of the effective anisotropic field, which may result from the homogenization of the film composition and the reduction of the microstructural discontinuity (e.g., cracks, voids, and splat boundaries).

  6. Solvothermal Synthesis of Magnetic Spinel Ferrites

    PubMed Central

    Rafienia, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, Seyed Ali

    2018-01-01

    At present, solvothermal fabrication method has widely been applied in the synthesis of spinel ferrite nanoparticles (SFNs), which is mainly because of its great advantages such as precise control over size, shape distribution, and high crystallinity that do not require postannealing treatment. Among various SFNs, Fe3O4 nanoparticles have attracted tremendous attention because of their favorable physical and structural properties which are advantageous, especially in biomedical applications, among which the vast application of these materials as targeted drug delivery systems, hyperthermia, and imaging agents in cancer therapy can be mentioned. The main focus of this study is to present an introduction to solvothermal method and key synthesis parameters of SFNs through this synthesis route. Moreover, most recent progress on the potential applications of Fe3O4 nanoparticles as the most important compound among the spinel ferrites family members is discussed. PMID:29928636

  7. Stress insensitive multilayer chip inductor with ferrite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwas, B.; Madhuri, W., E-mail: madhuriw12@gmail.com; Rao, N. Madhusudan

    2015-06-24

    Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} is synthesized by sol gel auto combustion technique. The obtained ferrite powder is finally sintered in a microwave furnace at 850°C. Multilayer chip inductor (MLCI) of two layers is prepared by screen printing technique. The sintered ferrite is characterized by X-ray diffraction. The frequency response of dielectric constant is studied in the frequency range of 100Hz to 5MHz. Dielectric polarization is discussed in the light of Maxwell-Wagner interfacial polarization. The prepared MLCI is studied for stress sensitivity in the range of 0 to 8 MPa.

  8. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  9. An analytical model for inductively coupled implantable biomedical devices with ferrite rods.

    PubMed

    Theilmann, P T; Asbeck, P M

    2009-02-01

    Using approximations applicable to near field coupled implants simplified expressions for the complex mutual inductance of coaxial aligned coils with and without a cylindrical ferrite rod are derived. Experimental results for ferrite rods of various sizes and permeabilities are presented to verify the accuracy of this expression. An equivalent circuit model for the inductive link between an implant and power coil is then presented and used to investigate how ferrite size, permeability and loss affect the power available to the implant device. Enhancements in coupling provided by high frequency, low permeability nickel zinc rods are compared with low frequency high permeability manganese zinc rods.

  10. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  11. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.

    PubMed

    Gangupomu, Roja Haritha; Kositkanawuth, Ketwalee; Sattler, Melanie L; Ramirez, David; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-05-01

    To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 degrees C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4 x 6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated

  12. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  13. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  14. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    PubMed Central

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  15. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  16. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  17. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz.more » In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078« less

  18. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  19. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  20. A high-voltage pulse transformer with a modular ferrite core

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Winands, G. J. J.; Yan, K.; Pemen, A. J. M.; Van Heesch, E. J. M.

    2008-01-01

    A high ratio (winding ratio of 1:80) pulse transformer with a modular ferrite core was developed for a repetitive resonant charging system. The magnetic core is constructed from 68 small blocks of ferrites, glued together by epoxy resin. This allows a high degree of freedom in choosing core shape and size. Critical issues related to this modular design are the size tolerance of the individual ferrite blocks, the unavoidable air gap between the blocks, and the saturation of the core. To evaluate the swing of the flux density inside the core during the charging process, an equivalent circuit model was introduced. It was found that when a transformer is used in a resonant charging circuit, the minimal required volume of the magnetic material to keep the core unsaturated depends on the coupling coefficient of the transformer and is independent of the number of turns of the primary winding. Along the flux path, 17 small air gaps are present due to the inevitable joints between the ferrite blocks. The total air gap distance is about 0.67mm. The primary and secondary windings have 16 turns and 1280 turns, respectively, and the actually obtained ratio is about 1:75.4. A coupling coefficient of 99.6% was obtained. Experimental results are in good agreement with the model, and the modular ferrite core works well. Using this transformer, the high-voltage capacitors can be charged up to more than 70kV from a low-voltage capacitor with an initial charging voltage of about 965V. With 26.9J energy transfer, the increased flux density inside the core was about 0.23T, and the core remains unsaturated. The energy transfer efficiency from the primary to the secondary was around 92%.

  1. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    PubMed

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  2. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jilin; Shi Jianxin, E-mail: chemshijx@163.co; Gong Menglian

    2009-08-15

    Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods.more » The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.« less

  3. Structural and electrical properties of nickel substituted cadmium ferrite

    NASA Astrophysics Data System (ADS)

    Chethan, B.; Raj Prakash, H. G.; Vijayakumari, S. C.; Ravikiran, Y. T.

