Science.gov

Sample records for zirconium hydroxides

  1. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  2. Sensing of NO2 with Zirconium Hydroxide via Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Coleman; Soliz, Jennifer; Klevitch, Andrew; Rossin, Joseph; Fountain, Augustus, III; Peterson, Gregory; Hauser, Adam

    Nitrogen Dioxide (NO2) is a brown gas mainly produced as a byproduct of burning fossil fuels, such as automobiles and power plants. Nitrogen oxides can form acid rain and smog by reacting with air, can form toxic organic nitrates by reacting with soil, and can react with oxygen in water, destroying marine life due to a lack of breathable oxygen. Any concentration beyond 53 ppb (air quality standard) can cause irritation to the lungs and respiratory infections, and higher dosages can be fatal. As such, research in NO2 detection is incredibly important to human welfare. Zirconium hydroxide (Zr(OH)4) has been investigated as a candidate NO2 dielectric sensor using impedance spectroscopy analysis. Impedance changes of several orders of magnitude are seen down to our dosage minimum of 50 ppmhr. Changes in impedance correlate with nitrogen and oxygen atomic ratio increases observed via X-ray photoelectron spectroscopy (XPS). The results indicate that Zr(OH)4 may be a strong candidate for use in impedance-based NO2 detection devices. A.J.H., J.R.S., A.W.F. and G.W. P. acknowledge funding under Army Research Office STIR Award #W911F-15-1-0104. J.R.S. acknowledges funding under a NRC fellowship and is advised by Dr. Christopher Karwacki, ECBC.

  3. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  4. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    PubMed

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Zirconium

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  6. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.

    PubMed

    Balow, Robert B; Lundin, Jeffrey G; Daniels, Grant C; Gordon, Wesley O; McEntee, Monica; Peterson, Gregory W; Wynne, James H; Pehrsson, Pehr E

    2017-11-15

    Zirconium hydroxide (Zr(OH) 4 ) has excellent sorption properties and wide-ranging reactivity toward numerous types of chemical warfare agents (CWAs) and toxic industrial chemicals. Under pristine laboratory conditions, the effectiveness of Zr(OH) 4 has been attributed to a combination of diverse surface hydroxyl species and defects; however, atmospheric components (e.g., CO 2 , H 2 O, etc.) and trace contaminants can form adsorbates with potentially detrimental impact to the chemical reactivity of Zr(OH) 4 . Here, we report the hydrolysis of a CWA simulant, dimethyl methylphosphonate (DMMP) on Zr(OH) 4 determined by gas chromatography-mass spectrometry and in situ attenuated total reflectance Fourier transform infrared spectroscopy under ambient conditions. DMMP dosing on Zr(OH) 4 formed methyl methylphosphonate and methoxy degradation products on free bridging and terminal hydroxyl sites of Zr(OH) 4 under all evaluated environmental conditions. CO 2 dosing on Zr(OH) 4 formed adsorbed (bi)carbonates and interfacial carbonate complexes with relative stability dependent on CO 2 and H 2 O partial pressures. High concentrations of CO 2 reduced DMMP decomposition kinetics by occupying Zr(OH) 4 active sites with carbonaceous adsorbates. Elevated humidity promoted hydrolysis of adsorbed DMMP on Zr(OH) 4 to produce methanol and regenerated free hydroxyl species. Hydrolysis of DMMP by Zr(OH) 4 occurred under all conditions evaluated, demonstrating promise for chemical decontamination under diverse, real-world conditions.

  7. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  8. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  9. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  10. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  11. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  12. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  13. Fluorometric determination of zirconium in minerals

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  14. Ammonium hydroxide poisoning

    MedlinePlus

    Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...

  15. Sodium hydroxide poisoning

    MedlinePlus

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  16. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  17. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    PubMed

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  19. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  20. Calcium hydroxide poisoning

    MedlinePlus

    These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement thickening products, and many ...

  1. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  2. Zirconium and hafnium

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  3. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  4. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  5. Potassium hydroxide poisoning

    MedlinePlus

    ... effectively treat (adsorb) sodium hydroxide. For skin exposure, treatment may include: Surgical removal of burned skin (debridement) Transfer to a hospital that specializes in burn care Washing of the skin (irrigation), possibly every ...

  6. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    NASA Astrophysics Data System (ADS)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  7. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  8. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    DOEpatents

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  9. Modification in band gap of zirconium complexes

    SciT

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  10. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    PubMed

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Corrosion-electrochemical behavior of zirconium in molten alkali metal carbonates

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.

    2016-08-01

    The corrosion and electrochemical characteristics of zirconium during its interaction with molten lithium, sodium, and potassium carbonates containing from 1 to 5 wt % additives to the salt phase are studied in a temperature range of 500-800°C using gravimetry, corrosion potential measurement, and anodic polarization. The substances decreasing the corrosion losses due to the strengthening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used as passivators. Sodium chloride, fluoride, and sulfate serve as corrosion stimulators (activators).

  12. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  13. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  14. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  15. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    NASA Technical Reports Server (NTRS)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  16. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.

    PubMed

    Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta

    2012-11-01

    To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.

  17. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  18. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  19. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  20. Zirconium tetrachloride revisited

    DOE PAGES

    Borjas Nevarez, Rosendo; Balasekaran, Samundeeswari Mariappan; Kim, Eunja; ...

    2018-02-19

    We present that zirconium tetrachloride, ZrCl 4, is a strategic material with wide-ranging applications. Until now, only one crystallographic study on ZrCl 4has been reported [Krebs (1970).Z. Anorg. Allg. Chem.378, 263–272] and that was more than 40 years ago. The compound used for the previous determination was prepared from ZrO 2 and Cl 2–CCl 4, and single-crystal X-ray diffraction (SCXRD) studies on ZrCl 4 obtained from Zr metal have not yet been reported. In this context, we prepared ZrCl 4 from the reaction of Zr metal and Cl 2 gas in a sealed tube and investigated its structure at 100,more » 150, 200, 250, and 300 K. At 300 K, the SCXRD analysis indicates that ZrCl 4 crystallizes in the orthorhombic space group Pca2 1 [a= 6.262 (9),b= 7.402 (11),c= 12.039 (17) Å, andV= 558.0 (14) Å 3] and consists of infinite zigzag chains of edge-sharing ZrCl 6 octahedra. This chain motif is similar to that observed previously in ZrCl 4, but the structural parameters and space group differ. Finally, in the temperature range 100–300 K, no phase transformation was identified, while elongation of intra-chain Zr...Zr [3.950 (1) Å at 100 K and 3.968 (5) Å at 300 K] and inter-chain Cl...Cl [3.630 (3) Å at 100 K and 3.687 (9) Å at 300 K] distances occurred.« less

  1. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  2. PROCESS OF PREPARING ZIRCONIUM OXYCHLORIDE

    DOEpatents

    Wilhelm, H.A.; Andrews, M.L.

    1960-06-28

    A process is given for preparing zirconyl chloride by mixing solid zirconyl chloride octahydrate and solid zirconium tetrachloride at room temperature whereby both chlorides are converted to zirconyl chloride trinydrate and hydrogen chloride is formed and volatilized by the reaction heat.

  3. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    PubMed

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

    1990-04-10

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

  5. Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation

    DOEpatents

    Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.

    1990-01-01

    An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

  6. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  7. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  8. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... addition of sodium hydroxide to a water soluble magnesium salt or by hydration of reactive grades of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS Reg. No. 1309-42-8) occurs...

  9. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...

  10. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  11. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  12. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  13. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  14. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  15. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  16. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    PubMed

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  17. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  18. Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.

    PubMed

    Yatirajam, V; Ahuja, U; Kakkar, L R

    1975-03-01

    A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.

  19. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  20. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  1. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  2. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  3. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  4. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  5. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  6. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  7. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  8. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  9. Separation of Zirconium and Hafnium: A Review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium. This paper provides an overview of the processes for separating hafnium from zirconium. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The current dominant zirconium production route involves pyrometallurgical ore cracking, multi-step hydrometallurgical liquid-liquid extraction for hafnium removal and the reduction of zirconium tetrachloride to the pure metal by the Kroll process. The lengthy hydrometallurgical Zr-Hf separation operations leads to high production cost, intensive labour and heavy environmental burden. Using a compact pyrometallurgical separation method can simplify the whole production flowsheet with a higher process efficiency. The known separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt extraction. The commercially operating extractive distillation process is a significant advance in Zr-Hf separation technology but it suffers from high process maintenance cost. The recently developed new process based on molten salt-metal equilibrium for Zr-Hf separation shows a great potential for industrial application, which is compact for nuclear grade zirconium production starting from crude ore. In the present paper, the available separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  10. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...

  11. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications of the Food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS...

  12. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  13. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  14. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  15. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  16. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...

  17. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...

  18. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...

  19. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...

  20. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...

  1. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...

  2. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...

  3. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...

  4. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...

  5. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...

  6. 21 CFR 582.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This...

  7. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  8. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  9. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  10. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  11. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  12. Contribution to the knowledge of nickel hydroxide electrodes. 5. Analysis and electrochemical behavior of cadmium nickel hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Dennstedt, W.

    1981-01-01

    Electrochemical experiments performed at sintered and bulk electrodes show that beta nickel hydroxide contains an electrochemically inactive proportion of cadmium hydroxide of up to 10%. The electrochemically ineffective cadmium hydroxide is homogeneously dissolved in beta nickel hydroxide.

  13. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  14. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciT

    Stengl, Vaclav, E-mail: stengl@uach.cz; Houskova, Vendula; Bakardjieva, Snejana

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resultingmore » doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.« less

  15. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  16. Oxidized zirconium on ceramic; Catastrophic coupling.

    PubMed

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  18. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  19. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    SciT

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  20. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    SciT

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  1. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  2. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  3. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The empirical formula is NaOH. Sodium...

  4. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... Specific Substances Affirmed as GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of...

  5. 21 CFR 184.1205 - Calcium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of lime. (b) The ingredient...

  6. Zirconium: biomedical and nephrological applications.

    PubMed

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  7. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  8. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  9. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  10. Pretreatment of rapeseed straw by sodium hydroxide.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2012-06-01

    Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.

  11. Synthesis and Exfoliation of Discotic Zirconium Phosphates to Obtain Colloidal Liquid Crystals

    PubMed Central

    Yu, Yi-Hsien; Wang, Xuezhen; Shinde, Abhijeet; Cheng, Zhengdong

    2016-01-01

    Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior. PMID:27284765

  12. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  13. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  14. International strategic minerals inventory summary report; zirconium

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  15. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  16. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  17. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  18. Evaluation of a Zirconium Recycle Scrubber System

    SciT

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  19. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  20. From Zirconium Nanograins to Zirconia Nanoneedles

    PubMed Central

    Zalnezhad, E.; Hamouda, A. M. S.; Jaworski, J.; Do Kim, Young

    2016-01-01

    Combinations of three simple techniques were utilized to gradually form zirconia nanoneedles from zirconium nanograins. First, a physical vapor deposition magnetron sputtering technique was used to deposit pure zirconium nanograins on top of a substrate. Second, an anodic oxidation was applied to fabricate zirconia nanotubular arrays. Finally, heat treatment was used at different annealing temperatures in order to change the structure and morphology from nanotubes to nanowires and subsequently to nanoneedles in the presence of argon gas. The size of the pure zirconium nanograins was estimated to be approximately 200–300 nm. ZrO2 nanotubular arrays with diameters of 70–120 nm were obtained. Both tetragonal and monoclinic ZrO2 were observed after annealing at 450 °C and 650 °C. Only a few tetragonal peaks appeared at 850 °C, while monoclinic ZrO2 was obtained at 900 °C and 950 °C. In assessing the biocompatibility of the ZrO2 surface, the human cell line MDA-MB-231 was found to attach and proliferate well on surfaces annealed at 850 °C and 450 °C; however, the amorphous ZrO2 surface, which was not heat treated, did not permit extensive cell growth, presumably due to remaining fluoride. PMID:27623486

  1. Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66).

    PubMed

    Abid, Hussein Rasool; Ang, Ha Ming; Wang, Shaobin

    2012-05-21

    Several zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized using ammonium hydroxide as an additive in the synthesis process. Their physicochemical properties have been characterized by N(2) adsorption/desorption, XRD, SEM, FTIR, and TGA, and their application in CO(2) adsorption was evaluated. It was found that addition of ammonium hydroxide produced some effects on the structure and adsorption behavior of Zr-MOFs. The pore size and pore volume of Zr-MOFs were enhanced with the additive, however, specific surface area of Zr-MOFs was reduced. Using an ammonium hydroxide additive, the crystal size of Zr-MOF was reduced with increasing amount of the additive. All the samples presented strong thermal stability. Adsorption tests showed that capacity of CO(2) adsorption on the Zr-MOFs under standard conditions was reduced due to decreased micropore fractions. However, modified Zr-MOFs had significantly lower adsorption heat. The adsorption capacity of carbon dioxide was increased at high pressure, reaching 8.63 mmol g(-1) at 987 kPa for Zr-MOF-NH(4)-2.

  2. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    SciT

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  3. Dissolution mechanism of aluminum hydroxides in acid media

    NASA Astrophysics Data System (ADS)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  4. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  5. [The clinical application of zirconium-dioxide-ceramics. Case report].

    PubMed

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  6. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  7. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...

  8. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  9. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  10. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  11. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  12. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  13. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  14. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  15. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  16. Recycling Lithium Carbonate/Lithium Hydroxide Waste

    NASA Technical Reports Server (NTRS)

    Flowers, J.; Flowers, J.

    1983-01-01

    Hazardous waste disposal problem eliminated by regeneration. Li2CO3/ LiOH recycling process relies on low solubility of alkali carbonates in corresponding hydroxides. Li2CO3 precipitate calcined to LI2O, then rehydrated LiOH. Regeneration eliminates need to dispose caustic waste and uses less energy than simple calcination of entire waste mass.

  17. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... thickener as defined in § 170.3(o)(28) of this chapter. (2) The ingredient is used in food at levels not to... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium hydroxide. 184.1631 Section 184.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  18. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thickener as defined in § 170.3(o)(28) of this chapter. (2) The ingredient is used in food at levels not to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  19. Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Demelt, K.; White, J.

    1986-01-01

    Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied.

  20. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  1. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...

  2. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN P-91-809...

  3. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  4. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless, tasteless, amorphous powder consisting essentially of aluminum hydroxide (Al2 O3· XH2 O). (2) Color additive...

  5. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O). (2) Color additive mixtures for drug use made with chromium hydroxide green may contain only those...

  6. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  7. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  8. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  9. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  10. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  11. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  12. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  13. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  14. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOEpatents

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  15. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  16. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  17. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  18. CHARACTERISTICS OF ANODIC AND CORROSION FILMS ON ZIRCONIUM

    SciT

    Misch, R.D.

    1960-05-01

    Zirconium anodizes similarly to tungsten in respect to the change of interference colors with applied voltage. However, the oxide layer on tungsten cannot reach as great a thickness. Hafnium does not anodize in the same way as zirconium but is similar to tantalum. By measuring the interference color and capacitative thicknesses on zirconium (Grades I and III) and a 2.5 wt.% tin ailoy, the film was found to grow less rapidly in terms of capacitance than in terms of iaterference colors. This was interpreted to mean that cracks develop in the oxide as it thickens. The effect was most pronouncedmore » on Grade III zirconium and least pronounced on the tin alloy. The reduction in capacitative thickness was especially noticeable when white oxide appeared. Comparative measurements on Grade I zirconium and 2.5 wt.% tin alloy indicated that the thickness of the oxide film on the tin alloy (after 16 hours in water) increased more rapidly with temperature than the film on zirconium. Tin is believed to act in ways to counteract the tendency of the oxide to form cracks, and to produce vacancies which promote ionic diffusion. (auth)« less

  19. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    SciT

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  20. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  1. Quercetin as colorimetric reagent for determination of zirconium

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  2. Sodium hydroxide permethylation of heparin disaccharides.

