Sample records for zirconolite-rich titanate ceramics

  1. Self-propagating high-temperature synthesis of Ce-bearing zirconolite-rich minerals using Ca(NO3)2 as the oxidant

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin

    2015-12-01

    Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.

  2. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    NASA Astrophysics Data System (ADS)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  3. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  4. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  5. Pyrochlore-rich titanate ceramics for the immobilization of plutonium: redox effects on phase equilibria in cerium- and thorium- substituted analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Ebbinghaus, B

    2000-05-25

    Three compositions representing plutonium-free analogs of a proposed Ca-Ti-Gd-Hf-U-PU oxide ceramic for the immobilization of plutonium were equilibrated at 1 atm, 1350 C over a range of oxygen fugacities between air and that equivalent to the iron-wuestite buffer. The cerium analog replaces Pu on a mole-per-mole basic with Ce; the thorium analog replaces Pu with Th. A third material has 10 wt% Al{sub 2}O{sub 3} added to the cerium analog to encourage the formation of a Hf-analog of, CaHfTi{sub 2}O{sub 7}, zirconolite, which is referred to as hafnolite. The predominant phase produced in each formulation under all conditions is pyrochlore,more » A{sub 2}T{sub 2}O{sub 7}, where the T site is filled by Ti, and Ca, the lanthanides, Hf, U and Pu are accommodated on the A-site. Other lanthanide and uranium-bearing phases encountered include brannerite (UTi{sub 2}O{sub 6}), hafnolite (CaHfTi{sub 2}O{sub 7}), perovskite (CaTiO{sub 3}) and a calcium-lanthanide aluminotitanate with nominal stoichiometry (Ca,Ln)Ti{sub 2}Al{sub 9}O{sub 19}, where Ln is a lanthanide. The phase compositions show progressive shifts with decreasing oxygen fugacity. All of the phases observed have previously been identified in titanate-based high-level radioactive waste ceramics and demonstrate the flexibility of these ceramics to variations in processing parameters. The main variation is an increase in the uranium concentrations of pyrochlore and brannerite which must be accommodated by variations in modal abundance. Pyrochlore compositions are consistent with existing spectroscopic data suggesting that uranium is predominantly pentavalent in samples synthesized in air. A simple model based on ideal stoichiometry suggests the U{sup +4}/{Sigma}U varies linearly with log fO{sub 2} and that all of the uranium is quadravalent at the iron-wuestite buffer.« less

  6. Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy

    NASA Astrophysics Data System (ADS)

    Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.

    2017-09-01

    Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.

  7. Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen

    Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.

  8. Zirconolites from Sri Lanka, South Africa and Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.; Haaker, R.F.; Headley, T.J.

    1981-01-01

    Zirconolites, CaZrTi/sub 2/O/sub 7/, from Sri Lanka and Pala Bora, South Africa, and a calzirtite, CaZr/sub 3/TiO/sub 9/, from Jacupiranga, Brazil, were examined using the electron microprobe, x-ray diffraction (annealing study), transmission electron microscopy, scanning electron microscopy and optical microscopy. The x-ray data indicate that all three zirconolites are metamict. Both Sri Lanka zirconolites are amorphous to the limits of resolution of the electron microscope (approx. 10 A). The Pala Bora zirconolite is largely amorphous but contains isolated domains (50 to 200 A) of crystalline material which may be the result of post-metamict recrystallization and alteration. The only other significantmore » evidence for chemical alteration was the lower ThO/sub 2/ concentration (1 to 2 weight percent) and slightly lower analytic totals for the rims of the Sri Lanka zirconolites. Upon annealing at 1130/sup 0/C for 5 hours, all three zirconolites recrystallized as microcrystalline aggregates. Refined unit cell parameters and volumes are consistent with published data for synthetic zirconolites. Both Sri Lanka zirconolites contain microvoids, spherical in shape, and 200 Angstroms to 2 microns in size. This porosity may be the result of helium accumulation arising from the decay of U and Th. The calzirtite was highly crystalline, exhibited no porosity, and was unchanged by the annealing treatment.« less

  9. Radiation damage and nanocrystal formation in uranium-niobium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, S. X.; Wang, L. M.; Ewing, R. C.

    2001-07-01

    Two uranium-niobium titanates, U 2.25Nb 1.90Ti 0.32O 9.8 and Nb 2.75U 1.20Ti 0.36O 10, formed during the synthesis of brannnerite (UTi 2O 6), a minor phase in titanate-based ceramics investigated for plutonium immobilization. These uranium titanates were subjected to 800 keV Kr 2+ irradiation from 30 to 973 K. The critical amorphization dose of the U-rich and Nb-rich titanates at room temperature were 4.72×10 17 and 5×10 17 ions/ m2, respectively. At elevated temperature, the critical amorphization dose increases due to dynamic thermal annealing. The critical amorphization temperature for both Nb-rich and U-rich titanates is ˜933 K under a 800 keV Kr 2+ irradiation. Above the critical amorphization temperature, nanocrystals with an average size of ˜15 nm were observed. The formation of nanocrystals is due to epitaxial recrystallization. At higher temperatures, an ion irradiation-induced nucleation-growth mechanism also contributes to the formation of nanocrystals.

  10. Dilatometric shrinkage study on magnesium titanate-based ceramic systems

    NASA Astrophysics Data System (ADS)

    Ermawati, F. U.; Suasmoro, S.

    2018-03-01

    The development of dielectric materials for applications in the microwave frequencies has been increasing with rapid progress in mobile and satellite communication systems. Magnesium titanate (MgTiO3)-based ceramics have been the favourite candidates for such applications due to their excellent dielectric characteristics, i.e. a moderate level of dielectric constant together with a high-quality factor and high-temperature stability. These outstanding performance, however, can only be achieved when the ceramics are highly dense. The work reported in this paper discussed the study on the dilatometric shrinkage behaviour of pure and zinc-doped magnesium titanate (Mg1–xZn x TiO3 for x = 0–0.5) ceramic systems after the systems following the heating passage up to 1300 °C. The results were discussed based on the phase formation data recorded from powder X-ray diffraction (XRD). An additional 2 wt. % V2O5 to the MZT0.2 system has increased the shrinkage of the system, and hence the relative density. The V2O5 addition also prevented the grain growth and did not alter the structure. From 100 Hz to 20 MHz, the dielectric permittivity is constant; which varies from (15.4 – 17.0) ± 0.1 % throughout the samples, these values are therefore frequency independent.

  11. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    PubMed

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  12. Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana

    NASA Astrophysics Data System (ADS)

    Hurai, Vratislav; Huraiová, Monika; Gajdošová, Michaela; Konečný, Patrik; Slobodník, Marek; Siegfried, Pete R.

    2018-06-01

    Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe thrusted over the Mesoproterozoic basement of the Nampula block. Zirconolite enriched in rare earth elements—REE = Y + Lu+ΣLa-Yb (up to 24.11 wt% REE2O3, 0.596 apfu REE) creates thin rims around spinel and magnetite grains, whereas zirconolite enriched in U and Th (up to 18.88 wt% ThO2 + UO2, 0.293 apfu Th + U) replace the Late Ediacaran ( 590 Ma) zircon and baddeleyite along contacts with pyrrhotite and magnetite. Both types of zirconolite contain locally increased Nb and Ta concentrations (up to 7.58 wt% Nb2O5 + Ta2O5, 0.202 apfu Nb + Ta). Typical substitutions in zirconolite from Evate involve REE + U,Th → Ca, and M 2++ M 5+→Ti + M 3+ ( M 2+ = Fe2++Mg, M 3+ = Fe3+, M 5+ = Nb5++Ta5+). In addition, REE-zirconolite is typical of the REE + M 2+ → Ca + M 3+ substitution ( M 2+ = Mg, M 3+ = Fe3++Al3+). Hence, Fe3+ predominates over Fe2+ in all types of zirconolite, thus enabling the high REE content in Nb-poor zirconolites to be stored in locally dominant REEZrTiFe3+O7 component known so far only as a synthetic analogue of natural zirconolite. Other types of zirconolite from Evate are dominated by the common CaZrTi2O7 end member, but the aforementioned "synthetic" REEZrTiFe3+O7 accompanied by another `synthetic' (U,Th)ZrFe3 + 2O7 component are also abundant. The U,Pb,Th concentrations in U,Th-zirconolites plot discordantly to theoretical isochrons, thus indicating 440 ppm of non-radiogenic excess lead in earlier Nb-rich zirconolite contrasting with secondary Pb loss from later Nb-poor zirconolite. The non-radiogenic Pb-corrected age of the early zirconolite corresponded to 485 ± 9 Ma, within uncertainty limit identical with the 493 ± 10 Ma age of the associated uranothorianite. The variegated chemical composition of zirconolites reflects the complex history of the Evate deposit. Compositional and

  13. Compact pulse forming line using barium titanate ceramic material

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  14. Thermal stresses in layered barium titanate-based semiconductor ceramics

    NASA Astrophysics Data System (ADS)

    Shut, V. N.; Gavrilov, A. V.

    2008-11-01

    Thermal stresses emerging in a barium titanate-based semiconducting ceramic during heating by electric current are studied using numerical methods. It is shown that the highest tensile stresses are formed in the plane equidistant from the electrodes. The values of these stresses can be as high as 70 MPa, which is commensurate with the critical stresses. A method is proposed for reducing stresses by developing thermistors with a layered structure.

  15. Nanojoint Formation between Ceramic Titanate Nanowires and Spot Melting of Metal Nanowires with Electron Beam.

    PubMed

    Bo, Arixin; Alarco, Jose; Zhu, Huaiyong; Waclawik, Eric R; Zhan, Haifei; Gu, YuanTong

    2017-03-15

    Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO 2 ) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm 2 ) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm 2 ). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.

  16. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.

    PubMed

    Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C

    2013-02-04

    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.

  17. Observation of Failure and Domain Switching in Lead Zirconate Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Sugiyama, Eriko; Sato, Kazuto; Mizuno, Mamoru

    The mechanical and electrical properties (electromechanical coupling coefficient, piezoelectric constant and dielectric constant) of lead zirconate titanate (PZT) ceramics are investigated during mechanical static and cyclic loading. There are several failure characteristics which can alter the material properties of PZT ceramics. The elastic constant increases and electrical properties decrease with increasing the applied load. This is due to the internal strain arising from the domain switching. In this case, 90° domain switching occurs anywhere in the samples as the sample is loaded. It is also apparent that electrogenesis occurs several times during cyclic loading to the final fracture. This occurrence is related to the domain switching. The elastic constant and electrical properties can decrease because of crack generation in the PZT ceramics. Moreover, the elastic constant increases with increase of the mechanical load and decreases with decrease of the load. On the contrary, the opposite sense of change of the electrical properties is observed.

  18. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  19. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  20. Solid-state diffusion in amorphous zirconolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Dove, M. T.; Trachenko, K.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less

  1. Fabrication and modeling of bismuth titanate-PZT ceramic transducers for high temperature applications

    NASA Astrophysics Data System (ADS)

    Reinhardt, B.; Searfass, C.; Cyphers, R.; Sinding, K.; Pheil, C.; Tittmann, B.

    2013-01-01

    Utilization of a spray-on deposition technique of ferroelectric bismuth titanate (Bi4Ti3O12) composites has a competitive advantage to standard ultrasonic transducers. These can conform to curved surfaces, can operate at high temperature (Curie-Weiss temperature 685 °C) and are mechanically well-coupled to a substrate. However, an issue with many high temperature transducers such as bismuth titanate ceramics is that they have relatively low transduction efficiency, i.e. d33 is about 12-14 pC/F in Bi4Ti3O12 versus 650 pC/F in PZT-5H. It is a common conception that high-temperature capability comes at the cost of electro-mechanical coupling. It will be shown that the high temperature capability of bismuth-titanate-PZT composite transducers using the spray-on deposition technique previously developed, improves the electro-mechanical coupling while maintaining the high temperature performance and mechanical coupling. This material could provide advantages in harsh environments where high signal-to-noise ratios are needed.

  2. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with <100> pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and <001>pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of

  3. Degradation of lead-zirconate-titanate ceramics under different dc loads

    NASA Astrophysics Data System (ADS)

    Balke, Nina; Granzow, Torsten; Rödel, Jürgen

    2009-05-01

    During poling and application in actuators, piezoelectric ceramics like lead-zirconate-titanate are exposed to static or cyclically varying electric fields, often leading to pronounced changes in the electromechanical properties. These fatigue phenomena depend on time, peak electric load, and temperature. Although this process impacts the performance of many actuator materials, its physical understanding remains elusive. This paper proposes a set of key experiments to systematically investigate the changes in the ferroelectric hysteresis, field-dependent relative permittivity, and piezoelectric coefficient after submitting the material to dc loads of varying amplitude and duration. The observed effects are explained based on a model of domain stabilization due to charge accumulation at domain boundaries.

  4. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    DOE PAGES

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...

    2017-01-18

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less

  5. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE PAGES

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    2017-07-19

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  6. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  7. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  8. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    PubMed

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  9. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng

    2006-11-01

    The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.

  10. Elution of lead from lead zirconate titanate ceramics to acid rain

    NASA Astrophysics Data System (ADS)

    Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki

    2017-10-01

    The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.

  11. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  12. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    DOE PAGES

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...

    2018-02-08

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less

  13. Comparison of structure, morphology, and leach characteristics of multi-phase ceramics produced via melt processing and hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.

    2018-04-01

    Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.

  14. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.

    PubMed

    Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B

    2009-08-01

    Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

  15. Reduction and structural modification of zirconolite on He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  16. Cavity resonator for dielectric measurements of high-ɛ, low loss materials, demonstrated with barium strontium zirconium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Marksteiner, Quinn R.; Treiman, Michael B.; Chen, Ching-Fong; Haynes, William B.; Reiten, M. T.; Dalmas, Dale; Pulliam, Elias

    2017-06-01

    A resonant cavity method is presented which can measure loss tangents and dielectric constants for materials with dielectric constant from 150 to 10 000 and above. This practical and accurate technique is demonstrated by measuring barium strontium zirconium titanate bulk ferroelectric ceramic blocks. Above the Curie temperature, in the paraelectric state, barium strontium zirconium titanate has a sufficiently low loss that a series of resonant modes are supported in the cavity. At each mode frequency, the dielectric constant and loss tangent are obtained. The results are consistent with low frequency measurements and computer simulations. A quick method of analyzing the raw data using the 2D static electromagnetic modeling code SuperFish and an estimate of uncertainties are presented.

  17. Influence of processing parameters on the structure and properties of barium strontium titanate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun Sining; Department of Materials Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049; Wang Xiaoli

    2008-08-04

    Barium strontium titanate (BST) with the molar formula (Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}) has been prepared by two different processing methods: mixed-oxide (BST-MO) and reaction-sintering (BST-RS). X-ray powder diffraction study shows differences in grain size and crystal symmetry for both these ceramics. The former shows a tetragonal symmetry while the latter presents a cubic symmetry. The occurrence of polar micro-regions associated with the higher chemical non-homogeneous distribution of ion defects from the influence of the processing parameters is the main reason for the higher peak dielectric constant (K{sub m}), the higher remanent polarization (P{sub r}), the higher coercive field (E{sub c}),more » the higher peak current density (J{sub m}), and the lower temperature of peak dielectric constant (T{sub m}) in BST-MO ceramics.« less

  18. Effect of the Sintering Temperature on the Formation of Ferroelectric Properties of a Lead Zirconate-Titanate Ceramic

    NASA Astrophysics Data System (ADS)

    Barabanova, E. V.; Topchiev, A. A.; Malyshkina, O. V.

    2018-04-01

    Effect of the sintering temperature on the formation of the microstructure, the domain structure, and the ferroelectric properties of a lead zirconate-titanate Pb(Ti x Zr1 - x )O3 piezoelectric ceramics has been studied. It is shown that the ferroelectric phase forms at a sintering temperature of 860°C. At higher sintering temperatures, the main effect on the properties is due to a unit cell deformation and free charge carriers.

  19. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Dixiong; Guo, Hanzheng; Morandi, Carl S.; Randall, Clive A.; Trolier-McKinstry, Susan

    2018-01-01

    This paper describes a cold sintering process for Pb(Zr,Ti)O3 ceramics and the associated processing-property relations. Pb(Zr,Ti)O3 has a very small, incongruent solubility that is a challenge during cold sintering. To circumvent this, a Pb(NO3)2 solution was used as the transient liquid phase. A bimodal lead zirconate titanate powder was densified to a relative density of 89% by cold sintering at 300 °C and 500 MPa. After the cold sintering step, the permittivity was 200, and the dielectric loss was 2.0%. A second heat-treatment involving a 3 h anneal at 900 °C increased the relative density to 99%; the resulting relative dielectric permittivity was 1300 at room temperature and 100 kHz. The samples showed well-defined ferroelectric hysteresis loops, having a remanent polarization of 28 μC/cm2. On poling, the piezoelectric coefficient d33 was ˜200 pC/N. With a 700 °C 3 h post-annealing, samples show a lower room temperature relative permittivity (950 at 100 kHz), but a 24 h hold time at 700 °C produces ceramics where there is an improved relative dielectric constant (1050 at 100 kHz).

  20. Inside Titan Author Concept

    NASA Image and Video Library

    2012-06-28

    This artist concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA Cassini spacecraft. Scientists have been trying to determine what is under Titan organic-rich atmosphere and icy crust.

  1. Formation of a Nitrogen-Rich Atmosphere on Titan: A Review of Pre- and Post-Cassini-Huygens Knowledge

    NASA Astrophysics Data System (ADS)

    Sekine, Yasuhito

    This paper reviews pre- and post-Cassini-Huygens knowledge on the formation mechanisms of a N2 atmosphere on Titan. Before the arrival of Cassini, it has been generally considered that Titan's N2 was formed as a result of a major differentiation during accretion and subsequent chemical reactions (such as shock heating and photolysis) in a hot and prolonged proto-atmosphere, mainly composed of NH3 and CH4. However, gravitational data provided by Cassini has revealed that Titan's core consists of a low-density material, suggesting that it remains relatively cold throughout its history. In this case, Titan's proto-atmosphere would have been only tenuous and short-lived, implying that the formation of N2 may not have occurred effectively during accretion. Furthermore, the direct measurements of Enceladus' plumes suggest that the chemical composition of planetesimals that formed the Saturnian satellites was highly likely comet-like, namely large amounts of CO2 rather than CH4. This implies that primordial CO2 in Titan's proto-atmosphere would have been converted into abundant CO via all of the proposed mechanisms that converted NH3 to N2. Recent experiments suggest that even if early Titan was relatively cold, cometary impacts during the late heavy bombardment can produce sufficient amounts of N2 from NH3 contained in Titan. Nevertheless, impacts also could have produced lots of CO as well as N2. Although the recent findings by Cassini-Huygens support the idea that Titan was formed in a gas-starved Saturnian subnebula, there is no scenario that can account for both the formation of the Saturnian satellites in a gas-starved disk and the generation of a thick N2-rich atmosphere on Titan. We discuss the unanswered problems arisen by Cassini and future studies that attempt to resolve them.

  2. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  3. Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications

    NASA Astrophysics Data System (ADS)

    Sangwan, Kanta Maan; Ahlawat, Neetu; Kundu, R. S.; Rani, Suman; Rani, Sunita; Ahlawat, Navneet; Murugavel, Sevi

    2018-06-01

    Lead free Mn doped barium zirconium titanate ceramic of composition BaZr0.045 (MnxTi1-x)0.955O3 (x = 0.00, 0.01, 0.02) were prepared by solid state reaction method. Tetragonal perovskite structure was confirmed by Rietveld refinement of X-ray diffraction pattern. Analysis of Scanning electron microscope (SEM) micrographs revealed that addition of Mn up to a certain limit accelerates grain growth of BZT ceramic. Static dielectric constant was successfully extended up to high frequencies with an appreciable decrease in dielectric loss about 70% for Mn doped BZT ceramics. The experimental data fitted with Curie Weiss Law and Power Law confirmed first order transition and diffusive behavior of the investigated system. The shifting of Curie temperature (Tc) from 387 K to 402 K indicated tendency for sustained ferroelectricity in doped BZMT ceramics. High value of percentage temperature coefficient of capacitance TCC >10% near Tc was observed for all the compositions and increases with Mn content in pure BZT. At room temperature, BZT modified ceramic corresponding to x = 0.01 composition shows better values of remnant polarization (Pr = 5.718 μC/cm2), saturation polarization (Ps = 14.410 μC/cm2), low coercive field (Ec = 0.612 kV/cm), and highest value of Pr/Ps = 0.396.

  4. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, S. P., E-mail: smitalomte@gmail.com; Topare, R. J., E-mail: r-topare@yahoo.com

    2016-05-06

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with themore » effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.« less

  5. High photovoltages in ferroelectric ceramics

    NASA Technical Reports Server (NTRS)

    Brody, P. S.

    1976-01-01

    The short-circuit currents and photo-emfs were measured for various ceramics including barium titanate, lead metaniobate, and lead titanate. It is suggested that the emfs and currents arise from the presence of photoconductor-insulator sandwiches in the presence of space-charge-produced internal fields. Results are in agreement with the proposed theory and indicate that the ferroelectric ceramics are not only producers of high-voltage photoelectricity but a photo-battery, the polarity and magnitude of which can be switched by application of an electrical signal.

  6. Giant actuation strain nearly 0.6% in a periodically orthogonal poled lead titanate zirconate ceramic via reversible domain switching

    NASA Astrophysics Data System (ADS)

    Li, Faxin; Wang, Qiangzhong; Miao, Hongchen

    2017-08-01

    The widely used ferroelectric ceramics based actuators always suffer from small output strains (typically ˜0.1%-0.15%). Non-180° domain switching can generate a large strain in ferroelectrics but it is usually irreversible. In this work, we tailored the domain structures in a soft lead titanate zirconate (PZT) ceramic by periodical orthogonal poling. The non-180° switching in this domain-engineered PZT ceramics turns to be reversible, resulting in a local giant actuation strain of nearly 0.6% under a field of 2 kV/mm at 0.1 Hz. The large interfacial stresses between regions with different poling directions during electric loading/unloading were thought to be responsible for the reversible non-180° domain switching. The switching strain drops quickly with the increasing frequency, and stabilized at about 0.2% at or above 1.0 Hz. The large actuation strain remains quite stable after 104 cycles of loading, which is very promising for low-frequency, large-strain actuators.

  7. Onset of multiferroicity in nickel and lithium co-substituted barium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Alkathy, Mahmoud S.; James Raju, K. C.

    2018-04-01

    The structural, magnetic and ferroelectric properties of nickel and lithium co-substituted barium titanate were investigated in this work. Ba(1-x)LixNix/2TiO3 (x = 0, 0.02, 0.04 and 0.08) ceramics were synthesized via solid-state reaction with the assistance of microwave heating of the starting materials. The tetragonal structure has been observed in all samples, and it is confirmed by the Rietveld refinement study. The morphological study has been carried out by FE-SEM. Electron spin resonance (ESR) has been used to study the electron interaction and to verify the magnetism behavior of present samples. No resonance signal was observed in pure BaTiO3 samples. However, the resonance signal has appeared in the co-substituted samples. The result shows that the electron interactions are strongly affected by Ni2+ and Li+ concentrations. M-H loop was traced using VSM at room temperature. The results confirm that the sample with x = 0 shows an anti-ferromagnetic response. However, a ferromagnetic hysteresis loop arises with co-substitution. The emergence of M-H loops confirms the appearance of magnetic properties in Ni2+ and Li+ co-substituted BaTiO3 ceramics. The origin of magnetic behavior could be due to the carrier-mediated exchange interactions. Room temperature P-E hysteresis loop has been investigated at an applied electric field of 35 kV/cm and 33 Hz frequency. Measurements of room temperature ferroelectric and magnetic hysteresis loops indicate that the Ni2+ and Li+ co-substituted BaTiO3 ceramics show ferroelectricity and ferromagnetism simultaneously.

  8. Indentation Behavior and Mechanical Properties of Tungsten/Chromium co-Doped Bismuth Titanate Ceramics Sintered at Different Temperatures

    PubMed Central

    Xu, Jiageng; Chen, Yu; Tan, Zhi; Nie, Rui; Wang, Qingyuan; Zhu, Jianguo

    2018-01-01

    A sort of tungsten/chromium(W/Cr) co-doped bismuth titanate (BIT) ceramics (Bi4Ti2.95W0.05O12.05 + 0.2 wt % Cr2O3, abbreviate to BTWC) are ordinarily sintered between 1050 and 1150 °C, and the indentation behavior and mechanical properties of ceramics sintered at different temperatures have been investigated by both nanoindentation and microindentation technology. Firstly, more or less Bi2Ti2O7 grains as the second phase were found in BTWC ceramics, and the grain size of ceramics increased with increase of sintering temperatures. A nanoindentation test for BTWC ceramics reveals that the testing hardness of ceramics decreased with increase of sintering temperatures, which could be explained by the Hall–Petch equation, and the true hardness could be calculated according to the pressure-state-response (PSR) model considering the indentation size effect, where the value of hardness depends on the magnitude of load. While, under the application of microsized Vickers, the sample sintered at a lower temperature (1050 °C) gained four linearly propagating cracks, however, they were observed to shorten in the sample sintered at a higher temperature (1125 °C). Moreover, both the crack deflection and the crack branching existed in the latter. The hardness and the fracture toughness of BTWC ceramics presented a contrary variational tendency with increase of sintering temperatures. A high sintering tends to get a lower hardness and a higher fracture toughness, which could be attributed to the easier plastic deformation and the stronger crack inhibition of coarse grains, respectively, as well as the toughening effect coming from the second phase. PMID:29584677

  9. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  10. Titan's Radioactive Haze : Production and Fate of Radiocarbon On Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Jull, A. J. T.; Swindle, T. D.; Lunine, J. I.