    2018-05-01

    Spinal nano-sized Cadmium ferrite (CD) and Nickel substituted cadmium ferrite (NSCF) were fabricated by sol-gel auto combustion method. The formation of spinal structure of ferrite materials was confirmed by X-ray diffraction (XRD) analysis. The crystallites size of CF and NSCF as determined by Scherrer's formula were found to be 24.73 nm and 17.70 nm respectively. comparative study of Fourier transform infrared spectroscopy (FTIR) of CF and NSCF revealed tetrahedral absorption bands shifted slightly towards higher frequency where as octahedral bands shifted towards lower frequency side confirming interfacial interaction between Ni and CF. The AC conductivity (σ), loss tangent (tan δ) and complex plane impedance plots for both CF and NSCF are determined at various frequencies ranging from 50 kHz to 5 MHz and comparatively analyzed. The increase in AC conductivity of the NSCF nano particles as compared to CF was explained in the light of hopping model. The impedance measurement of NSCF show presence of a semi-circle corresponding to the grain boundary resistance and hence shows that the conductivity takes place largely through grain boundaries.

  4. Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Gennady; Awida, Mohamed; Khabiboulline, Timergali

    2014-07-01

    The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of themore » perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.« less

  5. Ferrite grain refinement in low carbon Cu–P–Cr–Ni–Mo weathering steel at various temperatures in the (α + γ) region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunling, E-mail: zhangchl@ysu.edu.cn; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401; Zhang, Mengmeng

    2016-03-15

    Self-designed Cu–P–Cr–Ni–Mo weathering steel was subjected to compression test to determine the mechanism of ferrite grain refinement from 750 °C to 925 °C. Optical microscopic images showed that ferrite grain size declined, whereas the ferrite volume fraction increased with increasing compression temperature. Electron backscatter diffraction patterns revealed that several low-angle boundaries shifted to high-angle boundaries, thereby generating fine ferrite grains surrounded by high-angle boundaries. Numerous low-angle boundaries were observed within ferrite grains at 750 °C, which indicated the existence of pre-eutectoid ferrite. Results showed that ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775more » °C, and deformation-induced ferrite transformation could be the main mechanism at 800 °C and 850 °C. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were produced in the (α + γ) dual-phase region. - Graphical abstract: There is a close relationship between the microstructure evolution and flow curves during deformation. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were achieved in the (α + γ) dual-phase region. Ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775 °C, and deformation-induced ferrite transformation at 800 °C and 850 °C. The occurrence of deformation-induced ferrite transformation and continuous dynamic recrystallization can be monitored by analysis of flow curves and microstructures. Deformation-induced ferrite transformation leads to the dynamic softening in flow curve when temperature just below A{sub r3}, while the dynamic softening in flow curve is ferrite continuous dynamic recrystallization (Special Fig. 5b). - Highlights: • Compression deformation was operated at temperatures from 750 °C to 925 °C at a strain rate of 0.1 s–1, and a strain of 1.2. • Fine equiaxed ferrite

  6. Study of gamma ray energy absorption and exposure buildup factors for ferrites by geometric progression fitting method

    NASA Astrophysics Data System (ADS)

    Raut, S. D.; Awasarmol, V. V.; Shaikh, S. F.; Ghule, B. G.; Ekar, S. U.; Mane, R. S.; Pawar, P. P.

    2018-04-01

    The gamma ray energy absorption and exposure buildup factors (EABF and EBF) were calculated for ferrites such as cobalt ferrite (CoFe2O4), zinc ferrite (ZnFe2O4), nickel ferrite (NiFe2O4) and magnesium ferrite (MgFe2O4) using five parametric geometric progression (G-P fitting) formula in the energy range 0.015-15.00 MeV up to the penetration depth 40 mean free path (mfp). The obtained data of absorption and exposure buildup factors have been studied as a function of incident photon energy and penetration depth. The obtained EABF and EBF data are useful for radiation dosimetry and radiation therapy.

  7. Effects of titanium on ferrite continuous cooling transformation curves of high-thickness Cr-Mo steels

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun

    2013-09-01

    The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.

  8. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    PubMed

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p < 0.001). The highest ∆E* ab value was recorded for the zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p < 0.001). The luting cement, the presence of titanium, and the color of zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  9. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  10. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mineral resource of the month: zirconium and hafnium

    USGS Publications Warehouse

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  12. Nano-ferrites for Water Splitting: Unprecedented High Photocatalytic Hydrogen Production under Visible Light

    EPA Science Inventory

    In the present investigation, hydrogen production via water splitting by nano ferrites has been studied using ethanol as the sacrificial donor. The nano ferrite has shown great potential in hydrogen generation with hydrogen yield of 8275 9moles/h/ g of photocatalyst under visible...

  13. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys

    DOE PAGES

    Yu, Xinghua; Mazumder, B.; Miller, M. K.; ...

    2015-01-19

    Nanostructured ferritic alloys, which have complex microstructures which consist of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This paper evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. Finally, the hardness difference in different regions of friction stir weld has been explained.