    PubMed

    Heiss, Christian; Wang, Zhirui; Azadi, Parastoo

    2011-03-30

    Permethylation is a valuable and widely used tool for the mass spectrometry of carbohydrates, improving sensitivity and fragmentation and increasing the amount of information that can be obtained from tandem mass spectrometric experiments. Permethylation of most glycans is easily performed with sodium hydroxide and iodomethane in dimethyl sulfoxide (DMSO). However, permethylation has not been widely used in the mass spectrometry of glycosaminoglycan (GAG) oligosaccharides, partly because it has required the use of the difficult Hakomori method employing the methylsulfinylmethanide ('dimsyl') base, which has to be made in a tedious process. Additionally, the Hakomori method is not as effective as the sodium hydroxide method in making fully methylated derivatives. A further problem in the permethylation of highly sulfated oligosaccharides is their limited solubility in DMSO. This paper describes the use of the triethylammonium counterion to overcome this problem, as well as the application of the sodium hydroxide method to make permethylated heparin disaccharides and their workup to yield fully methylated disaccharides for electrospray ionization mass spectrometry. The ease, speed, and effectiveness of the described methodology should open up permethylation of GAG oligosaccharides to a wider circle of mass spectrometrists and enable them to develop further derivatization schemes in the effort to rapidly elucidate the structure of these important molecules. Permethylation may also provide new ways of separating GAG oligosaccharides in LC/MS, their increased hydrophobicity making them amenable for reversed-phase chromatography without the need for ion pairing reagents. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  4. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  5. Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water

    SciT

    Banerjee, Debasis; Xu, Wenqian; Nie, Zimin

    2016-09-06

    Efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for alternative treatment is one of the promising options to manage 99Tc in legacy nuclear waste. Safe immobilization of 99Tc is of major importance due to its long half-life (t1/2= 2.13 × 105 yrs) and environmental mobility. Different types of inorganic and solid state ion-exchange materials such as layered double hydroxides have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultra-stable zirconium basedmore » metal-organic framework can adsorb perrhenate (ReO4-) anions, a non-radioactive sur-rogate for TcO4-, from water even in the presence of other common anions. Synchrotron based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework.« less

  6. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  7. On the Nickel Hydroxide Electrode. I. On Nickel (II) Hydroxide Hydrate,

    DTIC Science & Technology

    1980-10-27

    1 - 4.60 A), and the hydrous form is halloysite , AI 2Si2 O5 (OH)4 .2H20 with d001 - 10.25 A (analogous to a-3Ni(OH)2 .2H20 with do01 - 8.07 A). On...heating of halloysite , the entire intermediate layer water is lost at about 1500 C, as for a nickel hydroxide, without the hydroxide layer separation...significantly reducing to meta- halloysite . 13 The conversion of the a form under the influence of alkali goes only in one direction. This monotropic

  8. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    PubMed Central

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  9. Understanding the Irradiation Behavior of Zirconium Carbide

    SciT

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  10. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  11. The alpha-form of the hydroxides of bivalent metals

    NASA Technical Reports Server (NTRS)

    Feitknecht, W.

    1984-01-01

    X-ray analyses were made of the hydroxides of the bivalent metals. The freshly pptd. hydroxide is usually in the alpha-form, which on standing is converted to another form or other forms. The alpha and c grating dimensions of the alpha-form and the C6-type of Co, Zn, C, Co-Zn and Ni-Zn hydroxides are tabulated. Ni hydroxide does not exhibit an alpha-form. The alpha-Co(OH)2, the blue form, is stabilized by sugar or by the higher alcohols: these compounds do not stabilize alpha-Zn(OH)2.

  12. Zirconium oxide surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres

    2018-05-01

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.

  13. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  14. Atomic layer deposition of zirconium silicate films using zirconium tetra-tert-butoxide and silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo

    2003-09-01

    A new precursor combination (SiCl4 and Zr(OtC4H9)4) was used to deposit Zr silicate with Zr(OtC4H9)4 as a zirconium source and oxygen source at the same time. SiCl4 and Zr(OtC4H9)4 have higher vapor pressures than their counterpart, ZrCl4 and tetra-n-butyl orthosilicate (TBOS), and it was expected that the cycle time would be shorter. The deposition temperature of the new combination was about 150 °C lower than that of ZrCl4 and TBOS. The film was zirconium rich while it was silicon rich with ZrCl4 and TBOS. Growth rate (nm/cycle), composition ratio [Zr/(Zr+Si)], and chlorine impurity were decreased with increasing deposition temperature from 125 to 225 °C. The composition ratio of the film deposited at 225 °C was 0.53 and the chlorine content was about 0.4 at. %. No carbon was detected by x-ray photoelectron spectroscopy.

  15. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Tikare, Veena; ...

    2015-10-13

    Here, the elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn-3m with combining macron]m polymorph of δ-ZrH 1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P4 2/ mcm polymorph. Elastic moduli predicted with the Voigt–Reuss–Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debyemore » temperatures predicted for γ-ZrH, δ-ZrH 1.5 and ε-ZrH 2 are θ D = 299.7, 415.6 and 356.9 K, respectively, while θ D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.« less

  16. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  17. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  18. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  19. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  20. Protons and Hydroxide Ions in Aqueous Systems.

    PubMed

    Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali

    2016-07-13

    Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.

  1. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  2. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  3. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  4. Extractive separation of uranium and zirconium sulfates by amines

    SciT

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  5. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  6. Hydroxide Solvation and Transport in Anion Exchange Membranes

    SciT

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less

  7. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1...

  8. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1...

  9. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1...

  10. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...) Specifications. Alumina (dried aluminum hydroxide) shall conform to the following specifications: Acidity or...

  11. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  12. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  13. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  14. Synthesis and nonstoichiometry of the zirconium trihalides

    SciT

    Daake, R.L.; Corbett, J.D.

    1978-05-01

    The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less

  15. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  16. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    NASA Astrophysics Data System (ADS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  17. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  18. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  19. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.

  20. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  1. Mineral resource of the month: zirconium and hafnium

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  2. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  3. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  4. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  5. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  6. Complications of sodium hydroxide chemical matrixectomy: nail dystrophy, allodynia, hyperalgesia.

    PubMed

    Bostancı, Seher; Koçyiğit, Pelin; Güngör, Hilayda Karakök; Parlak, Nehir

    2014-11-01

    Ingrown toenails are seen most commonly in young adults, and they can seriously affect daily life. Partial nail avulsion with chemical matrixectomy, generally by using either sodium hydroxide or phenol, is one of the most effective treatment methods. Known complications of phenol matrixectomy are unpredictable tissue damage, prolonged postoperative drainage, increased secondary infection rates, periostitis, and poor cosmetic results. To our knowledge, there have been no reports about the complications related to sodium hydroxide matrixectomy. Herein, we describe three patients who developed nail dystrophy, allodynia, and hyperalgesia after sodium hydroxide matrixectomy.

  7. Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments

    PubMed Central

    Athanassiadis, Basil

    2017-01-01

    Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG), greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility. PMID:29065542

  8. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  9. 68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) BUILDING, LOOKING AT CAUSTIC SODA MEASURING TANKS. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  10. Ammonia induced precipitation of cobalt hydroxide: observation of turbostratic disorder

    NASA Astrophysics Data System (ADS)

    Ramesh, T. N.; Rajamathi, Michael; Kamath, P. Vishnu

    2003-05-01

    Cobalt hydroxide freshly precipitated from aqueous solutions of Co salts using ammonia, is a layered phase having a 9.17 Å interlayer spacing. DIFFaX simulations of the PXRD pattern reveal that it is turbostratically disordered.

  11. Conversion coatings prepared or treated with calcium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  12. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and... in coloring externally applied cosmetics, including those intended for use in the area of the eye, in...

  13. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and... in coloring externally applied cosmetics, including those intended for use in the area of the eye, in...

  14. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and... in coloring externally applied cosmetics, including those intended for use in the area of the eye, in...

  15. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  16. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    PubMed

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  17. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  18. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  19. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  20. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  1. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    SciT

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  2. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    PubMed Central

    Xu, Jide; Tatum, David; Magda, Darren

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation. PMID:28575044

  3. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    PubMed

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  4. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89

    DOE PAGES

    Bhatt, Nikunj B.; Pandya, Darpan N.; Xu, Jide; ...

    2017-06-02

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. We report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. And while both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. The differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimizationmore » is necessary to enhance 89Zr chelation.« less

  5. Layered zinc hydroxide salts: delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs.

    PubMed

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-08-15

    Delamination of layered zinc hydroxide salts (LZH) into hydroxide layers provides nanobuilding blocs of a two-dimensional anisotropy. The methodology, extent of delamination, the size and stability of hydroxide lamellae are described in detail. The ability of lamellae to restack to form oriented hydroxide films depends on the solvent, original LZH salt, and conditions used for delamination. The most interesting results were obtained using LZH intercalated with dodecyl sulfate anions and LZH nitrate delaminated in butanol at 60 °C and in formamide at room temperature, respectively. The former method produces hydroxide lamellae of a lateral size of ca. 10-20 nm. The inner structure of the hydroxide layers is conserved and separated lamellae restack to the original layered structure of LZH dodecyl sulfate. The latter method yields lamellae with a size decreasing from 73.3 nm to 10 nm after a 2-week aging, while their thickness is nearly constant (2.6-3.8 nm). However, the use of formamide is complicated by the formation of Zn(II) formate. The major part of LZH intercalated with dodecyl sulfate anions is transformed during the delamination procedure to anisotropic ZnO nanoparticles, either needle-like particles prolonged in the [0 0 1] direction or disc-like particles flattened along the (0 0 1) plane. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  7. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  8. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    DTIC Science & Technology

    2016-05-17

    Zirconium-Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...PUBLISHED/PRESENTED. D 11a. PUBLICATION/JOURNAL (list intended publication/journal.) General Dentistry D 11b. PUBLISHED ABSTRACT (List intended...the most esthetic full veneer restorative material in dentistry for many years. In the mid-1900’s, dental materials researchers began marketing and

  9. Zirconium as a Structural Material for Naval Systems

    DTIC Science & Technology

    1985-03-29

    case with the technologically critical chemical elements chromium and cobalt, for example, from a military perspective. The case, therefore, for...By adding small amounts of tin, iron, nickel, and chromium , the impurities were effectively bound or coalesced within the metal and the corrosion...and nitrogen from the atmosphere, embrittling the weld. The techniques used for zirconium welding are gas tungsten arc welding ( GTAW ), tungsten inert

  10. Electrochemical Study of Corrosion Phenomena in Zirconium Alloys

    DTIC Science & Technology

    2005-06-01

    required reaction rates [1.1]. Based predominantly on this fact, zirconium alloys were chosen to sheath, or clad, the fuel. With the increasing demand...cathode or anode. As the oxidation and reduction reactions occur, a galvanic cell is developed. The electrons on the anode are released from the metallic...matrix as the ions are released into the aqueous solution in the initial half-cell reaction . The second half-cell reaction , taking place on the

  11. Synthesis of zirconium oxynitride in air under DC electric fields

    SciT

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less

  12. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    PubMed

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  14. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.

    PubMed

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.

  15. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  16. Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Reid, M. A.; Yang, C. Y. (Inventor)

    1981-01-01

    Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell.

  17. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of aerosol cosmetic products containing zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and other organs of experimental animals. When used in aerosol form, some zirconium will reach the...

  18. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  19. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  20. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  1. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  2. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  3. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of aerosol cosmetic products containing... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.16 Use of aerosol cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient...

  4. Comparative evaluation of different forms of calcium hydroxide in apexification.

    PubMed

    Ghosh, Subhankar; Mazumdar, Dibyendu; Ray, Pradip Kumar; Bhattacharya, Bhaswar

    2014-01-01

    One out of every two children sustains a dental injury most often between 8 and 10 years of age. Majority of these teeth subsequently become non-vital and most often with immature apex. Management of these teeth is an enormous challenge for lack of apical stop. Calcium hydroxide in various formulations has maximum literature support in favor of successful apexification or induced apical closure. The aim of the following study is to determine the efficacy of calcium hydroxide in a different formulation to induce apexification. The present study was undertaken on 51 children of 8-10 years of age (both sexes) at Dr. R Ahmed Dental College and Hospital from April 2006 to March 2007. All children had one or two maxillary permanent central incisor (s), non-vital and apices open. In all the cases, apexification was attempted with either calcium hydroxide mixed with sterile distilled water, or calcium hydroxide plus iodoform in methyl cellulose base, or calcium hydroxide plus iodoform in polysilicone oil base. The success of apexification was determined on the basis of clinical and radiographic criteria. In the pre-operative asymptomatic cases (72.55%), failure occurred in only 5.45% cases and pre-operative symptomatic cases failure rate was as high as 35.71%. Success rate was 94.6% in cases with narrow open apices, whereas 64.28% in wide open apices. In cases with pre-existing apical radiolucencies, successful apexification occurred in 63.63% and success rate was 92.5% in the cases without pre-existing apical radiolucencies. Average time consumed for apexification was minimum with calcium hydroxide plus iodoform in polysilicone oil base. The overall success rate observed to be 86.27%, which is in close proximity to the findings of most of the previous studies across the globe.

  5. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  6. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  7. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Deformation Mechanism of Fatigue Behaviour in a N36 Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yingzhu

    2018-05-01

    Zirconium alloys are widely used as claddings in nuclear reactor. A N36 zirconium alloy has been deformed into a sheet with highly texture according to the result of electron back scatter diffraction test. Then this N36 zirconium alloy sheet has been cut into small beam samples with 12 x 3 x 3 mm3 in size. In this experiment, a three-point bending test was carried out to investigate the fatigue behaviour of N36 zirconium alloy. Cyclic loadings were applied on the top middle of the beam samples. The region of interest (ROI) is located at the middle bottom of the front face of the beam sample where slip band was observed in deformed beam sample due to strain concentration by using scanning electron microscopy. Twinning also plays an important role to accommodate the plastic deformation of N36 zirconium alloy in fatigue, which displays competition with slip.

  9. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  10. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  11. The chemistry of PET imaging with zirconium-89.

    PubMed

    Dilworth, Jonathan R; Pascu, Sofia I

    2018-04-23

    This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.

  12. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  13. Impedance spectroscopy of water soluble resin modified by zirconium sulphate

    NASA Astrophysics Data System (ADS)

    Joseph, Anandraj; Joshi, Girish M.

    2018-04-01

    We successfully modified water soluble resin polyvinyl alcohol (PVA) by loading zirconium sulphate (ZrSO4). We demonstrated the measurement of electrical properties by using impedance analyser across frequency range (10 Hz-1 MHz) and the temperature range of (30°C to 150°C). The impedance spectroscopy demonstrates decrease in bulk resistance as a function of temperature loading of zirconia 2.5 wt. %. Increase in AC (10-5 S/cm and DC conductivity (10- 2 S/m) observed due to ionic contribution of zirconia. However, the electrical properties of PVA/ZrSO4 composite useful to develop battery electrolyte applications.

  14. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  15. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... in coloring externally applied cosmetics, including those intended for use in the area of the eye, in...

  16. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... in coloring externally applied cosmetics, including those intended for use in the area of the eye, in...

  17. Engineering evaluation of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Perdue, D. G.; Gordon, L. H.

    1980-01-01

    An engineering evaluation of thermal energy storage prototypes was performed in order to assess the development status of latent heat storage media. The testing and the evaluation of a prototype sodium hydroxide module is described. This module stored off-peak electrical energy as heat for later conversion to domestic hot water needs.

  18. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum...

  19. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum...

  20. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum...

  1. LIGNOSULFONATE-MODIFIED CALCIUM HYDROXIDE FOR SULFUR DIOXIDE CONTROL

    EPA Science Inventory

    The article discusses the use of lignosulfonate-modified calcium hydroxide Ca(OH)2 for sulfur dioxide (SO2) control. The limestone injection multistage burner (LIMB) process is currently being developed at the U.S. EPA as a low cost retrofittable technology for controlling oxides...

  2. Layered gadolinium hydroxides for low-temperature magnetic cooling.

    PubMed

    Abellán, Gonzalo; Espallargas, Guillermo Mínguez; Lorusso, Giulia; Evangelisti, Marco; Coronado, Eugenio

    2015-09-28

    Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

  3. INFLUENCE OF IODOFORM ON ANTIMICROBIAL POTENTIAL OF CALCIUM HYDROXIDE

    PubMed Central

    Estrela, Carlos; Estrela, Cyntia Rodrigues de Araújo; Hollanda, Augusto César Braz; Decurcio, Daniel de Almeida; Pécora, Jesus Djalma

    2006-01-01

    The purpose of this research was to verify the influence of Iodoform on antimicrobial potential of calcium hydroxide. S. aureus, E. faecalis, P. aeruginosa, B. subtilis, C. albicans were the biological indicators. The substances tested were: calcium hydroxide + saline; calcium hydroxide + Iodoform + saline; Iodoform + saline. For the agar diffusion test, 18 Petri plates with 20 ml of BHI agar were inoculated with the microbial suspensions. Fifty-four cavities were made and filled with the substances tested. The diameters of microbial inhibition were then measured. In direct exposure test, 162 #50 sterile absorbent paper points were immersed in the experimental suspensions for 5 min, and covered with the pastes. At intervals of 24, 48 and 72 hours, the paper points were immersed in 10 ml of Letheen Broth, followed by incubation at 37°°C for 48h. Microbial growth was evaluated by turbidity of the culture medium. A 0.1 ml inoculum obtained from the Letheen Broth was transferred to 7 ml of BHI, and incubated at 37°°C for 48h. Bacterial growth was again evaluated by turbidity of the culture medium. The calcium hydroxide associated with the saline or the iodoform plus saline showed antimicrobial effectiveness in both experimental methods. The iodoform paste presented antimicrobial ineffectiveness for the agar diffusion test on all biological microorganisms and for the direct exposure test on B. subtilis and on the mixture. PMID:19089027

  4. Astronauts Newman, Walz and Bursch change out lithium hydroxide canister

    1993-09-20

    STS051-08-037 (12-22 Sept 1993) --- Three members of the astronaut class of 1990 change out a lithium hydroxide canister beneath Discovery's middeck. Left to right are astronauts James H. Newman, Carl E. Walz and Daniel W. Bursch, all mission specialists.