    Just as cosmic rays interact with nitrogen atoms in the atmosphere of Earth to gener- ate radiocarbon (14C), the same process should occur in Titan`s nitrogen-rich atmo- sphere. Titan`s atmosphere is thick enough that cosmic ray flux, rather than nitrogen column depth, limits the production of 14 C. Absence of a strong magnetic field and the increased distance from the sun suggest production rates of 9 atom/cm2/s, approx- imately 4 times higher than Earth. On Earth the carbon is rapidly oxidised into CO2. The fate and detectability of 14C on Titan depends on the chemical species into which it is incorporated in Titan's reducing atmosphere : as methane it would be hopelessly diluted even in only the atmosphere (ignoring the other, much more massive carbon reservoirs likely to be present on Titan, like hydrocarbon lakes.) However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers - a much smaller carbon reservoir) , haze in the atmosphere or recently deposited on the surface would therefore be quite intrinsically radioactive. Such activity may modify the haze electrical charging and hence its coag- ulation. Measurements with compact instrumentation on future in-situ missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are `freshest`.

  11. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  12. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  13. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  14. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    PubMed Central

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-01-01

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized. PMID:28793724

  15. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Dandeneau, C.

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less

  16. Promotion of osteogenesis by a piezoelectric biological ceramic.

    PubMed

    Feng, J; Yuan, H; Zhang, X

    1997-12-01

    Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.

  17. Titan's Lakes in a Beaker

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.

    2017-12-01

    The surface of Titan presents a complex, varied surfaced, with mountains, plains, dunes, rivers, lakes and seas, composed of a layer of organics over a water ice bedrock. Over the past 10 years, our group at JPL has developed a variety of techniques to study the chemistry of Titan's organic surface under relevant temperature and pressure conditions (90-100 K, 1.5 bar). Dissolution, precipitation, and both covalent and non-covalent chemical processes are examined using Raman and infrared spectroscopy, mass spectrometry, optical microscopy, and synchrotron X-ray powder diffraction. Despite the low temperatures, our experiments are revealing that a rich and active organic chemistry is possible on Titan's surface. Laboratory experiments like these can provide crucial insights into the geological processes occurring Titan's surface, and help explain the wealth of observational data returned by the Cassini/Huygens mission. This type of data is also critical for the development of future missions to Titan.

  18. Study of entry and landing probes for exploration of Titan

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Saturn's largest moon, Titan, is a totally unique planetary body which is certain to yield exciting new phenomena. Current information is lacking in detail to distinguish between a thin methane rich atmosphere and a thick nitrogen rich atmosphere. Therefore, both the thin and thick atmospheric models were used for the study of various Titan probe classes described in this report. The technical requirements, conceptual design, science return, schedule, cost and mission implications of three probe classes that could be used for exploration of Titan are defined. The three probe classes were based on a wide range of exploration mission possibilities.

  19. Crystallization and dielectric properties of PbTiO3 based glass ceramics

    NASA Astrophysics Data System (ADS)

    Shankar, J.; Rani, G. Neeraja; Deshpande, V. K.

    2018-04-01

    Glass samples with composition (50 - X) PbO - (25 + X) TiO2 - 25 B2O3 (where X = 0, 5, 10 and 12.5 mol %) were prepared using conventional quenching technique. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase. The SEM results show rounded crystallite of lead titanate. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements. The extended heat treatment of glass ceramic samples at 593K for 10 h exhibited saturated hysteresis loops with higher values of remnant polarization.

  20. Alternative High-Performance Ceramic Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  1. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  2. Titan's icy scar

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.

    2017-09-01

    We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.

  3. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  4. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    NASA Astrophysics Data System (ADS)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  5. Titan's impact history

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin

    2010-04-01

    Impacts play a major role in the growth and evolution of planets, satellites, and other nameless things. Titan is no exception. This talk will address a subset of the following topics: (i) The modern impact rate is constrained by the population of Centaurs and the impact rate at Jupiter. (ii) Titan's thick atmosphere and volatile surface cause it to respond to major impacts in an Earth-like manner. The impact that made Menrva - the 440 km diameter impact basin sited near the current apex of Titan's motion - was big enough to raise the average global surface temperature above 273 K, which suggests that water rain was possible. This would have been followed by methane drizzles lasting for thousands of years. More modest impacts will generate crater lakes and will saturate the atmosphere with methane, the latter leading to hundreds of years of intermittent drizzle. (iii) Impact ejecta from Menrva will strike Hyperion and should saturate the latter with sesquinary craters. (iv) In any modern story of how Titan got its atmosphere, solar nebular condensates (comets) deliver the volatiles. A consequence of a cometogenic atmosphere is that the atmosphere is heavily processed by strong shocks. The high temperatures produce a wide range of chemical species that would not otherwise be abundant. Some of these will survive to mix into the atmosphere (e.g., CO) or freeze out to fall to the surface (e.g. CO2). (v) That Titan even has an atmosphere, when Callisto and Ganymede do not, is an excellent question. The leading explanation is that Titan alone was made from ammonia - and methane - rich stuff. But the competition between impact delivery and impact expulsion of volatiles can strongly favor Titan over Callisto. Stable isotopes as well as total volatile inventories provide constraints.

  6. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes.

    PubMed

    Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki

    2015-11-03

    Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain ( S max / E max ) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where S max denotes the maximum strain and E max denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  7. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    PubMed Central

    Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki

    2015-01-01

    Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed. PMID:28793646

  8. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  9. Ceramics: Durability and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramicsmore » apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.« less

  10. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  11. A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics

    NASA Astrophysics Data System (ADS)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.

  12. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  13. Piezoelectric ceramic implants: in vivo results.

    PubMed

    Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W

    1981-01-01

    The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.

  14. Status of plutonium ceramic immobilization processes and immobilization forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologicmore » time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.« less

  15. Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?

    NASA Astrophysics Data System (ADS)

    Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.

    2017-12-01

    The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial

  16. Crater relaxation on Titan aided by low thermal conductivity sand infill

    NASA Astrophysics Data System (ADS)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  17. Examination of the Mass Transfer of Additive Elements in Barium Titanate Ceramics during Sintering Process by Laser Ablation ICP-MS.

    PubMed

    Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki

    2018-01-01

    The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.

  18. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao

    2014-04-01

    Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder wasmore » 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.« less

  19. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    NASA Astrophysics Data System (ADS)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  20. Titan. [Voyager IRIS observation of satellite atmosphere

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1990-01-01

    Saturn's satellite Titan is the second-largest in the solar system. Its dense atmosphere is mostly molecular nitrogen with an admixture of methane, a surface pressure of 1.5 bars and a surface temperature of 94K. The fundamental driving force in the long-term evolution of Titan's atmosphere is the photolysis of methane in the stratosphere to form higher hydrocarbons and aerosols. The current rate of photolysis and undersaturation of methane in the lower troposphere suggests the presence of a massive ethane-methane-nitrogen ocean. The ocean evolves to a more ethane-rich state over geologic time, driving changes in the atmospheric thermal structure. An outstanding issue concerning Titan's earliest history is the origin of atmospheric nitrogen: was it introduced into Titan as molecular nitrogen or ammonia? Measurement of the argon-to-nitrogen ratio in the present atmosphere provides a diagnostic test of these competing hypotheses. Many of the questions raised by the Voyager encounters about Titan and its atmosphere can be adequately addressed only by an entry probe, such as that planned for the Cassini mission.

  1. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  2. Lead-free piezoelectric (K,Na)NbO3-based ceramic with planar-mode coupling coefficient comparable to that of conventional lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato

    2017-06-01

    We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.

  3. Biologically Enhanced Energy and Carbon Cycling on Titan?

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Grinspoon, David H.

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  4. Biologically enhanced energy and carbon cycling on Titan?

    PubMed

    Schulze-Makuch, Dirk; Grinspoon, David H

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  5. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    PubMed

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  6. Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses.

    PubMed

    Zhang, Q M; Zhao, J

    1999-01-01

    In lead zirconate titanate piezoceramics, external stresses can cause substantial changes in the piezoelectric coefficients, dielectric constant, and elastic compliance due to nonlinear effects and stress depoling effects. In both soft and hard PZT piezoceramics, the aging can produce a memory effect that will facilitate the recovery of the poled state in the ceramics from momentary electric or stress depoling. In hard PZT ceramics, the local defect fields built up during the aging process can stabilize the ceramic against external stress depoling that results in a marked increase in the piezoelectric coefficient and electromechanical coupling factor in the ceramic under the stress. Although soft PZT ceramics can be easily stress depoled (losing piezoelectricity), a DC bias electric field, parallel to the original poling direction, can be employed to maintain the ceramic poling state so that the ceramic can be used at high stresses without depoling.

  7. Titan: a laboratory for prebiological organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  8. Seasonal multiphase equilibria in the atmospheres of Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.

    2017-12-01

    At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.

  9. Electrical Degradation in Ceramic Dielectrics

    DTIC Science & Technology

    1988-09-09

    and D. M. Smyth, " Positron Annihilation in Calcium-Doped Barium Titanate", in Electro- Ceramics and Solid State Ionsi, H. L. Tuller and D. M. Smyth...2 with the formation of ompensating oxygen vacancies, and this causes an increase in the ioni conductivity: 2CaO CaC + Call + 20 + (5) TiO2 --- V

  10. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  11. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  12. A Survey of Titan Balloon Concepts and Technology Status

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  13. Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Olstad, R.; McMillan, L.

    The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples producedmore » using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).« less

  14. Volcanic Destabilisation of Methane Clathrate Hydrate on Titan: the Mechanism for Resupplying Atmospheric NH3?

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Sotin, C.; Choukroun, M.; Matson, D. L.; Johnson, T. V.

    2013-09-01

    As previously noted [1-3], Titan may have an upper crust rich in methane clathrates which would have formed early in Titan's history [2, 3]. With an estimated mass of ~2 x 1017 kg, methane is a major component of Titan's atmosphere. The abundance of methane, which photo-dissociates under the influence of solar UV, and the presence of 40Ar require replenishment of these atmospheric components over geologic timescales. One possibility is that volcanic processes release these gases from Titan's interior, although so far there is no conclusive evidence of ongoing volcanic activity: no "smoking gun" has been observed. Still, some process has recently supplied a considerable amount of methane to Titan's atmosphere. We have been investigating the emplacement of proposed "cryolavas" of varying composition to, firstly, examine how such a volcanic process behaves thermally in order to determine event detectability via remote sensing, and, secondly, to model the penetration of the thermal wave into a methane-rich substrate. Destabilisation of clathrates would release methane into the atmosphere and liberate trapped argon.

  15. Photovoltaic effect in ferroelectric ceramics

    NASA Technical Reports Server (NTRS)

    Epstein, D. J.; Linz, A.; Jenssen, H. P.

    1982-01-01

    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv).

  16. Oceanus: A New Frontiers orbiter to study Titan's potential habitability

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Hayes, Alex; Malaska, Michael; Nimmo, Francis; Trainer, Melissa; Tortora, Paolo

    2017-04-01

    The New Frontiers 4 AO includes the theme "Ocean Worlds (Titan and/or Enceladus)" focused on the search for signs of extant life and/or characterizing the potential habitability of Titan and/or Enceladus. The Cassini has demonstrated that Titan is an organic world of two oceans: surface hydrocarbon seas [1,2] that cover part of the north polar region and a deep water ocean [3] that decouples the outer ice crust from an inner core likely composed of hydrated silicates [4]. Oceanus is an orbiter that would follow up on Cassini's amazing discoveries and assess Titan's habitability by following the organics through the methanologic cycle and assessing ex-change processes between the atmosphere, surface, and subsurface. Titan's reduced nitrogen-rich atmosphere operates as an organic factory [5] where heavy organic molecules are produced by a series of reations starting by the photolysis of methane [6,7]. The mass spectrometer will perform high-resolution in situ measurements of the organic material over a large mass range and at different altitudes. It will provide the information required to determine (i) the processes at work to form the heavy molecules, (ii) the functional group pattern of large molecules providing information on their composition. These organics coat Titan's surface and are moved around through a complex source-to-sink sediment transport system analogous to surface processes here on Earth. Titan's 90-95 K surface temperature at 1.5 bar surface pressure permit me-thane and ethane to condense out of the atmosphere and flow as liquids on the surface. As a result, Titan's methane-based hydrologic system produces a rich set of geologic features (dunes, river net-works, polar lakes/seas, etc.). Cassini's observations of this rich geomorphology is hindered by kilometer-scale resolution. Oceanus will take ad-vantage of a narrow atmospheric window at 5 µm to acquire 25 m/pixel (< 100 m resolution) images of Titan diverse surface [8]. The presence of 40Ar, a

  17. Phase-Pure and Multiphase Ceramic Waste Forms: Microstructure Evolution and Cesium Immobilization

    NASA Astrophysics Data System (ADS)

    Tumurugoti, Priyatham

    Efforts of this thesis are directed towards developing ceramic waste forms as a potential replacement for the conventional glass waste forms for the safe immobilization and disposal of nuclear wastes from the legacy weapons programs as well as commercial power production. The body of this work consists of two equal parts with first focused on multiphase waste form containing hollandite as major phase and the later, on single-phase hollandites for Cs incorporation. Part I: Multiphase waste forms:. Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by X-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirm hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of select elements observed by wavelength dispersive spectroscopy (WDS) maps indicate that Cs forms a secondary phase during SPS processing, which is considered undesirable. On the other hand Cs partitioned into hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition, by selected area electron diffraction (SAED), reveals ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice. Following the microstructural analysis, the crystallization behavior of the multiphase composition during melt-processing was studied. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, in-situ XRD, and scanning electron microscopy (SEM). Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500°C and heat-treated at crystallization temperatures of 1285

  18. Touring the saturnian system: the atmospheres of titan and saturn

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Gautier, Daniel

    2002-07-01

    This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter.

  19. An Experimental Investigation towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash

    The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi2Te 3 and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, namely SiGe. Recently, oxides have exhibited great potential to be investigated for high-temperature thermoelectric power generation. The objective of this dissertation is to synthesize and investigate both electronic and thermal transport in strontium titanate (SrTiO3) ceramics in order to experimentally realize its potential and to ultimately investigate the possibility of further improvement of the thermoelectric performance of this perovskite oxide for mid- to high temperature applications. Developing a synthesis strategy and tuning various synthesis parameters to benefit the thermoelectric transport form the foundation of this study. It is worth mentioning that the results of this study has been employed to prepare targets for pulsed-laser deposition (PLD) to study the thermoelectric properties of corresponding thin films and superlattice structures at Dr. Husam Alshareef's group at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Considering the broad range of functionality of SrTiO3, the findings of this work will surely benefit other fields of research and application of this functional oxide such as photoluminescence, ferroelectricity or mixed-ionic electronic conductivity. This dissertation will ultimately

  20. Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru

    2011-04-15

    The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.

  1. Analysis of Subsurface Clathrates in the Upper Crust of Titan

    NASA Technical Reports Server (NTRS)

    Elliott, John

    2011-01-01

    Titan has an atmosphere rich in methane, which should have long since been depleted unless a mechanism exists for storing this molecule below the surface. One hypothesis is that methane could be stored in the form of a clathrate hydrate, which is a structure with an ice lattice forming molecular cages in which gases are trapped. It is stable at low temperatures and over a wide range of pressures, suggesting that a clathrate hydrate may have stored methane on Titan from the beginning of its history.

  2. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  3. Characterisation of a PdCl 2/SnCl 2 electroless plating catalyst system adsorbed on barium titanate-based electroactive ceramics

    NASA Astrophysics Data System (ADS)

    Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.

    1994-03-01

    A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.

  4. Transient Climate Effects of Large Impacts on Titan

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Korycansky, Donald; Nixon, Conor A.

    2013-01-01

    Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We find that a nominal Menrva impact is big enough to raise the surface temperature by approx. 80 K and to double the amount of methane in the atmosphere. The extra methane drizzles out of the atmosphere over hundreds of years. An upper-limit Menrva is just big enough to raise the surface to water's melting point. The putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al., 2009) is big enough to raise the surface temperature to 350-400 K. Water rain must fall and global meltwaters might range between 50 m to more than a kilometer deep, depending on the details. Global meltwater oceans do not last more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth. Significant near-surface clathrate formation is possible as Titan cools but faces major kinetic barriers.

  5. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  6. Ferroelectric properties of substituted barium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2009-06-01

    Barium titanate (BT) is among the most studied ferroelectric material which has been used in various forms, e.g. bulk, thin and thick film, powder, in a number of applications. In order to achieve a material with desired properties, it is modified with a variety of substituents. Most common substituents have been strontium, calcium and zirconium. Here we report studies on lead and zirconium substituted BT. The material series with compositional formula Ba 0.80Pb 0.20Ti 1-xZr xO 3 with, 0< x<0.1 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered in the range of 1300 °C. All the samples were subjected to X-ray analysis and found to be single phase. Ferroelectric properties were studied as a function of composition and temperature. Pr/ Ps ratio was determined. It was found to decrease with increase in x.

  7. Cassini observations of carbon-based anions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew

    2016-07-01

    Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.

  8. High temperature dielectric relaxation anomaly of Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui

    2014-10-14

    Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysismore » reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.« less

  9. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  10. Low-Temperature Alkaline pH Hydrolysis of Oxygen-Free Titan Tholins: Carbonates' Impact.

    PubMed

    Brassé, Coralie; Buch, Arnaud; Coll, Patrice; Raulin, François

    2017-01-01

    Titan, the largest moon of Saturn, is one of the key planetary objects in the field of exobiology. Its dense, nitrogen-rich atmosphere is the site of important organic chemistry. This paper focuses on the organic aerosols produced in Titan's atmosphere that play an important role in atmospheric and surface processes and in organic chemistry as it applies to exobiological interests. To produce reliable laboratory analogues of these aerosols, we developed, tested, and optimized a device for the synthesis of clean tholins. The potential chemical evolution of Titan aerosols at Titan's surface has been studied, in particular, the possible interaction between aerosols and putative ammonia-water cryomagma. Modeling of the formation of Saturn's atmosphere has permitted the characterization of a composition of salts in the subsurface ocean and cryolava. From this new and original chemical composition, a laboratory study of several hydrolyses of tholins was carried out. The results obtained show the formation of many organic compounds, among them, species identified only in the presence of salts. In addition, a list of potential precursors of these compounds was established, which could provide a database for research of the chemical composition of tholins and/or aerosols of Titan. Key Words: Titan tholins-Titan aerosols-Hydrolysis-Carbonates-Titan's surface. Astrobiology 17, 8-26.

  11. Photochemical aerosol formation in planetary atmospheres: A comparison between Pluto and Titan

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Strobel, Darrell F.; Lellouch, Emmanuel; Gurwell, Mark A.; Cheng, Andrew F.; Summers, Michael; Gladstone, Randy

    2016-10-01

    The New Horizons mission observations have revealed us that Pluto's atmosphere is rich in photochemical hazes that extend to high altitudes above its surface [1], apparently similar to those observed in Titan's atmosphere [2].We use detailed models combining photochemistry and microphysics in order to simulate the aerosol formation and growth in Pluto's atmosphere, as performed for Titan's atmosphere [3]. Here we discuss the possible mechanisms leading to the formation of haze particles in Pluto's atmosphere, and we evaluate the contribution of different growth processes (e.g. coagulation vs. condensation) to the resulting particle properties.Moreover we investigate the role of these particles in the radiative balance of Pluto's atmosphere and we compare the resulting particle properties, with those retrieved for Titan's upper atmosphere based on Cassini observations [4]. We discuss the similarities and difference between Pluto's and Titan's aerosols.[1] Gladstone et al., 2016, Science, 351, 6271[2] West et al., 2015, Titan's Haze, in Titan, Interior, Surface, Atmosphere and Space environment, Cambridge University Press[3] Lavvas et al., 2013, PNAS, pnas.1217059110[4] Lavvas et al., 2015, DPS47, id.205.08

  12. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  13. An experimental analysis of strontium titanate ceramic substrates polished by magnetorheological finishing with dynamic magnetic fields formed by rotating magnetic poles

    NASA Astrophysics Data System (ADS)

    Pan, Jisheng; Yu, Peng; Yan, Qiusheng; Li, Weihua

    2017-05-01

    Strontium titanate (SrTiO3, STO) ceramic substrate is an incipient ferroelectric material with a perovskite structure and which has a wide range of applications in the fields of microwave, millimetre wave, and optic fibre. This paper reports on a system of experiments carried out on STO substrates using a new magnetorheological (MR) finishing process where dynamic magnetic fields are formed by magnetic poles rotate. The results show that a circular ring shaped polishing belt with a stability evaluation zone appears on the surface after being polished by MR finishing with a single-point dynamic magnetic field. The dynamic magnetic fields are stronger when the revolutions of magnetic pole increase and eccentricity of pole enlarge, with the surface finish is smoother and more material is removed. The optimum machining times, machining gap, oscillation distance, eccentricity of pole, revolutions of the workpiece and magnetic pole are 60 min, 0.8 mm, 0 mm, 7 mm, and 350 r min-1 and 90 r min-1, respectively, and the best MR fluid consists of 6 wt% of diamond abrasives in W1 particle size and 18 wt% of carbonyl iron powder in W3.5 particle size. A surface roughness of Ra and a material removal rate of 8 nm and 0.154 μm min-1 can be obtained in these optimum process conditions. Finally, the polishing mechanism for dynamic magnetic fields and the mechanism for removing material from STO ceramic substrates are discussed in detail.

  14. Methane on Titan: Photochemical-Meteorological-Hydrogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Niemann, H. B.; Owen, T. C.; Adams, E. Y.; Demick, J. E.; GCMS Team

    2005-08-01

    Photochemically driven destruction of methane in Titan's stratosphere leads to irreversible conversion to heavier hydrocarbons (1). The latter would largely condense out of the atmosphere (2). In the absence of recycling, Titan's methane would thus be destroyed in 10-100 million years (1). However, methane is key to the maintenance of Titan's nitrogen atmosphere. Without warming provided by CH4-generated hydrocarbon hazes in the stratosphere and pressure induced opacity in the infrared, particularly by H2-N2 and CH4-N2 collisions in the troposphere, the atmosphere would gradually diminish to tens of millibar pressure (3). Thus, the source-sink cycle of methane is crucial to the evolutionary history of Titan and its atmosphere. The GCMS measurements show that a ``methalogical" cycle with surface evaporation, cloud formation, followed by precipitation (rain) of methane exists. However, this ``closed" cycle does not recycle methane lost to heavy hydrocarbons. A source is required. Unlike the deep, hot, H2-rich interiors of the giant planets, Titan's interior is ill suited for thermochemical conversion of hydrocarbons back to methane. Instead we propose that serpentinization is an effective process for producing methane in Titan's interior (4). Hydration of ultramafic silicates, followed by reaction between the released H2 gas and CO2 or carbon grains can produce large quantities of CH4 at relatively mild (40-90oC) temperatures. Such thermal conditions are believed to exist below the purported water-ammonia ocean (5). Storage of methane produced via serpentinization can occur in form of clathrates. Evidence of outgassing from Titan's interior is provided by GCMS (6) and VIMS (7) data. (1) Wilson, Atreya, JGR 109, E06002, doi:10.1029/2003JE002181, 2004. (2) Wilson, Atreya, PSS 51, 1017, 2003. (3) Lorenz etal. Science 275, 642, 1997. (4) Owen etal. Phys. Uspekhi, in press. (5) Grasset, Pargamin, PSS 53, 371, 2005. (6) Niemann etal., Submitted to Nature, 2005. (7) Sotin

  15. Pyrochlore structure and spectroscopic studies of titanate ceramics. A comparative investigation on SmDyTi2O7 and YDyTi2O7 solid solutions

    NASA Astrophysics Data System (ADS)

    Garbout, A.; Férid, M.

    2018-06-01

    Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.

  16. Titan Saturn System Mission (TSSM) Enables Comparative Climatology with Earth

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Lunine, J.; Coustenis, A.; Matson, D.; Beauchamp, P.; Erd, C.; Lebreton, J.