  14. Effect of Sintering Temperature on Dielectric Properties of Iron Deficient Nickel-Ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Renu; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2011-11-01

    Nickel Ferrite among all the magneto ceramic materials have been studied very much due to its large number of applications. But there is a large scope of modification of its properties. Thus people still working on it for improvisation of its properties via compositional and structural modifications. Present paper reporting the preparation and characterization of iron deficient Nickel ferrite for different sintering temperature. Ferrite samples having the general formula NiFe1.98O4 were prepared using the standard ceramic method. The phase formation was confirmed by X-ray diffraction technique. The effect of sintering temperature on the electrical properties and resistivity was studied. The data shows that dielectric properties are highly dependent on the sintering temperature.

  15. New grafted ferrite particles/liquid crystal composite under magnetic field

    NASA Astrophysics Data System (ADS)

    Manaila Maximean, D.

    2018-04-01

    A new colloidal composite formed by specially synthesized dimethylphenyl ferrite particles and a nematic liquid crystal (LC) is presented. By applying a small magnetic field during polarizing optical microscopy observations, it was found that the magnetic moment of the synthesized ferrite is perpendicular to the director of the LC. The optical transmission of laser light across the ferronematic was investigated under magnetic field. The critical magnetic field corresponding to the Freedericksz transition was obtained and discussed according to the Burylov and Raikher theory.

  16. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    PubMed

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  17. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  18. Effect of Amine Modification on the Properties of Zirconium-Carboxylic Acid Based Materials and Their Applications as NO2 Adsorbents at Ambient Conditions

    DTIC Science & Technology

    2014-01-06

    as a source of –SH [23]. Nitrogen dioxide (NO2) is an acidic , corrosive , and toxic gas present in the atmosphere. The main sources of NO2 pollution is...occurring are the Lewis acid –base reactions. These reactions are facilitated by the formation of nitric Schematic reaction between the urea incorporated in...of zirconium– carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions Zirconium–carboxylic ligand-based porous

  19. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  20. Ultrasonic agitation-floating classification of nano-sized Ba-Mg ferrites particles formed by using self-propagating high temperature synthesis and fabrication of nickel-ferrites thin sheet by pulse-electroforming.

    PubMed

    Choi, Yong

    2013-01-01

    Nickel-nano-sized ferrites composites sheet for electromagnetic shielding was produced by pulse-electroforming in a modified nickel sulfamate solution. The ferrite particles were prepared by self-propagating high temperature synthesis (SHS) followed by mechanical milling, and classified with an ultrasonic agitation-floating unit to obtain about 100 nm in size. Average combustion temperature and combustion propagating rate during SHS reaction were 1190 K and 5.8 mm/sec at the oxygen pressure of 1.0 MPa, respectively. The nickel-ferrite composite sheet had preferred orientation which (100) pole clearly concentrated to normal direction, whereas, (110) and (111) poles tended to split to the longitudinal direction, respectively. Maximum magnetization, residual magnetization and coercive force of the nano-sized ferrites were 27.13 A x m2/kg, 6.4 A x m2/kg and 14.58 kA/m, respectively. Complex permeability of the composites decreased with an increase in frequency, and its real value (mu'r) had the maximum at about 0.3 GHz. The dielectric constants of the composites were epsilon'r = 6.7 and epsilon"r = 0.

  1. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    PubMed

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  2. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  3. Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.

  4. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomographymore » revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.« less

  5. Heavy-metal detectors based on modified ferrite nanoparticles

    PubMed Central

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn0.5Fe2.5O4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier. PMID:29600137

  6. Heavy-metal detectors based on modified ferrite nanoparticles.

    PubMed

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn 0.5 Fe 2.5 O 4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier.

  7. Adsorbent catalytic nanoparticles and methods of using the same

    DOEpatents

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  8. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    PubMed

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  9. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    NASA Astrophysics Data System (ADS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-12-01

    Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.

  10. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  11. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    PubMed

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  12. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    PubMed

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  13. A SURVEY OF THE CORROSION OF MARTENSITIC AND FERRITIC STAINLESS STEELS IN PRESSURIZED WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, R.J.; Leitten, C.F. Jr.

    1963-07-16

    >The corrosion resistance of mantensitic and ferritic austenitic stainless steels and carbon steels in pressurized water at 500 to 600 deg F is compared. Included are specific out-of-pile data for austenitic stainless steels, AISI types types 410, 420, 431, and 440C; the ferritic AISI types 430, 442, and 446; the precipitation-hardening type 17-4PH; and carbon steels, ASTM 212 A and B. Available corrosion results obtained under irradiation at exposures in the range of 7 x 10/sup 16/ to 3 x 10/sup 19/ nvt are also included for types 304, types of martensitic and ferritic stainless steels which were evaluated domore » not contain nickel. For application where it is desirable to minimize Co/sup 58/ activity produced from nickel, selection of a martensitic or ferritic stainless steel may be more appropriate than choosing the more popular nickel-bearing austenitic stainless steel or a fuel-element cladding material. Interpretation of the data indicates that, on the average, martensitic and ferritic stainless steels corrode more rapidly than austenitic alloys but more slowly than carbon and low-alloy steels. Under selected controlled water conditions or under irradiation, the corrosion of the nickel-free stainless steels appears to differ little from the austenitics. The corrosion of martensitic and ferritic stainless steels in pressurized-water systems therefore does not appear of such magnitude as to rule out development of these materials as the cladding fuel elements for specific applications. (auth)« less

  14. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  15. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  16. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    NASA Astrophysics Data System (ADS)

    Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.