  5. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  6. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  7. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciT

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  8. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...

  9. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...

  12. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...

  13. Zirconium: The material of the future in modern implantology.

    PubMed

    Kubasiewicz-Ross, Paweł; Dominiak, Marzena; Gedrange, Tomasz; Botzenhart, Ute U

    2017-01-01

    The authors present the contemporary state of knowledge concerning alternative materials for dental implantology. First of all, factors influencing osseointegration are stated. The most important factors seem to be the type of implant surface. Among the numerous parameters describing them, the most important are: average roughness and porous density. Some studies proved that materials with comparable surface roughness provide similar osseointegration. In modern implantology titanium is the material still considered as a "gold standard". However, aesthetic features of titanium still bear several disadvantages, especially in the case of periodontium with a thin biotype in the anterior, aesthetic sensitive area of the jaw. If a titanium implant is used in such a case, the mucosa at the implant's neck may become grayish and, consequently limits the success of the overall treatment. That was the reason for seeking alternative materials to manufacture dental implants. Initiated by general medicine, mainly orthopedics, the search led to the discovery of zirconium dioxide used in dental implantology. A small number of complications, good chemical parameters, anticorrosion, mechanical strength, elasticity module close to the one of steel, and especially biocompatibility made zirconium a perfect material for this purpose, although this material presents several problems in achieving optimal roughness. In this overview one of the probable methods, a process of partial synterization, is presented.

  14. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  15. Wear Analysis in THA Utilizing Oxidized Zirconium and Crosslinked Polyethylene

    PubMed Central

    Garvin, Kevin L.; Mangla, Jimmi; Murdoch, Nathan; Martell, John M.

    2008-01-01

    Oxidized zirconium, a material with a ceramic surface on a metal substrate, and highly cross-linked polyethylene are two materials developed to reduce wear. We measured in vivo femoral head penetration in patients with these advanced bearings. We hypothesized the linear wear rates would be lower than those published for cobalt-chrome and standard polyethylene. We retrospectively reviewed a select series of 56 THAs in a relatively young, active patient population utilizing oxidized zirconium femoral heads and highly cross-linked polyethylene acetabular liners. Femoral head penetration was determined using the Martell computerized edge-detection method. All patients were available for 2-year clinical and radiographic followup. True linear wear was 4 μm/year (95% confidence intervals, ± 59 μm/year). The early wear rates in this cohort of relatively young, active patients were low and we believe justify the continued study of these alternative bearing surfaces. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18946711

  16. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-06-01

    The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.

  17. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciT

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  18. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    SciT

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  19. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Muta, Hiroaki; Nishikane, Ryoji; Ando, Yusuke; Matsunaga, Junji; Sakamoto, Kan; Harjo, Stefanus; Kawasaki, Takuro; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-03-01

    Precipitation of brittle zirconium hydrides deteriorate the fracture toughness of the fuel cladding tubes of light water reactor. Although the hydride embrittlement has been studied extensively, little is known about physical properties of the hydride due to the experimental difficulties. In the present study, to elucidate relationship between mechanical properties and microstructure, two δ-phase zirconium hydrides and one ε-phase zirconium hydride were carefully fabricated considering volume changes at the metal-to-hydride transformation. The δ-hydride that was fabricated from α-zirconium exhibits numerous inner cracks due to the large volume change. Analyses of the neutron diffraction pattern and electron backscatter diffraction (EBSD) data show that the sample displays significant stacking faults in the {111} plane and in the pseudo-layered microstructure. On the other hand, the δ-hydride sample fabricated from β-zirconium at a higher temperature displays equiaxed grains and no cracks. The strong crystal orientation dependence of mechanical properties were confirmed by indentation test and EBSD observation. The δ-hydride hydrogenated from α-zirconium displays a lower Young's modulus than that prepared from β-zirconium. The difference is attributed to stacking faults within the {111} plane, for which the Young's modulus exhibits the highest value in the perpendicular direction. The strong influence of the crystal orientation and dislocation density on the mechanical properties should be considered when evaluating hydride precipitates in nuclear fuel cladding.

  20. The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product

    NASA Astrophysics Data System (ADS)

    Hussein, Mohd Zobir bin; Ghotbi, Mohammad Yeganeh; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-02-01

    Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.

  1. Thermodynamic Analysis and Growth of Zirconium Carbide by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Sun; Hua, Hao Zheng; Xiang, Xiong

    Equilibrium calculations were used to optimize conditions for the chemical vapor deposition of zirconium carbide from zirconium halide + CxHy+H2+Ar system. The results show the CVD-ZrC phase diagram is divided into ZrC+C, ZrC and ZrC+Zr zones by C, Zr generating lines. For the same mole of ZrCl4 reactant, it needs higher concentration of CH4 to generate single ZrC phase than that of C3H6. Using these calculations as a guide, single-phase cubic zirconium carbide coatings were deposited onto graphite substrate.

  2. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex.

    PubMed

    Butler, Michael J; White, Andrew J P; Crimmin, Mark R

    2016-06-06

    Reaction of a zinc/zirconium heterobimetallic complex with 1,5-cyclooctadiene (1,5-COD) results in slow isomerization to 1,3-cyclooctadiene (1,3-COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5-COD to 1,3-COD, only in the case of the zinc species is the cyclooctyne adduct observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Isomerization of Cyclooctadiene to Cyclooctyne with a Zinc/Zirconium Heterobimetallic Complex

    PubMed Central

    Butler, Michael J.; White, Andrew J. P.

    2016-01-01

    Abstract Reaction of a zinc/zirconium heterobimetallic complex with 1,5‐cyclooctadiene (1,5‐COD) results in slow isomerization to 1,3‐cyclooctadiene (1,3‐COD), along with the formation of a new complex that includes a cyclooctyne ligand bridging two metal centers. While analogous magnesium/zirconium and aluminum/zirconium heterobimetallic complexes are competent for the catalytic isomerization of 1,5‐COD to 1,3‐COD, only in the case of the zinc species is the cyclooctyne adduct observed. PMID:27071992

  4. PHYSICAL PROPERTIES OF ZIRCONIUM NITRIDE IN THE HOMOGENEITY REGION (in Ukrainian)

    SciT

    Samsonov, G.V.; Verkhoglyadova, T.S.

    1962-01-01

    The x-ray method was used to determine the homogeneity region of zirconium nitride as 40 to 50 at.% (9.5 to 13.3% by weight) of nitrogen. It is also shown that part of the ionic bond in the zirconium nitride lattice increases with a decrease in the nitrogen content in this region, this increase being higher than in the homogeneity region of titunium nitride due to the smaller degree of unfilling of the electron d-shell of the zirconium atom in comparison with that of the titanium atom. (auth)

  5. Reactivity of zirconium basic sulfate in the reactions with carbonate, oxalate, and phosphate reagents

    SciT

    Nekhamkin, L.G.; Kondrashova, I.A.; Kerina, V.R.

    1987-08-20

    The reactivity of zirconium basic sulfate is determined by the possibility of replacement of oxo- and hydroxo-ligands and decreases with increasing temperature of its precipitation. The interaction of the less reactive zirconium basic sulfate with carbonate and oxalate reagents occurs at 25/sup 0/C without any change in basicity and that with phosphate reagents occurs with a decrease in it, up to the formation of a monophosphate with basicity about 20%. In the interaction of the more reactive zirconium basic sulfate, obtained without heating, oxo- and hydroxo groups can be entirely replaced by acido-ligands with the formation of unhydrolyzed compounds.

  6. Synthesis and characterization of α-cobalt hydroxide nanobelts

    NASA Astrophysics Data System (ADS)

    Tian, L.; Zhu, J. L.; Chen, L.; An, B.; Liu, Q. Q.; Huang, K. L.

    2011-08-01

    α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic-inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2-)0.22(Ac-)0.07(H2O)0.11 and single-crystalline.

  7. Evaluation of barium hydroxide treatment efficacy on a dolomitic marble.

    PubMed

    Toniolo, L; Colombo, C; Realini, M; Peraio, A; Positano, M

    2001-01-01

    The Arch of Peace, by Luigi Cagnola, is one of the most famous neoclassical monuments in Milan. It has been subjected to conservative intervention in 1998. In the present paper the efficacy of the consolidation by means of barium hydroxide has been evaluated. The stone material showed severe degradation phenomena as: erosion, pulverisation, exfoliation. The analytical data acquired through X-ray diffraction (XRD), infrared spectrophotometry (FTIR) and scanning electron microscopy (SEM-EDX), allowed to compare the conditions of stone before and after the treatment with barium hydroxide. The presence of barium has been put in evidence mainly on the surface as barium sulphate, whereas barium is only sporadically present within the thickness of the decayed material. The treatment was judged not satisfying and its inefficacy is, most probably, due to a not suitable cleaning procedure carried out before the consolidation.

  8. Microbial susceptibility to calcium hydroxide pastes and their vehicles.

    PubMed

    Gomes, Brenda Paula Figueiredo de Almeida; Ferraz, Caio Cezar Randi; Garrido, Fabio Devora; Rosalen, Pedro Luiz; Zaia, Alexandre Augusto; Teixeira, Fabricio Batista; de Souza-Filho, Francisco José

    2002-11-01

    The aim of this study was to investigate the susceptibility of some microorganisms commonly isolated from root canals to calcium hydroxide in combination with several vehicles by the agar diffusion method. Stainless-steel cylinders were placed on each inoculated agar medium. The test medications and their controls were placed inside the cylinders. The zones of growth inhibition were measured and recorded after the incubation period for each plate, and the results were analyzed statistically. Enterococcus faecalis was most resistant, whereas the anaerobic Porphyromonas endodontalis was more susceptible to all medications, followed by P. gingivalis and Prevotella intermedial intermedia. Ca(OH)2 + CMCP + glycerin showed significantly larger mean zones of inhibition when compared with the other medications. We conclude that anaerobic Gram-negative bacteria are more susceptible to calcium hydroxide pastes than facultative Gram-positive microorganisms.

  9. Hierarchical cobalt-based hydroxide microspheres for water oxidation.

    PubMed

    Zhang, Ye; Cui, Bai; Derr, Olivia; Yao, Zhibo; Qin, Zhaotong; Deng, Xiangyun; Li, Jianbao; Lin, Hong

    2014-03-21

    3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH)·0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.

  10. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  11. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  12. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  13. Calcification of MC3T3-E1 cells on titanium and zirconium.

    PubMed

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  14. About structural phase state of coating based on zirconium oxide formed by microplasma oxidation method

    NASA Astrophysics Data System (ADS)

    Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.

    2017-12-01

    The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.

  15. Successive potassium hydroxide testing for improved diagnosis of tinea pedis.

    PubMed

    Karaman, Bilge F; Topal, Suhan G; Aksungur, Varol L; Ünal, İlker; İlkit, Macit

    2017-08-01

    In this study, we investigated the role of successive potassium hydroxide (KOH) tests for the diagnosis of tinea pedis with different clinical presentations. The study included 135 patients with 200 lesions that were clinically suspicious for tinea pedis. Three samples of skin scrapings were taken from each lesion in the same session and were examined using a KOH test. This study offers an inexpensive, rapid, and useful technique for the daily practice of clinicians and mycologists managing patients with clinically suspected tinea pedis.

  16. Role of Water in Proton-Hydroxide Conductance Across Membranes

    DTIC Science & Technology

    1988-06-28

    a~a,:v %~ ’ diffusion , rather than hopping along water wires, and there should be little or no deuterium effect. References Bangham , A.D...CONTRACT TITLE: Role of water in proton-hydroxide conductance across model and biological membranes. START DATE: October 1, 1987 RESEARCH OBJECTIVE: To...hypothesis of Bangham and Mason (1980) who suggested that general anesthetics might introduce defects into bilayers of synaptic vesicle membranes which lead

  17. A chlorate candle/lithium hydroxide personal breathing apparatus

    NASA Technical Reports Server (NTRS)

    Martin, F. E.

    1972-01-01

    A portable coal mine rescue and survival equipment is reported that consists of a chlorate candle with a lithium hydroxide carbon-dioxide absorbent for oxygen generation, a breathing bag and tubing to conduct breathing to and from the man. A plastic hood incorporating a mouth piece for communication provides also eye protection and prevents inhalation through the nose. Manned testing of a prototype system demonstrated the feasibility of this closed circuit no-maintenance breathing apparatus that provides for good voice communication.

  18. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    1   1.1.2   Proton exchange membrane fuel cells ( PEMFCs ) ......................... 3   1.1.3   Alkaline fuel cells (AFCs...160   xi LIST OF FIGURES Figure 1.1:   Schematic diagram of a PEMFC ...according to the type of electrolyte they use. Nowadays, there are six major types of fuel cells: proton-exchange membrane fuel cells ( PEMFCs ), hydroxide

  19. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    SciT

    Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.

    2016-05-23

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less

  20. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Photo, which appeared on the July cover of `Physics Today', is of the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. In this particular shot, the ESL contains a solid metal sample of titanium-zirconium-nickel alloy. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  1. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  2. Defect kinetics and resistance to amorphization in zirconium carbide

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-02-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material.

  3. Methotrexate intercalated ZnAl-layered double hydroxide

    SciT

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram

    2011-09-15

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug moleculemore » in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.« less

  4. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    DTIC Science & Technology

    2016-05-12

    APPROV~, Col Drew W. Fallis Dean, Air Force Postgraduate Dental School r UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES AIR FORCE...POSTGRADUATE DENTAL SCHOOL 2450 Pepperrell Street Lackland AFB Texas, 78236-5345 http://www.usuhs.mil "The author hereby certifies that the use of any...Translucency Monolithic Zirconium-Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  5. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil

    2015-01-01

    Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.

  6. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse.

    PubMed

    Chang, Menglei; Li, Denian; Wang, Wen; Chen, Dongchu; Zhang, Yuyuan; Hu, Huawen; Ye, Xiufang

    2017-11-01

    Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH) 2 ) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH) 2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH) 2 -glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl 2 ) at room temperature, but that in Ca(OH) 2 -water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH) 2 pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mechanical resistance of zirconium implant abutments: A review of the literature

    PubMed Central

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  8. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  9. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    SciT

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  10. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed

  11. The hypocholesterolemic effect of an antacid containing aluminum hydroxide.

    PubMed

    Sperber, A D; Henkin, Y; Zuili, I; Bearman, J E; Shany, S

    1991-12-01

    To evaluate the efficacy, safety, and hypocholesterolemic effect of an aluminum hydroxide-containing antacid in hypercholesterolemic individuals. A prospective, randomized, double-masked, placebo-controlled phase of 2 months' duration, followed by an open-design treatment phase of 2 months' duration and a washout phase of 2 months' duration. Family practice clinics of two rural communities (kibbutzim) in Israel. Fifty-six men and women with hypercholesterolemia (type IIa or IIb). Fifty individuals completed the study. After 2 months of dietary modification (low-fat, low-cholesterol diet), the participants were randomized into two matched groups. Group 1 (28 participants) was treated for 2 months with a chewable antacid tablet containing simethicone, magnesium hydroxide, and 113 mg of aluminum hydroxide per tablet, at a dose of two tablets four times daily. Group 2 (22 participants) was given a similar number of placebo tablets for 2 months. During the following 2 months, both groups received the antacid at the above dose. Lipoprotein levels were evaluated at baseline and every 2 months thereafter for 6 months. Compared with pretreatment levels, Group 1 experienced a decrease in low-density lipoprotein cholesterol (LDL-C) of 9.8% after 2 months (p less than 0.001) and 18.5% after 4 months (p less than 0.001). Compared with Group 2, the decrease in LDL-C in Group 1 was 6.2% at the end of the 2-month double-masked, placebo phase. Although the high-density lipoprotein cholesterol (HDL-C) was also reduced in Group 1 at the end of 4 months of therapy (10.2%), the HDL-C/LDL-C ratio increased by 13% during the same interval (p less than 0.05). The treatment was well tolerated, with minimal side effects. An aluminum hydroxide-containing antacid reduces LDL-C in hypercholesterolemic individuals. Although HDL-C was also reduced to a lesser extent, the overall atherogenic index was improved. Further studies should be conducted to evaluate the long-term safety and efficacy of

  12. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    PubMed

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    SciT

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is

  14. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  15. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells... electrolysis of molten sodium hydroxide in sodium ”-alumina membrane electrolysis cells. However, there are some uncertainties about the lifetime of the...the properties of the membrane degrade upon long term contact with molten sodium hydroxide. Electrolysis cells were designed, but it proved

  16. Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1992-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  17. Advances in aluminum hydroxide-based adjuvant research and its mechanism.