    2009-09-01

    Titan is a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. The Titan Saturn System Mission would seek to understand Titan as a system, in the same way that one would ask this question about Venus, Mars, and the Earth. How are distinctions between Titan and other worlds in the solar systems understandable in the context of the complex interplay of geology, hydrology, meteorology, and aeronomy? Is Titan an analogue for some aspect of Earth's history, past or future? Why is Titan endowed with an atmosphere when Ganymede is not? Titan is also rich in organic molecules_more so in its surface and atmosphere than anyplace in the solar system, including Earth (excluding our vast carbonate sediments). These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. The second goal of the proposed TSSM mission is to understand the chemical cycles that generate and destroy organics and assess the likelihood that they can tell us something of life's origins. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  17. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  18. Titan's Atmosphere and Surface Explored by Future in Situ Balloon Investigations

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; OPAG Titan Working Group

    2009-09-01

    A wide range of high priority scientific questions for Titan remain to be addressed after Cassini-Huygens, some of which cannot be comprehensively addressed by any envisioned extension of Cassini flybys due to its inherent limitations and require both remote and in situ investigation. Whereas a spacecraft in orbit around Titan could allow for a thorough investigation of Titan's upper atmosphere, there are questions that can only be answered by extending the measurements into Titan's lower atmosphere and down to the surface. Key steps toward the synthesis of prebiotic molecules that may have been present on the early Earth as precursors to life might be occurring high in the atmosphere, the products then descending towards the surface where they might replicate. In situ chemical analysis of gases, liquids and solids, both in the atmosphere and on the surface, would enable the identification of chemical species that are present and how far such putative reactions have advanced. The rich inventory of complex organic molecules that are known or suspected to be present in the lower atmosphere and at the surface gives Titan a strong astrobiological potential. Our understanding of the forces that shape Titan's diverse landscape and interior will benefit greatly from detailed investigations at a variety of locations, a demanding requirement anywhere else, but one that is uniquely possible at Titan using a hot-air balloon (montgolfière). Indeed, Titan's thick cold atmosphere and low gravity make the deployment of in situ elements using parachutes (as demonstrated by the Cassini-Huygens probe) and balloons vastly easier than for any other solar system body. A balloon floating across the Titan landscape for long periods of time, with an adapted payload, would offer the mobility required to explore the diversity of Titan in a way that cannot be achieved with any other platform.

  19. Thermally stimulated processes in samarium-modified lead titanate ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Peláiz-Barranco, A.; García-Wong, A. C.; González-Abreu, Y.; Gagou, Y.; Saint-Grégoire, P.

    2013-08-01

    The thermally stimulated processes in a samarium-modified lead titanate ferroelectric system are analyzed from the thermally stimulated depolarization discharge current. The discharge due to the space charge injected during the poling process, the pyroelectric response and a conduction process related to oxygen vacancies are evaluated considering a theoretical decomposition by using a numerical method. The pyroelectric response is separated from other components to evaluate the polarization behavior and some pyroelectric parameters. High remanent polarization, pyroelectric coefficient and merit figure values are obtained at room temperature.

  20. From Titan to the primitive Earth

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Gpcos Team

    thought. If this is correct, the chemical processes involved in Titan's atmospheric chemistry may be even closer to those on the primitive Earth. References. Feng T., Owen B. T., Pavlov, A.A, and De Sterck, H. 2005. `A Hydrogen-Rich Early Earth Atmosphere'. Science 308, 1014-1017. Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 2

  1. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    PubMed

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  2. A whiff of nebular gas in Titan's atmosphere - Potential implications for the conditions and timing of Titan's formation

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.

    2017-09-01

    solar system, before the ultimate source of gas (the solar nebula) dissipated. More specifically, if photoevaporative fractionation happened, the time-evolution for the depletion of permanent gases in the solar nebula can be parameterized to the ∼3 times solar noble gas enrichments of Jupiter for an assumed Jupiter formation time of ∼2 Myr after calcium-aluminum-rich inclusions (CAIs). This allows the construction of a consistent chronology with a Titan formation time of ∼3-4 Myr after CAIs. Because the models presented in this work are pushing the limits of the data from Titan, future mass spectrometric measurements of the noble gases and their isotopes (to at least ppt sensitivity) will be essential to confirm the Huygens detection of 22Ne, and to constrain the roles of evolutionary processes and mixed sources in determining the noble gas geochemistry of Titan's atmosphere. The clearest indication of a nebular gas source for noble gases on Titan would be a solar-like isotopic ratio of 20Ne/22Ne ≈ 14.

  3. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  4. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  5. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; Reh, K. R.; Lunine, J.; Coustenis, A.; Erd, C.; Matson, D.; Lebreton, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2003 NRC report on New Frontiers in the Solar System (Decadal Survey). As anticipated by the NRC subcommittee, recent Cassini-Huygens discoveries have revolutionized our understanding of Titan and its potential for harbouring "ingredients” necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life. The TSSM concept would consist of a NASA provided orbiter with ESA provided Lander and Montgolfiere Balloon. The mission would launch on an Atlas 551 in 2018-2020, and travel to Saturn on a gravity assist trajectory, reaching Saturn 8.5 years later. The SEP stage would be released and the main engine would place the flight system into orbit around Saturn for a 2 year tour. During the first Titan flyby the in situ elements would be released to target a polar lake and mid-latitude region respectively. During the tour phase, TSSM would accomplish Saturn system and Enceladus science. Following the tour, the spacecraft would enter into an elliptical Titan orbit and perform extensive aerosampling while aerobraking in Titan's atmosphere. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar orbit. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  6. Contribution of nanointerfaces to colossal permittivity of doped Ba(Ti,Sn)O3 ceramics

    NASA Astrophysics Data System (ADS)

    V'yunov, Oleg; Reshytko, Borys; Belous, Anatolii; Kovalenko, Leonid

    2018-03-01

    The microstructure, crystal chemical parameters and electrical-physical properties of samples of barium titanate-based dielectric and semiconductor ceramics were investigated in a wide frequency range. The contributions of different nanointerfaces to the permittivity of samples under investigation have been determined.

  7. Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics

    NASA Astrophysics Data System (ADS)

    Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.

    2017-06-01

    This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.

  8. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  9. Correlation among oxygen vacancies in bismuth titanate ferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Wei; Chen Kai; Yao Yangyang

    2004-11-15

    Pure Bi{sub 4}Ti{sub 3}O{sub 12} ceramics were prepared using the conventional solid-state reaction method and their dielectric properties were investigated. A dielectric loss peak with the relaxation-type characteristic was observed at about 370 K at 100 Hz frequency. This peak was confirmed to be associated with the migration of oxygen vacancies inside ceramics. The Cole-Cole fitting to this peak reveals a strong correlation among oxygen vacancies and this strong correlation is considered to commonly exist among oxygen vacancies in ferroelectrics. Therefore, the migration of oxygen vacancies in ferroelectric materials would demonstrate a collective behavior instead of an individual one duemore » to this strong correlation. Furthermore, this correlation is in proportion to the concentration and in inverse proportion to the activation energy of oxygen vacancies. These results could be helpful to the understanding of the fatigue mechanisms in ferroelectric materials.« less

  10. Titan Accent Mark

    NASA Image and Video Library

    2015-10-05

    A coincidence of viewing angle makes Pandora appear to be hovering over Titan, almost like an accent mark. Little Pandora is much closer to Cassini than hazy Titan in this view. (Titan is nearly three times farther away.) Even so, Titan (3,200 miles or 5,150 kilometers across) dwarfs Pandora (50 miles or 81 kilometers across). This gives us some sense of the diversity in sizes, and shapes, of Saturn's many moons. North on Titan is up and rotated 19 degrees to the right. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera on July 4, 2015. The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Titan. Image scale is 7 miles (12 kilometers) per pixel on Titan. Pandora is at a distance of 436,000 miles (698,000 kilometers) away from the spacecraft. The scale on Pandora is about 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18338

  11. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  12. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  13. Synthesis and characterization of PbTiO3 based glass ceramics

    NASA Astrophysics Data System (ADS)

    Shankar, J.; Rani, G. Neeraja; Mamatha, B.; Deshpande, V. K.

    2017-05-01

    Glass samples with composition (50 - X) PbO - XCaO - 25 TiO2 - 25 B2O3 (where = 0, .5, 10 and 15 mol %) were prepared using conventional quenching technique. It was observed that with the addition of alkaline earth oxides to lead borate glass containing TiO2 alters the network (conversion of BO3 to BO4) increasing the rigidity of the glass which enhances the Tg. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The density values of glass ceramic samples are higher than those of corresponding glass samples. It was observed that there was good correlation between the density and CTE results of the glass-ceramics. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase and Ca3Ti2O7 as minor crystalline phase. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements.

  14. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, Eric R.; La Robina, Michael; Li, Huijun

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  15. Methane, Ethane, and Nitrogen Stability on Titan

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  16. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  17. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.

    2016-05-23

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less

  18. Sagan Lecture : Exploring Titan, An Earth-like Organic Paradise

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2007-12-01

    Saturn's giant moon Titan has been called many things - 'The Mars of the Outer Solar System', 'A Fiercely-Frozen Echo of the Early Earth', 'A Place Like Home'- indeed, 'The Whole ball of Wax'. These various appelations reflect the richness and bewildering complexity of this most fascinating world which bears comparisons with both the terrestrial planets as well as other icy satellites. Titan's thick but dynamic atmosphere sculpts its surface with tidal winds and methane monsoons, and its climate has competing greenhouse and antigreenhouse effects as well as a seasonal polar haze structure analogous to the Earth's ozone hole. Titan is striking also in its massive organic inventory - its dunes and lakes make up an exposed carbon reservoir hundreds of times more massive than all of Earth's fossil fuels. At least part of this organic inventory has been processed by transient exposures to liquid water, in impact melt sheets and cryovolcanic flows (a scenario first pointed out by Thompson and Sagan in 1991). This aqueous chemical interaction is known from terrestrial laboratory experiments to yield amino acids, pyrimidines and other building blocks of living molecular systems. How far these chemical systems might evolve on geological, as opposed to laboratory, scales of space and time on Titan is completely unknown, but must surely be interesting to find out. The talk will review some of the surprising findings from Cassini-Huygens, their lessons for us here on Earth, and what future Titan exploration may tell us about the origins of worlds and the origins of life.

  19. Possible Niches for Extant Life on Titan in Light of Cassini/Huygens Results

    NASA Astrophysics Data System (ADS)

    Grinspoon, D. H.; Bullock, M. A.; Spencer, J. R.; Schulze-Makuch, D.

    2005-08-01

    Results from the first year of the Cassini mission show that Titan has an active surface with few impact craters and abundant hints of cryovolcanism, tectonism, aeolian and fluvial activity (Porco et al., 2005; Elachi et al., 2005). Methane clouds and surface characteristics strongly imply the presence of an active global methane cycle analogous to Earth's hydrological cycle. Astrobiological interest in Titan has previously focused on possible prebiological chemical evolution on a moon with a thick nitrogen atmosphere and rich organic chemistry (Raulin and Owen, 2002). Yet the emerging new picture of Titan has raised prospects for the possibility of extant life. Several key requirements for life appear to be present, including liquid reservoirs, organic molecules and ample energy sources. One promising location may be hot springs in contact with hydrocarbon reservoirs. Hydrogenation of photochemically produced acetylene could provide metabolic energy for near-surface organisms and also replenish atmospheric methane (Schulze-Makuch and Grinspoon, 2005). The energy released could be used by organisms to drive endothermic reactions, or go into heating their surroundings, helping to create their own liquid microenvironments. In environments which are energy-rich but liquid-poor, like the near-surface of Titan, natural selection may favor organisms that use their ``waste heat" to melt their own watering holes. Downward transport of high energy photochemical compounds could provide an energy supply for near-surface organisms which could be used, in part, to maintain the liquid environments conducive to life. We will present the results of thermal modeling designed to test the feasibility of biothermal melting on Titan. C. Porco and the Cassini Imaging Team (2005) Nature 434, 159-168; C. Elachi et al, Science, 308, 970-974; F. Raulin and T. Owen (2002) Space Sci. Rev. 104, 377 - 394.; D. Schulze-Makuch and D. H. Grinspoon (2005) Astrobiology, in press.

  20. The Exploration of Titan and the Saturnian System

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of recent exploration, in particular on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the planet and the other satellites and rings. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. In particular, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 [1] and prioritized second for a launch around 2023-2025. TSSM comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: a montgolfiere and a lake-landing lander. The mission would arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfiere would last at least 6 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a —2-year orbit around Titan. References 1. TSSM and EJSM NASA/ESA Joint Summary Report, 16 January 2009 2. Coustenis et al. (2008

  1. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  2. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  3. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  4. Titan Submarines!

    NASA Astrophysics Data System (ADS)

    Oleson, S. R.; Lorenz, R. D.; Paul, M. V.; Hartwig, J. W.; Walsh, J. M.

    2017-02-01

    A NIAC Phase II submarine concept, dubbed 'Titan Turtle' for Saturn's moon Titan's northern sea, Ligea Mare. A design concept including science and operations is described for this -180°C liquid methane sea.

  5. Not So Titanic

    NASA Image and Video Library

    2015-07-13

    Titan may be a "large" moon -- its name even implies it! -- but it is still dwarfed by its parent planet, Saturn. As it turns out, this is perfectly normal. Although Titan (3200 miles or 5150 kilometers across) is the second-largest moon in the solar system, Saturn is still much bigger, with a diameter almost 23 times larger than Titan's. This disparity between planet and moon is the norm in the solar system. Earth's diameter is "only" 3.7 times our moon's diameter, making our natural satellite something of an oddity. (Another exception to the rule: dwarf planet Pluto's diameter is just under two times that of its moon.) So the question isn't why is Titan so small (relatively speaking), but why is Earth's moon so big? This view looks toward the anti-Saturn hemisphere of Titan. North on Titan is up. The image was taken with the Cassini spacecraft wide-angle camera on April 18, 2015 using a near-infrared spectral filter with a passband centered at 752 nanometers. The view was acquired at a distance of approximately 930,000 miles (1.5 million kilometers) from Titan. Image scale is 56 miles (90 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18326

  6. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  7. Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sharma, Sanjeev K.; Sankar, S.; Sankar Ganesh, R.; Marikani, A.; Kim, Deuk Young

    2016-12-01

    The bismuth titanate (Bi4Ti3O12) or BTO nanopowder was synthesized from the combustion method and fabricated a microstrip rectangular patch antenna (MPA). The crystal structure and lattice spacing of BTO were evaluated from XRD, TEM, and SAED analysis. The crystal structure of BTO (annealed at 900 °C) was observed to be the orthorhombic phase with fcc lattice. The microstructure of BTO nanoparticles was confirmed the spherical and hexagonal shapes, which were slightly agglomerated due to the lack of stabilizing surfactants. The presence of weak and wide bands in Raman spectrum quantified the mechanical compressions to the uniform directions of elongated lattice constants and tensions to the lattice constriction of crystalline bismuth titanate. To fabricate the MPA, pellets of BTO nanopowder were prepared by applying the uniaxial pressure in the dimension of 1.5 mm thickness and 8 mm diameter. These pellets were formed a densely packed structure close to the theoretical density. The coercivity and remanence polarization of BTO ceramics increased as the applied field increased. The inexpensive combustion synthesis method of BTO nanopowder showed the high dielectric constant (ɛ' = 450) and low dielectric loss (tan δ = 0.98), which has a potential implication of the cost-effectiveness in the field of miniaturized microelectronics. The synthesis and measurements of BTO ceramics are found to be suitable for wireless communication systems.

  8. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  9. Intensive Titan exploration begins.

    PubMed

    Mahaffy, Paul R

    2005-05-13

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  10. Big Impacts and Transient Oceans on Titan

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.

    2014-01-01

    We have studied the thermal consequences of very big impacts on Titan [1]. Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We assume that half of the impact energy is immediately available to the atmosphere and surface while the other half is buried at the site of the crater and is unavailable on time scales of interest. The atmosphere and surface are treated as isothermal. We make the simplifying assumptions that the crust is everywhere as methane saturated as it was at the Huygens landing site, that the concentration of methane in the regolith is the same as it is at the surface, and that the crust is made of water ice. Heat flow into and out of the crust is approximated by step-functions. If the impact is great enough, ice melts. The meltwater oceans cool to the atmosphere conductively through an ice lid while at the base melting their way into the interior, driven down in part through Rayleigh-Taylor instabilities between the dense water and the warm ice. Topography, CO2, and hydrocarbons other than methane are ignored. Methane and ethane clathrate hydrates are discussed quantitatively but not fully incorporated into the model.

  11. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  12. A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker

    NASA Astrophysics Data System (ADS)

    Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu

    2014-10-01

    A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.

  13. Titan's Variable Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2015-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.

  14. Unfolding grain size effects in barium titanate ferroelectric ceramics

    PubMed Central

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  15. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  16. Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics.

    PubMed

    Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen

    2014-02-01

    A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.

  17. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  18. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Danti, Serena; D'Alessandro, Delfo; Moscato, Stefania; Petrini, Mario; Menciassi, Arianna

    2010-07-01

    In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs), an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml). Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  19. Nitrogen Fixation by Photochemistry in the Atmosphere of Titan and Implications for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    The observation of N-containing organic molecules and the composition of the haze aerosols, as determined by the Aerosol Collector and Pyrolyser (ACP) on-board Huygens, are clear indications that some chemistry involving nitrogen active forms and hydrocarbons is operative in the upper atmosphere of Titan. Neutral-neutral reactions involving the first electronically excited state of atomic nitrogen, N(2D), and small hydrocarbons have the right prerequisites to be among the most significant pathways to formation of nitriles, imines and other simple N-containing organic molecules. The closed-shell products methanimine, ethanimine, ketenimine, 2H-azirine and the radical products CH3N, HCCN and CH2NCH can be the intermediate molecular species that, via addition reactions, polymerization and copolymerization form the N-rich organic aerosols of Titan as well as tholins in bulk reactors simulating Titan's atmosphere.

  20. Dunelands of Titan

    NASA Image and Video Library

    2015-11-02

    Saturn's frigid moon Titan has some characteristics that are oddly similar to Earth, but still slightly alien. It has clouds, rain and lakes (made of methane and ethane), a solid surface (made of water ice), and vast dune fields (filled with hydrocarbon sands). The dark, H-shaped area seen here contains two of the dune-filled regions, Fensal (in the north) and Aztlan (to the south). Cassini's cameras have frequently monitored the surface of Titan (3200 miles or 5150 kilometers across) to look for changes in its features over the course of the mission. Any changes would help scientists better understand different phenomena like winds and dune formation on this strangely earth-like moon. For a closer view of Fensal-Aztlan, see PIA07732 . This view looks toward the leading side of Titan. North on Titan is up. The image was taken with the Cassini spacecraft narrow-angle camera on July 25, 2015 using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 450,000 miles (730,000 kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 32 degrees. Image scale is 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18341

  1. Investigation of the stability of glass-ceramic composites containing CeTi 2 O 6 and CaZrTi 2 O 7 after ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paknahad, Elham; Grosvenor, Andrew P.

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less

  2. Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation

    NASA Astrophysics Data System (ADS)

    Paknahad, Elham; Grosvenor, Andrew P.

    2017-12-01

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.

  3. Prediction of the physical properties of barium titanates using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Al-Jabar, Ahmed Jaafar Abed; Al-dujaili, Mohammed Assi Ahmed; Al-hydary, Imad Ali Disher

    2017-04-01

    Barium titanate is one of the most important ceramics amongst those that are widely used in the electronic industry because of their dielectric properties. These properties are related to the physical properties of the material, namely, the density and the porosity. Thus, the prediction of these properties is highly desirable. The aim of the current work is to develop models that can predict the density, porosity, firing shrinkage, and the green density of barium titanate BaTiO3. An artificial neural network was used to fulfill this aim. The modified pechini method was used to prepare barium titanate powders with five different particle size distributions. Eighty samples were prepared using different processing parameters including the pressing rate, pressing pressure, heating rate, sintering temperature, and soaking time. In the artificial neural network (ANN) model, the experimental data set consisted of these 80 samples, 70 samples were used for training the network and 10 samples were employed for testing. A comparison was made between the experimental and the predicted data. Good performance of the ANN model was achieved, in which the results showed that the mean error for the density, porosity, shrinkage, and green density are 0.02, 0.06, 0.04, and 0.002, respectively.

  4. Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    2002-07-01

    Ferroelectric ceramics exhibit a permanent remanent polarization, and shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. A more complex behavior was indicated over broader conditions, however, resulting in the incorporation of shock-induced conductivity and dielectric relaxation into analytical models. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2% niobium (PZT 95/5). This material is nominally ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into both the stress and field dependencies of depoling kinetics, and the significance of pore collapse at higher stresses. The results are being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.

  5. Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics*

    NASA Astrophysics Data System (ADS)

    Setchell, Robert E.

    2001-06-01

    Ferroelectric ceramics exhibit a permanent remanent polarization, and the use of shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. In general, however, the studies indicated a complex behavior involving finite-rate depoling kinetics with stress and field dependencies. Dielectric relaxation and shock-induced conductivity were also suggested. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into the stress and field dependencies of depoling kinetics and dielectric properties, and is being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.

  6. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  7. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  8. Two Titans

    NASA Image and Video Library

    2017-08-11

    These two views of Saturn's moon Titan exemplify how NASA's Cassini spacecraft has revealed the surface of this fascinating world. Cassini carried several instruments to pierce the veil of hydrocarbon haze that enshrouds Titan. The mission's imaging cameras also have several spectral filters sensitive to specific wavelengths of infrared light that are able to make it through the haze to the surface and back into space. These "spectral windows" have enable the imaging cameras to map nearly the entire surface of Titan. In addition to Titan's surface, images from both the imaging cameras and VIMS have provided windows into the moon's ever-changing atmosphere, chronicling the appearance and movement of hazes and clouds over the years. A large, bright and feathery band of summer clouds can be seen arcing across high northern latitudes in the view at right. These views were obtained with the Cassini spacecraft narrow-angle camera on March 21, 2017. Images taken using red, green and blue spectral filters were combined to create the natural-color view at left. The false-color view at right was made by substituting an infrared image (centered at 938 nanometers) for the red color channel. The views were acquired at a distance of approximately 613,000 miles (986,000 kilometers) from Titan. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21624

  9. Using Synthetic Aperture Radar data of terrestrial analogs to test for alluvial fan formation mechanisms on Titan

    NASA Astrophysics Data System (ADS)

    Cartwright, R. J.; Burr, D. M.

    2017-03-01

    Landforms on Titan include features hypothesized to be alluvial fans. Terrestrial alluvial fans form via two processes: fluid-gravity flows (sheetfloods) and sediment-gravity flows (debris flows). Along the Panamint Mountain Range in Death Valley, California, USA, seven fans formed primarily by debris flows are located adjacent to seven fans formed primarily by sheetfloods. The causal difference between these two groupings stems from their catchment lithologies; the debris flow fan catchments are clay-rich and relatively sand-poor, and the sheetflood fan catchments are clay-poor and sand-rich. On Titan, the low and mid latitudes are dominated by sand seas, demonstrating that sand is available for transport. At high latitudes, these sand seas are absent, suggesting that transportable sand is scarce. Based on the sedimentology of the two Panamint Range fan types, we hypothesize that possible fans at lower latitudes on Titan are formed by sheetfloods, whereas those at higher latitudes formed primarily by debris flows. To test these hypotheses, we measured and analyzed the mean normalized radar cross sections (σ°) and changes in σ° with downfan distance for debris flow and sheetflood fans along the Panamint Range. We then compared the results with the same measurements for possible fans on Titan. We find that, in the Panamint Range, debris flow fans are brighter than sheetflood fans and have greater change in σ° with downfan distance, and that on Titan, low-latitude possible fans are likewise brighter than the fans at high latitudes with greater change in σ° with downfan distance. Consequently, our findings suggest that low-latitude possible fans on Titan are formed primarily by debris flows, whereas high-latitude possible fans on Titan are formed primarily by sheetfloods. Thus, our results do not support our hypotheses. Scenarios to explain these results include: (1) high-latitude possible fans are dominated by radar-dark debris flow deposits, (2) low- and mid

  10. Hypsometry of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Stiles, Bryan; Le Gall, Alice; Hayes, Alexander; Aharonson, Oded; Wood, Charles A.; Stofan, Ellen; Kirk, Randy

    2011-01-01

    Cassini RADAR topography data are used to evaluate Titan's hypsometric profile, and to make comparisons with other planetary bodies. Titan's hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the 'glacial buzz-saw' that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.

  11. Evolution of Titan's atmosphere during the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Marounina, Nadejda; Tobie, Gabriel; Carpy, Sabrina; Monteux, Julien; Charnay, Benjamin; Grasset, Olivier

    2015-09-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In the present study, we investigate its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. For surface albedos ranging between 0.1 and 0.7, we examine the emergence of an atmosphere during the LHB as well as the evolution of a primitive atmosphere with various masses and compositions prior to this event, accounting for impact-induced crustal NH3-N2 conversion and subsequent outgassing as well as impact-induced atmospheric erosion. By considering an impactor population characteristic of the LHB, we show that the generation of a N2-rich atmosphere with a mass equivalent to the present-day one requires ammonia mass fraction of 2-5%, depending on surface albedos, in an icy layer of at least 50 km below the surface, implying an undifferentiated interior at the time of LHB. Except for high surface albedos (AS ⩾ 0.7) where most of the released N2 remain frozen at the surface, our calculations indicate that the high-velocity impacts led to a strong atmospheric erosion. For a differentiated Titan with a thin ammonia-enriched crust (⩽5 km) and AS < 0.6 , any atmosphere preexisting before the LHB should be more than 5 times more massive than at present, in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.

  12. Formation and Evolution of the Atmosphere on Early Titan

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.

    2014-12-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.