    2017-07-01

    Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  17. C-Curves for Lengthening of Widmanstätten and Bainitic Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Leach, Lindsay; Hillert, Mats; Borgenstam, Annika

    2017-09-01

    Widmanstätten ferrite and bainitic ferrite are both acicular and their lengthening rate in binary Fe-C alloys and low-alloyed steels under isothermal conditions is studied by searching the literature and through new measurements. As a function of temperature, the lengthening rate can be represented by a common curve for both kinds of acicular ferrite in contrast to the separate C-curves often presented in time-temperature-transformation (TTT) diagrams. The curves for Fe-C alloys with low carbon content show no obvious decrease in rate at low temperatures down to 623 K (350 °C). For alloys with higher carbon content, the expected decrease of rate as a function of temperature below a nose was observed. An attempt to explain the absence of a nose for low carbon contents by an increasing deviation from local equilibrium at high growth rates is presented. This explanation is based on a simple kinetic model, which predicts that the growth rates for Fe-C alloys with less than 0.3 mass pct carbon are high enough at low temperatures to make the carbon pileup, in front of the advancing tip of a ferrite plate, shrink below atomic dimensions, starting at about 600 K (323 °C).

  18. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  20. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  1. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  2. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite

    PubMed Central

    Dasan, Y. K.; Guan, B. H.; Zahari, M. H.; Chuan, L. K.

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles. PMID:28081257

  3. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    PubMed

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  4. Corrosion Behavior of Zirconium Treated Mild Steel with and Without Organic Coating: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Ghanbari, Alireza; Attar, Mohammadreza Mohammadzade

    2014-10-01

    In this study, the anti-corrosion performance of phosphated and zirconium treated mild steel (ZTMS) with and without organic coating was evaluated using AC and DC electrochemical techniques. The topography and morphology of the zirconium treated samples were studied using atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) respectively. The results revealed that the anti-corrosion performance of the phosphate layer was superior to the zirconium conversion layer without an organic coating due to very low thickness and porous nature of the ZTMS. Additionally, the corrosion behavior of the organic coated substrates was substantially different. It was found that the corrosion protection performance of the phosphate steel and ZTMS with an organic coating is in the same order.

  5. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.

    PubMed

    Mullick, Aditi; Neogi, Sudarsan

    2018-07-01

    Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N 2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH pzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L -1 and the maximum adsorption capacity of 5 mg.g -1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L -1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO 3 - , NO 3 - , SO 4 2- , Cl - ) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L -1 , the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  7. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    PubMed

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  8. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  9. Influence of metallic additives on manganese ferrites sintering

    NASA Astrophysics Data System (ADS)

    Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.

    2018-01-01

    Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.

  10. Electromagnetic properties of photodefinable barium ferrite polymer composites

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun; Lee, Jaejin; Williams, John D.

    2014-07-01

    This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3-6 μm for coarse and 0.8-1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass) of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM). The Thru, Reflect, Line (TRL) calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  11. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  12. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Li-Jung; Gill, Gary A.; Strivens, Jonathan E.

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method tomore » strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT

  13. First-principles study on influence of molybdenum on acicular ferrite formation on TiC particles in microallyed steels

    NASA Astrophysics Data System (ADS)

    Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.

    2018-01-01

    In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.

  14. High-intensity low energy titanium ion implantation into zirconium alloy

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  15. System and method for heating ferrite magnet motors for low temperatures

    DOEpatents

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    2017-07-04

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.

  16. Ferritic Fe-Mn alloy for cryogenic applications

    DOEpatents

    Hwang, Sun-Keun; Morris, Jr., John W.

    1979-01-01

    A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

  17. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  18. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  19. Precision of a CAD/CAM technique for the production of zirconium dioxide copings.

    PubMed

    Coli, Pierluigi; Karlsson, Stig

    2004-01-01

    The precision of a computer-aided design/manufacturing (CAD/CAM) system to manufacture zirconium dioxide copings with a predetermined internal space was investigated. Two master models were produced in acrylic resin. One was directly scanned by the Decim Reader. The Decim Producer then manufactured 10 copings from prefabricated zirconium dioxide blocks. Five copings were prepared, aiming for an internal space to the master of 45 microm. The other five copings were prepared for an internal space of 90 microm. The second test model was used to try in the copings produced. The obtained internal space of the ceramic copings was evaluated by separate measurements of the master models and inner surfaces of the copings. The master models were measured at predetermined points with an optical instrument. The zirconium dioxide copings were measured with a contact instrument at the corresponding sites measured in the masters. The first group of copings had a mean internal space to the scanned master of 41 microm and of 53 microm to the try-in master. In general, the internal space along the axial walls of the masters was smaller than that along the occlusal walls. The second group had a mean internal space of 82 microm to the scanned master and of 90 microm to the try-in master. The aimed-for internal space of the copings was achieved by the manufacturer. The CAD/CAM technique tested provided high precision in the manufacture of zirconium dioxide copings.