    PubMed

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants.

  18. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    PubMed Central

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535

  19. Cu2+ ions as a paramagnetic probe to study the surface chemical modification process of layered double hydroxides and hydroxide salts with nitrate and carboxylate anions.

    PubMed

    Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; Wypych, Fernando

    2008-04-01

    A layered zinc hydroxide nitrate (Zn5(OH)8(NO3)2.2H2O) and a layered double hydroxide (Zn/Al-NO3) were synthesized by coprecipitation and doped with different amounts of Cu2+ (0.2, 1, and 10 mol%), as paramagnetic probe. Although the literature reports that the nitrate ion is free (with D3h symmetry) between the layers of these two structures, the FTIR spectra of two zinc hydroxide nitrate samples show the C2v symmetry for the nitrate ion, whereas the g ||/A || value in the EPR spectra of Cu2+ is high. This fact suggests bonding of some nitrate ions to the layers of the zinc hydroxide nitrate. The zinc hydroxide nitrate was used as matrix in the intercalation reaction with benzoate, o-chlorobenzoate, and o-iodobenzoate ions. FTIR spectra confirm the ionic exchange reaction and the EPR spectroscopy reveals bonding of the organic ions to the inorganic layers of the zinc hydroxide nitrate, while the layered double hydroxides show only exchange reactions.

  20. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  1. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    PubMed

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  3. Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans

    PubMed Central

    Jacques Rezende Delgado, Ronan; Helena Gasparoto, Thaís; Renata Sipert, Carla; Ramos Pinheiro, Claudia; Gomes de Moraes, Ivaldo; Brandão Garcia, Roberto; Antônio Hungaro Duarte, Marco; Monteiro Bramante, Clóvis; Aparecido Torres, Sérgio; Pompermaier Garlet, Gustavo; Paula Campanelli, Ana; Bernardineli, Norberti

    2013-01-01

    This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans. PMID:23538639

  4. Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides

    SciT

    Scalise, V.; Scholz, G., E-mail: gudrun.scholz@rz.hu-berlin.de; Kemnitz, E., E-mail: erhard.kemnitz@chemie.hu-berlin.de

    2016-11-15

    Different aluminum hydroxide fluorides with varying Al/F molar ratios from 1:1.5 up to 1:0.05 were successfully synthesized by mechanochemical reactions. The characterization of the products by XRD, {sup 27}Al and {sup 19}F MAS NMR, thermal analysis, nitrogen adsorption and zeta potential techniques allows a detailed understanding of the structure and surface properties of the products. Using γ-Al(OH){sub 3} and β-AlF{sub 3}·3H{sub 2}O as OH- and F-sources, respectively, strongly disordered products were obtained with an Al: F molar ratio higher than 1:0.25. The fluorination degree has affected the amount of 4- and 5-fold coordinated Al sites, not present in the reactants.more » An evolution of the sub-coordinated Al-species has been detected also as a consequence of annealing processes. Obviously, these species affect the phase transition to alumina, by decreasing the transition temperature of the formation of α-Al{sub 2}O{sub 3}. Synthesis conditions (milling time, fluorination degree) play a crucial role for the product composition. - Graphical abstract: The impact of the combined action of the milling and the different fluorine doping on the structure of new aluminum hydroxide fluorides was followed by {sup 27}Al and {sup 19}F NMR and by other complementary techniques. - Highlights: • Low F-doped Al-hydroxide fluorides can be successfully prepared by mechanosynthesis. • Both F-doping and mechanochemical synthesis introduce a high number of defects in the structure. • The fluorination degree affects the amount of 4- and 5-fold coordinated Al sites as well as the transition temperature to corundum.« less

  5. Sodium hydroxide anodization of Ti-Al-4V adherends

    NASA Technical Reports Server (NTRS)

    Filbey, Jennifer A.; Wightman, J. P.; Progar, D. J.

    1987-01-01

    The use of sodium hydroxide anodization (SHA) for Ti-6Al-4V adherends is examined. The SHA surface is evaluated using SEM, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The SHA procedures of Kennedy et al. (1983) were employed in this experiment. The photomicrographs of the SHA (sandblasted) and PSHA (sandblasted and pickled) oxide surface reveal that the two surfaces differ. The PSHA is patchy and similar to a chromic acid anodization surface and the porosity of the PSHA is more uniform than the SHA surface. The compositions of the surfaces are studied. It is noted that SHA is an effective pretreatment for Ti-6Al-4V adherends.

  6. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to

  7. Nanostructures based on alumina hydroxides inhibit tumor growth

    NASA Astrophysics Data System (ADS)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  8. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    PubMed

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  9. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent

    PubMed Central

    Abdolmohammad-Zadeh, Hossein; Tavarid, Keyvan; Talleb, Zeynab

    2012-01-01

    Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed. PMID:22619590

  10. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  11. Revisiting Zirconium: New Abundance Determinations with Improved Oscillator Strengths

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.; Jones, M.; Nichols, R.

    2006-12-01

    The element Zirconium is produced via neutron capture (n-capture). It resides in the mass range where there is uncertainty about the production mechanism at early time. The rapid n-capture process (r-process) was believed to be responsible for the production, but no study (Burris et al 2000, Gilroy et al 1988 and others) has been able to successfully use the r-process to reproduce the abundance signature for elements in this mass range for metal-poor halo stars. It has been suggested (Sneden and Cowan 2003) that there may be an undiscovered component to the r-process. New transition probabilities for Zr II have been reported by Malcheva et al (2006). We utilize these values to make new abundance determinations for Zr in the Sun and the metal-poor halo star BD +17 3248. This work is supported in part by the AAS Small Grant Program, the Arkansas Space Grant Consortium and the UCA Undergraduate Research Council.

  12. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  13. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  14. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  15. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  16. Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2007-12-01

    The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.

  17. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe 2O 4 (CFO) and CoFe 1.9Zr 0.1O 4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with themore » substitution of Zr suggests the preferential occupation of Zr 4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  18. Transport property correlations for the niobium-1% zirconium alloy

    NASA Astrophysics Data System (ADS)

    Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.

    1990-10-01

    Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.

  19. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    PubMed

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  20. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhan, Guanghui; Liu, Jingquan; Yang, Bin; Xu, Bin; Feng, Jie; Chen, Xiang; Yang, Chunsheng

    2015-10-01

    Zirconium oxynitrides thin film thermometers were demonstrated to be useful temperature sensors. However, the basic conduction mechanism of zirconium oxynitrides films has been a long-standing issue, which hinders the prediction and optimization of their ultimate performance. In this letter, zirconium oxynitrides films were grown on sapphire substrates by magnetron sputtering and their electric transport mechanism has been systemically investigated. It was found that in high temperatures region (>150 K) the electrical conductivity was dominated by thermal activation for all samples. In the low temperatures range, while Mott variable hopping conduction (VRH) was dominated the transport for films with relatively low resistance, a crossover from Mott VRH conduction to Efros-Shklovskii (ES) VRH was observed for films with relatively high resistance. This low temperature crossover from Mott to ES VRH indicates the presence of a Coulomb gap (~7 meV). These results demonstrate the competing and tunable conduction mechanism in zirconium oxynitrides thin films, which would be helpful for optimizing the performance of zirconium oxynitrides thermometer.

  1. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  2. Lithium hydroxide, LiOH, at elevated densities

    SciT

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2014-07-14

    We discuss the high-pressure phases of crystalline lithium hydroxide, LiOH. Using first-principles calculations, and assisted by evolutionary structure searches, we reproduce the experimentally known phase transition under pressure, but we suggest that the high-pressure phase LiOH-III be assigned to a new hydrogen-bonded tetragonal structure type that is unique amongst alkali hydroxides. LiOH is at the intersection of both ionic and hydrogen bonding, and we examine the various ensuing structural features and their energetic driving mechanisms. At P = 17 GPa, we predict another phase transition to a new phase, Pbcm-LiOH-IV, which we find to be stable over a wide pressuremore » range. Eventually, at extremely high pressures of 1100 GPa, the ground state of LiOH is predicted to become a polymeric structure with an unusual graphitic oxygen-hydrogen net. However, because of its ionic character, the anticipated metallization of LiOH is much delayed; in fact, its electronic band gap increases monotonically into the TPa pressure range.« less

  3. Experimental and Theoretical Studies of Volatile Metal Hydroxides

    NASA Technical Reports Server (NTRS)

    Myers, Dwight L.; Jacobson, Nathan S.

    2015-01-01

    Modern superalloys used in the construction of turbomachinery contain a wide range of metals in trace quantities. In addition, metal oxides and silicon dioxide are used to form Thermal Barrier Coatings (TBC) to protect the underlying metal in turbine blades. Formation of volatile hydroxides at elevated temperatures is an important mechanism for corrosion of metal alloys or oxides in combustion environments (N. Jacobson, D. Myers, E. Opila, and E. Copland, J. Phys. Chem. Solids 66, 471-478, 2005). Thermodynamic data is essential to proper design of components of modern gas turbines. It is necessary to first establish the identity of volatile hydroxides formed from the reaction of a given system with high temperature water vapor, and then to determine the equilibrium pressures of the species under operating conditions. Theoretical calculations of reaction energies are an important check of experimental results. This presentation reports results for several important systems: Si-O-H, Cr-O-H, Al-O-H, Ti-O-H, and ongoing studies of Ta-O-H.

  4. Biodiesel synthesis using calcined layered double hydroxide catalysts

    SciT

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less

  5. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng

    2018-07-01

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  6. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.

    PubMed

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng

    2018-07-27

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  7. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    SciT

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less

  8. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    NASA Astrophysics Data System (ADS)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  9. BIOGEOCHEMICAL PROCESSES CONTROLLING ARSENIC SPECIATION AND BIOTRANSFORMATION IN GRANULAR FERRIC HYDROXIDE COATED SAND

    EPA Science Inventory

    Arsenic mobilization from solid phase Fe (III) hydroxides is an issue of concern, as water-borne arsenic can migrate into pristine environments, endangering aquatic and human life. In general, metal oxide (hydroxides) exerts a dominating effect on the fate and transport of arseni...

  10. The effect of calcium hydroxide on the antibiotic component of Odontopaste and Ledermix paste.

    PubMed

    Athanassiadis, M; Jacobsen, N; Nassery, K; Parashos, P

    2013-06-01

    To investigate the chemical interaction of calcium hydroxide with the antibiotics demeclocycline calcium in Ledermix Paste and clindamycin hydrochloride in Odontopaste. Validated methods were developed to analyse the interaction of calcium hydroxide in two forms, Pulpdent and calcium hydroxide powder, with the two antibiotics. High-performance liquid chromatography (HPLC) was used to analyse the mixed samples of the pastes and calcium hydroxide. The concentration of demeclocycline calcium over 0-, 1-, 18-, 24-, 72-h and 7-day time-points was determined. The concentration of clindamycin hydrochloride over 1-, 6-, 24-, 72-h and 7-day time-points was determined. All tests with HPLC involved testing of the standard in duplicate alongside the samples. Linearity, precision and specificity of the testing procedures and apparatus were validated. Descriptive statistics are provided. The antibiotics in both Odontopaste and Ledermix Paste were affected by the addition of calcium hydroxide. When mixed with calcium hydroxide powder, Odontopaste had a 2% loss of clindamycin hydrochloride over 7 days, but when mixed with Pulpdent, there was a 36% loss over 7 days. Ledermix Paste showed an 80% loss of demeclocycline calcium over 7 days when mixed with calcium hydroxide powder and a 19% loss when mixed with Pulpdent over the 7-day period. The addition of calcium hydroxide to Odontopaste or Ledermix Paste results in reductions of the respective antibiotic over a 7-day time period. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.

  11. Comparison of phenol and sodium hydroxide chemical matricectomies for the treatment of ingrowing toenails.

    PubMed

    Bostanci, Seher; Kocyigit, Pelin; Gürgey, Erbak

    2007-06-01

    Chemical matricectomy is performed mainly by two agents: phenol and sodium hydroxide. Both agents have excellent cure rates, but there are no data about the comparison of postoperative healing periods. This study was designed to compare the postoperative morbidity rates of sodium hydroxide and phenol matricectomies. Forty-six patients with 154 ingrowing nail sides were treated with either sodium hydroxide or phenol matricectomy. In the postoperative period, the patients were evaluated for the duration and severity of pain, drainage, and peripheral tissue destruction; complete healing periods; and overall success rates. The incidence of pain was higher in the sodium hydroxide group on the first visit, on the second day, but all patients became pain-free after that. The incidence and duration of drainage and peripheral tissue destruction was significantly higher in the phenol group. The mean period for complete recovery was 10.8 days in the sodium hydroxide group, whereas it was 18.02 days in the phenol group. The overall success rates in the sodium hydroxide and phenol groups were found to be 95.1 and 95.8%, respectively. Both sodium hydroxide and phenol are effective agents giving high success rates, but sodium hydroxide causes less postoperative morbidity and provides faster recovery.

  12. An unsupported metal hydroxide for the design of molecular μ-oxo bridged heterobimetallic complexes.

    PubMed

    Falzone, A J; Nguyen, J; Weare, W W; Sommer, R D; Boyle, P D

    2014-02-28

    A terminal and unsupported chromium(III) hydroxide is reported. The terminal hydroxide is used to synthesize the first example of a heterobimetallic Ti-O-Cr compound containing an unsupported μ-oxo bridge. The heterobimetallic complex exhibits a new absorbance at 288 nm (4.32 eV), which is assigned to a metal-to-metal charge transfer (MMCT) transition.

  13. 75 FR 28608 - Calcium Hydroxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0411; FRL-8826-7] Calcium Hydroxide; Receipt of... Department of Agriculture to use the pesticide calcium hydroxide (CAS No. 1305-62-0) to treat up to 1,000...: [email protected] . SUPPLEMENTARY INFORMATION: I. General Information A. Does this Action Apply to Me...

  14. Effect of ferric hydroxide suspension on blood chemstry in the common shiner, Notropus cornutus

    SciT

    Brenner, F.J.; Corbett, S.; Shertzer, R.

    1976-05-01

    Common shiners, Notropus cornutus, were exposed to 3 ppM ferric hydroxide for periods from two to eight weeks. Ferric hydroxide resulted in initial changes in serum protein, glucose, Na and K ions, but these changes did not adversely affect the internal dynamics of the fish.

  15. Apical closure of mature molar roots with the use of calcium hydroxide.

    PubMed

    Rotstein, I; Friedman, S; Katz, J

    1990-11-01

    Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.

  16. Structural studies of degradation process of zirconium dioxide tetragonal phase induced by grinding with dental bur

    NASA Astrophysics Data System (ADS)

    Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.

    2017-11-01

    Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.

  17. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  18. Determination of fluoride in water - A modified zirconium-alizarin method

    Lamar, W.L.

    1945-01-01

    A convenient, rapid colorimetric procedure using the zirconium-alizarin indicator acidified with sulfuric acid for the determination of fluoride in water is described. Since this acid indicator is stable indefinitely, it is more useful than other zirconium-alizarin reagents previously reported. The use of sulfuric acid alone in acidifying the zirconium-alizarin reagent makes possible the maximum suppression of the interference of sulfate. Control of the pH of the samples eliminates errors due to the alkalinity of the samples. The fluoride content of waters containing less than 500 parts per million of sulfate and less than 1000 p.p.m. of chloride may be determined within a limit of 0.1 p.p.m. when a 100-ml. sample is used.