  13. Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Postberg, Frank; Soderblom, Jason M.; Wurz, Peter; Tortora, Paolo; Abel, Bernd; Barnes, Jason W.; Berga, Marco; Carrasco, Nathalie; Coustenis, Athena; Paul de Vera, Jean Pierre; D'Ottavio, Andrea; Ferri, Francesca; Hayes, Alexander G.; Hayne, Paul O.; Hillier, Jon K.; Kempf, Sascha; Lebreton, Jean-Pierre; Lorenz, Ralph D.; Martelli, Andrea; Orosei, Roberto; Petropoulos, Anastassios E.; Reh, Kim; Schmidt, Juergen; Sotin, Christophe; Srama, Ralf; Tobie, Gabriel; Vorburger, Audrey; Vuitton, Véronique; Wong, Andre; Zannoni, Marco

    2018-06-01

    Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume, both harbouring global subsurface oceans, are prime environments in which to investigate the habitability of ocean worlds and the conditions for the emergence of life. We present a space mission concept, the Explorer of Enceladus and Titan (E2T), which is dedicated to investigating the evolution and habitability of these Saturnian satellites. E2T is proposed as a medium-class mission led by ESA in collaboration with NASA in response to ESA's M5 Cosmic Vision Call. E2T proposes a focused payload that would provide in-situ composition investigations and high-resolution imaging during multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. The E2T mission would provide high-resolution mass spectrometry of the plume currently emanating from Enceladus' south polar terrain and of Titan's changing upper atmosphere. In addition, high-resolution infrared (IR) imaging would detail Titan's geomorphology at 50-100 m resolution and the temperature of the fractures on Enceladus' south polar terrain at meter resolution. These combined measurements of both Titan and Enceladus would enable the E2T mission scenario to achieve two major scientific goals: 1) Study the origin and evolution of volatile-rich ocean worlds; and 2) Explore the habitability and potential for life in ocean worlds. E2T's two high-resolution time-of-flight mass spectrometers would enable resolution of the ambiguities in chemical analysis left by the NASA/ESA/ASI Cassini-Huygens mission regarding the identification of low-mass organic species, detect high-mass organic species for the first time, further constrain trace species such as the noble gases, and clarify the evolution of solid and volatile species. The high-resolution IR camera would reveal the geology of Titan's surface and the energy dissipated by Enceladus' fractured south polar terrain and plume

  14. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph

    2017-10-01

    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  15. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  16. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping

    2011-08-01

    The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.

  17. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals.

    PubMed

    Trevijano-Contador, Nuria; de Oliveira, Haroldo Cesar; García-Rodas, Rocío; Rossi, Suélen Andreia; Llorente, Irene; Zaballos, Ángel; Janbon, Guilhem; Ariño, Joaquín; Zaragoza, Óscar

    2018-05-01

    Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.

  18. An overview of the descent and landing of the Huygens probe on Titan.

    PubMed

    Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B; Matson, Dennis L; Gurvits, Leonid I; Atkinson, David H; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel

    2005-12-08

    Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.

  19. Insights on landscape evolution and climatic forcing on Titan

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Daudon, C.; Rodriguez, S.; Cornet, T.; Perron, J. T.

    2017-12-01

    The landscapes of Titan were observed for nearly 13 years by the Cassini spacecraft and Huygens probe. With dunes, mountains, seas, lakes, rivers..., the great morphological variety observed testifies to the geological richness that Titan shares with the Earth. In this study, we combine analysis of radar and hyperspectral data provided by the Cassini-Huygens mission, with models of valley and river network evolution to better understand the processes at work that sculpt these familiar landscapes. We develop quantitative criteria for comparing 3D morphologies obtained by numerical simulation with those derived for Titan by photogrammetry. These criteria are validated on Earth's landscapes. We simulate morphologies similar to those observed and show that landscapes at the equator and poles are mainly controlled by river incision and mass wasting such as landslides for which we quantify their respective contribution. Subsequently, we relate modeling to precipitation rates of methane and show values that are to be compared with general circulation model predictions (GCM). Our results also show a very young age of formation of the observed morphologies, less than a few million years. Finally, we provide new constraints on current amplitude of the tidal effects and organic precipitation rates from atmosphere chemistry.

  20. DNA nucleobase synthesis at Titan atmosphere analog by soft X-rays.

    PubMed

    Pilling, Sergio; Andrade, Diana P P; Neto, Alvaro C; Rittner, Roberto; Naves de Brito, Arnaldo

    2009-10-22

    Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of N(2) and CH(4) and includes traces of many simple organic compounds. This atmosphere also partly consists of haze and aerosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over the Titan surface. In this work, we investigate the possible effects produced by soft X-rays (and secondary electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. The experiments have been performed inside a high vacuum chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The infrared spectra have presented several organic molecules, including nitriles and aromatic CN compounds. After the irradiation, the brownish-orange organic residue (tholin) was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic resonance ((1)H NMR) techniques, revealing the presence of adenine (C(5)H(5)N(5)), one of the constituents of the DNA molecule. This confirms previous results which showed that the organic chemistry on the Titan surface can be very complex and extremely rich in prebiotic compounds. Molecules like these on the early Earth have found a place to allow life (as we know) to flourish.

  1. Influence of nanogold additives on phase formation, microstructure and dielectric properties of perovskite BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Nonkumwong, Jeeranan; Ananta, Supon; Srisombat, Laongnuan

    2015-06-01

    The formation of perovskite phase, microstructure and dielectric properties of nanogold-modified barium titanate (BaTiO3) ceramics was examined as a function of gold nanoparticle contents by employing a combination of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, Archimedes principle and dielectric measurement techniques. These ceramics were fabricated from a simple mixed-oxide method. The amount of gold nanoparticles was found to be one of the key factors controlling densification, grain growth and dielectric response in BaTiO3 ceramics. It was found that under suitable amount of nanogold addition (4 mol%), highly dense perovskite BaTiO3 ceramics with homogeneous microstructures of refined grains (~0.5-3.1 μm) and excellence dielectric properties can be produced.

  2. Lakes on Titan

    NASA Image and Video Library

    2006-07-24

    The Cassini spacecraft, using its radar system, has discovered very strong evidence for hydrocarbon lakes on Titan. Dark patches, which resemble terrestrial lakes, seem to be sprinkled all over the high latitudes surrounding Titan north pole

  3. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    USGS Publications Warehouse

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  4. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  5. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface

  6. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    NASA Astrophysics Data System (ADS)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  7. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    PubMed

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.

  8. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    PubMed Central

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-01-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559

  9. United States - Japan Workshop on Dielectric and Piezoelectric Ceramics (3rd) Held in Toyama, Japan on November 9-12, 1986.

    DTIC Science & Technology

    1987-07-30

    produced by the hydrothern-al syn- thesis method is the most easily sinterable independent of whether or not an additive is added. Based on this...combination properties of a stacked ceramic formed of (E) and a conventional ceramic. Aml (I ,, __________ ,__ (Cl 0D) Er " -120 70 20 , Er- 0 - ’ 80 I so...such an additive for low firing temperature to easily sin- terable Barium Titanate obtained by the hydrothermal syn- thesis method. It is also

  10. The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery.

    PubMed

    Shokrollahi, H; Salimi, F; Doostmohammadi, A

    2017-10-01

    In recent years, due to the controllable mechanical properties and degradation rate, calcium silicates such as akermanite (Ca 2 MgSi 2 O 7 ) with Ca-Mg and Si- containing bio-ceramics have received much more attention. In addition, the piezoelectric effect plays an important role in bone growth, remodeling and defect healing. To achieve our objective, the porous bioactive nano-composite with a suitable piezoelectric coefficient was fabricated by the freeze-casting technique from the barium titanate and nano-akermanite (BT/nAK) suspension. The highest d 33 of 4pC/N was obtained for BT90/nAK10. The compressive strength and porosity were for BT75/nAK25 and BT60/nAK40 at the highest level, respectively. The average pore channel diameter was 41 for BT75/nAK25. Interestingly enough, the inter-connected pore channel was observed in the SEM images. There was no detectable transformation phase in the XRD pattern for the BT/nAK composites. The manipulation flexibility of this method indicated the potential for the customized needs in the application of bone substitutes. An ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)) MTT assay indicated that the obtained scaffolds have no cytotoxic effects on the human bone marrow mesenchymal stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani

    2013-12-01

    Dunes on Titan, a dominant landform comprising at least 15% of the surface, represent the end product of many physical processes acting in alien conditions. Winds in a nitrogen-rich atmosphere with Earth-like pressure transport sand that is likely to have been derived from complex organics produced in the atmosphere. These sands then accumulate into large, planet-encircling sand seas concentrated near the equator. Dunes on Titan are predominantly linear and similar in size and form to the large linear dunes of the Namib, Arabian and Saharan sand seas. They likely formed from wide bimodal winds and appear to undergo average sand transport to the east. Their singular form across the satellite indicates Titan’s dunes may be highly mature, and may reside in a condition of stability that permitted their growth and evolution over long time scales. The dunes are among the youngest surface features, as even river channels do not cut through them. However, reorganization time scales of large linear dunes on Titan are likely tens of thousands of years. Thus, Titan’s dune forms may be long-lived and yet be actively undergoing sand transport. This work is a summary of research on dunes on Titan after the Cassini Prime and Equinox Missions (2004-2010) and now during the Solstice Mission (to end in 2017). It discusses results of Cassini data analysis and modeling of conditions on Titan and it draws comparisons with observations and models of linear dune formation and evolution on Earth.

  12. Titan's highly variable plasma environment

    NASA Astrophysics Data System (ADS)

    Wolf, D. A.; Neubauer, F. M.

    1982-02-01

    It is noted that Titan's plasma environment is variable for two reasons. The variability of the solar wind is such that Titan may be located in the outer magnetosphere, the magnetosheath, or the interplanetary medium around noon Saturnian local time. What is more, there are local time variations in Saturn's magnetosphere. The location of the stagnation point of Saturn's magnetosphere is calculated, assuming a terrestrial type magnetosphere. Characteristic plasma parameters along the orbit of Titan are shown for high solar wind pressure. During crossings of the Saturnian magnetopause or bow shock by Titan, abrupt changes in the flow direction and stagnation pressure are expected, as are rapid associated changes in Titan's uppermost atmosphere.

  13. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  14. Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators

    NASA Astrophysics Data System (ADS)

    Li, Min

    High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a

  15. Cassini/Huygens Investigations of Titan's Methane Cycle

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P.

    2008-12-01

    In Titan's atmosphere, the second most abundant constituent, methane, exists as a gas, liquid and solid, and cycles between the atmosphere and surface. Similar to Earth's hydrological cycle, Titan sports clouds, rain, and lakes. Yet, Titan's cycle differs dramatically from its terrestrial counterpart, and reveals the workings of weather in an atmosphere that is ten times thicker than Earth's atmosphere, that is two orders of magnitude less illuminated, and that involves a different condensable. Measurements of Titan's troposphere, where the methane cycle plays out, are limited largely to spectral images of Titan's clouds, several temperature profiles by Voyager, Huygens and Cassini, recent Keck spectra of the surface methane humidity, and one vertical profile of Titan's methane abundance, measured on a summer afternoon in Titan's tropical atmosphere by the Huygens probe. The salient features of Titan's methane cycle are distinctly alien: clouds have predominated the northern and southern polar atmospheres; the one humidity profile precisely matches the profile (of cartoonish simplicity) used in pre-Cassini models, and surface features correlate with latitude. Data of Titan's troposphere are analyzed with thermodynamic and radiative transfer calculations, and synthesized with other studies of Titan's stratosphere and surface, to investigate the workings of Titan's methane cycle. At the end of Cassini's nominal mission, we find that Titan's weather, climate and surface-to-atmosphere exchange of volatiles vastly differs from the manifestation of these processes on Earth, largely as a result of different basic characteristics of these planetary bodies. The talk ends with a comparison between Titan and Earth's tropospheres, their fundamental properties, the energetics of their condensible cycles, their weather and climates. References: Griffith C.A. et al. Titan's Tropical Storms in an Evolving Atmosphere. Ap.J. In Press (2008). Griffith C.A. Storms, Polar Deposits, and

  16. Highlighting Titan's Hazes

    NASA Image and Video Library

    2017-08-11

    NASA's Cassini spacecraft looks toward the night side of Saturn's moon Titan in a view that highlights the extended, hazy nature of the moon's atmosphere. During its long mission at Saturn, Cassini has frequently observed Titan at viewing angles like this, where the atmosphere is backlit by the Sun, in order to make visible the structure of the hazes. Titan's high-altitude haze layer appears blue here, whereas the main atmospheric haze is orange. The difference in color could be due to particle sizes in the haze. The blue haze likely consists of smaller particles than the orange haze. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The image was taken with the Cassini spacecraft narrow-angle camera on May 29, 2017. The view was acquired at a distance of approximately 1.2 million miles (2 million kilometers) from Titan. Image scale is 5 miles (9 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21625

  17. Peering Through Titan Haze

    NASA Image and Video Library

    2015-12-04

    This composite image shows an infrared view of Saturn's moon Titan from NASA's Cassini spacecraft, acquired during the mission's "T-114" flyby on Nov. 13, 2015. The spacecraft's visual and infrared mapping spectrometer (VIMS) instrument made these observations, in which blue represents wavelengths centered at 1.3 microns, green represents 2.0 microns, and red represents 5.0 microns. A view at visible wavelengths (centered around 0.5 microns) would show only Titan's hazy atmosphere (as in PIA14909). The near-infrared wavelengths in this image allow Cassini's vision to penetrate the haze and reveal the moon's surface. During this Titan flyby, the spacecraft's closest-approach altitude was 6,200 miles (10,000 kilometers), which is considerably higher than those of typical flybys, which are around 750 miles (1,200 kilometers). The high flyby allowed VIMS to gather moderate-resolution views over wide areas (typically at a few kilometers per pixel). The view looks toward terrain that is mostly on the Saturn-facing hemisphere of Titan. The scene features the parallel, dark, dune-filled regions named Fensal (to the north) and Aztlan (to the south), which form the shape of a sideways letter "H." Several places on the image show the surface at higher resolution than elsewhere. These areas, called subframes, show more detail because they were acquired near closest approach. They have finer resolution, but cover smaller areas than data obtained when Cassini was farther away from Titan. Near the limb at left, above center, is the best VIMS view so far of Titan's largest confirmed impact crater, Menrva (first seen by the RADAR instrument in PIA07365). Similarly detailed subframes show eastern Xanadu, the basin Hotei Regio, and channels within bright terrains east of Xanadu. (For Titan maps with named features see http://planetarynames.wr.usgs.gov/Page/TITAN/target.) Due to the changing Saturnian seasons, in this late northern spring view, the illumination is significantly

  18. Titan's atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.

    2017-03-01

    Titan is the only moon with a substantial atmosphere, the only other thick N2 atmosphere besides Earth's, the site of extraordinarily complex atmospheric chemistry that far surpasses any other solar system atmosphere, and the only other solar system body with stable liquid currently on its surface. The connection between Titan's surface and atmosphere is also unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan's atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan's atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. The Cassini-Huygens mission to the Saturn system has provided a wealth of new information allowing for study of Titan as a complex system. Here I review our current understanding of Titan's atmosphere and climate forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I conclude with some of our remaining unanswered questions as the incredible era of exploration with Cassini-Huygens comes to an end.

  19. OXIDIZING PROTO-ATMOSPHERE ON TITAN: CONSTRAINT FROM N{sub 2} FORMATION BY IMPACT SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, Ryo; Matsui, Takafumi; Sekine, Yasuhito

    2011-11-01

    Titan is the only satellite that possesses a thick atmosphere, composed mainly of N{sub 2} and CH{sub 4}. However, its origin and evolution remain largely unknown. Knowledge of the acquirement of a N{sub 2} atmosphere on Titan would provide insights into nitrogen evolution in planetary atmospheres as well as the formation of satellite systems around gas giants. Previous studies have proposed that the atmospheric N{sub 2} would have been converted from NH{sub 3} via shock heating by accreting satellitesimals in the highly reducing proto-atmosphere composed of NH{sub 3} and CH{sub 4}. Nevertheless, the validity of this mechanism strongly depends onmore » both the composition of the proto-atmosphere and kinetics of shock chemistry. Here, we show that a CO{sub 2}-rich oxidizing proto-atmosphere is necessary to form N{sub 2} from NH{sub 3} efficiently by atmospheric shock heating. Efficient shock production of N{sub 2} is inhibited in a reducing proto-atmosphere composed of NH{sub 3} and CH{sub 4}, because CH{sub 4} plays as the coolant gas owing to its large heat capacity. Our calculations show that the amount of N{sub 2} produced in a CO{sub 2}-rich proto-atmosphere could have reached {approx}20 times that on the present Titan. Although further quantitative analysis are required (especially, the occurrence of catalytic reactions), our results imply that the chemical composition of satellitesimals that formed the Saturnian system is required to be oxidizing if the current atmospheric N{sub 2} is derived from the shock heating in the proto-atmosphere during accretion. This supports the formation of regular satellites in an actively supplied circumplanetary disk using CO{sub 2}-rich materials originated from the solar nebula at the final stage of gas giant formation.« less

  20. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  1. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests

    NASA Astrophysics Data System (ADS)

    Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan

    2012-01-01

    Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.

  2. Titan Mystery Clouds

    NASA Image and Video Library

    2016-12-21

    This comparison of two views from NASA's Cassini spacecraft, taken fairly close together in time, illustrates a peculiar mystery: Why would clouds on Saturn's moon Titan be visible in some images, but not in others? In the top view, a near-infrared image from Cassini's imaging cameras, the skies above Saturn's moon Titan look relatively cloud free. But in the bottom view, at longer infrared wavelengths, Cassini sees a large field of bright clouds. Even though these views were taken at different wavelengths, researchers would expect at least a hint of the clouds to show up in the upper image. Thus they have been trying to understand what's behind the difference. As northern summer approaches on Titan, atmospheric models have predicted that clouds will become more common at high northern latitudes, similar to what was observed at high southern latitudes during Titan's late southern summer in 2004. Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) teams have been observing Titan to document changes in weather patterns as the seasons change, and there is particular interest in following the onset of clouds in the north polar region where Titan's lakes and seas are concentrated. Cassini's "T120" and "T121" flybys of Titan, on June 7 and July 25, 2016, respectively, provided views of high northern latitudes over extended time periods -- more than 24 hours during both flybys. Intriguingly, the ISS and VIMS observations appear strikingly different from each other. In the ISS observations (monochrome image at top), surface features are easily identifiable and only a few small, isolated clouds were detected. In contrast, the VIMS observations (color image at bottom) suggest widespread cloud cover during both flybys. The observations were made over the same time period, so differences in illumination geometry or changes in the clouds themselves are unlikely to be the cause for the apparent discrepancy: VIMS shows persistent

  3. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less

  4. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  5. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  6. Dark and Light Titan

    NASA Image and Video Library

    2010-09-08

    NASA Cassini spacecraft examines Titan dark and light seasonal hemispheric dichotomy as it images the moon with a filter sensitive to near-infrared light. This image also shows Titan north polar hood.

  7. Seasonal Change in Titan's Cloud Activity

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Brown, M. E.; Roe, H. G.

    2006-12-01

    We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006 and will acquire data on ~50 additional nights between September and December 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk- integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 &2000) who found rapidly varying clouds covering ~0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  8. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less

  9. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  10. Poster 11: Simulating the VUV photochemistry in the upper atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Carrasco, Nathalie; Vettier, Ludovic; Cernogora, Guy

    2016-06-01

    The Cassini mission around Titan revealed that the interaction between the N2 and CH4 molecules and the solar VUV radiation leads to a complex chemistry above an altitude of 800 km with the detection of heavy organic molecules like benzene (C6H6). This is consistent with an initiation of the aerosols in Titan's upper atmosphere. The presence of those molecules makes Titan a natural laboratory to witness and understand prebiotic-like chemistry but despite all the data collected, all the possible photochemical processes in such a hydrocarbon-nitrogen-rich environment are not precisely understood. This is why Titan's atmospheric chemistry experiments are of high interest, especially those focusing on the photochemistry as most of the Titan-like experiments are based on N2-CH4 plasma techniques. In order to reproduce this VUV photochemistry of N2 and CH4, we designed a photochemical reactor named APSIS which is to be coupled window-less with a VUV photon source as N2 needs wavelengths shorter than 100 nm in order to be dissociated. Those wavelengths are available at synchrotron beamlines but are challenging to obtain with common laboratory discharge lamps. At LATMOS, we developed a table-top VUV window-less source using noble gases for the micro-wave discharge. We started with Neon, as it has two resonance lines at 73.6 and 74.3 nm which allow us to dissociate and/or ionize both CH4 and N2. We will present here our first experimental results obtained with APSIS coupled with this VUV source and then discuss them regarding the Cassini data and other previous laboratory photochemical studies.

  11. Solubility of polyethers in hydrocarbons at low temperatures. A model for potential genetic backbones on warm titans.

    PubMed

    McLendon, Christopher; Opalko, F Jeffrey; Illangkoon, Heshan I; Benner, Steven A

    2015-03-01

    Ethers are proposed here as the repeating backbone linking units in linear genetic biopolymers that might support Darwinian evolution in hydrocarbon oceans. Hydrocarbon oceans are found in our own solar system as methane mixtures on Titan. They may be found as mixtures of higher alkanes (propane, for example) on warmer hydrocarbon-rich planets in exosolar systems ("warm Titans"). We report studies on the solubility of several short polyethers in propane over its liquid range (from 85 to 231 K, or -188 °C to -42 °C). These show that polyethers are reasonably soluble in propane at temperatures down to ca. 200 K. However, their solubilities drop dramatically at still lower temperatures and become immeasurably low below 170 K, still well above the ∼ 95 K in Titan's oceans. Assuming that a liquid phase is essential for any living system, and genetic biopolymers must dissolve in that biosolvent to support Darwinism, these data suggest that we must look elsewhere to identify linear biopolymers that might support genetics in Titan's surface oceans. However, genetic molecules with polyether backbones may be suitable to support life in hydrocarbon oceans on warm Titans, where abundant organics and environments lacking corrosive water might make it easier for life to originate.

  12. A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.

    2016-04-01

    Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

  13. Explorer of Enceladus and Titan (E2T): Investigating Ocean Worlds' Evolution and Habitability in the Saturn System

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe

    2017-04-01

    The NASA-ESA Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most interesting worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plumes, both harboring subsurface oceans, are prime environments in which to investigate the conditions for the emergence of life and the habitability of ocean worlds. Explorer of Enceladus and Titan (E2T) is dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed in response to ESA's M5 Call as a medium-class mission led by ESA in collaboration with NASA. E2T has a focused payload that will provide in-situ composition investigations and high-resolution imaging during multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. The E2T mission will provide high-resolution mass spectroscopy of the plumes currently emanating from Enceladus's south polar terrain (SPT) and of Titan's changing upper atmosphere. In addition, high-resolution IR imaging will detail Titan's geomorphology at 50-100 m resolution and the source fractures on Enceladus's SPT at meter resolution. These combined measurements of both Titan and Enceladus will permit to achieve the two major scientific goals of the E2T mission: 1) Study the origin and evolution of volatile-rich ocean worlds; and 2) Explore the habitability and potential for life in ocean worlds. More in detail, these goals will be achieved by measuring the nature, abundance and isotopic properties of solid- and vapor-phase species in Enceladus's plume and Titan's upper atmosphere, and determining the processes that are transporting and transforming organic materials on the surface of Titan and the mechanisms controlling, and the energy dissipated by, Enceladus's plumes. E2T's two high-resolution time-of-flight mass spectrometers will enable us to resolve the ambiguities left by Cassini regarding the identification

  14. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  15. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  16. Conserving the Giant Titans

    Science.gov Websites

    Virtual Herbarium Conserving the Giant Titans The gigantic and pungent Titan Arum or Corpse Flower Milonic.com Copyright © 2007 Virtual Herbarium - All rights reserved 11935 Old Cutler Road, Coral Gables, FL

  17. Mimas...and Titan Beyond

    NASA Image and Video Library

    2006-01-03

    Titan, Saturn largest moon and Mimas in the foreground are seen together in this view from Cassini. Titan gravity is weaker than Earth, so the moon atmosphere is quite extended -- a quality hinted at in this view

  18. Squeezing and Stretching Titan Author Concept

    NASA Image and Video Library

    2012-06-28

    This artist concept shows tides on Titan raised by Saturn gravity, as detected by NASA Cassini spacecraft. Saturn gravitational pull on Titan, its largest moon, varies as Titan orbits along an elliptical path around the planet every 16 days.

  19. Supercritical fluid route for synthesizing crystalline Barium Strontium Titanate nanoparticles.

    PubMed

    Reverón, H; Elissalde, C; Aymonier, C; Bidault, O; Maglione, M; Cansell, F

    2005-10-01

    Pure and well-crystallized Barium Strontium Titanate (BST) nanoparticles with controlled Ba/Sr ratio have been successfully synthesized under supercritical conditions using a continuous-flow reactor in the temperature range of 150-380 degrees C at 26 MPa. To synthesize the Ba0.6Sr0.4TiO3 composition, alkoxides, ethanol and water were used. The resulting nanopowder consists of fine particles with an average particle size of 23 nm. The results show that the Ba/Sr ratio of this powder can be accurately controlled from the composition of precursor. The characterization of the as-synthesized Ba0.6Sr0.4TiO3 solid-solution and the dielectric properties of the sintered ceramics are here reported.