  20. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    PubMed

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    PubMed Central

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  2. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argonmore » atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.« less

  3. Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-03-01

    Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.

  4. Investigation of Barium Ferrite, Searching for Soft Magnetic Materials in High Frequency Applications

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Kanada, Isao; Mewes, Tim; Mewes, Claudia; Mankey, Gary; Ariake, Yusuke; Suzuki, Takao

    Soft ferrites have been extensively and intensively applied for high frequency device applications. Among them, Ba-ferrites substituted by Mn and Ti are particularly attractive as future soft magnetic material candidates for advanced high frequency device applications. However, very little has been known as to the intrinsic magnetic properties, such as damping parameter, which is crucial to develop high frequency devices. In the present study, much effort has been focused on fabrication of single crystal Ba-ferrites and measurements of damping parameter by FMR. Ba-ferrite samples consisted of many grains with various sizes have been prepared. The saturation magnetization and the magnetic anisotropy field of the sample are in reasonable agreement with the values in literature. The resonances positions in the FMR spectra over a wide frequency range also comply with theoretical predictions. However, the complex resonance shapes observed makes it difficult to extract dynamic magnetic property. Possible reasons are the demagnetization field originating from irregular sample shape or existence of multiple grains in the samples. S.W. acknowledges the support under the TDK Scholar Program.

  5. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    goenv.o -,y la)ers were YIG (yttrium iron garnet ) films grown by liquid phase epitaxy w:* ( LPE ) on gadolinium gallium garnet (GGG) substrates. Magnetic...containing three epitaxial layers. In addition to the MSW work oil garnets , LPE of lithium ferrite and hexagonal fertites was studied. A substituted lead...of a stripline. The other layers are epitaxial films , generally YIG (yttrium iron garnet ) with magnetic properties adjusted by suitable modifications

  6. Current status and future R&D for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.

    1998-10-01

    International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.

  7. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  8. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  10. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  11. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  12. Nanofiber adsorbents for high productivity downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2013-04-01

    Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Copyright © 2012 Wiley Periodicals, Inc.

  13. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial.

    PubMed

    Kosiborod, Mikhail; Rasmussen, Henrik S; Lavin, Philip; Qunibi, Wajeh Y; Spinowitz, Bruce; Packham, David; Roger, Simon D; Yang, Alex; Lerma, Edgar; Singh, Bhupinder

    2014-12-03

    Hyperkalemia is a common electrolyte abnormality that may be difficult to manage because of a lack of effective therapies. Sodium zirconium cyclosilicate is a nonabsorbed cation exchanger that selectively binds potassium in the intestine. To evaluate the efficacy and safety of zirconium cyclosilicate for 28 days in patients with hyperkalemia. HARMONIZE was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial evaluating zirconium cyclosilicate in outpatients with hyperkalemia (serum potassium ≥5.1 mEq/L) recruited from 44 sites in the United States, Australia, and South Africa (March-August 2014). Patients (n = 258) received 10 g of zirconium cyclosilicate 3 times daily in the initial 48-hour open-label phase. Patients (n = 237) achieving normokalemia (3.5-5.0 mEq/L) were then randomized to receive zirconium cyclosilicate, 5 g (n = 45 patients), 10 g (n = 51), or 15 g (n = 56), or placebo (n = 85) daily for 28 days. The primary end point was mean serum potassium level in each zirconium cyclosilicate group vs placebo during days 8-29 of the randomized phase. In the open-label phase, serum potassium levels declined from 5.6 mEq/L at baseline to 4.5 mEq/L at 48 hours. Median time to normalization was 2.2 hours, with 84% of patients (95% CI, 79%-88%) achieving normokalemia by 24 hours and 98% (95% CI, 96%-99%) by 48 hours. In the randomized phase, serum potassium was significantly lower during days 8-29 with all 3 zirconium cyclosilicate doses vs placebo (4.8 mEq/L [95% CI, 4.6-4.9], 4.5 mEq/L [95% CI, 4.4-4.6], and 4.4 mEq/L [95% CI, 4.3-4.5] for 5 g, 10 g, and 15 g; 5.1 mEq/L [95% CI, 5.0-5.2] for placebo; P < .001 for all comparisons). The proportion of patients with mean potassium <5.1 mEq/L during days 8-29 was significantly higher in all zirconium cyclosilicate groups vs placebo (36/45 [80%], 45/50 [90%], and 51/54 [94%] for the 5-g, 10-g, and 15-g groups, vs 38/82 [46%] with placebo; P < .001 for each dose

  14. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)–n-Propoxide Ions

    PubMed Central

    Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František

    2008-01-01

    We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507

  15. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  16. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.

  17. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  18. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  19. Chitin Adsorbents for Toxic Metals: A Review

    PubMed Central

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N.; Kyzas, George Z.