  19. Corrosion Behavior of Zirconium Treated Mild Steel with and Without Organic Coating: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Ghanbari, Alireza; Attar, Mohammadreza Mohammadzade

    2014-10-01

    In this study, the anti-corrosion performance of phosphated and zirconium treated mild steel (ZTMS) with and without organic coating was evaluated using AC and DC electrochemical techniques. The topography and morphology of the zirconium treated samples were studied using atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) respectively. The results revealed that the anti-corrosion performance of the phosphate layer was superior to the zirconium conversion layer without an organic coating due to very low thickness and porous nature of the ZTMS. Additionally, the corrosion behavior of the organic coated substrates was substantially different. It was found that the corrosion protection performance of the phosphate steel and ZTMS with an organic coating is in the same order.

  20. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  1. Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2013-08-01

    In this study, we carried out sodium hydroxide and sonication pretreatments of rapeseed straw (Brassica napus) to obtain monosugar suitable for production of biofuels. To optimize the pretreatment conditions, we applied a statistical response-surface methodology. The optimal pretreatment conditions using sodium hydroxide under sonication irradiation were determined to be 75.0 °C, 7.0 % sodium hydroxide, and 6.8 h. For these conditions, we predicted 97.3 % enzymatic digestibility. In repeated experiments to validate the predicted value, 98.9 ± 0.3 % enzymatic digestibility was obtained, which was well within the range of the predicted model. Moreover, sonication irradiation was found to have a good effect on pretreatment in the lower temperature range and at all concentrations of sodium hydroxide. According to scanning electron microscopy images, the surface area and pore size of the pretreated rapeseed straw were modified by the sodium hydroxide pretreatment under sonication irradiation.

  2. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    PubMed Central

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  3. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Zirconium and hafnium in the southeastern Atlantic States

    Mertie, J.B.

    1958-01-01

    The principal source of zirconium and hafnium is zircon, though a minor source is baddeleyite, mined only in Brazil. Zircon is an accessory mineral in igneous, metamorphic, and sedimentary rocks, but rarely occurs in hardrock in minable quantities. The principal sources of zircon are therefore alluvial deposits, which are mined in many countries of five continents. The principal commercial deposits in the United States are in Florida, though others exist elsewhere in the southeastern Coastal Plain. The evidence indicates that conditions for the accumulation of workable deposits of heavy minerals were more favorable during the interglacial stages of the Pleistocene epoch than during Recent time. Therefore detrital ores of large volume and high tenor are more likely to be found in the terrace deposits than along the present beaches. Other concentrations of heavy minerals, however, are possible at favored sites close to the Fall Line where the Tuscaloosa formation rests upon the crystalline rocks of the Piedmont province. A score of heavy and semiheavy minerals occur in the detrital deposits of Florida, but the principal salable minerals are ilmenite, leucoxene, rutile, and zircon, though monazite and staurolite are saved at some mining plants. Commercial deposits of heavy minerals are generally required to have a tenor of 4 percent, though ores with a lower tenor can be mined at a profit if the content of monazite is notably high. The percentages of zircon in the concentrates ranges from 10 to 16 percent, and in eastern Florida from 13 to 15 percent. Thus the tenor in zircon of the ore-bearing sands ranges from 0.4 to 0.6 percent. The content of hafnium in zircon is immaterial for many uses, but for some purposes very high or very low tenors in hafnium are required. Alluvial zircon cannot be separated into such varieties, which, if needed, must be obtained from sources in bedrock. It thus becomes necessary to determine the Hf : Zr ratios in zircon from many kinds of

  5. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  6. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  7. The role of hydrogen in zirconium alloy corrosion

    NASA Astrophysics Data System (ADS)

    Ensor, B.; Lucente, A. M.; Frederick, M. J.; Sutliff, J.; Motta, A. T.

    2017-12-01

    Hydrogen enters zirconium metal as a result of the corrosion process and forms hydrides when present in quantities above the solubility limit at a given temperature. Zircaloy-4 coupons of different thicknesses (0.4 mm-2.3 mm) but identical chemistry and processing were corroded in autoclave at 360 °C for various times up to 2800 days. Coupons were periodically removed and weighed to determine weight gain, which allows follow of the corrosion kinetics. Coupon thickness differences resulted in different volumetric concentrations of hydrogen, as quantified using hot vacuum extraction. The thinnest coupons, having the highest concentration of hydrogen, demonstrated acceleration in their corrosion kinetics and shorter transition times when compared to thicker coupons. Furthermore, it was seen that the post-transition corrosion rate was increased with increasing hydrogen concentration. Corrosion rates increased only after the terminal solid solubility (TSS) was exceeded for hydrogen in Zircaloy-4 at 360 °C. Therefore, it is hypothesized that the corrosion acceleration is caused by the formation of hydrides. Scanning electron microscope (SEM) examinations of fractured oxide layers demonstrate the oxide morphology changed with hydrogen content, with more equiaxed oxide grains in the high hydrogen samples than in those with lower hydrogen content. Additionally, locations of advanced oxide growth were correlated with locations of hydrides in the metal. A hypothesis is proposed to explain the accelerated corrosion due to the presence of the hydrides, namely that the metal, locally, is less able to accommodate oxide growth stresses and this leads to earlier loss of oxide protectiveness in the form of more frequent oxide kinetic transitions.

  8. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    PubMed Central

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  9. Improved Yttrium and Zirconium Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Violante, Renata; Biemont, E.; Cowan, J. J.; Sneden, C.

    2012-01-01

    Abstract We present new abundances of the lighter n-capture elements, Yttrium (Z=39) and Zirconium (Z=40) in the very metal poor, r-process rich stars BD+17 3248 and HD 221170. Very accurate abundances were obtained by use of the new transition probabilities for Y II published by Biémont et al. 2011, and Zr II by Malcheva et al. 2006, and by expanding the number of transitions employed for each element. For example, in BD+17 3248, we find log ɛπσιλον=-0.03 +/- 0.03 (σιγμα=0.15, from 23 lines) for Y II. As for Zr II, log ɛπσιλον = 0.65 +/- 0.03 (σɛγμα = 0.1, from 13 lines). The resulting abundance ratio is log ɛπσιλον [Y/Zr] = -0.68 +/- 0.05. The results for HD 221170 are in accord with those of BD+17 3248. The quantity of lines used to form the abundance means has increased significantly since the original studies of these stars, resulting in more trustworthy abundances. These observed abundance ratios are in agreement with an r-process-only value predicted from stellar models, but is under-abundant compared to an empirical model derived from direct analyses of meteoritic material. This ambiguity should stimulate further nucleosynthetic analysis to explain this abundance ratio. We would like to extend our gratitude to NSF grant AST-0908978 and the University of Texas Astronomy Department Rex G. Baker, Jr. Endowment for their financial support in this project.

  10. Rubidium and Zirconium Production in Massive AGB Stars

    SciT

    Raai, M. A. van; Lugaro, M.; Karakas, A. I.

    2008-04-06

    A recent survey of a large sample of massive Galactic asymptotic giant branch (AGB) stars shows that significant overabundances of rubidium (up to 100 times solar), but merely solar zirconium, are present in these stars. These observations can set constraints on our theoretical notion of the slow neutron capture process (the s process) in AGB stars, as well as on the rates of the neutron capture reactions involved in the production of Rb and Zr. We use the Monash nucleosynthesis code with a recently extended network to try to reproduce these observations. We present results for AGB stars of massesmore » 5, 6, and 6.5 M{center_dot} and solar metallicity. We also show results for different available choices of the neutron capture rates, as well as for the possible inclusion of a partial mixing zone (PMZ), leading to the activation of the {sup 13}C neutron source. We find increasing Rb overabundances with increasing stellar mass, as observed, but we are far from matching the highest observed Rb enhancements. Inclusion of a PMZ increases the Rb abundance, but also produces an overabundance of Zr, contrary to what is observed. Only if the third dredge up efficiency remains as high as before the onset of the superwind phase during the final few pulses of a massive AGB star, can we match the highest [Rb/Fe] ratios observed by Garcia-Hernandez et al. [l]. A better understanding of the third dredge up efficiency with decreasing envelope mass for massive AGB stars is essential for further investigation of this issue.« less

  11. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  12. The visible spectrum of zirconium dioxide, ZrO2

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Gupta, Varun; Rice, Corey A.; Maier, John P.; Lin, Sheng H.; Lin, Chih-Kai

    2011-09-01

    The electronic spectrum of a cold molecular beam of zirconium dioxide, ZrO2, has been investigated using laser induced fluorescence (LIF) in the region from 17 000 cm-1 to 18 800 cm-1 and by mass-resolved resonance enhanced multi-photon ionization (REMPI) spectroscopy from 17 000 cm-1-21 000 cm-1. The LIF and REMPI spectra are assigned to progressions in the tilde A{^1}B_2(ν1, ν2, ν3) ← tilde X{^1}A_1(0, 0, 0) transitions. Dispersed fluorescence from 13 bands was recorded and analyzed to produce harmonic vibrational parameters for the tilde X{^1}A_1 state of ω1 = 898(1) cm-1, ω2 = 287(2) cm-1, and ω3 = 808(3) cm-1. The observed transition frequencies of 45 bands in the LIF and REMPI spectra produce origin and harmonic vibrational parameters for the tilde A{^1}B_2 state of Te = 16 307(8) cm-1, ω1 = 819(3) cm-1, ω2 = 149(3) cm-1, and ω3 = 518(4) cm-1. The spectra were modeled using a normal coordinate analysis and Franck-Condon factor predictions. The structures, harmonic vibrational frequencies, and the potential energies as a function of bending angle for the tilde A{^1}B_2 and tilde X{^1}A_1 states are predicted using time-dependent density functional theory, complete active space self-consistent field, and related first-principle calculations. A comparison with isovalent TiO2 is made.

  13. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  14. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  15. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  16. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  17. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  18. Hydroxide as general base in the saponification of ethyl acetate.

    PubMed

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  19. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    NASA Astrophysics Data System (ADS)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  20. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles

    PubMed Central

    Yan, Mina; Yang, Chanzhen; Huang, Binyao; Huang, Zeqian; Huang, Liangfeng; Zhang, Xuefei; Zhao, Chunshun

    2017-01-01

    Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study, the effects of inorganic nanoparticle aggregation on their systemic toxicity were examined. Remarkably, aggregation was observed after the mixing of naked LDH nanoparticles with saline or erythrocytes. Significant accumulation of the naked LDH nanoparticles in the lungs of mice was detected 1 h after intravenous administration, and the survival rate of mice was 0% after 6 repeated injections. Furthermore, flocculent precipitates in the alveoli and congestion in the lung interstitium were observed in the dead mice. However, lipid membrane-coated LDH nanoparticles would not form aggregates and could be injected intravenously >6 times without causing death. These findings suggested that repeated injections of LDH were lethal even at low dose (30 mg/kg), and lipid membrane coating can be considered as an approach for reducing this risk. PMID:29042768

  1. Extended development of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.; Cohen, B. M.

    1980-01-01

    The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.

  2. Mechanochemical approach for synthesis of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  3. Water sorption and solubility of different calcium hydroxide cements.

    PubMed

    Francisconi, Luciana Fávaro; de Freitas, Anderson Pinheiro; Scaffa, Polliana Mendes Candia; Mondelli, Rafael Francisco Lia; Francisconi, Paulo Afonso Silveira

    2009-01-01

    Calcium hydroxide cements have been largely used in deep cavities due to their abilities to stimulate dentin formation. However, their resistance can be relatively low and their solubility relatively high, in many instances. This study evaluated water sorption and solubility of different calcium hydroxide cements, in order to show alterations that may reduce their effectiveness. Five discs (20 mm in diameter and 1.5 mm thick) of three different materials (Biocal, Dycal and Hidro C) were prepared with the aid of a ring-shaped metallic matrix. After being stored at 37 degrees C for 24 h, the discs were weighed on a precision weight scale, dehydrated and weighed again. Immediately after weighing, discs were stored for a week in 50 mL of distilled water at 37 degrees C and, then, weighed again, dehydrated and submitted to a new weighing. The loss of soluble material and its water sorption was obtained from the difference between the initial and the final dry mass of each disc, after 1 week of immersion in water. Data were analyzed for significant differences by two-way ANOVA and Tukey's test (p<0.05). Mean water sorption values (g) +/- standard deviation and percentage (%), for each evaluated cement, were: Biocal (0.006 +/- 0.001 / 2.15); Dycal (0.016 +/- 0.004 / 5.49); and Hidro C (0.025 +/- 0.003 / 8.27). Mean solubility values (g) +/- standard deviation and percentage (%), for each evaluated cement, were: Biocal (0.002 +/- 0.001 / 0.72); Dycal (0.013 +/- 0.004 / 4.21); and Hidro C (0.023 +/- 0.004 / 7.65). Biocal absorbed less water and was less soluble than the other evaluated cements; Hidro C exhibited the highest water sorption and solubility values; and there were significant differences among all evaluated experimental groups.

  4. Course and outcome of accidental sodium hydroxide ocular injury.

    PubMed

    Sharma, Namrata; Singh, Digvijay; Sobti, Amit; Agarwal, Prakashchand; Velpandian, Thirumurthy; Titiyal, Jeewan S; Ghose, Supriyo

    2012-10-01

    To evaluate the course and outcome of patients with accidental ocular alkali burns. Prospective, interventional case series. Study of a cohort of 16 patients (31 eyes) who sustained concomitant accidental sodium hydroxide ocular burns and received appropriate treatment at a tertiary care eye hospital in India. The patients were followed up for 1 year, and parameters including best-corrected visual acuity, epithelial defect area, conjunctival and limbal involvement, and injury-related complications were evaluated. Severe sodium hydroxide exposure of a mean duration of 12 ± 2.5 minutes and delay in specialist eye care caused moderate to severe injury (grade II, 19% [n = 6]; grade III, 19% [n = 6]; grade IV, 10% [n = 3]; and grade VI, 52% [n = 16]). Median best-corrected visual acuity at presentation was 1.0 logarithm of the minimal angle of resolution (logMAR) units (range, 0.3 to 1.9 logMAR units), and at 1 year, it was 1.0 logMAR units (range, 0 to 1.9 logMAR units; P = .121). The median initial epithelial defect was 100 mm(2) (range, 18 to 121 mm(2)), which healed in all eyes by 3.5 months. Initial median limbal involvement was 12 clock hours (range, 3 to 12 clock hours), resulting in a residual limbal stem cell deficiency of 6 clock hours (range, 0 to 12 clock hours) at 1 year. Most common complications were glaucoma and cataract. Corneal ulcers developed in 2 eyes, and keratolimbal graft was performed in 1 patient. Grade VI injuries had significantly worse outcome than the lower-grade injuries. The course and outcome of ocular alkali burns depends on effective first aid (including a thorough eyewash), age, initial grade of injury, response to treatment, prevention of secondary infection, and control of glaucoma. Despite appropriate treatment, these eyes responded poorly and carried a guarded visual prognosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    PubMed

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  6. The effect of calcium hydroxide on the steroid component of Ledermix and Odontopaste.

    PubMed

    Athanassiadis, M; Jacobsen, N; Parashos, P

    2011-12-01

    To investigate the chemical interaction of calcium hydroxide with the corticosteroid triamcinolone acetonide in Ledermix Paste and in Odontopaste, a new steroid/antibiotic paste. Validated methods were developed to analyse the interaction of calcium hydroxide in two forms, Pulpdent Paste and calcium hydroxide powder, with triamcinolone acetonide within Odontopaste and Ledermix Paste. High-performance liquid chromatography (HPLC) was used to analyse the mixed samples of the pastes and calcium hydroxide. The concentration of triamcinolone acetonide within the pastes was determined over 0, 2, 6, 24 and 72-h time-points. All tests with the HPLC involved the testing of the standard with triplicate injections alongside the samples. All samples were tested in duplicate with each injected twice; therefore, four tests were performed for each investigation. Linearity, precision and specificity of the testing procedures and apparatus were validated. Descriptive statistics are provided. In both pastes, there was a marked rapid destruction of the triamcinolone acetonide steroid upon mixing with calcium hydroxide. Odontopaste suffered a lower rate of destruction of the triamcinolone acetonide component than Ledermix Paste, but both pastes showed very similar degrees of steroid destruction after 72 h. When using calcium hydroxide powder with Ledermix Paste, the triamcinolone was destroyed entirely and immediately. The addition of calcium hydroxide to Odontopaste or Ledermix Paste results in the rapid destruction of the steroid. © 2011 International Endodontic Journal.

  7. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  9. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules.

    PubMed

    Sheikhi, A; van de Ven, T G M

    2017-08-11

    A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.