  20. Weather on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  1. Enhanced airglow at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Wahlund, Jan-Erik

    2016-06-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) instrument made thousand of observations of Titan since its arrival in the Saturnian system in 2004, but only few of them have been analyzed yet. Using the imaging capability of UVIS combined to a big data analytics approach, we have been able to uncover an unexpected pattern in this observations: on several occasions the Titan airglow exhibits an enhanced brightness by approximately a factor of 2, generally combined with a lower altitude of the airglow emission peak. These events typically last from 10 to 30 minutes and are followed and preceded by an airglow of regular and expected level of brightness and altitude. Observations made by the Cassini Plasma Spectrometer (CAPS) instrument onboard Cassini allowed us to correlate the enhanced airglow observed on T-32 with an electron burst. The timing of the burst and the level of energetic electrons (1 keV) observed by CAPS correspond to a brighter and lower than typical airglow displayed on the UVIS data. Furthermore, during T-32 Titan was inside the Saturn's magnetosheath and thus more subject to bombardment by energetic particles. However, our analysis demonstrates that the presence of Titan inside the magnetosheath is not a necessary condition for the production of an enhanced airglow, as we detected other similar events while Titan was within Saturn's magnetosphere. The study presented here aims to a better understanding of the interactions of Titan's upper atmosphere with its direct environment.

  2. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  3. Magnetospheric particle precipitation at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Crary, Frank; Wahlund, Jan-Erik

    2017-04-01

    Although solar XUV radiation is known to be the main source of ionization in Titan's upper atmosphere around 1100 km of altitude, magnetospheric particle precipitation can also account for about 10% of the ionization process. Magnetospheric particle precipitation is expected to be the most intense on the nightside of the satelllite and when Titan's orbital position around Saturn is the closest to Noon Saturn Local Time (SLT). In addition, on several occasion throughout the Cassini mission, Titan has been observed while in the magnetosheath. We are reporting here Ultraviolet (UV) observations of Titan airglow enhancements correlated to these magnetospheric changing conditions occurring while the spacecraft, and thus Titan, are known to have crossed Saturn's magnetopause and have been exposed to the magnetosheath environnment. Using Cassini-Ultraviolet Imaging Spectrograph (UVIS) observations of Titan around 12PM SLT as our primary set of data, we present evidence of Titan's upper atmosphere response to a fluctuating magnetospheric environment. Pattern recognition software based on 2D UVIS detector images has been used to retrieve observations of interest, looking for airglow enhancement of a factor of 2. A 2D UVIS detector image, created for each UVIS observation of Titan, displays the spatial dimension of the UVIS slit on the x-axis and the time on the y-axis. In addition, data from the T32 flyby and from April 17, 2005 from in-situ Cassini instruments are used. Correlations with data from simultaneous observations of in-situ Cassini instruments (CAPS, RPWS and MIMI) has been possible on few occasions and events such as electron burst and reconnections can be associated with unusual behaviors of the Titan airglow. CAPS in-situ measurements acquired during the T32 flyby are consistent with an electron burst observed at the spacecraft as the cause of the UV emission. Moreover, on April 17, 2005 the UVIS observation displays feature similar to what could be aTitan

  4. Specific Features of the Structure and the Dielectric Properties of Sodium-Bismuth Titanate-Based Ceramics

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Stefanovich, S. Yu.

    2018-03-01

    The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3-BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl-LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at T m 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at 400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature ɛrt is retained quite high, achieving the highest values ɛrt = 1080-1350 in the ceramics modified with KCl.

  5. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  6. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    PubMed

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The atmospheric temperature structure of Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, J. B.; Courtin, Regis; Lunine, Jonathan I.

    1992-01-01

    The contribution of various factors to the thermal structure of Titan's past and present atmosphere are discussed. A one dimensional model of Titan's thermal structure is summarized. The greenhouse effect of Titan's atmosphere, caused primarily by pressure induced opacity of N2, CH4, and H2, is discussed together with the antigreenhouse effect dominated by the haze which absorbs incident sunlight. The implications for the atmosphere of the presence of an ocean on Titan are also discussed.

  8. Night Side of Titan

    NASA Image and Video Library

    1999-02-23

    NASA Voyager 2 obtained this wide-angle image of the night side of Titan on Aug. 25, 1979. This is a view of Titan extended atmosphere. the bright orangish ring being caused by the atmosphere scattering of the incident sunlight.

  9. Titan Haze is Falling

    NASA Image and Video Library

    2011-05-05

    The change in Titan haze layer is illustrated in this figure, derived from data obtained by NASA Cassini spacecraft. The picture of Titan in panel a was taken on May 3, 2006, panel b was taken on April 2, 2010.

  10. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  11. Titan as the Abode of Life

    NASA Astrophysics Data System (ADS)

    McKay, Christopher P.

    2016-02-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  12. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-02-03

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  13. Titan Despeckled Montage

    NASA Image and Video Library

    2015-02-12

    This montage of Cassini Synthetic Aperture Radar (SAR) images of the surface of Titan shows four examples of how a newly developed technique for handling noise results in clearer, easier to interpret views. The top row of images was produced in the manner used since the mission arrived in the Saturn system a decade ago; the row at bottom was produced using the new technique. The three leftmost image pairs show bays and spits of land in Ligea Mare, one of Titan's large hydrocarbon seas. The rightmost pair shows a valley network along Jingpo Lacus, one of Titan's larger northern lakes. North is toward the left in these images. Each thumbnail represents an area 70 miles (112 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA19053

  14. Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model

    NASA Astrophysics Data System (ADS)

    Cornet, Thomas; Fleurant, Cyril; Seignovert, Benoît; Cordier, Daniel; Bourgeois, Olivier; Le Mouélic, Stéphane; Rodriguez, Sebastien; Lucas, Antoine

    2017-04-01

    Titan is an Earth-like world possessing a nitrogen-rich atmosphere that covers a surface with signs of lacustrine (lakes, seas, depressions), fluvial (channels, valleys) and aeolian (dunes) activity [1]. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan's extremely cold environment (T -180°C) allows water to exist only under the form of icy "bedrock". The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. Based on comparisons between Titan's landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called "labyrinthic terrain", located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan's surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD) [2] modified to include karstic dissolution as the major geological process [3]. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs

  15. Simulating the VUV photochemistry of the upper atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Carrasco, Nathalie; Vettier, Ludovic; Chitarra, Olivia; Cernogora, Guy

    2016-10-01

    The Cassini mission around Titan revealed that the interaction between the N2 and CH4 molecules and the solar VUV radiation leads to a complex chemistry above an altitude of 800km with the detection of heavy organic molecules like benzene (C6H6). This is consistent with an initiation of the aerosols in Titan's upper atmosphere. The presence of those molecules makes Titan a natural laboratory to witness and understand prebiotic-like chemistry but despite all the data collected, all the possible photochemical processes in such a hydrocarbon-nitrogen-rich environment are not precisely understood.This is why Titan's atmospheric chemistry experiments are of high interest, especially those focusing on the photochemistry as most of the Titan-like experiments are based on N2-CH4 plasma techniques. In order to reproduce this VUV photochemistry of N2 and CH4, we designed a photochemical reactor named APSIS which is to be coupled window-less with a VUV photon source as N2 needs wavelengths shorter than 100 nm in order to be dissociated. Those wavelengths are available at synchrotron beamlines but are challenging to obtain with common laboratory discharge lamps. At LATMOS, we developed a table-top VUV window-less source using noble gases for the micro-wave discharge. We started with Neon, as it has two resonance lines at 73.6 and 74.3 nm which allow us to dissociate and/or ionize both CH4 and N2.We will present here our first experimental results obtained with APSIS coupled with this VUV source. A range of different pressures below 1 mbar is tested, in parallel to different methane ratio. Moreover, other wavelengths are injected by adding some other noble gases in the MO discharge (He, Kr, Xe, Ar). We will review the mass spectra obtained in those different conditions and then discuss them regarding the Cassini data and other previous laboratory photochemical studies.

  16. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Beauchamp, P.; Elliott, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of

  17. TSSM: An International Mission to Titan and the Saturn System

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Lebreton, J. P.; Coustenis, A.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    A mission to return to Titan after Cassini- Huygens is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, the ESA Cosmic Visions competition, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, contains a vast subsurface ocean of liquid water, surface repositories of methane, ethane and other organic compounds, and has the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. One of the mission concepts would consist of a NASA-provided 1600 kg orbiter with ESA-provided 180 kg Mare Explorer and 588 kg Montgolfière Balloon. The mission would launch on an Atlas 551 in the 2018-2020 timeframe, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn approximately 8.5 years later. The SEP stage would be released approximately 5.8 years after launch well in advance of Saturn approach. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting approximately 2 years. During the first Titan flyby (~100 days after SOI), the orbiter would release the lander (Mare Explorer) to target one of the two large northern polar seas, probably Kraken Mare, and the Montgolfiere

  18. Titan - a New Laboratory for Oceanography

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2001-12-01

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, and quite probably large expanses of liquid hydrocarbons on its surface. The physical processes in these lakes and seas will open new vistas on oceanography and limnology. Although the Voyager-era paradigm of a deep, global ocean is ruled out by radar and infrared data showing that at least part of Titan's surface is icy, the photochemical arguments that originally led to the proposal of hydrocarbon oceans still apply. Even if the methane in the atmosphere is being resupplied by delivery from the interior, the ethane produced by photolysis would still accumulate to form large deposits on the surface. The near-infrared maps of Titan's surface from the Hubble Space Telescope and groundbased adaptive optics consistently show a number of dark (in fact, pitch-black!) regions that are strong candidates for hydrocarbon seas. These could be up to some 500km in extent. Titan promises to be a new laboratory for oceanography. Like in meteorology, many ocean processes are better parameterized than they are understood, and thus the different physical circumstances on Titan may shed new light on them. Titan has a lower gravity and its ocean fluids are of lower density, perhaps of lower viscosity (depending on solutes and suspended material) and probably rather more likely to cavitate. The ratio of atmospheric density to ocean density is much larger on Titan than on Earth, suggesting that liquid motions will be well-coupled to surface winds (although the distance from the sun is such that the energy in such winds is likely to be low.) Titan is also subject to strong tidal forces (the equilibrium tide due to Saturn's gravity is some 400x larger than that of the moon on Earth.) Although the 100m tidal bulge stays almost fixed because Titan rotates synchronously, the eccentricity of Titan's orbit leads to significant libration and variation in the tidal strength. The 500km seas allowed by the IR data may yet have a

  19. The disappearance and reappearance of Titan's detached haze layer

    NASA Astrophysics Data System (ADS)

    West, Robert; Rannou, Pascal; Lavvas, Panayotis; Seignovert, Benoit; Turtle, Elizabeth P.; Perry, Jason; Ovanessian, Aida; Roy, Mou

    2016-10-01

    Titan's extended haze is a prominent and long-lived feature of the atmosphere that encompasses a rich variety of chemical, dynamical and microphysical processes operating over a wide range of temporal and spatial scales. The so-called 'detached' haze layer is easily seen in high-resolution short-wave (near-UV and blue wavelengths) images and is a consequence of a nearly global (outside of the winter polar hood region) layer depleted in aerosol content. It was first seen near 350 Km altitude in Voyager images (Rages and Pollack, 1983) and later observed by the Cassini ISS cameras (Porco et al., 2005; West et al., 2010) and UV stellar occultation profiles (Koskinen et al. 2011). A series of Cassini images from 2009 to 2010 revealed what appears to be a seasonally related altitude variation with remarkable regularity (comparing the Voyager and Cassini images). The drop in altitude is most rapid at equinox. Here we report on images of the upper haze layer over the period 2012 to early 2016. In the early part of this period the detached haze continued to drop in altitude and disappeared. There was no evidence for it beginning late in 2012 and extending to early 2016 when it was again detected with very low contrast at an altitude near 500 Km. We document this behavior and examine the evolution of the haze as functions of both latitude and time. These new details put additional constraints on models that attempt to account for the existence of the detached layer. Part of this work was done by the Jet Propulsion Laboratory, California Institute of Technology. References: Rages, K., and J. B. Pollack (1983), Vertical distribution of scattering hazes in Titan's upper atmosphere, Icarus, 55, 50-62, doi:10.1016/0019-1035 (83)90049-0; Porco, C. C. et al., Imaging Titan from the Cassini Spacecraft, Nature 434, 159-168 (2005); West, R. A. et al., The evolution of Titans detached haze layer near equinox in 2009", Geophys. Res. Lett. 38, L06204, doi:10.1029/2011GL046843, 2011

  20. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  1. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  2. Titan Temperature Lag Maps

    NASA Image and Video Library

    2016-02-18

    This sequence of maps shows varying surface temperatures on Saturn moon Titan at two-year intervals, from 2004 to 2016. The measurements were made by the Composite Infrared Spectrometer CIRS instrument on NASA Cassini spacecraft. The maps show thermal infrared radiation (heat) coming from Titan's surface at a wavelength of 19 microns, a spectral window at which the moon's otherwise opaque atmosphere is mostly transparent. Temperatures have been averaged around the globe from east to west (longitudinally) to emphasize the seasonal variation across latitudes (from north to south). Black regions in the maps are areas for which there was no data. Titan's surface temperature changes slowly over the course of the Saturn system's long seasons, which each last seven and a half years. As on Earth, the amount of sunlight received at each latitude varies as the sun's illumination moves northward or southward over the course of the 30-year-long Saturnian year. When Cassini arrived at Saturn in 2004, Titan's southern hemisphere was in late summer and was therefore the warmest region. Shortly after the 2009 equinox, in 2010, temperatures were symmetrical across the northern and southern hemispheres, mimicking the distribution observed by Voyager 1 in 1980 (one Titan year earlier). Temperatures subsequently cooled in the south and rose in the north, as southern winter approached. While the overall trend in the temperature shift is clearly evident in these maps, there is narrow banding in several places that is an artifact of making the observations through Titan's atmosphere. The moon's dense, hazy envelope adds noise to the difficult measurement. Although it moves in latitude, the maximum measured temperature on Titan remains around -292 degrees Fahrenheit (-179.6 degrees Celsius, 93.6 Kelvin), with a minimum temperature at the winter pole only 6 degrees Fahrenheit (3.5 degrees Celsius or Kelvin) colder. This is a much smaller contrast than exists between Earth's warmest and

  3. Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Barnes, J. W.; McKay, C. P.; Lemke, L.; Beyer, R. A.; Radebaugh, J.; Adamkovics, M.; Atkinson, D. H.; Burr, D. M.; Colaprete, T.; Foch, R.; Le Mouélic, S.; Merrison, J.; Mitchell, J.; Rodriguez, S.; Schaller, E.

    2010-10-01

    Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance - is a small (120 kg), nuclear-powered Titan airplane in the Discovery/New Frontiers class based on the concept of Lemke (2008 IPPW). The scientific goals of the mission are designed around the unique flexibility offered by an airborne platform: to explore Titan's diversity of surface landforms, processes, and compositions, as well as to study and measure the atmospheric circulation, aerosols, and humidity. AVIATR would address and surpass many of the science goals of hot-air balloons in Titan flagship studies. The strawman instrument payload is narrowly focused on the stated scientific objectives. The optical remote sensing suite comprises three instruments - an off-nadir high-resolution 2-micron camera, a horizon-looking 5-micron imager, and a 1-6 micron pushbroom near-infrared spectrometer. The in situ instruments include atmospheric structure, a methane humidity sensor, and a raindrop detector. An airplane has operational advantages over a balloon. Its piloted nature allows a go-to capability to image locations of interest in real time, thereby allowing for directed exploration of many features of primary geologic interest: Titan's sand dunes, mountains, craters, channels, and lakes. Subsequent imaging can capture changes in these features during the primary mission. AVIATR can fly predesigned routes, building up large context mosaics of areas of interest before swooping down to low altitude to acquire high-resolution images at 30-cm spatial sampling, similar to that of HiRISE at Mars. The elevation flexibility of the airplane allows us to acquire atmospheric profiles as a function of altitude at any desired location. Although limited by the direct-to-Earth downlink bandwidth, the total scientific data return from AVIATR will be >40 times that returned from Huygens. To maximize the science per bit, novel data storage and downlink techniques will be employed, including lossy compression

  4. High temperature alkali corrosion of ceramics in coal gas: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less

  5. Dielectric properties of rare earth (Sm and La) substituted lead zirconate titanate (PZT) ceramics

    NASA Astrophysics Data System (ADS)

    Dipti, Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2013-06-01

    In the present paper, we are reporting the studies on dielectric properties of Lanthanum (La) and Samarium (Sm) substituted Lead Zirconate Titanate with compositional formula Pb(1.02-x)SmxZr0.55Ti0.45O3 and Pb(1.02-x)LaxZr0.55Ti0.45O3 with x = 0.00, 0.01, 0.02, 0.03. The materials were synthesized by solid state reaction route. XRD analysis shows that all the samples be in single phase with tetragonal structure. Dielectric properties were studied as a function of temperature.

  6. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  7. Effect of crystal size distribution on thermoelectric performance for Lanthanum-doped strontium titanate bulk material

    NASA Astrophysics Data System (ADS)

    Zhang, Boyu; Wang, Jun; Yaer, Xinba; Huo, Zhenzhen; Wu, Yin; Li, Yan; Miao, Lei; Liu, Chengyan; Zou, Tao; Ma, Wen

    2015-07-01

    Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate (La-SrTiO3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La-SrTiO3 is improved.

  8. Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics.

    PubMed

    Zhuang, Z Q; Haun, M J; Jang, S J; Cross, L E

    1989-01-01

    Pure (undoped) piezoelectric lead zirconate titanate (PZT) ceramic samples at compositions across the ferroelectric region of the phase diagram were prepared from sol-gel-derived fine powders. Excess lead oxide was included in the PZT powders to obtain dense (95-96% of theoretical density) ceramics with large grain size (>7 mum) and to control the lead stoichiometry. The dielectric, piezoelectric, and elastic properties were measured from 4.2 to 300 K. At very low temperatures, the extrinsic domain wall and thermal defect motions freeze out. The low-temperature dielectric data can be used to determine coefficients in a phenomenological theory. The extrinsic contribution to the properties can then be separated from the single-domain properties derived from the theory.

  9. Titan as the Abode of Life

    PubMed Central

    McKay, Christopher P.

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan’s atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic—polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  10. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  11. Handling Late Changes to Titan Science

    NASA Technical Reports Server (NTRS)

    Pitesky, Jo Eliza; Steadman, Kim; Ray, Trina; Burton, Marcia

    2014-01-01

    The Cassini mission has been in orbit for eight years, returning a wealth of scientific data from Titan and the Saturnian system. The mission, a cooperative undertaking between NASA, ESA and ASI, is currently in its second extension of the prime mission. The Cassini Solstice Mission (CSM) extends the mission's lifetime until Saturn's northern summer solstice in 2017. The Titan Orbital Science Team (TOST) has the task of integrating the science observations for all 56 targeted Titan flybys in the CSM. In order to balance Titan science across the entire set of flybys during the CSM, to optimize and influence the Titan flyby altitudes, and to decrease the future workload, TOST went through a "jumpstart" process before the start of the CSM. The "jumpstart" produced Master Timelines for each flyby, identifying prime science observations and allocating control of the spacecraft attitude to specific instrument teams. Three years after completing this long-range plan, TOST now faces a new challenge: incorporating changes into the Titan Science Plan without undoing the balance achieved during the jumpstart.

  12. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  13. QCM gas phase detection with ceramic materials--VOCs and oil vapors.

    PubMed

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A; Dickert, Franz L

    2011-06-01

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.

  14. Anomalous dielectrophoretic behaviour of barium titanate microparticles in concentrated solutions of ampholytes

    NASA Astrophysics Data System (ADS)

    Flores-Rodriguez, N.; Markx, G. H.

    2006-08-01

    The dielectrophoretic behaviour of barium titanate (BaTiO3) particles with a mean grain size of 3 µm was studied. Suspensions of the powdered ceramic in the concentration range 0.01-1.60% (w/v) were prepared in dilute aqueous solutions of NaCl and concentrated aqueous solutions of the amphoteric molecules HEPES (N-[2-hydroxyethyl] piperazine-N'4-[2-ethanesulfonic acid] and EACA (ɛ -aminocaproic acid). When suspended in water without ampholytes, the particles showed positive dielectrophoresis (DEP) over the whole frequency range (1 kHz-20 MHz), independent of the medium conductivity or applied voltage. When amphoteric molecules were added at a final concentration of up to 0.57 M, the particles showed positive DEP at all frequencies. When the concentration of ampholytes was increased to 0.71 M, the particles showed positive DEP at frequencies up to 100 kHz and voltages lower than 12 Vpk-pk at all electrode sizes. However, at 100 kHz, when the amplitude was increased to over 12 Vpk-pk, the particles started to display negative DEP at the smallest electrode size (20 µm) and moved away from the microelectrodes, accumulating in the gap between the electrodes. At the highest voltages used (16-20 Vpk-pk), the particles were seen moving upwards and remained stably levitated above the array. For frequencies larger than 100 kHz, the particles showed positive DEP only. It is shown that such behaviour cannot be expected on the basis of the dielectric properties of barium titanate and the suspending medium, and it is suggested that this behaviour may be caused by the fact that at high amphotere concentration and voltages the electric field across the particles surpasses the dielectric strength of the BaTiO3 particles, resulting in a sudden drop in the particle's permittivity. The fact that not all particles showed negative DEP suggests a spread in the dielectric properties of barium titanate particles. Physical separation of barium titanate particles with presumably different

  15. The bulk composition of Titan's atmosphere.

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1972-01-01

    Consideration of the physical constraints for Titan's atmosphere leads to a model which describes the bulk composition of the atmosphere in terms of observable parameters. Intermediate-resolution photometric scans of both Saturn and Titan, including scans of the Q branch of Titan's methane band, constrain these parameters in such a way that the model indicates the presence of another important atmospheric gas, namely, another bulk constituent or a significant thermal opacity. Further progress in determining the composition and state of Titan's atmosphere requires additional observations to eliminate present ambiguities. For this purpose, particular observational targets are suggested.

  16. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  17. The environment of Titan, 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information regarding the physical characteristics of Titan and atmospheric models necessary to support design and mission planning of spacecraft that are to orbit Titan, enter its atmosphere or land on its surface is given.

  18. Titan Extraterrestrial Land of Lakes

    NASA Image and Video Library

    2013-12-12

    A colorized flyover of Titan's hydrocarbon seas and lakes. Data was collected by the Cassini spacecraft radar instrument between 2004 and 2013 during several flybys of Titan. Heights of features are exaggerated 10 times.

  19. Explorer of Enceladus and Titan (E2T): Investigating Ocean Worlds' Evolution and Habitability in the Saturn System

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Postberg, F.; Soderblom, J. M.; Tobie, G.; Tortora, P.; Wurz, P.; Barnes, J. W.; Carrasco, N.; Coustenis, A.; Ferri, F.; Hayes, A.; Hillier, J.; Kempf, S.; Lebreton, J. P.; Lorenz, R. D.; Orosei, R.; Petropoulos, A. E. E.; Reh, K. R.; Schmidt, J.; Sotin, C.; Srama, R.; Vuitton, V.; Yen, C. W.

    2016-12-01

    The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most enigmatic worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice including trace amounts of organics, salts, and silica nano-particles, both harboring subsurface oceans, are prime environments to investigate the conditions for the emergence of life and the habitability potential of ocean worlds, as well as the origin and evolution of complex planetary systems. The Explorer of Enceladus and Titan (E2T) is a space mission concept dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed in response to ESA's M5 Cosmic Vision Call, as a medium-class mission led by ESA in collaboration with NASA. E2T has a focused state-of-the-art payload that will provide in-situ chemical analysis, and high-resolution imaging from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. With significant improvements in mass range and resolution, as compared with Cassini instrumentation, the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy Jet Analyzer (ENIJA) time-of-flight mass spectrometers will provide the data needed to decipher the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map thermal emission from Enceladus' tiger stripes at meter scales and investigate Titan's geology and compositional variability at decameter scales.

  20. The Veils of Titan

    NASA Image and Video Library

    2004-05-06

    The veils of Saturn's most mysterious moon have begun to lift in Cassini's eagerly awaited first glimpse of the surface of Titan, a world where scientists believe organic matter rains from hazy skies and seas of liquid hydrocarbons dot a frigid surface. Surface features previously observed only from Earth-based telescopes are now visible in images of Titan taken in mid-April by Cassini through one of the narrow angle camera's spectral filters specifically designed to penetrate the thick atmosphere. The image scale is 230 kilometers (143 miles) per pixel, and it rivals the best Earth-based images. The two images displayed here show Titan from a vantage point 17 degrees below its equator, yielding a view from 50 degrees north latitude all the way to its south pole. The image on the left was taken four days after the image on the right. Titan rotated 90 degrees in that time. The two images combined cover a region extending halfway around the moon. The observed brightness variations suggest a diverse surface, with variations in average reflectivity on scales of a couple hundred kilometers. The images were taken through a narrow filter centered at 938 nanometers, a spectral region in which the only obstacle to light is the carbon-based, organic haze. Despite the rather long 38-second exposure times, there is no noticeable smear due to spacecraft motion. The images have been magnified 10 times and enhanced in contrast to bring out details. No further processing to remove the effects of the overlying atmosphere has been performed. The superimposed grid over the images illustrates the orientation of Titan -- north is up and rotated 25 degrees to the left -- as well as the geographical regions of the satellite that are illuminated and visible. The yellow curve marks the position of the boundary between day and night on Titan. The enhanced image contrast makes the region within 20 degrees of this day and night division darker than usual. The Sun illuminates Titan from the

  1. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  2. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, Christophe; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  3. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  4. AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. A Titan airplane mission concept

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Ádámkovics, Máté; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2012-03-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments—2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector—AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel `gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so

  5. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; hide

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  6. TSSM: The in situ exploration of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  7. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  8. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  9. Diurnal variations of Titan

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  10. Map of Titan - April 2011

    NASA Image and Video Library

    2011-10-26

    This global digital map of Saturn moon Titan was created using images taken by NASA Cassini spacecraft imaging science subsystem ISS. Because of the scattering of light by Titan dense atmosphere, no topographic shading is visible here.