    2017-01-01

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth. PMID:28067848

  20. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  1. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  2. System and method for heating ferrite magnet motors for low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less

  3. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    NASA Astrophysics Data System (ADS)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  4. Control of magnetization reversal in oriented strontium ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  5. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  6. Synthesis, microstructure, and magnetic properties of monosized Mn x Zn y Fe3 − x − y O4 ferrite nanocrystals

    PubMed Central

    2013-01-01

    We report the synthesis and characterization of ferrite nanocrystals which exhibit high crystallinity and narrow size distributions. The three types of samples including Zn ferrite, Mn ferrite, and Mn-Zn ferrite were prepared via a non-aqueous nanoemulsion method. The structural, chemical, and magnetic properties of the nanocrystals are analyzed by transmission electron microscopy, X-ray diffraction, X-ray fluorescence, and physical property measurement system. The characterization indicates that the three types of ferrite nanocrystals were successfully produced, which show well-behaved magnetic properties, ferrimagnetism at 5 K and superparamagnetism at 300 K, respectively. In addition, the magnetization value of the ferrites increases with the increasing concentration of Mn. PMID:24344630

  7. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  8. Effect of Proeutectoid Ferrite Morphology on the Microstructure and Mechanical Properties of Hot Rolled 60Si2MnA Spring Steel

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Wei-qing, Chen; Huai-bin, Han; Rui-juan, Bai

    2017-02-01

    The hot rolled 60Si2MnA spring steel was transformed to obtain different proeutectoid ferrite morphologies by different cooling rates after finish rolling through dynamic thermal simulation test. The coexistence relationship between proeutectoid ferrite and pearlite, and the effect of proeutectoid ferrite morphology on mechanical properties were systematically investigated. Results showed that the reticular proeutectoid ferrite could be formed by the cooling rates of 0.5-2 °C/s; the small, dispersed and blocky proeutectoid ferrite could be formed by the increased cooling rates of 3-5 °C/s; and the bulk content of proeutectoid ferrite decreased. The pearlitic colony and interlamellar spacing also decreased, the reciprocal of them both followed a linear relationship with the reciprocal of proeutectoid ferrite bulk content. Besides, the tensile strength, percentage of area reduction, impact energy and microhardness increased, which all follow a Hall-Petch-type relationship with the inverse of square root of proeutectoid ferrite bulk content. The fracture morphologies of tensile and impact tests transformed from intergranular fracture to cleavage and dimple fracture, and the strength and plasticity of spring steel were both improved. The results have been explained on the basis of proeutectoid ferrite morphologies-microstructures-mechanical properties relationship effectively.

  9. Accident tolerant fuel cladding development: Promise, status, and challenges

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  10. Magnetic and magnetostrictive properties of Cu substituted Co-ferrites

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, B.; Rao, G. S. N.; Caltun, O. F.; Dhana Lakshmi, B.; Parvatheeswara Rao, B.; Subba Rao, P. S. V.

    2016-01-01

    Copper substituted cobalt ferrite, Co1-xCuxFe2O4 (x=0.00-0.25), nanoparticles were synthesized by sol-gel autocombustion method. X-ray diffraction analysis on the samples was done to confirm the cubic spinel structures and Scherrer equation was used to estimate the mean crystallite size as 40 nm. Using the obtained nanoparticles, fabrication of the sintered pellets was done by standard ceramic technique. Magnetic and magnetostrictive measurements on the samples were made by strain gauge and vibrating sample magnetometer techniques, respectively. Maximum magnetostriction and strain derivative values were deduced from the field dependent magnetostriction curves while the magnetic parameters such as saturation magnetization (51.7-61.9 emu/g) and coercivity (1045-1629 Oe) on the samples were estimated from the obtained magnetic hysteresis loops. Curie temperature values (457-315 °C) were measured by a built in laboratory set-up. Copper substituted cobalt ferrites have shown improved strain derivative values as compared to the pure cobalt ferrite and thus making them suitable for stress sensing applications. The results have been explained on the basis of cationic distributions, strength of exchange interactions and net decreased anisotropic contributions due to the increased presence of Co2+ ions in B-sites as a result of Cu substitutions.

  11. Dielectric and conductivity studies of Co-Cu mixed ferrite

    NASA Astrophysics Data System (ADS)

    Parveez, Asiya; Shekhawat, M. S.; Nayeem, Firdous; Mohd. Shariff, S.; Sinha, R. R.; Khader, S. Abdul

    2018-05-01

    Nanoparticles of Co-Cu mixed ferrite having the basic composition Co1-xCuxFe2O4(x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized using nitrate-citrate combustion method. Structural, dielectric and a.c conductivity of nanopowders, which are sintered at 900°C were studied. Powder X-ray diffraction studies confirmed phase and their nanocrystalline nature. The peaks observed in the XRD spectrum indicated single phase spinel cubic structure for the synthesized samples. Surface morphology of the samples has been investigated using High ResolutionScanning Electron Microscope. The dielectric constant (ɛ') and dielectric loss factor (ɛ″) of nanocrystalline Co-Cu mixed ferrites were investigated as a function of frequency and Cu+2 concentration at room temperature over the frequency range 100 Hz to 1 MHz using Hioki make LCR Hi-Tester 3250. Synthesized mixed ferrites exhibited usual dielectric dispersion, dependence of ɛ' and ɛ″ with the frequency of the alternating applied electric field is in accordance with the Maxwell-Wagner type interfacial polarization. The electrical conductivity (σac) deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in Co1-xCuxFe2O4 mixed nanoferrites are in conformity with the electron hopping model.