  10. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  11. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    NASA Technical Reports Server (NTRS)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  12. Precision of a CAD/CAM technique for the production of zirconium dioxide copings.

    PubMed

    Coli, Pierluigi; Karlsson, Stig

    2004-01-01

    The precision of a computer-aided design/manufacturing (CAD/CAM) system to manufacture zirconium dioxide copings with a predetermined internal space was investigated. Two master models were produced in acrylic resin. One was directly scanned by the Decim Reader. The Decim Producer then manufactured 10 copings from prefabricated zirconium dioxide blocks. Five copings were prepared, aiming for an internal space to the master of 45 microm. The other five copings were prepared for an internal space of 90 microm. The second test model was used to try in the copings produced. The obtained internal space of the ceramic copings was evaluated by separate measurements of the master models and inner surfaces of the copings. The master models were measured at predetermined points with an optical instrument. The zirconium dioxide copings were measured with a contact instrument at the corresponding sites measured in the masters. The first group of copings had a mean internal space to the scanned master of 41 microm and of 53 microm to the try-in master. In general, the internal space along the axial walls of the masters was smaller than that along the occlusal walls. The second group had a mean internal space of 82 microm to the scanned master and of 90 microm to the try-in master. The aimed-for internal space of the copings was achieved by the manufacturer. The CAD/CAM technique tested provided high precision in the manufacture of zirconium dioxide copings.

  13. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    DOEpatents

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  14. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    PubMed

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  15. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    PubMed

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Five year survival analysis of an oxidised zirconium total knee arthroplasty.

    PubMed

    Holland, Philip; Santini, Alasdair J A; Davidson, John S; Pope, Jill A

    2013-12-01

    Zirconium total knee arthroplasties theoretically have a low incidence of failure as they are low friction, hard wearing and hypoallergenic. We report the five year survival of 213 Profix zirconium total knee arthroplasties with a conforming all polyethylene tibial component. Data was collected prospectively and multiple strict end points were used. SF12 and WOMAC scores were recorded pre-operatively, at three months, at twelve months, at 3 years and at 5 years. Eight patients died and six were "lost to follow-up". The remaining 199 knees were followed up for five years. The mean WOMAC score improved from 56 to 35 and the mean SF12 physical component score improved from 28 to 34. The five year survival for failure due to implant related reasons was 99.5% (95% CI 97.4-100). This was due to one tibial component becoming loose aseptically in year zero. Our results demonstrate that the Profix zirconium total knee arthroplasty has a low medium term failure rate comparable to the best implants. Further research is needed to establish if the beneficial properties of zirconium improve long term implant survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    PubMed Central

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  18. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs... deep portions of the lungs of users. The lung is an organ, like skin, subject to the development of granulomas. Unlike the skin, the lung will not reveal the presence of granulomatous changes until they have...

  19. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  20. Detection of interstellar sodium hydroxide in self-absorption toward the galactic center

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Rhodes, P. J.

    1982-01-01

    A weak self-absorbed emission line, which is identified as the J = 4-3 transition of sodium hydroxide, has been detected in the direction of Sgr B2(OH). The correspondingly weak Sgr B2(QH) emission line U75406, previously reported as an unidentified spectral feature by other investigators, is consistent with the J = 3-2 transition of sodium hydroxide. This detection may represent the first evidence of a grain reaction formation mechanism for simple metal hydroxides. The detection of H62 Delta toward Orion A is also reported.

  1. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  2. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  3. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  4. WATER SORPTION AND SOLUBILITY OF DIFFERENT CALCIUM HYDROXIDE CEMENTS

    PubMed Central

    Francisconi, Luciana Fávaro; de Freitas, Anderson Pinheiro; Scaffa, Polliana Mendes Candia; Mondelli, Rafael Francisco Lia; Francisconi, Paulo Afonso Silveira

    2009-01-01

    Objectives: Calcium hydroxide cements have been largely used in deep cavities due to their abilities to stimulate dentin formation. However, their resistance can be relatively low and their solubility relatively high, in many instances. This study evaluated water sorption and solubility of different calcium hydroxide cements, in order to show alterations that may reduce their effectiveness. Material and methods: Five discs (20 mm in diameter and 1.5 mm thick) of three different materials (Biocal®, Dycal® and Hidro C®) were prepared with the aid of a ring-shaped metallic matrix. After being stored at 37°C for 24 h, the discs were weighed on a precision weight scale, dehydrated and weighed again. Immediately after weighing, discs were stored for a week in 50 mL of distilled water at 37°C and, then, weighed again, dehydrated and submitted to a new weighing. The loss of soluble material and its water sorption was obtained from the difference between the initial and the final dry mass of each disc, after 1 week of immersion in water. Data were analyzed for significant differences by two-way ANOVA and Tukey's test (p<0.05). Results: Mean water sorption values (g) ± standard deviation and percentage (%), for each evaluated cement, were: Biocal® (0.006 ± 0.001 / 2.15); Dycal® (0.016 ± 0.004 / 5.49); and Hidro C® (0.025 ± 0.003 / 8.27). Mean solubility values (g) ± standard deviation and percentage (%), for each evaluated cement, were: Biocal® (0.002 ± 0.001 / 0.72); Dycal® (0.013 ± 0.004 / 4.21); and Hidro C® (0.023 ± 0.004 / 7.65). Conclusions: Biocal® absorbed less water and was less soluble than the other evaluated cements; Hidro C® exhibited the highest water sorption and solubility values; and there were significant differences among all evaluated experimental groups. PMID:19936520

  5. Influence of calcium hydroxide debris on the quality of endodontic apical seal.

    PubMed

    Contardo, L; De Luca, M; Bevilacqua, L; Breschi, L; Di Lenarda, R

    2007-10-01

    The aim of the study was to study investigate the influence of calcium hydroxide used as intermediate medication on the quality of apical seal of a silicon based and an experimental resin based endodontic sealer. Eighty endodontic canals were prepared and divided in four groups. Calcium hydroxide was applied in groups 2 and 4. After 7 days, medication was removed and canals were filled with gutta-percha and RoekoSeal Automix (groups 1 and 2) or Scotchbond MP+C&B cement B (groups 3 and 4). Specimens were placed into India ink, cleared and analyzed under a stereomicroscope to investigate apical leakage. Specimens that received calcium hydroxide medication showed leakage means higher than the corresponding untreated ones (i.e. group 1< group 2 and group 3< group 4; P<0.001). Calcium hydroxide interferes with the sealing ability of silicon based sealer, since it frequently remains entrapped within the endodontic space even after careful removal procedures.

  6. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    NASA Astrophysics Data System (ADS)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  7. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  8. The mechanism of thermal-gradient mass transfer in the sodium hydroxide-nickel system

    NASA Technical Reports Server (NTRS)

    May, Charles E

    1958-01-01

    "Thermal-gradient mass transfer" was investigated in the molten sodium hydroxide-nickel system. Possible mechanisms (physical, electrochemical, and chemical) are discussed in terms of experimental and theoretical evidence. Experimental details are included in appendixes.

  9. Phillips and Acaba with Lithium Hydroxide (LiOH) canisters on Middeck (MDDK)

    2009-03-19

    S119-E-006645 (19 March 2009) --- Astronauts John Phillips (left) and Joseph Acaba, both STS-119 mission specialists, work with the lithium hydroxide (LiOH) canisters beneath Space Shuttle Discovery's middeck while docked with the International Space Station.

  10. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  11. Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry.

    PubMed

    Britto, Sylvia; Kamath, P Vishnu

    2009-12-21

    The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.

  12. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Hydroxide)

    EPA Science Inventory

    This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium hydroxide, CASRN 1310-82-3.

  13. Safety Assessment of Alumina and Aluminum Hydroxide as Used in Cosmetics.

    PubMed

    Becker, Lillian C; Boyer, Ivan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration (FDA) evaluated the safe use of alumina in several medical devices and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review (CIR) Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment. © The Author(s) 2016.

  14. Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhu, Jianfeng; Liu, Hui

    2018-03-01

    In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.

  15. Thermal desorption of PCB-contaminated soil with sodium hydroxide.

    PubMed

    Liu, Jie; Qi, Zhifu; Zhao, Zhonghua; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    The thermal desorption was combined with sodium hydroxide to remediate polychlorinated biphenyl (PCB)-contaminated soil. The experiments were conducted at different temperatures ranging from 300 to 600 °C with three NaOH contents of 0.1, 0.5, and 1 %. The results showed that thermal desorption was effective for PCB removal, destruction, and detoxication, and the presence of NaOH enhanced the process by significant dechlorination. After treatment with 0.1 % NaOH, the removal efficiency (RE) increased from 84.8 % at 300 °C to 98.0 % at 600 °C, corresponding to 72.7 and 91.7 % of destruction efficiency (DE). With 1 % NaOH content treated at 600 °C, the RE and DE were 99.0 and 93.6 %, respectively. The effect of NaOH content on PCB removal was significant, especially at lower temperature, yet it weakened under higher temperature. The interaction between NaOH content and temperature influenced the PCB composition. The higher temperature with the help of NaOH effectively increased the RE and DE of 12 dioxin-like PCBs (based on WHO-TEQ).

  16. Improved sensitivity via layered-double-hydroxide-uniformity-dependent chemiluminescence.

    PubMed

    Li, Zenghe; Wang, Dan; Yuan, Zhiqin; Lu, Chao

    2016-12-01

    In the last two decades nanoparticles have been widely applied to enhance chemiluminescence (CL). The morphology of nanoparticles has an important influence on nanoparticle-amplified CL. However, studies of nanoparticle-amplified CL focus mainly on the size and shape effects, and no attempt has been made to explore the influence of uniformity in nanoparticle-amplified CL processes. In this study we have investigated nanoparticle uniformity in the luminol-H 2 O 2 CL system using layered double hydroxides (LDHs) as a model material. The results demonstrated that the uniformity of LDHs played a key role in CL amplification. A possible mechanism is that LDHs with high uniformity possess abundant catalytic active sites, which results in high CL intensity. Meanwhile, the sensitivity for H 2 O 2 detection was increased by one order of magnitude (1.0 nM). Moreover, the uniform-LDH-amplified luminol CL could be applied to selective detection of glucose in human plasma samples. Furthermore, such a uniformity-dependent CL enhancement effect could adapted to other redox CL systems-for example, the peroxynitrous acid (ONOOH) CL system.

  17. Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.

    PubMed

    de Grey, A D

    1999-10-01

    A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.

  18. Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.

    2018-02-01

    A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.

  19. In Vivo Toxicity Studies of Europium Hydroxide Nanorods in Mice

    PubMed Central

    Patra, Chitta Ranjan; Abdel Moneim, Soha S.; Wang, Enfeng; Dutta, Shamit; Patra, Sujata; Eshed, Michal; Mukherjee, Priyabrata; Gedanken, Aharon; Shah, Vijay H; Mukhopadhyay, Debabrata

    2009-01-01

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence properties and pro-angiogenic to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [EuIII(OH)3] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mgKg−1day−1) and time dependent manner (8–60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice sacrificed on day 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods. PMID:19616569

  20. Acid Green 1 removal from wastewater by layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Elkhattabi, El Hassan; Lakraimi, Mohamed; Berraho, Moha; Legrouri, Ahmed; Hammal, Radouan; El Gaini, Layla

    2018-03-01

    The paper presents the removal of Acid Green 1 (AG1) from aqueous solutions by [Zn-Al-Cl]-layered double hydroxides (LDHs). The LDH was prepared by coprecipitation at constant pH. The affinity of this material for AG1 was studied as a function of contact time, pH of the solution, LDH dose and AG1/LDH mass ratio. It was found that 32 h are enough to reach the equilibrium with a maximum retention at pH 8 for an LDH dose of 100 mg and with an AG1/LDH mass ratio higher than 2. The adsorption isotherm is of L-type, as described by the Langmuir model. The results demonstrate that AG1 retention on LDHs occurs by adsorption on external surface when AG1/LDH mass ratio is equal or lower than 2 and by both adsorption and interlayer ion exchange for ratios higher than 2. A mechanism for the AG1 removal has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric-differential thermal analyses and scanning electron microscopy.

  1. Methotrexate intercalated ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  2. Catalytic and inhibiting effects of lithium peroxide and hydroxide on sodium chlorate decomposition

    SciT

    Cannon, J.C.; Zhang, Y.

    1995-09-01

    Chemical oxygen generators based on sodium chlorate and lithium perchlorate are used in airplanes, submarines, diving, and mine rescue. Catalytic decomposition of sodium chlorate in the presence of cobalt oxide, lithium peroxide, and lithium hydroxide is studied using thermal gravimetric analysis. Lithium peroxide and hydroxide are both moderately active catalysts for the decomposition of sodium chlorate when used alone, and inhibitors when used with the more active catalyst cobalt oxide.

  3. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    NASA Technical Reports Server (NTRS)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  4. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    NASA Astrophysics Data System (ADS)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  5. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)–n-Propoxide Ions

    PubMed Central

    Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František

    2008-01-01

    We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507

  6. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.

    PubMed

    Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain

    2017-04-14

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  7. Plate-shaped transformation products in zirconium-base alloys

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Dey, G. K.; Srivastava, D.; Ranganathan, S.

    1997-11-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IPS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 bar 11} α < bar 1123> α slip or twinning on {10 bar 11} α planes. Widmanstätten α precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the α/β interface being decorated with a periodic array of < c + a> dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The α precipitates, forming in the retained β phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103} β — {113} β poles, which are close to the specific variant of the {112} β plane, which transforms into a prismatic plane of the type {1 bar 100} α . The crystallography of the

  8. Chemical matricectomy with sodium hydroxide: long-term follow-up results.

    PubMed

    Bostanci, Seher; Kocyigit, Pelin; Parlak, Nehir; Gungor, Hilayda Karakok

    2014-11-01

    Chemical matricectomy with sodium hydroxide is a method being used successfully in the treatment of ingrown toenail. In this study, it was aimed to evaluate long-term recurrence rates after chemical matricectomy using sodium hydroxide application of different durations. Two hundred two patients with ingrown nail edges were treated with either 1-minute (Group 1) or 2-minute (Group 2) applications of sodium hydroxide matricectomy. All patients were followed for at least 2 years. Chemical matricectomy with sodium hydroxide was applied to a total of 585 nail edges of 202 cases. The overall recurrence rates in Group 1 and Group 2 were 6.4% and 7.1%, respectively, during the average 7.5-year follow-up period. No statistically significant differences were detected in terms of recurrence between the 2 groups (p = .73). Chemical matricectomy with sodium hydroxide is an easy method in the treatment of ingrown nails, with low morbidity and high success rates. There was no difference between 1-minute and 2-minute applications in terms of recurrence during the long-term follow-up. Chemical matricectomy with 1-minute application of sodium hydroxide showed high success in terms of long-term follow-up results.

  9. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.

    PubMed

    Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K

    2011-08-01

    This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Human biokinetic data and a new compartmental model of zirconium--a tracer study with enriched stable isotopes.

    PubMed

    Greiter, Matthias B; Giussani, Augusto; Höllriegl, Vera; Li, Wei Bo; Oeh, Uwe

    2011-09-01

    Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool in nutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope (95)Zr, is relevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuel cladding material. We present a comprehensive set of human data from a tracer study with stable isotopes of zirconium. The data are used to refine a biokinetic model of zirconium. Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete double tracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations. Tracer concentrations were measured in blood plasma and urine collected up to 100 d after tracer administration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240 measured concentration values above detection limits. Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffered drinking solution and 0.007 for zirconium oxalate solution. Biokinetic models were developed based on the linear first-order kinetic compartmental model approach used by the International Commission on Radiological Protection (ICRP). The main differences of the optimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfer compartment made necessary by the observed tracer clearance from plasma, (2) different parameters related to fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretion pathway to urine. The study considerably expands the knowledge on the biokinetics of zirconium, which was until now dominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yet is based on the same principles and fits well into the ICRP radiation protection approach. Copyright © 2011

  11. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  12. Form and stability of aluminum hydroxide complexes in dilute solution

    Hem, John David; Roberson, Charles Elmer

    1967-01-01

    Laboratory studies of solutions 4.53 x 10 -4 to 4.5 x 10 -5 molal (12.2-1.2 ppm) in aluminum, in 0.01 molal sodium perchlorate, were conducted to obtain information as to the probable behavior of aluminum in natural water. When the solutions were brought to pH 7.5-9.5 and allowed to stand for 24 hours, a precipitate was obtained which was virtually amorphous as shown by X-rays, and which had a solubility equivalent to that of boehmite. This precipitate had a hydrolysis constant (*Ks4) of 1.93 x 10 -13a. When solutions were allowed to stead at this pH range for 10 days, their precipitates gave the X-ray pattern of bayerite (*Ks4 = 1.11 > (10- 4). These hydrolysis constants were obtained at 25?C. and corrected to zero ionic strength and are in close agreement with other published values. The predominant dissolved form in this pH range is Al(OH) -4. Below neutral pH (7.0) the dissolved aluminum species consist of octahedral units in which each aluminum ion is surrounded by six water molecules or hydroxide ions. Single units such as Al(OH2)6 + 3 and AlOH(OH2)5+2 are most abundant below pH 5.0, and where the molar ratio (r) of combined hydroxide to total dissolved aluminum is low. When r is greater than 1.0, polymerization of the octahedral units occurs. When r is between 2.0 and 3.0, solutions aged for 10 days or more contained colloidal particles between 0.10 and 0.45 ? in diameter. Particles whose diameters were greater than 0.10 ? were identified by X-ray diffraction as gibbsite. Particles smaller than 0.10 ? were also present and were shown by means of the electron microscope to have a hexagonal crystal pattern. Structured material consisting of sheets of coalesced six-membered rings of aluminum ions held together by double OH bridges has a distinctive kinetic behavior. This property was used to determine amounts of polymerized material in solutions having r between 1.0 and 3.0 after aging times ranging from a few hours to more than 4 months. Aging increased the

  13. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    PubMed

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  14. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  15. Layered gadolinium hydroxides for simultaneous drug delivery and imaging.