  11. Space Art "Titan"

    NASA Image and Video Library

    2006-09-13

    Artist Daniel Zeller used the breathtaking imagery from the Cassini spacecraft as a departure point to interpret the intricate surface of Saturn’s moon Titan in this peice titled "Titan". Cassini entered Saturn's orbit in July of 2004 after a seven-year voyage. It then began a four-year mission that includes more than 70 orbits around the ringed planet and its moons. Ink on Paper, 17x21. 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  12. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  13. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  14. Titan's Methane Hydrological Cycle: Detection of Seasonal Change

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Brown, M. E.; Roe, H. G.

    2007-08-01

    We have acquired whole disk spectra of Titan on over 100 nights with IRTF/SpeX during the 2006-2007 Titan season. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk- integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. The near lack of tropospheric cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5-9% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Adaptive optics observations from Keck and Gemini also show markedly decreased cloud activity in the late southern summer era compared with the period surrounding southern summer solstice (October 2002). Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  15. Recent Origin of Titan's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Cuk, Matija

    2014-05-01

    Saturn's regular satellite system contains several dynamical mysteries, including the high tidal heating of Enceladus and undamped eccentricity of Titan. Lainey et al.(2012) proposed that the tidal evolution of the system is much faster than previously thought, which would explain heating of Enceladus and implies that some of the current satellites are less than 1 Gyr old. Cuk et al.(2014) pointed out that this fast tidal evolution could also explain the Titan-Hyperion resonance. If the inner, mid-sized Saturnian moons were re-accreted within the last Gyr, then the same event could have generated the observed eccentricity of Titan. Titan-Hyperion resonance puts strong constraints on this event, as many scenarios lead to the loss of Hyperion (usually through collision with Titan). Here I report on the ongoing study of the history of the Saturnian system, using symplectic integrators SIMPL (for stable configurations) and COMPLEX (for situations when the moons' orbits crossed). I find that the past system of icy satellites could have naturally evolved into instability, by having Dione and Rhea-like moons enter the mutual 4:3 resonance. This resonance is chaotic due to overlap with the solar evection resonance (i.e. the moons' precession rates in the mean-motion resonance overlap with Saturn's mean motion). The outcome of such resonance is a collision between the mid-sized moons, likely followed by re-accretion, with Titan being largely unaffected. I also find that close encounters between a mid-sized moon and Titan could with significant probability both excite Titan and preserve its resonance with Hyperion (cf. Hamilton 2013). I will present possible scenarios in which the previous system had an additional moon exterior to Rhea. This additional moon would have been destabilized by resonances with the inner moons and eventually absorbed by Titan, which acquired its eccentricity in the process. This research is supported by NASA's Outer Planet Research Program.

  16. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  17. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  18. Large actuation strain over 0.3% in periodically orthogonal poled BaTiO3 ceramics and multilayer actuators via reversible domain switching

    NASA Astrophysics Data System (ADS)

    Wang, Qiangzhong; Li, Faxin

    2018-06-01

    Lead titanate zirconate (PZT) ceramics based piezoelectric actuators always suffer from small output strains (typically 0.1%–0.15%) and have recently been criticized for the toxicity problem of the high-concentration lead. In our recent work (Li et al 2017 J. Appl. Phys. 122 074103), we realized large local actuation strain nearly 0.6% in a periodically orthogonal poled (POP) PZT ceramics via reversible domain switching. In this work, we applied the POP method to barium titanate (BT) ceramics and proposed a specially designed multilayer actuator which can output large uniform strain. The simple tetragonal structure of BT ceramics makes it easier to understand the mechanism of reversible domain switching in POP ceramics and its lead-free characteristic is more promising. Firstly, a POP BT ceramic piece was fabricated and the actuation testing results show that local large actuation strain of 0.36% can be obtained under a field of 2 kV mm‑1 at 0.1 Hz. However, the actuation strain is non-uniform along the period direction, varying from 0.22% to 0.36%. Then, to output uniform large strain, a four-layer actuator based on the POP BT ceramics was designed and fabricated in which only the in-plane poled regions of the adjacent layers were bonded. Results show that the output strain turns to be uniform in this way, which is 0.34% under 2 kV mm‑1, resulting in a very high large-signal (=S max/E max) of 1700 pm V‑1. The large actuation strain is very stable and keeps unchanged after 20k cycles of operation. It drops quickly with the increasing frequency and is stabilized at 0.18% above 1.0 Hz. Finally, bipolar field testing was conducted on the POP BT based actuator. Results show that the actuator shows electrostriction-like symmetric bipolar actuation behavior with the repeatable actuation strain of 0.3% under 2 kV mm‑1. This work may provide a feasible solution to low frequency, large-strain lead-free piezoelectric actuation.

  19. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  20. Progressive Assessment on the Decomposition Reaction of Na Superionic Conducting Ceramics.

    PubMed

    Jung, Jae-Il; Kim, Daekyeom; Kim, Hyojin; Jo, Yong Nam; Park, Jung Sik; Kim, Youngsik

    2017-01-11

    The successful analysis on the microstructure of Hong-type Na superionic conducting (NASICON) ceramics revealed that it consists of several heterogeneous phases: NASICON grains with rectangular shapes, monoclinic round ZrO 2 particles, grain boundaries, a SiO 2 -rich vitrified phase, Na-rich amorphous particles, and pores. A dramatic microstructural evolution of NASICON ceramics was demonstrated via an in situ analysis, which showed that NASICON grains sequentially lost their original morphology and were transformed into comminuted particles (as indicated by the immersion of bulk NASICON samples into seawater at a temperature of 80 °C). The consecutive X-ray diffraction analysis represented that the significant shear stress inside NASICON ceramics caused their structural decomposition, during which H 3 O + ions occupied ceramic Na + sites (predominantly along the (1̅11) and (1̅33) planes), while the original Na + cations came out in the (020) plane of the NASICON ceramic crystalline structure. The results of time-of-flight secondary-ion mass spectrometry analysis confirmed that large concentrations of Cl - and Na + ions were distributed across the surface of NASICON ceramics, leading to local densification of a 20 μm thick surface layer after treatment within seawater solution at a temperature of 80 °C.

  1. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  2. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  3. Future Exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Matson, D. L.; Coustenis, A.; Lunine, J.; Lebreton, J.; Reh, K.; Beauchamp, P.

    2009-05-01

    The future exploration of Titan and Enceladus has become very important for the planetary community. The study conducted last year of the Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). TSSM consists of a TSSM Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. The mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later for a 4-year mission in the Saturn system. Soon after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system and would be designed to last at least 6-12 months in Titan's atmosphere. With the predicted winds and weather, that would be sufficient to circumnavigate the globe! On a subsequent fly-by, the TSSM orbiter would release the Lake Lander on a trajectory toward Titan for a targeted entry. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan's seas. This would be its oceanographic phase, making a physical and chemical assessment of the sea. The Lake Lander would operate 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes in situ sampling of Enceladus' plumes as well as Titan flybys. After the Saturn system tour, the TSSM orbiter would enter orbit around Titan for a global survey phase. Synergistic and coordinated observations would be carried out between the TSSM orbiter and the in situ elements. The scientific requirements were developed by the international TSSM Joint Science Definition

  4. Rivers on Titan - numerical modelling of sedimentary structures

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the

  5. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  6. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  7. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  8. Titan Topography: A Comparison Between Cassini Altimeter and SAR Imaging from Two Titan Flybys

    NASA Astrophysics Data System (ADS)

    Gim, Y.; Stiles, B.; Callahan, P. S.; Johnson, W. T.; Hensley, S.; Hamilton, G.; West, R.; Alberti, G.; Flamini, E.; Lorenz, R. D.; Zebker, H. A.; Cassini RADAR Team

    2007-12-01

    The Cassini RADAR has collected twelve altimeter data sets of Titan since the beginning of the Saturn Tour in 2004. Most of the altimeter measurements were made at high altitudes, from 4,000 km to 15,000 km, resulting in low spatial resolutions due to beam footprint sizes larger than 20 km, as well as short ground tracks less than 600 km. One flyby (T30) was dedicated to altimeter data collection from 15,000 km to the closest approach altitude of 950 km. This produced a beam footprint size of 6 km at the lowest altitude and an altimeter ground track of about 3,500 km covering Titan's surface from near the equator to high latitude areas near Titan's north pole. More importantly, the ground track is located inside the SAR swath viewed from an earlier Titan flyby (T28). This provides a rare opportunity to investigate Titan topography with a relatively high spatial resolution and compare nadir-looking altimeter data with side-looking SAR imaging. From altimeter data, we have measured the mean Titan radius of 2575.1 km +/- 0.1 km and observed rather complex topographical variations over a short distance. By comparing altimeter data and SAR images at altitudes below 2,000 km, we have found that there is a strong correlation between SAR brightness and altimeter waveform; SAR dark areas correspond to strong and sharp altimeter waveforms while SAR bright areas correspond to weak and diffused altimeter waveforms. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Processing, properties, and application of textured 0.72lead(magnesium niobate)-0.28lead titanate ceramics

    NASA Astrophysics Data System (ADS)

    Brosnan, Kristen H.

    In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76

  10. A FUSE Search for Argon on Titan

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Link, R.; Stern, S. A.; Festou, M.; Waite, J. H.

    2002-09-01

    The origin of Titan's thick nitrogen and methane atmosphere is a compelling enigma. One key and still missing observable concerns the abundances of noble gases in general, and argon in particular. Detection of sufficient argon could indicate that the N2 and CO now found in the atmosphere came in with ice during Titan's accretion. Alternatively, if there is very little argon, then we have to turn to models starting with frozen ammonia, methane and water ice, indicating a more important role for the Saturn sub-nebula, and requiring subsequent modification by photochemistry. Current estimates on the fraction of argon in Titan's atmosphere are crude, and based only on indirect evidence, and range up to 25%. On Sept. 21, 2000, using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, we performed an observation of Titan to search for argon and to make a survey of Titan's dayglow in the 90--115 nm FUSE bandpass. No emissions were found in the 18 ks exposure, although only 7.4 ks were obtained when FUSE was in Earth's shadow where terrestrial airglow contamination is minimal. While no Ar, N, or N2 emissions were detected, 2-σ upper limits of 4 R (for Ar 104.8 nm) and 20 R (for N 113.4 nm) are found using the best of the FUSE data. There is a bump on the terrestrial geocorona H Lyβ emission at 102.5 nm which may be due to Titan and a Titan Torus. The signal in the bump is about 400 R. Model estimates suggest that the Lyβ brightness of Titan should be about 20 R and the Titan Torus in the 30--700 R range. For an assumed argon abundance of 5% the 104.8 nm emission is predicted to be 7 R, so the argon estimate is constraining already. The nitrogen estimate is very close to the model expectation of 15 R. An accurate determination of the abundance of argon on Titan would be useful in preparing for the arrival of the Cassini orbiter and Huygens probe at the Saturn system, so further FUSE observations of Titan are planned. We gratefully acknowledge support from NASA

  11. The effects of upstream plasma properties on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2016-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine how the properties of the incident plasma (composition, density, temperature etc…) affect Titan's ionosphere. We examine how much ionospheric plasma is lost from Titan as well as the amount of mass and energy deposited into Titan's atmosphere.

  12. Flyover of Sotra Facula, Titan

    NASA Image and Video Library

    2010-12-14

    This frame from a movie is based on data from NASA Cassini spacecraft and shows a flyover of an area of Saturn moon Titan known as Sotra Facula. Scientists believe Sotra is the best case for an ice volcano, or cryovolcano, region on Titan.

  13. The temperature dependences of electromechanical properties of PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  14. Synthesis of SiCN@TiO2 core-shell ceramic microspheres via PDCs method

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Wei, Ning; Li, Jing; Zhang, Haiyuan; Chu, Peng

    2018-02-01

    A facile and effective polymer-derived ceramics (PDCs) emulsification-crosslinking-pyrolysis method was developed to fabricate SiCN@TiO2 core-shell ceramic microspheres with polyvinylsilazane (PVSZ) and tetrabutyl titanate (TBT) as precursors. The TBT: PVSZ mass ratios, emulsifier concentrations and the pyrolysis temperature were examined as control parameters to tune the size and morphology of microspheres. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the synthesized SiCN@TiO2 microspheres to be comprised of SiCN core coated with TiO2 crystals, with an average size of 0.88 μm when pyrolyzed at 1400 °C. The analysis of Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) ensured that SiCN@TiO2 core-shell ceramic microspheres composed of rutile TiO2, β-SiC and Si3N4 crystalline phases, The thermal properties were characterized by thermogravimetric analysis (TGA). The obtained SiCN@TiO2 core-shell ceramic microspheres were the promising candidate of the infrared opacifier in silica aerogels and this technique can be extended to other preceramic polymers.

  15. Titan South Polar Cloud Burst

    NASA Image and Video Library

    2009-06-03

    This infrared image of Saturn's moon Titan shows a large burst of clouds in the moon's south polar region. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini Spacecraft show. This image is a color composite, with red shown at a 5-micron wavelength, green at 2.7 microns, and blue at 2 microns. An infrared color mosaic is also used as a background image (red at 5 microns, green at 2 microns, blue at 1.3 microns). The images were taken by Cassini's visual and infrared mapping spectrometer during a flyby of Titan on March 26, 2007, known as T27. For a similar view see PIA12004. Titan's southern hemisphere still shows a very active meteorology (the cloud appears in white-reddish tones) even in 2007. According to climate models, these clouds should have faded out since 2005. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. http://photojournal.jpl.nasa.gov/catalog/PIA12005

  16. Chemical investigation of Titan and Triton tholins

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Heinrich, Michael; Khare, Bishun N.; Sagan, Carl

    1994-01-01

    We report chromatographic and spectroscopic analyses of both Titan and Triton tholins, organic solids made from the plasma irradiation of 0.9:0.1 and 0.999:0.001 N2/CH4 gas mixtures, respectively. The lower CH4 mixing ratio leads to a nitrogen-richer tholin (N/C greater than 1), probably including nitrogen heterocyclic compounds. Unlike Titan tholin, bulk Triton tholin is poor in nitriles. From high-pressure liquid chromatography, ultraviolet and infrared spectroscopy, and molecular weight estimation by gel filtration chromatography, we conclude that (1) several H2O-soluble fractions, each with distinct UV and IR spectral signatures, are present, (2) these fractions are not identical in the two tholins, (3) the H2O-soluble fractions of Titan tholins do not contain significant amounts of nitriles, despite the major role of nitriles in bulk Titan tholin, and (4) the H2O-soluble fractions of both tholins are mainly molcules containing about 10 to 50 (C + N) atoms. We report yields of amino acids upon hydrolysis of Titan and Triton tholins. Titan tholin is largely insoluble in the putative hydrocarbon lakes or oceans on Titan, but can yield the H2O-soluble species investigated here upon contact with transient (e.g., impact-generated) liquid water.

  17. Titan Global Map - June 2015

    NASA Image and Video Library

    2015-10-09

    This global digital map of Saturn's moon Titan was created using images taken by NASA's Cassini spacecraft's imaging science subsystem (ISS). The map was produced in June 2015 using data collected through Cassini's flyby on April 7, 2014, known as "T100." The images were taken using a filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. Because of the scattering of light by Titan's dense atmosphere, no topographic shading is visible in these images. The map is an equidistant projection and has a scale of 2.5 miles (4 kilometers) per pixel. Actual resolution varies greatly across the map, with the best coverage (close to the map scale) along the equator near the center of the map at 180 degrees west longitude. The lowest resolution coverage can be seen in the northern mid-latitudes on the sub-Saturn hemisphere. Mapping coverage in the northern polar region has greatly improved since the previous version of this map in 2011 (see PIA14908). Large dark areas, now known to be liquid-hydrocarbon-filled lakes and seas, have since been documented at high latitudes. Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. This map is an update to the previous versions released in April 2011 and February 2009 (see PIA11149). Data from the past four years (the most recent data in the map is from April 2014) has completely filled in missing data in the north polar region and replaces the earlier imagery of the Xanadu region with higher quality data. A data gap of about 3 to 5 percent of Titan's surface still remains, located in the northern mid-latitudes on the sub-Saturn hemisphere of Titan. The uniform gray area in the northern hemisphere indicates a gap in the

  18. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  19. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  20. Crystallization dynamics and interface stability of strontium titanate thin films on silicon.

    PubMed

    Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C

    2015-04-01

    Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

  1. Size and shape of Saturn's moon Titan.

    PubMed

    Zebker, Howard A; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L; Lunine, Jonathan

    2009-05-15

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 +/- 0.05 kilometers (km), 2574.36 +/- 0.03 km, and 2574.91 +/- 0.11 km, respectively; its mean radius is 2574.73 +/- 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most--but not all--of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  2. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  3. Titan Lingering Clouds

    NASA Image and Video Library

    2009-06-03

    Lots of clouds are visible in this infrared image of Saturn's moon Titan. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini spacecraft show. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. Three false-color images make up this mosaic and show the clouds at 40 to 50 degrees mid-latitude. The images were taken by Cassini's visual and infrared mapping spectrometer during a close flyby of Titan on Sept. 7, 2006, known as T17. For a similar view see PIA12005. Each image is a color composite, with red shown at the 2-micron wavelength, green at 1.6 microns, and blue at 2.8 microns. An infrared color mosaic is also used as a background (red at 5 microns, green at 2 microns and blue at 1.3 microns). The characteristic elongated mid-latitude clouds, which are easily visible in bright bluish tones are still active even late into 2006-2007. According to climate models, these clouds should have faded out since 2005. http://photojournal.jpl.nasa.gov/catalog/PIA12004

  4. ISO observations of Titan with SWS/grating

    NASA Technical Reports Server (NTRS)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  5. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  6. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.

  7. Impact Craters on Titan? Cassini RADAR View

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles

    2005-01-01

    Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.

  8. The tides of Titan.

    PubMed

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  9. Titan through Time: Evolution of Titan's Atmosphere and its Hydrocarbon Cycle on the Surface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.

    The Introduction and Appendix i-A outline briefly the history of Titan exploration since its discovery by Christiaan Huygens in 1675 through the recent International Mission of Cassini-Huygens.. Chapter 1: This chapter discusses two possible pathways of loss of the two main gases from Titan's post-accretional atmosphere, methane (CH 4) and ammonia (NH3), by the mechanisms of thermal escape and emission from the interior coupled with thermal escape. Chapter 2: In this chapter, a simple photolysis model is created, where the second most abundant component of the present-day Titan atmosphere, methane (CH4), can either escape the atmosphere or undergo photolytic conversion to ethane (C2H6). Chapter 3: This chapter examines different fluvial features on Titan, identified by the Cassini spacecraft, and evaluates the possibilities of channel formation by two mechanisms: dissolution of ice by a concentrated solution of ammonium sulfate, and by mechanical erosion by flow of liquid ammonia and liquid ethane. Chapter 4: This chapter presents: (1) new explicit mathematical solutions of mixed 1st and 2nd order chemical reactions, represented by ordinary differential first-degree and Riccati equations; (2) the computed present-day concentrations of the three gases in Titan's scale atmosphere, treated as at near-steady state; and (3) an analysis of the reported and computed atmospheric concentrations of CH4, CH 3, and C2H6 on Titan, based on the reaction rate parameters of the species, the rate parameters taken as constants representative of their mean values. Chapter 5: This chapter examines the possible reactions of methane formation in terms of the thermodynamic relationships of the reactions that include pure carbon as graphite, the gases H2, CO2, H2 O, and serpentinization and magnetite formation from olivine fayalite. (Abstract shortened by ProQuest.).

  10. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    NASA Astrophysics Data System (ADS)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe

  11. Diurnal variations of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  12. Titan's atmosphere and surface in 2026: the AVIATR Titan Airplane Mission

    NASA Astrophysics Data System (ADS)

    McKay, Chris; Barnes, Jason W.; Lemke, Lawrence; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David; Flasar, F. Michael

    2010-04-01

    This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.

  13. Titan and habitable planets around M-dwarfs.

    PubMed

    Lunine, Jonathan I

    2010-01-01

    The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

  14. Encouragement from Jupiter for Europe's Titan Probe

    NASA Astrophysics Data System (ADS)

    1996-04-01

    remaining after searching reviews of the Probe's design and readiness. Shock tests will check that Huygens is not harmed by the firing of pyrotechnic devices used to release the protective shell and the parachutes, after the Probe's incandescent entry into Titan's atmosphere. In addition, the so-called Titan Test will be repeated. This subjects the Probe to a simulation of the very cold atmosphere of the target moon. A previous test showed some components in Huygens approaching the lower limit of acceptable temperatures. The repeated test will verify that subsequent minor modifications have succeeded in reducing effect of the chilling. Background facts about the Cassini/Huygens mission Huygens is a medium-sized mission of ESA's Horizon 2000 programme for space science, and a contribution to the joint NASA-ESA Cassini mission. Christiaan Huygens discovered Saturn's moon Titan in 1655, and the mission named after him aims to deliver a 343-kilogram Probe to Titan and carry a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere rich in nitrogen and hydrocarbons may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: - launch, 6 October 1997 - arrival at Saturn, 26 June 2004 - release of Huygens, 6 November 2004 - entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to the Earth, before settling down to prolonged observations of Saturn and its rings and moons. European and American scientists are partners in all the experiments, both in the Orbiter and in the Huygens Probe. Farthest out for Europe Huygens will travel to a greater distance from the Sun than any previous ESA mission, out

  15. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.

    PubMed

    Okagaki, Laura H; Nielsen, Kirsten

    2012-06-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.

  16. Oceans in the Outer Solar System: Future Exploration of Europa, Titan, and Enceladus

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Clark, K.; Cutts, J.; Lunine, J.; Pappalardo, R.; Reh, K.

    Observational and theoretical evidence points to water-rich oceans or seas within several of the icy satellites of the outer planets, notably Europa and Enceladus, and hydrocarbon reservoirs within Titan. Here we report on concepts for future studies of these fascinating targets of high astrobiological relevance. Europa Exploration: Post-Galileo exploration of Europa presents several major technical challenges. We argue that four recent investments in technology and research allow a flagship mission class Europa exploration that relies on demonstrated technologies and achieves the high level science objectives. 1. Mass and Trip Time: Utilizing indirect Earth gravity assist, trajectories allows ˜2000 - 3000 kg dry mass, permitting ˜150 - 200 kg of science payload. 2. Radiation Tolerant Electronics: A significant program of radiation hard technology development has been done by NASA. The necessary radiation-tolerant elements are now ready for flight. 3. Science Mission: The science mission would last approximately two years, with a Jupiter system science phase of ˜1.5 yr and a 90 day nominal orbital mission at Europa, with significant probability of functioning much longer. 4. Planetary Protection: The ultimate fate of an orbiter will be impact with Europa. Planetary protection requirements will be met by radiation sterilization during the primary mission for most external and unshielded internal surfaces, combined with pre-launch sterilization of shielded components. We conclude that a flagship class Europa mission can now be developed relying on existing technologies, having significant scientific capability. Titan and Enceladus Exploration: Remarkable discoveries by the Cassini/Huygens related to hydrocarbons at Titan and water vapor geysering at Enceladus demand follow-up of these astrobiologically relevant worlds by future missions. An aerial platform capable of observing the surface of Titan from beneath the obscuring cloud cover and descending repeatedly to

  17. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  18. Planetary science: Titan's lost seas found

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe

    2007-01-01

    When the Cassini spacecraft found no methane ocean swathing Saturn's moon Titan, it was a blow to proponents of an Earth-like world. The discovery of northern lakes on Titan gives them reason for cheer.

  19. Titan

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1999-01-01

    With a launch in December 2001, Space Infrared Telescope Facility (SIRTF) can observe Titan in the interval after Infrared Space Observatory (ISO) but before the onset of observations by Cassini. By virtue of its broad spectral coverage in the thermal infrared, 10-180 micron, its moderately high spectral resolution, approaching lambda/delta lambda=600 over part of this wavelength range, and the very high sensitivity of its helium- cooled detectors, the Infrared Spectrometer (IRS) and MIPS on SIRTF can address several issues raised through earlier observations by the Voyager IRIS experiment and by ISO. These include, for example, a better characterization of the vertical distribution of water in Titan's middle and upper atmospheres and the discovery of new compounds, such as allene or proprionitrile. This talk will address the temperature- and composition-sounding capabilities of SIRTF, particularly in the context of how they will complement Cassini observations and aid in their planning.

  20. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  1. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less

  2. Coupled atmosphere-ocean models of Titan's past

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  3. Halving Titan

    NASA Image and Video Library

    2010-01-11

    Titan seasonal hemispheric dichotomy is chronicled in black and white, with the moon northern half appearing slightly lighter than the dark southern half in this image taken by NASA Cassini spacecraft.