  12. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.

    2015-06-24

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less

  13. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    NASA Astrophysics Data System (ADS)

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  14. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  15. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.

  16. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  18. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  19. Flow boundary conditions for chain-end adsorbing polymer blends.

    PubMed

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  20. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  1. The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh

    2018-04-01

    The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.

  2. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    NASA Astrophysics Data System (ADS)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  3. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.

    2018-01-01

    Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.

  4. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  5. Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin

    2017-01-01

    We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.

  6. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles.

    PubMed

    Prodelalová, Jana; Rittich, Bohuslav; Spanová, Alena; Petrová, Katerina; Benes, Milan J

    2004-11-12

    Adsorption separation techniques as an alternative to laborious traditional methods (e.g., based on phenol extraction procedure) have been applied for DNA purification. In this work we used two types of particles: silica and cobalt ferrite (unmodified or modified with a reagent containing weakly basic aminoethyl groups, aminophenyl groups, or alginic acid). DNA from chicken erythrocytes and DNA isolated from bacteria Lactococcus lactis were used for testing of adsorption/desorption properties of particles. The cobalt ferrite particles modified with different reagents were used for isolation of PCR-ready bacterial DNA from different dairy products.

  7. Optimization principles for preparation methods and properties of fine ferrite materials

    NASA Astrophysics Data System (ADS)

    Borisova, N. M.; Golubenko, Z. V.; Kuz'micheva, T. G.; Ol'khovik, L. P.; Shabatin, V. P.

    1992-08-01

    The paper is devoted to the problems of development of fine materials based on Ba-ferrite for vertical magnetic recording in particular. Taking an analogue — BaFe 12-2 xCo xTe xO 19 — we have optimized the melt co-precipitation method and shown a new opportunity to provide chemical homogeneity of microcrystallites by means of cryotechnology. Magnetic characteristics of the magnetic tape experimental sample for digital video recording are presented. A series of principles of consistent control of ferrite powder properties are formulated and illustrated with specific developments.

  8. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1980-02-28

    shaped LPE garnet samples with 31.5um film thickness. We were informed that initial evalu- ation showed acceptably low insertion loss and that the material...frequencies above 25 GHz. c. Furnish up to eight (8) liquid phase epitaxy yttrium iron garnet films to RADC/EEA for testing and evaluation. These tasks...a "Method for Controlling Resonance Frequency of Yttrium Iron Garnet Films ." A patent, "Epitaxial Growth of M-type Hexagonal Ferrite Films on Spinel

  9. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

    PubMed

    Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C

    2016-06-01

    The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14 nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60 min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45 °C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of Sn Micro-alloying on Recrystallization Nucleation and Growth Processes of Ferritic Stainless Steels

    NASA Astrophysics Data System (ADS)

    He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong

    2018-04-01

    We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.

  11. Structure dependent electrical properties of Ni-Mg-Cu nano ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhari, Nagabhushan J., E-mail: nagabhushanchoudhari@gmail.com; Kakati, Sushanth S.; Hiremath, Chidanandayya S.

    2016-05-06

    Nano ferrites with the general chemical formula Ni{sub 0.5}Mg{sub x}Cu{sub 1-x} Fe{sub 2}O{sub 4} were synthesized by chemical route. They were characterized by x-ray diffraction by powder method. The diffraction patterns confirm the formation of single phase ferrites. The particle size is calculated by Scherrer formula which varies between 20nm to 60nm. DC resistivity was measured as a function of composition from room temperature to 700{sup o} C by two probe method. These ferrites show higher resistivity than those synthesized by ceramic method, due to control over composition and morphology. This leads to the elimination of domain wall resonance somore » that the materials can work at higher frequencies. AC resistivity was measured as a function of frequency at room temperature. Dielectric dispersion obeys Maxwell - Wagner model, in accordance with Koop’s phenomenological theory. The variation of loss angle follows the variation of ac resistivity with frequency and composition. The change in ac conductivity with frequency obeys the power law σ{sub a} = B.ω{sup n}. Such a behavior suggests that conductivity is due to polarons in all the samples.« less

  12. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Stephen S.; White, Josh; Hosemann, Peter

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  13. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE PAGES

    Parker, Stephen S.; White, Josh; Hosemann, Peter; ...

    2017-11-03

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  14. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    NASA Astrophysics Data System (ADS)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  15. Photocatalytic degradation of congo red using copper substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kirankumar, V. S.; Hardik, B.; Sumathi, S.