    PubMed

    Xu, Yadong; Goyanes, Alvaro; Wang, Yuwei; Weston, Andrew J; So, Po-Wah; Geraldes, Carlos F G C; Fogg, Andrew M; Basit, Abdul W; Williams, Gareth R

    2018-02-27

    The potential of the layered gadolinium hydroxide (LGdH) [Gd 2 (OH) 5 ]Cl·yH 2 O (LGdH-Cl) for simultaneous drug delivery and magnetic resonance imaging was explored in this work. Three non-steroidal anti-inflammatory drugs (diclofenac [dic], ibuprofen [ibu], and naproxen [nap]) were intercalated into LGdH-Cl for the first time, using three different routes (ion exchange intercalation, coprecipitation, and exfoliation-self-assembly). X-ray diffraction, elemental microanalysis and IR spectroscopy confirmed successful incorporation of the drug into the interlayer spaces of the LGdH in all cases. From a comparison of the guest anion sizes and interlayer spacings, the active ingredients are believed to adopt intertwined bilayer configurations between the LGdH layers. The materials prepared by coprecipitation in general have noticeably higher drug loadings than those produced by ion exchange or self-assembly, as a result of the incorporation of some neutral drug into the composites. The LGdH-drug intercalates are stable at neutral pH, but rapidly degrade in acidic conditions to free Gd 3+ into solution. While LGdH-nap releases its drug loading into solution very rapidly (within ca. 1.5 h) at pH 7.4, LGdH-dic shows sustained release over 4 h, and LGdH-ibu extends this to 24 h. The latter composites therefore can be incorporated into enteric-coated tablets to provide sustained release in the small intestine. The drug intercalates are highly biocompatible and retain the proton relaxivity properties of the parent LGdH-Cl, with the materials most promising for use as negative contrast agents in MRI. Overall, the LGdH-drug intercalation compounds appear to have great potential for use in theranostic applications.

  16. Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone.

    PubMed

    Joshi, Sahira; Shrestha, Lok Kumar; Kamachi, Yuichiro; Yamauchi, Yusuke; Pradhananga, Mandira Adhikari; Pokhrel, Bhadra Prasad; Ariga, Katsuhiko; Pradhananga, Raja Ram

    2015-02-01

    Nanoporous activated carbons (ACs) were prepared from Lapsi (Choerospondias axillaris) seed powder by chemical activation with sodium hydroxide (NaOH) at different NaOH impregnation ratios. The prepared ACs were characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Semi-quantitative information on the surface properties was obtained by estimating iodine number. FTIR spectra showed the presence of oxygenated functional groups such as hydroxyl, carbonyl, and carboxyl in the prepared ACs. Raman scattering showed clear D and G bands in the spectra. The intensity ratio of G and D band peak intensity was ca. 1.39 at lowest NaOH and Lapsi seed powder ratio 0.25:1 showing high graphitic degree. This ratio decreased with increase in the NaOH impregnation ratio and reached minimum ca. 0.94 (comparable with commercial AC) at NaOH and Lapsi seed powder ratio 1:1 demonstrating that higher NaOH impregnation reduces the graphitic structure of the carbon. XRD patterns showed two broad peaks at diffraction angles of approximately 25 and 43 degrees indicating the amorphous structure. Surface properties of the ACs (BET surface area, pore volume, and pore size distributions) were evaluated by nitrogen adsorption-desorption isotherm. Our ACs showed strong methylene blue adsorption property (maximum methylene blue is ca. 200 mg/g). Judging from the iodine number and methylene blue values, structure, and surface areas, it can be concluded that NaOH impregnation ratio is one of the key parameters to tune the surface properties of Lapsi seed stone-based activated carbons.

  17. Optical characterisation of hydroxide catalysed bonds applied to phosphate glass

    NASA Astrophysics Data System (ADS)

    Lacaille, Grégoire; Mangano, Valentina; van Veggel, Anna-Maria A.; Killow, Christian J.; MacKay, Peter E.; Rowan, Sheila; Hough, James

    2017-10-01

    We apply the Hydroxide Catalysis Bonding (HCB) technique to phosphate glass and measure the reflectivity and Light Induced Damage Threshold (LITD) of the newly formed interface. HCB is a room temperature, high performing process which was designed for astronomical research glass assemblies and played a key role in the detection of gravitational waves, a breakthrough in contemporary science. The bonds have numerous assets including mechanical strength, stability, no outgassing and resistance to contamination which are of high interest in the precision optics industry. However only little research has been done on their optical properties and mostly on silica based materials. In this paper, we use HCB to bond phosphate glass at room temperature with the goal of designing composite components for solid state laser gain media. We change the solution parameters to identify how they influence the final properties of the bonds: the LIDT at 1535 nm in long pulse regime and the reflectivity at 532 nm are investigated. The measurement of the incidence dependent reflectance allows estimating the thickness and refractive index of the bond in a non destructive process. The best performing set of parameters yields a LIDT of 1.6 GW/cm2 (16 J/cm2) and a reflectivity below 0.03 % which makes it suitable for use in high power lasers. The bond thickness is derived both from Scanning Electron Microscopy and the reflectivity measurements and is in the range of 50-150 nm depending on the parameters. Finally, the bonds survive cutting and polishing which is promising for manufacturing purpose.

  18. A titration model for evaluating calcium hydroxide removal techniques.

    PubMed

    Phillips, Mark; McClanahan, Scott; Bowles, Walter

    2015-01-01

    Calcium hydroxide (Ca(OH)2) has been used in endodontics as an intracanal medicament due to its antimicrobial effects and its ability to inactivate bacterial endotoxin. The inability to totally remove this intracanal medicament from the root canal system, however, may interfere with the setting of eugenol-based sealers or inhibit bonding of resin to dentin, thus presenting clinical challenges with endodontic treatment. This study used a chemical titration method to measure residual Ca(OH)2 left after different endodontic irrigation methods. Eighty-six human canine roots were prepared for obturation. Thirty teeth were filled with known but different amounts of Ca(OH)2 for 7 days, which were dissolved out and titrated to quantitate the residual Ca(OH)2 recovered from each root to produce a standard curve. Forty-eight of the remaining teeth were filled with equal amounts of Ca(OH)2 followed by gross Ca(OH)2 removal using hand files and randomized treatment of either: 1) Syringe irrigation; 2) Syringe irrigation with use of an apical file; 3) Syringe irrigation with added 30 s of passive ultrasonic irrigation (PUI), or 4) Syringe irrigation with apical file and PUI (n=12/group). Residual Ca(OH)2 was dissolved with glycerin and titrated to measure residual Ca(OH)2 left in the root. No method completely removed all residual Ca(OH)2. The addition of 30 s PUI with or without apical file use removed Ca(OH)2 significantly better than irrigation alone. This technique allowed quantification of residual Ca(OH)2. The use of PUI (with or without apical file) resulted in significantly lower Ca(OH)2 residue compared to irrigation alone.

  19. Photocatalytic water oxidation with iron oxide hydroxide (rust) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shelton, Timothy L.; Bensema, Bronwyn L.; Brune, Nicholas K.; Wong, Christopher; Yeh, Max; Osterloh, Frank E.

    2017-01-01

    Hematite has attracted considerable interest as a photoanode material for water oxidation under visible illumination. Here, we explore the limits of photocatalytic water oxidation activity with iron (III) oxide hydroxide nanocrystals and NaIO4 as a sacrificial electron acceptor (E=1.63 V NHE at pH=0.5). The sol was prepared by hydrolysis of FeCl3 in boiling 0.002-M HCl solution and confirmed to mainly consist of ß-FeO(OH) (akaganéite) particles with 5 to 15 nm diameter. From a 0.01 M aqueous NaIO4 solution, the sol evolves between 4.5 and 35.2 μmol O2 h-1, depending on pH, light intensity (>400 nm, 290 to 700 mW cm-2), ß-FeO(OH), and NaIO4 concentration. The activity increases with pH, and depends linearly on light intensity and photocatalyst amount, and it varies with sacrificial electron donor concentration. Under optimized conditions, the apparent quantum efficiency is 0.19% (at 400 nm and 460 mW cm-2), and the turnover number is 2.58 based on total ß-FeO(OH). Overall, the efficiency of the ß-FeO(OH)/NaIO4 photocatalytic system is limited by electron hole recombination and by particle aggregation over longer irradiation times (24 h). Lastly, surface photovoltage measurements on ß-FeO(OH) films on fluorine doped tin oxide substrate confirm a 2.15 eV effective band gap for the material.

  20. The origin of 2.7 eV blue luminescence band in zirconium oxide

    SciT

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Zhuravlev, K. S.; Gritsenko, V. A.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7 eV peak. There is a broad band at 5.2 eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1 eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7 eV blue luminescence excited near 5.2 eV in a zirconium oxide film is associated with the oxygen vacancy.

  1. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  2. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  3. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong

    2007-11-01

    We report here a high-pressure phase-transition induced strengthening in ultrapure zirconium metal. The determined yield strength shows more than sixfold abrupt increase at the transition pressure of Pc=6GPa, from σyα≈180MPa in the low-pressure phase of α-Zr to σyω≈1180MPa in the high-pressure phase of ω-Zr. The observed enhancement provides an alternate route for material strengthening and is the most significant among the known strengthening techniques for metals. Our findings support the theoretical simulations of the substantial covalent bonding and "rougher" corrugation of slip planes for dislocations in the ω-phase of zirconium.

  4. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Cochrane, C.; Daymond, M. R.

    2018-05-01

    This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

  5. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva.

    PubMed

    Romonti, Daniela E; Gomez Sanchez, Andrea V; Milošev, Ingrid; Demetrescu, Ioana; Ceré, Silvia

    2016-05-01

    The paper is focused on elaboration of ZrO2 films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO2. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    PubMed

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p < 0.001). In the HXLPE series, the median steady-state penetration rate from 1 year onward was 0.02 mm/year (range, -0.32 to

  7. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. High temperature mechanical properties of a zirconium-modified, precipitation- strengthened nickel, 30 percent copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1974-01-01

    A precipitation-strengthened Monel-type alloy has been developed through minor alloying additions of zirconium to a base Ni-30Cu alloy. The results of this exploratory study indicate that thermomechanical processing of a solution-treated Ni-30Cu-0.2Zr alloy produced a dispersion of precipitates. The precipitates have been tentatively identified as a Ni5Zr compound. A comparison of the mechanical properties, as determined by testing in air, of the zirconium-modified alloy to those of a Ni-30Cu alloy reveals that the precipitation-strengthened alloy has improved tensile properties to 1200 K and improved stress-rupture properties to 1100 K. The oxidation characteristics of the modified alloy appeared to be equivalent to those of the base Ni-30Cu alloy.

  9. Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model

    NASA Astrophysics Data System (ADS)

    Panigrahi, M.; Panda, R. N.; Kumar, Bharat; Patra, S. K.

    In the framework of relativistic mean-field theory, the ground state properties like binding energy, charge radius and quadrupole deformation parameter for various isotopes of zirconium from the valley of stability to drip-line region have been studied. The results are compared with the experimental data and we found reasonable agreement. The calculations are carried out for β-decay energy and β-decay half-life up to the drip-line. Total reaction and elastic differential cross-sections are also studied for few zirconium isotopes as projectiles with 12C as target, using different parameter sets namely NL3*, DD-ME2 and DD-PC1 in conjunction with Glauber model.

  10. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    NASA Astrophysics Data System (ADS)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  11. Electrotransport and diffusivity of molybdenum, rhenium, tungsten, and zirconium in beta-thorium

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Beck, M. S.; Rehbein, D. K.; Conzemius, R. J.; Carlson, O. N.

    1984-01-01

    The electric mobilities, diffusivities, and effective valences were determined for molybdenum, rhenium, tungsten, and zirconium in beta-thorium. All four solutes migrated in the same direction as the electron flow. Rhenium and molybdenum were found to be very mobile, with tungsten somewhat slower. Zirconium was found to move at a rate near that of the self-diffusion of beta-thorium, viz., about 10 to the -11th sq m/s at 1500 C. The electromigration velocities showed a similar trend. A comparison was made between experimental data obtained by scanning laser mass spectrometry and theoretical transport equations for two purification experiments. Good agreement was obtained with both the concentration profile predicted by DeGroot and the purification ratio predicted by Verhoeven.

  12. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin

    PubMed Central

    Dhirawani, Rajesh B; Marya, Jayant; Dhirawani, Vrinda; Kumar, Vijayendra

    2017-01-01

    Aim The aim of this study was to evaluate the diffusion ability of ions through dentinal tubules of different nonalcoholic calcium hydroxide-containing herbal pastes and compare it with the calcium hydroxide paste prepared with saline. Materials and methods A total of 36 single-rooted premolar teeth were used in this study. The tooth crowns were removed and the root canals were prepared. Depending on the vehicle to be used for preparing calcium hydroxide pastes, six groups were made: Group I: Ca(OH)2 saline paste (control group), group II: Ca(OH)2 papaya latex paste, group III: Ca(OH)2 coconut water paste, group IV: Ca(OH)2 Ashwagandha (Withania somnifera) paste, group V: Ca(OH)2 Tulsi (Ocimum tenuiflorum) paste, and group VI: Ca(OH)2 garlic (Allium sativum) paste. After biomechanical preparation, calcium hydroxide herbal paste dressings were applied and sealed with resin-based cement. The teeth were placed in containers with deionized water, and the pH of the water was measured at regular intervals over 3, 24, 72, and 168 hours. Results We observed that all herbal pastes allowed the diffusion of ions, but pastes prepared with Ashwagandha and papaya latex showed more ion diffusion after 168 hours and marked increase in pH, depicting better support for calcium hydroxide action. Conclusion We conclude that Ashwagandha and papaya latex allow better diffusion of calcium hydroxide through den-tinal tubules, thus enhancing its action, and advise its use as a vehicle for placing intracanal medicament. How to cite this article Dausage P, Dhirawani RB, Marya J, Dhirawani V, Kumar V. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin. Int J Clin Pediatr Dent 2017;10(1):41-44. PMID:28377654

  13. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  14. Formation of heterobimetallic zirconium/cobalt diimido complexes via a four-electron transformation.

    PubMed

    Wu, Bing; Hernández Sánchez, Raúl; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M

    2014-10-06

    The reactivity of the reduced heterobimetallic complex Zr((i)PrNP(i)Pr2)3CoN2 (1) toward aryl azides was examined, revealing a four-electron redox transformation to afford unusual heterobimetallic zirconium/cobalt diimido complexes. In the case of p-tolyl azide, the diamagnetic C3-symmetric bis(terminal imido) complex 3 is formed, but mesityl azide instead leads to asymmetric complex 4 featuring a bridging imido fragment.

  15. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  16. The production of metallocarbohedrenes by the direct laser vaporization of the carbides of titanium and zirconium

    NASA Astrophysics Data System (ADS)

    Cartier, S. F.; May, B. D.; Toleno, B. J.; Purnell, J.; Wei, S.; Castleman, A. W., Jr.