  4. Laboratory simulation of photochemistry on Titan

    NASA Astrophysics Data System (ADS)

    Ferris, J.; Tran, B.; Force, M.; Briggs, R.; Vuitton, V.

    Solar UV radiation is the principal energy source driving the chemistry in Titan's atmosphere ....(Sagan and Thompson, 1984). We have investigated the photochemical reactions in Titan's atmosphere in a flow reactor using the 185 and 254 nm UV emissions from a low-pressure mercury lamp ....(Clarke, et al., 2000) .....(Tran, et al., 2003). A solid product is formed using this apparatus and its optical properties have been measured since it is an analog of the haze layer on Titan. The complex refractive index of the solid material was determined and compared with the corresponding refractive index derived from the optical data obtained from Voyager 1 .......(Tran, et al., 2003). The current research focuses on the volatile reaction products. The principal gaseous compounds that absorb 185 nm light in Titan's atmosphere (acetylene, ethylene, and cyanoacetylene) were irradiated individually and in the presence of other atmospheric constituents at their mixing ratios in the Titan atmosphere. The objectives of this study are to determine the reaction pathways and to construct a model that reproduces the experimental results. Quantum yields for the loss of reactants and the formation of products were determined from the rates measured by gas chromatographic analysis. Irradiation of a mixture of acetylene, ethylene, cyanoacetylene, methane, hydrogen and nitrogen generated over 120 compounds. The structures of about 100 of these compounds were determined by GC/MS. The structures of many of these compounds were confirmed by use of authentic samples. The similarities and difference in the products obtained photochemically and by plasma discharges will be discussed. Clarke D. W., J. C. Joseph and J. P. Ferris, 2000, The design and use of a photochemical flow reactor: A laboratory study of the atmospheric chemistry of cyanoacetylene on Titan, Icarus, 282-291. Sagan C. and W. R. Thompson, 1984, Production and condensation of organic gases in the atmosphere of Titan, Icarus, 59

  5. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  6. Pluto's Implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, M.; Yung, Y. L.; Gladstone, R.

    2013-12-01

    The recent Cassini-Huygens Mission to the Saturnian system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of the time Titan's atmosphere must have existed in a collapsed snowball state, characterized by a cold surface and a thin atmosphere, much like those of present-day Pluto and Triton. We will briefly review how the present Titan atmosphere exists due to a sensitive coupling between photochemistry, radiation, and dynamics. This delicate 'house of cards' must have collapsed in the past when it ran out of CH4 or when the sun was dimmer. We will investigate how the rate of organic synthesis on Snowball Titan differs from that of contemporary Titan. The forthcoming New Horizons Mission to Pluto and the Kuiper Belt may allow us to gain insights into the fine balance and the evolutionary history of certain planetary atmospheres. In particular, the high SNR solar occultations planned for observation with the Alice UV spectrograph on New Horizons are expected to yield abundance profiles of important hydrocarbons and nitriles in Pluto's atmosphere, providing detailed constraints for photochemical models such as those considered here.

  7. Rheology and Thermal State of Titan's Crust: Potential Role of Methane Clathrates

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2014-12-01

    Gravity and topography data including new results obtained from recent Cassini RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations suggest that Titan has a rigid and conductive crust, greater than 40 km in thickness (Beghin et al., 2012; Hemingway et al., 2013; Lopes et al., 2013; Mitri et al., 2014; Lefevre et al., 2014; Baland et al., 2014). In this work we employed rheological models based on clathrate hydrate stability fields and modeled geothermal gradients to investigate how clathrate hydrates may influence the rheology of Titan's crust. Our findings suggest that a thick, rigid, and conductive crust composed of pure water ice is unlikely. Instead, a mixed phase crust comprised of water ice and clathrate hydrates, with up to 40 to 50% methane clathrates, results in thermal conductivity, viscosity, and density values consistent with Cassini observations. We modeled variations in Rayleigh number with crustal thickness for different crustal compositions assuming constant viscosity. Addition of methane clathrates makes the mixed ice-clathrate crust more viscous resulting in smaller Rayleigh numbers with depth compared to ice-only models. This slower rate of increase in Rayleigh number is also associated with increasing critical Rayleigh numbers, and hence, the potential thickness of a rigid, conductive crust. Modeling basal viscosity for different crustal compositions, following McKinnon (2006), we also determined that a methane clathrate-rich conductive crust would likely be much thicker (~60 km) than a non-convecting pure water-ice crust (~12 km). Titan's carbon content constrained by different formation models (Tobie et al., 2012) shows that even a pure methane clathrate crust is possible. However, a pure methane clathrate crust is unlikely because it would be relatively thin, less than 20 km due to clathrate's low thermal conductivity. Therefore, a mixed phase crust may explain both the geophysical observations and significant methane

  8. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  9. Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections

    PubMed Central

    Okagaki, Laura H.

    2012-01-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904

  10. Dark Spots on Titan

    NASA Image and Video Library

    2005-05-02

    This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter

  11. Titan Polar Maps - 2015

    NASA Image and Video Library

    2015-10-09

    The northern and southern hemispheres of Titan are seen in these polar stereographic maps, assembled in 2015 using the best-available images of the giant Saturnian moon from NASA's Cassini mission. The images were taken by Cassini's imaging cameras using a spectral filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. These maps utilize imaging data collected through Cassini's flyby on April 7, 2014, known as "T100." Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. Compared to the previous version of Cassini's north polar map (see PIA11146), this map provides much more detail and fills in a large area of missing data. The imaging data in these maps complement Cassini synthetic aperture radar (SAR) mapping of Titan's north pole (see PIA17655). The uniform gray area in the northern hemisphere indicates a gap in the imaging coverage of Titan's surface, to date. The missing data will be imaged by Cassini during flybys on December 15, 2016 and March 5, 2017. Lakes are also seen in the southern hemisphere map, but they are much less common than in the north polar region. Only a lakes have been confirmed in the south. The dark, footprint-shaped feature at 180 degrees west is Ontario Lacus; a smaller lake named Crveno Lacus can be seen as a very dark spot just above Ontario. The dark-albedo area seen at the top of the southern hemisphere map (at 0 degrees west) is an area called Mezzoramia. Each map is centered on one of the poles, and surface coverage extends southward to 60 degrees latitude. Grid lines indicate latitude in 10-degree increments and longitude in 30-degree increments. The scale in the full-size versions of these maps is 4,600 feet (1

  12. Experimental simulation of aerosols evolution in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Chatain, A.; Carrasco, N.; Guaitella, O.

    2017-09-01

    Many recent studies on Titan are concerned with aerosols. In particular, questions are asked on how these complex organic molecules are formed and evolve in Titan's atmosphere. Here for the first time we experimentally study how harsh plasma environment simulating Titan ionosphere can affect these aerosols. Titan tholins are placed in a N2-H2 plasma reactor and sample signatures are measured by infrared transmission spectroscopy. First results show an evolution of the absorption bands. Therefore, plasma conditions seem to change tholin chemical structure.

  13. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    PubMed

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  14. Probing Titan's atmosphere with a stellar occultation

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    The 3 July, 1989 occultation of 28 Sgr by Titan is discussed. The star was readily detectable throughout the occultation, reaching a minimum normalized flux of about 0.05. The occultation probed Titan's atmosphere in a region not studied by the Voyager spacecraft. The region is important for the aerobraking of Titan entry probes, and direct information about its properties is important for the Cassini mission. Occultation data (normalized stellar flux vs universal time) is shown in chart form for NASA supported stations, along with data from a collaborating group at the Wise observatory in Israel. Strong scintillation data of the star is noticeable in the data records, and provides information on waves/turbulence in Titan's high atmosphere.

  15. A Numerical Study of Micrometeoroids Entering Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Templeton, M.; Kress, M. E.

    2011-01-01

    A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different

  16. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  17. Putative cryomagma interaction with aerosols deposit at Titan's surface

    NASA Astrophysics Data System (ADS)

    Coll, Patrice; Navarro-Gonzalez, Rafael; Raulin, Francois; Coscia, David; Ramirez, Sandra I.; Buch, Arnaud; Szopa, Cyril; Poch, Olivier; Cabane, Michel; Brassé, Coralie

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan’s atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma [1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan aerosol analogues, that have been qualified as representative of Titan’s aerosols [2]. Indeed the first results obtained by the ACP experiment onboard Huygens probe revealed that the main products obtained after thermolysis of Titan’s collected aerosols, were ammonia (NH3) and hydrogen cyanide (HCN). Then performing a direct comparison of the volatiles produced after a thermal treatment done in conditions similar to the ones used by the ACP experiment, we may estimate that the tholins we used are relevant to chemical analogues of Titan’s aerosols, and to note free of oxygen. Taking into account recent studies proposing that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), and assuming the presence of specific gas species [4, 5], in particular CO2 and H2S, trapped in likely internal ocean, we determine a new probable composition of the cryomagma which could potentially interact with deposited Titan’s aerosols. We then carried out different hydrolyses, taking into account this composition, and we established the influence of the hydrolysis temperature on the organic molecules production. References: [1] Mitri et al., 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 196, 216-224. [2] Coll et al. 2013, Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results, Planetary and Space Science 77, 91-103. [3] Tobie et al. 2012. Titan’s Bulk Composition Constrained by Cassini-Huygens: implication for internal outgassing. The

  18. Titan's methane clock

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  19. Properties and mechanisms of surface doped barium titanate sintered in reducing atmospheres

    NASA Astrophysics Data System (ADS)

    Spang, David Irwin

    2001-07-01

    Barium titanate-based dielectric compositions for Multilayer Ceramic Capacitor (MLCC) applications that are properly formulated can maintain acceptable dielectric properties after firing in a reducing atmosphere. The data to be presented relates to the application of an experimental scheme to probe the fundamental nature of doped BaTiO3-based dielectrics exposed to low pO2 sintering atmospheres. Specifically, the effect of Y and Rare Earth dopants Nd, Dy, Ho, and Er and donor dopants Nb, and V have been studied for compositions in the system BaTi(Mn)O3 + SiO2. All dopants were applied to high purity barium titanate as chemical surface coatings. Each coated formulation was evaluated after firing under three different atmospheric conditions. These conditions were comprised of firing in air at 1250°C for 2 hours, firing at 10-10 atm pO2 at 1250°C for 2 hours, and firing at 10-10 atm pO2 at 1250°C for 2 hours with an anneal at 10 -9 atm pO2 at 1000°C for 1 hour. This testing method was useful in gaining insight into the mechanism of the dopant interaction and/or the compensation of the oxygen vacancy concentration. As a donor addition, vanadium was observed to produce the highest dissipation factor when sintered under oxidizing conditions and the lowest dissipation factor when sintered under reducing conditions. The V-doped formulations exhibited satisfactory basic MLCC electrical properties when sintered under reducing conditions. Niobium was observed to impart strong donor character to the dielectric formulations sintered under reducing conditions suggesting that it was unlikely that compensatory A-site cation vacancies were induced. For Y and Rare Earth doped formulations there was an observed shifting and suppression of the Curie Peak that seemed to be attributable to electrostrain effects, related to the ionic radius of the dopants. The observed difference in the TCC behavior of the Nd-doped formulations illustrated two possible effects of Nd doping. One is

  20. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Cooper, J.; Mahaffy, P.; Fairbrother D.; dePater, I.; Schultze-Makuch, D.; Pitman, J.

    2007-01-01

    Cassini and Huygens have made exciting discoveries at Titan and Enceladus, and at the same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only -500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments

  1. Orographic Condensation at the South Pole of Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate

    2016-10-01

    Although many clouds have been observed on Titan over the past two decades (Griffith et al. 1998, Rodriquez et al 2009, Brown et al. 2010), only a handful of clouds have been analyzed in detail (Griffith et al 2005, Brown et al 2009, Adamkovics et al 2010). In light of new data and better radiative transfer (RT) modelling, we present here a reexamination of one of these cloud systems observed in March 2007, formerly identified as ground fog (Brown et al 2009), using the Cassini VIMS instrument. Combining our analysis with RADAR observations we attempt to understand the connection and correlation between this low altitude atmospheric phenomenon and the local topography, suggesting instead, a topographically driven (orographic) cloud formation mechanism. This analysis would present the first links between cloud formation and topography on Titan, and has valuable implications in understanding additional cloud formation mechanisms, allowing for a better understanding of Titan's atmospheric dynamics.We will also present an update on an ongoing ground based observation campaign looking for clouds on Titan. This campaign, begun back in April 2014, has been (nearly) continuously monitoring Titan for ongoing cloud activity. Although a variety of telescope and instruments have been used in an effort to best capture the onset of cloud activity expected at Titan's North Pole, no cloud outbursts have yet been observed from the ground (though frequent observations have been made with Cassini ISS/VIMS). This is interesting because it further suggests a developing dichotomy between Titan's seasons, since clouds were observable from the ground during southern summer. Thus, monitoring the onset of large scale cloud activity at Titan's North Pole will be crucial to understanding Titan's hydrologic cycle on seasonal timescales.

  2. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    NASA Astrophysics Data System (ADS)

    Sittler, E.; Cooper, J.; Mahaffy, P.; Fairbrother, D.; de Pater, I.; Schulze-Makuch, D.; Pitman, J.

    2007-08-01

    same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only 500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments will sample the upper atmosphere which may provide the seed population for the complex

  3. Explorer of Enceladus and Titan (E2T): Investigating the habitability and evolution of ocean worlds in the Saturn system

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Postberg, Frank; Soderblom, Jason M.; Tobie, Gabriel; Tortora, Paolo; Wurz, Peter; Barnes, Jason W.; Coustenis, Athena; Ferri, Francesca; Hayes, Alexander; Hayne, Paul O.; Hillier, Jon; Kempf, Sascha; Lebreton, Jean-Pierre; Lorenz, Ralph; Orosei, Roberto; Petropoulos, Anastassios; Yen, Chen-wan; Reh, Kim R.; Schmidt, Jürgen; Sims, Jon; Sotin, Christophe; Srama, Ralf

    2016-10-01

    The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most enigmatic worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice laced with organics, salts, and silica nano-particles, both harbouring subsurface oceans, are prime environments in which to investigate the conditions for the emergence of life and the habitability potential of ocean worlds as well as the origin and evolution of unique complex planetary systems. Explorer of Enceladus and Titan (E2T) is a space mission concept dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed as a medium-class mission led by ESA in collaboration with NASA in response to ESA's M5 Cosmic Vision Call. E2T has a focused state-of-the-art adapted payload that will provide in-situ sampling, high-resolution imaging and radio science measurements from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. With significant improvements in mass range and resolution, as compared with Cassini, the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy Jet Analyzer (ENIJA) time of flight mass spectrometers will provide the data needed to decipher the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map thermal emission from Enceladus' tiger stripes at meter scales and investigate Titan's geology and compositional variability at decameter scales. The Radio Science Experiment (RSE) measurements will provide constraints on the ice shell structure and the properties of the internal oceans of Enceladus and Titan. We will present the concept and discuss the major improvements to our understanding of these

  4. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V

    PubMed Central

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility. PMID:27186538

  5. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.

    2005-09-01

    Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.

  6. Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics

    NASA Astrophysics Data System (ADS)

    Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.

    2017-02-01

    A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively

  7. Spacecraft Exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Matson, D.; Coustenis, A.; Lunine, J. I.; Lebreton, J.; Reh, K.; Beauchamp, P.; Erd, C.

    2009-12-01

    The future exploration of Titan and Enceladus is very important for planetary science. The study titled Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). The TSSM concept consists of an Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. This mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later and begin a 4-year mission in the Saturnian system. At an appropriate time after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km above the surface. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system whose waste heat would warm the gas in the balloon, providing buoyancy. It would be designed to survive at least 6-12 months in Titan’s atmosphere. With the predicted winds and weather, it should be possible to circumnavigate the globe! Later, on a subsequent fly-by, the TSSM orbiter would send the Lake Lander to Titan. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan’s seas. This would be its oceanographic phase of making a physical and chemical assessment of the sea. The Lake Lander would operate for 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would then explore the Saturn system for two years on a tour that includes in situ sampling of Enceladus’ plumes as well as flybys of Titan. After the Saturn tour, the TSSM orbiter would go into orbit around Titan and carry out a global survey phase. Synergistic observations would be carried out by the TSSM orbiter and the in situ elements. The scientific requirements for

  8. Dragonfly: Investigating the Surface Composition of Titan

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.; hide

    2018-01-01

    Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.

  9. GCM Simulations of Titan's Paleoclimate

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan; Russell, Joellen; Hayes, Alexander

    2014-11-01

    The hemispheric asymmetry observed in the distribution of Titan's lakes and seas has been suggested to be the result of asymmetric seasonal forcing, where a relative moistening of the north occurs in the current epoch due to its longer and less intense summers. General circulation models (GCMs) of present-day Titan have also shown that the atmosphere transports methane away from the equator. In this work, we use a Titan GCM to investigate the effects that changes in Titan's effective orbital parameters have had on its climate in recent geologic history. The simulations show that the climate is relatively insensitive to changes in orbital parameters, with persistently dry low latitudes and wet polar regions. The amount of surface methane that builds up over either pole depends on the insolation distribution, confirming the influence of orbital forcing on the distribution of surface liquids. The evolution of the orbital forcing implies that the surface reservoir must be transported on timescales of ~30 kyr, in which case the asymmetry reverses with a period of ~125 kyr. Otherwise, the orbital forcing is insufficient for generating the observed dichotomy.

  10. A Last Look at Titan

    NASA Image and Video Library

    2017-09-15

    As it glanced around the Saturn system one final time, NASA's Cassini spacecraft captured this view of the planet's giant moon Titan. Interest in mysterious Titan was a major motivating factor to return to Saturn with Cassini-Huygens following the Voyager mission flybys of the early 1980s. Cassini and its Huygens probe, supplied by European Space Agency, revealed the moon to be every bit as fascinating as scientists had hoped. These views were obtained by Cassini's narrow-angle camera on Sept. 13, 2017. They are among the last images Cassini sent back to Earth. This natural color view, made from images taken using red, green and blue spectral filters, shows Titan much as Voyager saw it -- a mostly featureless golden orb, swathed in a dense atmospheric haze. An enhanced-color view (Figure 1) adds to this color a separate view taken using a spectral filter (centered at 938 nanometers) that can partially see through the haze. The views were acquired at a distance of 481,000 miles (774,000 kilometers) from Titan. The image scale is about 3 miles (5 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21890

  11. Saturn/Titan Rendezvous: A Solar-Sail Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    A low-mass Titan orbiter is proposed that uses conservative or optimistic solar sails for all post-Earth-escape propulsion. After accelerating the probe onto a trans-Saturn trajectory, the sail is used parachute style for Saturn capture during a pass through Saturn's outer atmosphere. If the apoapsis of the Saturn-capture orbit is appropriate, the aerocapture maneuver can later be repeated at Titan so that the spacecraft becomes a satellite of Titan. An isodensity-atmosphere model is applied to screen aerocapture trajectories. Huygens/Cassini should greatly reduce uncertainties regarding the upper atmospheres of Saturn and Titan.

  12. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  13. Titan's surface-atmosphere system before and after Huygens

    NASA Astrophysics Data System (ADS)

    Lunine, Jonathan I.

    2015-04-01

    Speculation about the nature of Titan's surface-atmosphere interactions goes back to the discovery of methane in its atmosphere in 1943 but beginning in the early 1970's surface models began to grapple more quantitatively with the source of methane and its instability in the atmosphere. The role of molecular nitrogen in the atmosphere was first quantitatively considered at that time as well. The Voyager 1 flyby put a thick atmosphere of molecular nitrogen and methane on an observational footing, and made an atmospheric descent probe quite feasible. The measured high methane humidity made seas of methane and possibly other constituents an attractive possible source of methane and sink of its photolytic products, influencing the choice of instruments for a descent probe. At the time of Huygens' actual descent to the surface, global seas had been ruled out, and the Cassini Orbiter was just beginning to gather imaging and radar data of the surface. The fluvial nature of the Huygens landing site and presence of volatiles just below the surface were important discoveries of Huygens itself. Together with Cassini, Huygens painted a picture of a cryogenic desert with occasional violent methane rainstorms feeding streams that tumble pebbles of ice and organics downhill, the whole surrounded by dunes whose organic-rich particles are harvested from the chemical conversion of methane to more refractory compounds high in the atmosphere. And yet many mysteries remain. The large bodies of liquid methane are restricted to high latitudes. Most of the river valleys seen in Cassini radar data seem to run down to nowhere. And the ultimate source and replenishment of methane, although seemingly more strongly tied to the interior than before Cassini-Huygens, remain unresolved. Huygens gave us the only imaging of Titan's surface with a resolution good enough to follow fluvial processes all the way from the contextual geology, to channels, to the stream debris washed out into the plains

  14. The Properties and Effects of Titan's Organic Haze

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Titan's organic haze is the the dominant absorber of solar energy in Titan's atmosphere, creating an anti-greenhouse effect. Its variation over time may have had important implications for Titan's surface temperature. The haze is potentially an important sink of photochemically produced carbon and nitrogen compounds. Laboratory simulations and microphysical models suggest that the haze is a sink for C of 4 x 10(exp 8)/ sq cm s, and a sink for N of 1 x 10(exp 8)sq cm s. The C sink is small compared to condensation of hydrocarbons but the sink for N is comparable to the total production rate of HCN. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere.

  15. Mapping the Methane and Aerosol Distributions within Titan's Troposphere: Complementing The Cassini/VIMS T90 Flyby of Titan

    NASA Astrophysics Data System (ADS)

    Young, Eliot

    2012-10-01

    Titan's atmosphere is mainly nitrogen gas with several trace constituents, including methane at the few percent level. The presence of methane has been a puzzle for decades, since the CH4 in Titan's atmosphere is expected to be destroyed by UV photolysis in ten million years or so. The source of Titan's atmospheric methane continues to be a major question. We propose a set of three STIS image cubes with the G750M grating at 0.62, 0.72 and 0.89 |*|m methane bands. These bands probe altitudes from the surface to 70 km; unlike CH4 bands at 1.6 or 2.3 |*|m, these cubes will provide a 3-D picture of Titan's troposphere {below 40 km}. The Cassini/VIMS visible channel has not been useful for this purpose for two reasons: its spectral resolution {about R=100} is coarse and its inconsistent background subtraction scheme that can lead to "stripes." HST/STIS resolves Titan's 1" disk into over 80 spatially resolved spectra, each with a spectral resolution greater than R=5000. STIS is a unique tool for mapping the 3-D distributions of CH4 and aerosols in Titan's troposphere.We request observations within a day of the Cassini flyby of Titan on April 5, 2013 around 21:40 UT in order to combine Cassini/VIMS and STIS mage cubes. Together, the visible {STIS} and IR {VIMS} image cubes will probe altitudes from the surface to the stratosphere {several hundred km}. The proposed STIS image cubes will provide the best tropospheric map of CH4 to date, relevant to surface/atmospheric coupling of CH4, latitudinal inhomogeneity of CH4 or aerosols, or the presence of condensates at low altitudes.

  16. Strategies for Detecting Biological Molecules on Titan.

    PubMed

    Neish, Catherine D; Lorenz, Ralph D; Turtle, Elizabeth P; Barnes, Jason W; Trainer, Melissa G; Stiles, Bryan; Kirk, Randolph; Hibbitts, Charles A; Malaska, Michael J

    2018-05-02

    Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. Key Words: Titan-Prebiotic chemistry-Solar system exploration-Impact processes-Volcanism. Astrobiology xx, xxx-xxx.

  17. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Buch, A.; Raulin, F.; Coll, P.; Poch, O.; Ramirez, S.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have studied the evolution of alkaline pH hydrolysis of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at ambient and low temperature. However, we identified oxygenated molecules in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, the study of oxygen-free tholins' evolution has been carried out. A recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), as previously described by other teams [2,4]. Thus new hydrolysis experiments will take this lower value into account. Additionally, a new report [5] provides upper and lower limits for the bulk content of Titan's interior for various gas species. It also shows that most of them are likely stored and dissolved in the subsurface water ocean. But considering the plausible acido-alkaline properties of the ammonia-water ocean, additional species could be dissolved in the ocean and present in the magma. They were also included in our hydrolysis experiments. Taking into account these new data, four different hydrolysis have been applied to oxygen-free tholins. For each type of hydrolysis, we also follow the influence of the hydrolysis temperature on the organic molecules production. The preliminary qualitative and quantitative

  18. Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Alkathy, Mahmoud. S.; James Raju, K. C.

    2018-03-01

    Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.

  19. Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Alkathy, Mahmoud. S.; James Raju, K. C.

    2018-07-01

    Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.