    2017-11-01

    Co1-xCuxFe2O4 nanoparticles with x = 0 and 0.5 were synthesized through the combustion method. The as-made materials are face centered-cubic close-packed spinel structures. The characterization techniques such as powder XRD, FTIR, UV-DRS and SEM studies collectively verified that the formed products are cobalt ferrite and copper substituted cobalt ferrite nanoparticles. In addition, the mean crystalline size, lattice parameter and band gap energy of nanoparticles are calculated. The photocatalytic activity of the obtained Co1-xCuxFe2O4 spinel nanoparticles is evaluated by monitoring the degradation of congo red under visible light irradiation.

  16. Large-scale synthesis of monodisperse magnesium ferrite via an environmentally friendly molten salt route.

    PubMed

    Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle

    2014-02-17

    Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.

  17. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Park, Min-Gu; Lee, Chang-Hoon; Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho; Kang, Namhyun; Chan Kim, Hyoung

    2017-03-01

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M23C6 carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20-100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M23C6 carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  18. Comparison of palladium and zirconium treated graphite tubes for in-atomizer trapping of hydrogen selenide in hydride generation electrothermal atomization atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.

    1999-02-01

    Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.

  19. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Cochrane, C.; Daymond, M. R.

    2018-05-01

    This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

  20. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  1. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  2. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  3. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  4. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    EPA Science Inventory

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  5. Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution.

    PubMed

    Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G

    2008-02-21

    Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size.

  6. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    NASA Astrophysics Data System (ADS)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  7. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    NASA Astrophysics Data System (ADS)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  8. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario.

    PubMed

    Iqubal, Md Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-03-27

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.

  9. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    NASA Astrophysics Data System (ADS)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  10. Interplay of polyelectrolytes with different adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Feng

    We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly

  11. Zirconium as a Structural Material for Naval Systems

    DTIC Science & Technology

    1985-03-29

    case with the technologically critical chemical elements chromium and cobalt, for example, from a military perspective. The case, therefore, for...By adding small amounts of tin, iron, nickel, and chromium , the impurities were effectively bound or coalesced within the metal and the corrosion...and nitrogen from the atmosphere, embrittling the weld. The techniques used for zirconium welding are gas tungsten arc welding ( GTAW ), tungsten inert

  12. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less

  13. Microwave magnetic properties of spinel ferrite films deposited by one-step electrochemical method

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Yuan, Lixin; Zhang, Xiaozhi; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2017-07-01

    Spinel ferrites have been widely used in microwave devices due to their excellent electromagnetic properties. In this study, two kinds of spinel ferrite films, Fe3O4 and Co xFe3-xO4, were grown on Pt(111)/Ti/SiO2/Si substrates by one-step electrochemical deposition method. The XRD and SEM characterizations demonstrated that the orientation of the ferrite films changed from (111) to (100) with the increase of depositing time. The cobalt content within Co xFe3-xO4 films was studied in detail by EDS analysis. The ferromagnetic resonance (FMR) responses of the ferrite films were measured by the flip-chip method using a vector network analyzer (VNA). It showed that the FMR frequency of Fe3O4 films reached to 10.5 GHz under an out-plane magnetic field of 5 kOe, while it reached to 27 GHz under an in-plane magnetic field of 5 kOe for Co xFe3-xO4 films. Meanwhile, whether the magnetic field was applied parallelly or perpendicularly, the resonant peaks were increased linearly with increasing the magnetic field, indicating that the films are promising candidates for applications in tunable wave-absorbing materials or other tunable frequency devices.

  14. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. 2010 Elsevier B.V. All rights reserved.

  15. Role of initial heat treatment of the ferrite component on magnetic properties in the composite of ferrimagnetic Co1.75Fe1.25O4 ferrite and non-magnetic BaTiO3 oxide

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Kazhugasalamoorthy, S.; Sinha, A. K.

    2017-12-01

    We have prepared a composite of ferrimagnetic ferrite Co1.75Fe1.25O4 and non-magnetic oxide BaTiO3. The ferrite composition Co1.75Fe1.25O4 has been prepared by chemical co-precipitation and subsequently heated at different temperatures. The heat treated ferrite powder has been mixed with BaTiO3 powder with mass ratio 1:1 and the mixed powder has been finally heated at 1000 °C to form composite material. Structural phase of the composite material has been confirmed by high quality Synchrotron X-ray diffraction pattern and Micro-Raman spectra. The grain surface morphology and elemental composition have been studied by Scanning electron microscope and Energy dispersive X-ray analysis. The distribution of magnetic exchange interactions and blocking behavior of the ferrimagnetic grains in composite samples has been understood by analyzing the temperature and magnetic field dependence of dc magnetization. Finally, information on modified micro-structure and ferrimagnetic parameters in composite samples has been obtained as the variation of annealing temperature of the ferrite component before making composite.

  16. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Oyola, Y.; Mayes, Richard T.

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked withmore » 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.« less

  17. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  18. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  19. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    PubMed

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p < 0.001). In the HXLPE series, the median steady-state penetration rate from 1 year onward was 0.02 mm/year (range, -0.32 to

  20. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    PubMed

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.