    1994-03-01

    Metallocarbohedrenes (Met-Cars) of titanium and zirconium have been produced by the direct laser vaporization of their respective pure carbides. Time-of-flight mass spectra of both ionic and neutral metallocarbohedrenes formed in the laser-induced plasma are presented and compared to spectra of the same systems generated under laser vaporization/molecular beam conditions. Potential mechanisms of formation of these clusters are presented and discussed.

  17. Total knee arthroplasty with an oxidised zirconium femoral component: ten-year survivorship analysis.

    PubMed

    Ahmed, I; Salmon, L J; Waller, A; Watanabe, H; Roe, J P; Pinczewski, L A

    2016-01-01

    Oxidised zirconium was introduced as a material for femoral components in total knee arthroplasty (TKA) as an attempt to reduce polyethylene wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected database to assess the ten year survival and clinical and radiological outcomes of an oxidised zirconium total knee arthroplasty with the Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and a patient satisfaction scale were used to assess outcome. A total of 303 consecutive TKAs were performed in 278 patients with a mean age of 68 years (45 to 89). The rate of survival ten years post-operatively as assessed using Kaplan-Meier analysis was 97% (95% confidence interval 94 to 99) with revision for any reason as the endpoint. There were no revisions for loosening, osteolysis or failure of the implant. There was a significant improvement in all components of the WOMAC score at final follow-up (p < 0.001). The mean individual components of the KOOS score for symptoms (82.4 points; 36 to 100), pain (87.5 points; 6 to 100), activities of daily life (84.9 points; 15 to 100) and quality of life (71.4 points; 6 to 100) were all at higher end of the scale. This study provides further supportive evidence that the oxidised zirconium TKA gives comparable rates of survival with other implants and excellent functional outcomes ten years post-operatively. Total knee arthroplasty with an oxidised zirconium femoral component gives comparable long-term rates of survival and functional outcomes with conventional implants. ©2016 The British Editorial Society of Bone & Joint Surgery.

  18. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications.

    PubMed

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    PubMed

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  20. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  1. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    SciT

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  2. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  3. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  4. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, Raghu N.; Ginley, David S.

    1995-01-01

    A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.

  5. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1995-10-31

    A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.

  6. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    PubMed

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty: Patellofemoral outcomes.

    PubMed

    Matassi, Fabrizio; Paoli, Tommaso; Civinini, Roberto; Carulli, Christian; Innocenti, Massimo

    2017-10-01

    Oxidized zirconium (OxZr) has demonstrated excellent mechanical properties in vitro when used against articular cartilage; less coefficient of friction and less chondral damage have been found when compared with cobalt-chromium (CoCr) implants. However, controversy exists as to whether implants with a zirconium femoral component articulate safely with a native patella in total knee arthroplasty (TKA). To answer this question, the clinical and radiographic results were analysed from a group of patients who underwent a TKA with patella retention; the OxZr versus CoCr femoral components were compared. The present study prospectively evaluated 83 knees of 74 patients from 2009 to 2010. Each patient was evaluated clinically (visual analogue scale, Knee Society score, patellar score) and radiographically (long leg standing radiograph, anterior-posterior and latero-lateral projections, axial view of the patella) pre-operatively and postoperatively with a mean follow-up of 4.47years. The patellar tilt and shift, and progression of patellofemoral osteoarthritis were calculated with the axial view. There were no patient reported adverse reactions and none of the evaluated prostheses failed. Both the clinical and radiographic evaluations showed no statistically significant between-group differences. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component associated with patellar retention in TKA. Published by Elsevier B.V.

  8. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  9. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    SciT

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  10. Selective separation of zirconium from uranium in carbonate solutions by ion flotation

    SciT

    Jdid, E.A.; Blazy, P.; Mahamadou, A.

    1990-05-01

    Separation of zirconium from uranium in carbonate media was undertaken by ion flotation. The collector chosen was octylhydroxamic acid (HOHX). It gave a well-flocculated precipitate with zirconium which floated in less than 5 min. The stoichiometry of the reaction is HOHX/Zr = 3.9/1, and the selectivity in the presence of uranium is very high. In fact, for a ratio {Phi} = (HOHX),M/(Zr),M, which is just stoichiometric and is close to 4, the zirconium removal rate reaches 99%, even in industrial media. The loss of uranium is only 0.5% although its concentration is 37.4 g/L. Mechanisms of separation are not affectedmore » by a variation of pH between 6.7 and 9.8, of temperature up to 60{degree}C, and of carbonate concentration within the 15 to 60 g/L Na{sub 2}CO{sub 3} range.« less

  11. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGES

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  12. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  13. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    PubMed

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p < 0.001). The highest ∆E* ab value was recorded for the zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p < 0.001). The luting cement, the presence of titanium, and the color of zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  14. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    SciT

    Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less

  15. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciT

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less

  16. Nickel hydroxides and related materials: a review of their structures, synthesis and properties

    PubMed Central

    Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.

    2015-01-01

    This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812

  17. [Antimicrobial effect of various calcium hydroxide on Porphyromonas endodontalis in vitro].

    PubMed

    Du, Ting-ting; Qiu, Li-hong; Jia, Ge; Yang, Di; Guo, Yan

    2012-04-01

    To compare the antimicrobial activity of Endocal, calcium hydroxide paste, Calxyl, Vitapex on Porphyromonas endodontalis(P.e). (1) The antimicrobial activity of different calcium hydroxide on P.e was examined at different exposure times by dynamic nephelometry. (2) 85 freshly extracted single-rooted human teeth were selected and cut at the amelocemental junction. All roots were randomly divided into five groups. The bacteria were incubated in each canal and were sampled and counted before and after enveloping five kinds of intercanal medicine seeded. Student's t test, One-way ANOVA were used with SPSS11.0 software package for statistical analysis. The bacteria from each group were reduced significantly after intracanal medication (P<0.05). The antibacterial efficacy of Endocal and calcium hydroxide paste were superior to others under dynamic nephelometry test (P<0.05). Endocal, calcium hydroxide paste, Calxyl, Vitapex had strong inhibitory effect on P.e from infected root canals, and the rate of bacteria clearance was 95%. The antimicrobial activity of Endocal was significantly greater than others (P<0.05). Endocal, calcium hydroxide paste, Calxyl and Vitapex were effective for intercanal disinfection. The antibacterial activity of Endocal is greater than Vitapex.

  18. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  19. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  20. Crystallization behaviour of hydroxide cobalt carbonates by aging: Environmental implications.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Angeles; Jimenez, Amalia

    2014-05-01

    Cobalt is a naturally occurring element widely distributed in water, sediments and air that is essential for living species, since it is a component of B12 vitamin and it is also a strategic and critical element used in a number of commercial, industrial and military applications. However, relatively high accumulations of cobalt in environment can be toxic for human and animal health. Cobalt usually occurs as Co2+ and Co3+ in aqueous solutions, where Co2+ is the most soluble and hence its mobility in water is higher. The study of the precipitation of cobalt carbonates is of great interest due to the abundance of carbonate minerals in contact with surface water and groundwater which can be polluted with Co2+. Previous works have demonstrated that the formation of Co-bearing calcium carbonates and Co-rich low crystallinity phases takes place at ambient conditions. With the aim of investigating the crystallization behavior of Co- bearing carbonates at ambient temperature, macroscopic batch-type experiments have been carried out by mixing aqueous solutions of CoCl2 (0.05M) and Na2CO3 (0.05M) during increasing reaction times (5 minutes and 1, 5, 24, 48, 96, 168, 720 and 1440 hours). The main goals of this work were (i) to analyse the physicochemical evolution of the system and (ii) to study the evolution of the crystallinity of the solid phases during aging. After a given reaction period, pH, alkalinity and dissolved Co2+ in the aqueous solutions were analysed. The evolution of the morphology and chemical composition of the solids with aging time was examined by SEM and TEM. The precipitates were also analyzed by X-ray powder diffraction (XRD) and the crystallinity degree was followed by the intensity and the full width at high medium (FWHM) of the main peaks. The results show that a low crystallinity phase was obtained at the very beginning of aging. This phase evolves progressively to form hydroxide carbonate cobalt (Co2CO3(OH)2) which crystallize with the spatial

  1. Efficient uranium capture by polysulfide/layered double hydroxide composites.

    PubMed

    Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G

    2015-03-18

    There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

  2. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciT

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history,more » residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed

  3. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial.

    PubMed

    Kosiborod, Mikhail; Rasmussen, Henrik S; Lavin, Philip; Qunibi, Wajeh Y; Spinowitz, Bruce; Packham, David; Roger, Simon D; Yang, Alex; Lerma, Edgar; Singh, Bhupinder

    2014-12-03

    Hyperkalemia is a common electrolyte abnormality that may be difficult to manage because of a lack of effective therapies. Sodium zirconium cyclosilicate is a nonabsorbed cation exchanger that selectively binds potassium in the intestine. To evaluate the efficacy and safety of zirconium cyclosilicate for 28 days in patients with hyperkalemia. HARMONIZE was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial evaluating zirconium cyclosilicate in outpatients with hyperkalemia (serum potassium ≥5.1 mEq/L) recruited from 44 sites in the United States, Australia, and South Africa (March-August 2014). Patients (n = 258) received 10 g of zirconium cyclosilicate 3 times daily in the initial 48-hour open-label phase. Patients (n = 237) achieving normokalemia (3.5-5.0 mEq/L) were then randomized to receive zirconium cyclosilicate, 5 g (n = 45 patients), 10 g (n = 51), or 15 g (n = 56), or placebo (n = 85) daily for 28 days. The primary end point was mean serum potassium level in each zirconium cyclosilicate group vs placebo during days 8-29 of the randomized phase. In the open-label phase, serum potassium levels declined from 5.6 mEq/L at baseline to 4.5 mEq/L at 48 hours. Median time to normalization was 2.2 hours, with 84% of patients (95% CI, 79%-88%) achieving normokalemia by 24 hours and 98% (95% CI, 96%-99%) by 48 hours. In the randomized phase, serum potassium was significantly lower during days 8-29 with all 3 zirconium cyclosilicate doses vs placebo (4.8 mEq/L [95% CI, 4.6-4.9], 4.5 mEq/L [95% CI, 4.4-4.6], and 4.4 mEq/L [95% CI, 4.3-4.5] for 5 g, 10 g, and 15 g; 5.1 mEq/L [95% CI, 5.0-5.2] for placebo; P < .001 for all comparisons). The proportion of patients with mean potassium <5.1 mEq/L during days 8-29 was significantly higher in all zirconium cyclosilicate groups vs placebo (36/45 [80%], 45/50 [90%], and 51/54 [94%] for the 5-g, 10-g, and 15-g groups, vs 38/82 [46%] with placebo; P < .001 for each dose

  4. Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle

    PubMed Central

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-01-01

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864

  5. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors

    NASA Astrophysics Data System (ADS)

    You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua

    2012-08-01

    Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.

  6. Benchmarking polarizable molecular dynamics simulations of aqueous sodium hydroxide by diffraction measurements.

    PubMed

    Vácha, Robert; Megyes, Tunde; Bakó, Imre; Pusztai, László; Jungwirth, Pavel

    2009-04-23

    Results from molecular dynamics simulations of aqueous hydroxide of varying concentrations have been compared with experimental structural data. First, the polarizable POL3 model was verified against neutron scattering using a reverse Monte Carlo fitting procedure. It was found to be competitive with other simple water models and well suited for combining with hydroxide ions. Second, a set of four polarizable models of OH- were developed by fitting against accurate ab initio calculations for small hydroxide-water clusters. All of these models were found to provide similar results that robustly agree with structural data from X-ray scattering. The present force field thus represents a significant improvement over previously tested nonpolarizable potentials. Although it cannot in principle capture proton hopping and can only approximately describe the charge delocalization within the immediate solvent shell around OH-, it provides structural data that are almost entirely consistent with data obtained from scattering experiments.

  7. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    PubMed

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  9. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2015-03-02

    Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.

  10. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle

    DOE PAGES

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; ...

    2015-10-05

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O 2 gas and H 2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometricmore » phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.« less

  11. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    PubMed Central

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  12. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    PubMed

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  13. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  14. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis.

    PubMed

    Afkhami, Farzaneh; Pourhashemi, Seyyed Jalal; Sadegh, Mona; Salehi, Yasaman; Fard, Mohammad Javad Kharrazi

    2015-12-01

    The aim of the present study was to investigate antibacterial characteristic and Enterococcus faecalis (E. faecalis) biofilm suppression effect of different vehicles of calcium hydroxide as intracanal medicaments in short and long-term. Fifty-four human single-root teeth were contaminated with E. faecalis bacteria. The teeth were randomly divided into three experimental (n=16) and one control group (n=6). Each group was then exposed to various intracanal medicaments, namely calcium hydroxide paste (group 1), calcium hydroxide with chlorhexidine (group 2), calcium hydroxide with silver nanoparticles suspension (AgNPs) (group 3), and saline as the control group (group 4). Cultures were made from each group after one week and one month, and the number of colonies was counted. Moreover, a sample of each group was examined under electron microscope. Kruskal-Wallis test served for inter-group comparisons, and Mann-Whitney test served for comparison between the two incubation periods. All the intracanal medicaments resulted in significant decrease in number of colonies compared to control group in both incubation periods. After one week, the mixture of calcium hydroxide and AgNPs was the most effective medicament against E. faecalis bacteria (p<.05). No significant difference in antibacterial effect of the medicaments existed after one month incubation period (p>.05). AgNPs was more effective on the E. faecalis biofilm than other tested vehicles in short-term medication. AgNPs seems to have a good potential to be used as an appropriate vehicle of calcium hydroxide in order to eliminate of E. faecalis biofilm from human dentine in short-term. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution.

    PubMed

    Khong, Thang Trung; Aachmann, Finn L; Vårum, Kjell M

    2012-05-01

    Chitosan is prepared from chitin, a process which is carried out at highly alkaline conditions, and that can be performed either on chitin in solution (homogeneous deacetylation) or heterogeneously with the chitin as a solid throughout the reaction. We report here a study of the de-N-acetylation reaction of the chitin dimer (GlcNAc-GlcNAc) in solution. The reaction was followed by (1)H NMR spectroscopy in deuterated aqueous sodium hydroxide solution as a function of time, sodium-hydroxide concentration and temperature. The (1)H NMR spectrum of GlcNAc-GlcNAc in 2.77 M deuterated aqueous sodium hydroxide solution was assigned. The interpretation of the (1)H NMR spectra allowed us to determine the rates of de-N-acetylation of the reducing and non-reducing ends, showing that the reaction rate at the reducing end is twice the rate at the non-reducing end. The total deacetylation reaction rate was determined as a function of the hydroxide ion concentration, showing for the first time that this de-N-acetylation reaction is second order with respect to hydroxide ion concentration. No significant difference in the deacetylation rates in deuterated water compared to water was observed. The activation energy for the reaction (26-54 °C) was determined to 114.4 and 98.6 kJ/mol at 2.77 and 5.5 M in deuterated aqueous sodium hydroxide solution, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Influence of calcium hydroxide on the post-treatment pain in Endodontics: A systematic review

    PubMed Central

    Anjaneyulu, K.; Nivedhitha, Malli Sureshbabu

    2014-01-01

    Introduction: Pain of endodontic origin has been a major concern to the patients and the clinicians for many years. Post-operative pain is associated with inflammation in the periradicular tissues caused by irritants egressing from root canal during treatment. It has been suggested that calcium hydroxide intra-canal medicament has pain-preventive properties because of its anti-microbial or tissue altering effects. Some dispute this and reasoned that calcium hydroxide may initiate or increase pain by inducing or increasing inflammation. Objective: To evaluate the effectiveness of calcium hydroxide in reducing the post-treatment pain when used as an intra-canal medicament Materials and Methods: The following databases were searched: PubMed CENTRAL (until July 2013), MEDLINE, and Cochrane Database of Systematic Reviews. Bibliographies of clinical studies and reviews identified in the electronic search were analyzed for studies published outside the electronically searched journals. The primary outcome measure was to evaluate the post-treatment pain reduction when calcium hydroxide is used as an intra-canal medicament in patients undergoing root canal therapy. Results: The reviews found some clinical evidence that calcium hydroxide is not very effective in reducing post-treatment pain when it is used alone, but its effectiveness can be increased when used in combination with other medicaments like chlorhexidine and camphorated monochlorophenol (CMCP). Conclusion: Even though calcium hydroxide is one of the most widely used intra-canal medicament due to its anti-microbial properties, there is no clear evidence of its effect on the post-treatment pain after the chemo-mechanical root canal preparation. PMID:24944439

  17. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis. PMID:25114509

  19. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    SciT

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  20. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.