  20. Titan's "Hot Cross Bun": A Titan Laccolith?

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Stofan, E. R.; Wall, S. D.; Wood, C.; Kirk, R. L.; Lucas, A.; Mitchell, K. L.; Lunine, J. I.; Turtle, E. P.; Radebaugh, J.; Malaska, M.; Cassini RADAR Team

    2012-10-01

    Cassini’s RADAR instrument acquired Synthetic Aperture Radar data during the T83 flyby on May 22, 2012. The data showed a feature centered at 38.5N, 203W that resembles a “hot cross bun”. This type of feature has not been seen on Titan before, even though 52% of Titan’s surface has been imaged using SAR. The feature, approximately 100 km across, is mostly radar bright but the cross pattern, interpreted to be extensional fractures, located roughly at the center of the brighter area, appears darker at radar wavelengths (2.3 cm). Radar illumination of the image indicates that the fractures are lower in elevation than the surrounding bright region. The morphology of the region is markedly similar to that of a 30-km dome-shaped feature on Venus that lies at the summit of the Kunapipi volcano. The Venus feature is interpreted to be the result of intrusion of magma at the summit of the volcano [1]. A similar feature, interpreted as a laccolith, is seen on the Moon near the crater Ramsden [2]. The lunar feature, imaged by the Lunar Reconnaissance Orbiter, shows the cross-shaped depression over a 300 m high rise. No topographic data for the feature on Titan are available at this time, but the morphology seen by the SAR data suggests that the feature may have been formed by material pushing up from below. Laccoliths form when an igneous intrusion splits apart two strata, resulting in a domeline structure. This previously unknown type of structure on Titan may be yet another indication of cryovolcanism. [1] Stofan, E.R., et al, Icarus, 152, 75-95, 2001. [2] Wichman, R.W. and Schultz, P. H. (1996). Icarus, 122, Issue 1, July 1996, pages 193-199. doi:10.1006/icar.1996.0118

  1. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  2. Effect of Thermal Processes on the Electrical and Optical Properties of Fe2TiO5 Ceramics

    NASA Astrophysics Data System (ADS)

    Fajarin, R.; Widyastuti; Baqiya, M. A.; Putri, I. Y. S.

    2017-05-01

    Pseudobrookite (Fe2TiO5) is one of the Fe-Ti oxides that have been commonly studied. It is the most stable phase among the Fe-titanates. The multiferroic properties of Fe2TiO5 make the material can be used as a potential candidate for new applications due to the combination of semiconducting, magnetic, dielectric, and optical properties. In this research, Fe2TiO5 ceramics were synthesized using mechanical milling method for 7 h with various temperatures of 1100 °C, 1200 °C, and 1300 °C. Scanning electron microscopy (SEM) observation and x-ray diffraction (XRD) measurements were performed to analyze the microstructures and crystal structures of the Fe2TiO5 ceramics. In order to investigate the band gap of the Fe2TiO5, the UV-Vis Diffuse Reflectance measurements were conducted. It has been found that the Fe2TiO5 ceramic can be applied as a promising candidate for semiconducting devices in which the electrical conductivity and the band gap of the Fe2TiO5 ceramic were 1.73 × 10-7 Ω-1.cm-1 and 1.71 eV, respectively.

  3. A Titanic Labyrinth

    NASA Image and Video Library

    2016-07-29

    This synthetic-aperture radar image was obtained by NASA's Cassini spacecraft during its T-120 pass over Titan's southern latitudes on June 7, 2016. The image is centered near 47 degrees south, 153 degrees west. It covers an area of 87 by 75 miles (140 by 120 kilometers) and has a resolution of about 1,300 feet (400 meters). Radar illuminates the scene from the left at a 35-degree incidence angle. The features seen here are an excellent example of "labyrinth terrain." Labyrinth terrains on Titan are thought to be higher areas that have been cut apart by rivers of methane, eroded or dissolved as they were either lifted up or left standing above as the region around them lowered. (Other examples of labyrinth terrain can be seen in PIA10219.) In this image, several obvious valley systems have developed, draining liquids from methane rainfall toward the southeast (at top). Several of these systems are near parallel (running from upper left to lower right), suggesting that either the geological structure of the surface or the local topographic gradient (the general slope across the area) may be influencing their direction. Also presented here is an annotated version of the image, along with an aerial photograph of a region in southern Java known as Gunung Kidul that resembles this Titan labyrinth. This region is limestone that has been dissolved and eroded by water, creating a system of canyons called polygonal karst. Like on Titan, the canyons show a trend from upper left to lower right, in this case controlled by faults or joints. (Java photo from Haryono and Day, Journal of Cave and Karst Studies 66 (2004) 62-69, courtesy of Eko Haryono.) http://photojournal.jpl.nasa.gov/catalog/PIA20708

  4. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; ...

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  5. Accelerated application development: The ORNL Titan experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Archibald, Rick; Berrill, Mark

    2015-08-01

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  6. Titan's ion exosphere observed from Voyager 1

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C., Jr.; Ogilvie, K. W.; Scudder, J. D.; Lazarus, A. J.; Atreya, S. K.

    1982-01-01

    The plasma wake surrounding Titan in Saturn's rotating magnetosphere is characterized by a plasma which is denser and cooler than the surrounding subsonic magnetospheric plasma, and which is produced by the deflection of magnetospheric plasma around Titan and the addition of exospheric ions picked up by the rotating magnetosphere. A resemblance to the interaction between the solar wind and Venus is shown for the case of ion pickup in the ion exosphere outside Titan's magnetic tail and ion flow within the boundaries of the tail as Saturn's rotating magnetosphere interacts with Titan. The boundary of the tail is indicated by a sharp reduction in the flux of high-energy electrons, which are removed by inelastic scattering with the atmosphere and centrifugal drift produced when the electrons traverse the magnetic field draped around Saturn.

  7. Cyanide Soap? Dissolved material in Titan's Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  8. Location and size of flux ropes in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Martin, C.; Arridge, C. S.; Badman, S. V.; Dieval, C.

    2017-12-01

    Cassini magnetometer data was surveyed during Titan flybys to find 73 instances of flux rope signatures. A force free flux rope model was utilised to obtain the radii, maximum magnetic field and flux content of flux ropes that adhere to the force-free assumptions. We find that flux ropes at Titan are similar in size in km and flux content to the giant flux ropes identified at Venus, with a median radii of 280 km and an inter-quartile range of 270 km, a median maximum magnetic field of 8 nT with an inter-quartile range of 7 nT and a median flux content of 76 Wb with a large inter-quartile range of 250 Wb. We additionally investigate the occurrence of flux ropes with respect to the Sun-lit facing hemisphere (zenith angle) and the ram-side of Titan within Saturn's corotating magnetosphere (angle of attack of the incoming plasma flow). We find that flux ropes are more commonly detected in Sun-lit areas of Titan's ionosphere, as well as the ram-side of Titan. We see a statistically-significant absence of flux ropes in all SLT sectors in the night side of Titan and the anti-ram side of Titan. We also comment on the physical mechanisms associated with the production of these flux ropes, with particular attention on the variability of Titan's environment in Saturn's magnetosphere.

  9. Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.

    2016-06-01

    Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.

  10. Dawning of the N =32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

    NASA Astrophysics Data System (ADS)

    Leistenschneider, E.; Reiter, M. P.; Ayet San Andrés, S.; Kootte, B.; Holt, J. D.; Navrátil, P.; Babcock, C.; Barbieri, C.; Barquest, B. R.; Bergmann, J.; Bollig, J.; Brunner, T.; Dunling, E.; Finlay, A.; Geissel, H.; Graham, L.; Greiner, F.; Hergert, H.; Hornung, C.; Jesch, C.; Klawitter, R.; Lan, Y.; Lascar, D.; Leach, K. G.; Lippert, W.; McKay, J. E.; Paul, S. F.; Schwenk, A.; Short, D.; Simonis, J.; Somà, V.; Steinbrügge, R.; Stroberg, S. R.; Thompson, R.; Wieser, M. E.; Will, C.; Yavor, M.; Andreoiu, C.; Dickel, T.; Dillmann, I.; Gwinner, G.; Plaß, W. R.; Scheidenberger, C.; Kwiatkowski, A. A.; Dilling, J.

    2018-02-01

    A precision mass investigation of the neutron-rich titanium isotopes Ti-5551 was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N =32 shell closure, and the overall uncertainties of the Ti-5552 mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N =32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N =32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

  11. Experimental basis for a Titan probe organic analysis

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Scattergood, T. W.; Borucki, W. J.; Kasting, J. F.; Miller, S. L.

    1986-01-01

    The recent Voyager flyby of Titan produced evidence for at least nine organic compounds in that atmosphere that are heavier than methane. Several models of Titan's atmosphere, as well as laboratory simulations, suggest the presence of organics considerably more complex that those observed. To ensure that the in situ measurements are definitive with respect to Titan's atmosphere, experiment concepts, and the related instrumentation, must be carefully developed specifically for such a mission. To this end, the possible composition of the environment to be analyzed must be bracketed and model samples must be provided for instrumentation development studies. Laboratory studies to define the optimum flight experiment and sampling strategy for a Titan entry probe are currently being conducted. Titan mixtures are being subjected to a variety of energy sources including high voltage electron from a DC discharge, high current electric shock, and laser detonation. Gaseous and solid products are produced which are then analyzed. Samples from these experiements are also provided to candidate flight experiments as models for instrument development studies. Preliminary results show that existing theoretical models for chemistry in Titan's atmosphere cannot adequetely explain the presence and abundance of all trace gases observed in these experiments.

  12. The commercial evolution of the Titan program

    NASA Astrophysics Data System (ADS)

    Isakowitz, Steven

    1988-07-01

    The present status evaluation of proprietary efforts to turn the once exclusively government-requirements-oriented Titan launch vehicle into a successful commercial competitor is divided into three phases. The first phase notes recent changes in U.S. space transportation policy and the Titan configurations evaluated for commercial feasibility. The second phase is a development history for the current vehicle's marketing organization and the right-to-use agreement for a launch site. Phase three projects the prospective marketing climate for a commercial Titan vehicle and its planned improvements.

  13. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  14. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global

  15. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ianculescu, Adelina Carmen; Vasilescu, Catalina Andreea, E-mail: katyvasilescu85@yahoo.com; National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG54, 077125 Magurele

    2015-08-15

    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations ofmore » the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.« less

  16. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  17. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less

  18. Selections from 2017: Discoveries in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Carbon Chain Anions and the Growth of Complex Organic Molecules in Titans IonospherePublished July2017Main takeaway:Graphic depicting some of the chemical reactions taking place in Titans atmosphere, leading to the generation of organic haze particles. [ESA]In a recently published study led by Ravi Desai (University College London), scientists used data from the Cassini mission to identify negatively charged molecules known as carbon chain anions in the atmosphere of Saturns largest moon, Titan.Why its interesting:Carbon chain anions are the building blocks ofmore complex molecules, and Titans thick nitrogen and methane atmosphere mightmimic the atmosphere of earlyEarth. This first unambiguous detection of carbon chain anions in a planet-like atmosphere might therefore teach us about the conditions and chemical reactions that eventually led to the development of life on Earth. And ifwe can use Titan to learn about how complex molecules grow from these anion chains, we may be able to identify auniversal pathway towards the ingredients for life.What weve learned so far:Cassini measured fewer and fewer lower-mass anions the deeper in Titans ionosphere that it looked and at the same time,an increase in the number of precursors to larger aerosol molecules further down. This tradeoff strongly suggests that the anions are indeed involved in building up the more complex molecules, seeding their eventual growth into the complex organic haze of Titans lower atmosphere.CitationR. T. Desai et al 2017 ApJL 844 L18. doi:10.3847/2041-8213/aa7851

  19. Widespread morning drizzle on Titan.

    PubMed

    Adámkovics, Máté; Wong, Michael H; Laver, Conor; de Pater, Imke

    2007-11-09

    Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere. Retrieved extinction profiles are consistent with condensed methane in clouds at an altitude near 30 kilometers and concomitant methane drizzle below. The moisture encompasses the equatorial region over Titan's brightest continent, Xanadu. Diurnal temperature gradients that cause variations in methane relative humidity, winds, and topography may each be a contributing factor to the condensation mechanism. The clouds and precipitation are optically thin at 2.0 micrometers, and models of "subvisible" clouds suggest that the droplets are 0.1 millimeter or larger.

  20. Charged particle tracking at Titan, and further applications

    NASA Astrophysics Data System (ADS)

    Bebesi, Zsofia; Erdos, Geza; Szego, Karoly

    2016-04-01

    We use the CAPS ion data of Cassini to investigate the dynamics and origin of Titan's atmospheric ions. We developed a 4th order Runge-Kutta method to calculate particle trajectories in a time reversed scenario. The test particle magnetic field environment imitates the curved magnetic environment in the vicinity of Titan. The minimum variance directions along the S/C trajectory have been calculated for all available Titan flybys, and we assumed a homogeneous field that is perpendicular to the minimum variance direction. Using this method the magnetic field lines have been calculated along the flyby orbits so we could select those observational intervals when Cassini and the upper atmosphere of Titan were magnetically connected. We have also taken the Kronian magnetodisc into consideration, and used different upstream magnetic field approximations depending on whether Titan was located inside of the magnetodisc current sheet, or in the lobe regions. We also discuss the code's applicability to comets.

  1. Specular reflection on Titan: Liquids in Kraken Mare

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Brown, Robert H.; Soderblom, Jason M.; Soderblom, Laurence A.; Barnes, Jason W.; Sotin, Christophe; Griffith, Caitlin A.; Kirk, Randolph L.; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Lytle, Dyer M.; Nelson, Robert M.; Nicholson, Phillip D.

    2010-01-01

    After more than 50 close flybys of Titan by the Cassini spacecraft, it has become evident that features similar in morphology to terrestrial lakes and seas exist in Titan's polar regions. As Titan progresses into northern spring, the much more numerous and larger lakes and seas in the north-polar region suggested by Cassini RADAR data, are becoming directly illuminated for the first time since the arrival of the Cassini spacecraft. This allows the Cassini optical instruments to search for specular reflections to provide further confirmation that liquids are present in these evident lakes. On July 8, 2009 Cassini VIMS detected a specular reflection in the north-polar region of Titan associated with Kraken Mare, one of Titan's large, presumed seas, indicating the lake's surface is smooth and free of scatterers with respect to the wavelength of 5 μm, where VIMS detected the specular signal, strongly suggesting it is liquid.

  2. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  3. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  4. Outline of an Ancient Sea on Titan

    NASA Image and Video Library

    2012-10-16

    This image from NASA Cassini spacecraft shows an ancient southern sea that used to sprawl out near the south pole of Saturn moon Titan. Within this basin is the largest present-day lake in Titan southern hemisphere, Ontario Lacus.

  5. Cratering on Titan: A Pre-Cassini Perspective

    NASA Technical Reports Server (NTRS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km

  6. Cratering on Titan: A Pre-Cassini Perspective

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km

  7. Titan Explorer: The Next Step in the Exploration of a Mysterious World

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Wright, Henry S.

    2005-01-01

    The Titan Explorer Mission outlined in this report is a proposed next step in the exploration of Titan, following the highly successful Huygens Titan probe of 2005. The proposed Titan Explorer Mission consists of an Orbiter and an Airship that traverses the atmosphere of Titan and can land on its surface. The Titan Explorer Mission is science driven and addresses some of the fundamental questions about the atmosphere, surface and evolution of Titan, which will add to our understanding of the origin and evolution of life on Earth and assess the likelihood of life elsewhere in the Solar System.

  8. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    species combinewith watermolecules to form clathrate hydrate structure. However, the temperature at which clathration can occur depends on the properties of each molecule. Among the different species potentially present in Titan's interior, Xe and H2S are the most stable species in the clahrate phase (Figure 1), and they are the two first species to be enclathrated when the satellite cools down. Our calculations reveal that clathrates of a mixture of Xe and H2S should be sequestered at the bottom of the H2O-NH3 subsurface ocean owing to their high stability and their high density compared to that of liquid water. The preferential sequestration of xenon in Titan's interior would explain why its abundance remains below the detection limit of the Huygens GCMS [1]. On the contrary, the least stable species in the clathrate phase are argon and carbon monoxide. Therefore even if they were present in small amounts at the time of accretion, they are easily released from the interior. Furthermore, we show that only clathrates containing a significant fraction of methane have a density lower than ammonia-water mixtures. As a consequence, methane-rich clathrates released during the core overturn accumulate at the surface of the water ocean, and form a thermally insulating layer [3]. Owing to the low thermal conductivity of clathrate hydrate, the efficiency of heat transport through the icy crust is reduced, leading to an increase of the subsurface ocean temperature up to the dissociation point of methane clathrate. This lead to outgassing of methane, which occurs in three main epochs [3]. Argon and carbon monoxide, dissolved in the water ocean and contained in small amounts in the methane-rich clathrates, should also participate to this massive release of methane. A significant fraction of carbon dioxide should also be released during the outgassing episode, but it rapidly condenses onto the surface owing to the very cold surface temperature. A small amount of krypton might also be

  9. Working Toward Seamless Infrared Maps of Titan

    NASA Image and Video Library

    2016-03-24

    Each of these two montages shows four synthetic views of Titan created using data acquired by NASA Cassini spacecraft between 2004 and 2015. With each flyby, a brief opportunity to add small pieces to the overall mapping coverage of Titan.

  10. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications.

    PubMed

    Ball, Jordan P; Mound, Brittnee A; Nino, Juan C; Allen, Josephine B

    2014-07-01

    The potential of barium titanate (BT) to be electrically active makes it a material of interest in regenerative medicine. To enhance the understanding of this material for orthopedic applications, the in vitro biocompatibility of porous BT fabricated using a direct foaming technique was investigated. Characterization of the resultant foams yielded an overall porosity between 50 and 70% with average pore size in excess of 30 µm in diameter. A mouse osteoblast (7F2) cell line was cultured with the BT to determine the extent of the foams' toxicity using a LDH assay. After 72 h, BT foams showed a comparable cytotoxicity of 6.4 ± 0.8% to the 8.4 ± 1.5% of porous 45S5 Bioglass®. The in vitro inflammatory response elicited from porous BT was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line (THP-1). Results indicate that the BT foams do not cause a significant inflammatory response, eliciting a 9.4 ± 1.3 pg of TNF-α per mL of media compared with 20.2 ± 2.3 pg/mL from untreated cells. These results indicate that porous BT does not exhibit short term cytotoxicity and has potential for orthopedic tissue engineering applications. © 2013 Wiley Periodicals, Inc.

  11. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste.

    PubMed

    Ponsot, Inès M M M; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K; Detsch, Rainer; Boccaccini, Aldo R; Bernardo, Enrico

    2014-07-31

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900-1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  12. Solar Electric and Chemical Propulsion for a Titan Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun E.; Donahue, Benjamin B.; Coverstone, Victoria L.

    2005-01-01

    Systems analyses were performed for a Titan Explorer Mission characterized by Earth-Saturn transfer stages using solar electric power generation and propulsion systems for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their effect on the payload delivery capability to Titan. The effect of varying launch vehicle type, solar array power level, ion thruster number, specific impulse, trip time, and Titan capture stage chemical propellant choice was investigated. The major purpose of the study was to demonstrate the efficacy of applying advanced ion propulsion system technologies like NASA's Evolutionary Xenon Thruster (NEXT), coupled with state-of-the-art (SOA) and advanced chemical technologies to a Flagship class mission. This study demonstrated that a NASA Design Reference Mission (DRM) payload of 406 kg could be successfully delivered to Titan using the baseline advanced ion propulsion system in conjunction with SOA chemical propulsion for Titan capture. In addition, the SEPS/Chemical system of this study is compared to an all- chemical NASA DRM mission. Results showed that the NEXT- based SEPS/Chemical system was able to deliver the required payload to Titan in 5 years less transfer time and on a smaller launch vehicle than the SOA chemical option.

  13. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  14. The First Year of Cassini RADAR Observations of Titan

    NASA Astrophysics Data System (ADS)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing < 3% of Titan`s surface) reveal that Titan is geologically young and complex (see Elachi et al., 2005, Science 13, 970-4). Significant variations were seen between the range of features seen in the Ta swath (centered at ~50N, 80W) and T3 (~ 30N, 70W) : the large-scale radiometric properties also differed, with T3 being radar-brighter. A variety of features have been identified in SAR, including two large impact craters, cryovolcanic flows and a probable volcanic dome. Dendritic and braided radar-bright sinuous channels, some 180km long, are evidence of fluvial activity. `Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  15. Flexible and tunable terahertz all-dielectric metasurface composed of ceramic spheres embedded in ferroelectric/ elastomer composite.

    PubMed

    Lan, Chuwen; Zhu, Di; Gao, Jiannan; Li, Bo; Gao, Zehua

    2018-04-30

    Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO 2 ) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices.

  16. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  17. A Rover Concept for Exploring the Surface of Titan

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Shirley, J. H.; Schriener, T. M.

    2005-12-01

    Titan is one of the premier targets for future in-situ exploration in the outer solar system, as unique "pre-biotic" organic chemical processes may be presently occurring at its surface. A mission to the surface of Titan is not as technically difficult as one to Europa; Titan's atmosphere allows for aerobraking descents, the radiation environment is not a mission-critical factor, and the organic materials we want to sample should be widely distributed (and easily accessible). The recent Titan landing by the Huygens Probe has focused considerable scientific interest on this remarkable body, and future missions to Titan are under consideration. We evaluated a Titan Rover mission concept that would have the capability to survive on Titan's surface for a period of 3 terrestrial years. This long mission lifetime is enabled by employing a radioisotope power system (RPS). To minimize costs and use as much flight heritage as possible, we began by assuming that system masses, dimensions, and instrumentation would be comparable to those of the Mars Surface Lander (MSL). We found that a rover configuration with a 110 W (electric) power system and four 1.5 m diameter inflatable wheels could potentially enable traverse distances up to ~500 km, depending on science and mission requirements, surface environments, and the capability of the autonomous navigation system employed. Direct to Earth communication would simplify the mission by removing the need for a relay orbiter. We will describe our strawman instrument payload and rover subsystems. Trades between the potentially available RPS systems (RTG, Advanced RTG, TPV, SRG, Advanced Stirling and Brayton RPSs) will be outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  18. Superrotation on Venus, on Titan, and Elsewhere

    NASA Astrophysics Data System (ADS)

    Read, Peter L.; Lebonnois, Sebastien

    2018-05-01

    The superrotation of the atmospheres of Venus and Titan has puzzled dynamicists for many years and seems to put these planets in a very different dynamical regime from most other planets. In this review, we consider how to define superrotation objectively and explore the constraints that determine its occurrence. Atmospheric superrotation also occurs elsewhere in the Solar System and beyond, and we compare Venus and Titan with Earth and other planets for which wind estimates are available. The extreme superrotation on Venus and Titan poses some difficult challenges for numerical models of atmospheric circulation, much more difficult than for more rapidly rotating planets such as Earth or Mars. We consider mechanisms for generating and maintaining a superrotating state, all of which involve a global meridional overturning circulation. The role of nonaxisymmetric eddies is crucial, however, but the detailed mechanisms may differ between Venus, Titan, and other planets.

  19. Titan's Complex Chemistry: Insights from the Lab

    NASA Astrophysics Data System (ADS)

    Horst, Sarah

    2018-06-01

    The Cassini-Huygens mission revealed Titan to be a complex world with physical processes reminiscent of other terrestrial planets, but chemistry that is unlike anywhere else in the Solar System. Titan's complex atmospheric chemistry converts N2 and CH4 into numerous, abundant organic molecules ranging from relatively simple hydrocarbons to ions with mass to charge ratios up to 10,000 amu/q. The molecules eventually settle to the surface where they can participate in and be modified by geological processes such as aeolian and fluvial erosion or undergo subsequent chemistry in Titan's lakes and seas or impact craters and potential cryovolcanic flows. From the processes leading to massive ion formation in the atmosphere to the behavior of saltating organic sands on the surface, laboratory experiments are playing a pivotal role in understanding Titan and expanding our understanding of planetary processes into new, exciting phase space.

  20. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  1. Titan and Callisto

    NASA Image and Video Library

    2011-04-08

    These images compare surface features observed by NASA Cassini spacecraft at the Xanadu region on Saturn moon Titan left, and features observed by NASA Galileo spacecraft on Jupiter cratered moon Callisto right.

  2. Seasonal Change in Titan's Cloud Activity Observed with IRTF/SpeX

    NASA Astrophysics Data System (ADS)

    Schaller, Emily L.; Brown, M. E.; Roe, H. G.

    2006-09-01

    We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk-integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  3. How Does Titan Retain a Finite Orbital Eccentricity?

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Nimmo, Francis

    2004-01-01

    There is appreciable evidence for a significant hydrocarbon ocean on the surface of Titan. However, it has long been appreciated that tidal dissipation within a putative hydrocarbon ocean on Titan easily yields an orbital eccentricity damping time e which is short compared to the age of the solar system. Unless Titan s present eccentricity (e = 0.0288) were acquired recently, it requires that either: the ocean has a configuration which limits dissipation, or some mechanism exists which effectively maintains the eccentricity against dissipative damping. We argue for the latter. Specifically, the proximity of Jupiter and Saturn to a 5:2 mean motion resonance may provide a sufficient excitation source, and thereby effectively remove dynamical constraints on the dissipation and configuration of the Titan ocean.

  4. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  5. Saturn's Magnetospheric Plasma Flow Encountered by Titan

    NASA Astrophysics Data System (ADS)

    Sillanpää, I.

    2017-09-01

    Titan has been a major target of the ending Cassini mission to Saturn. 126 flybys have sampled, measured and observed a variety of Titan's features and processes from the surface features to atmospheric composition and upper atmospheric processes. Titan's interaction with the magnetospheric plasma flow it is mostly embedded in is highly dependent on the characteristics of the ambient plasma. The density, velocity and even the composition of the plasma flow can have great variance from flyby to flyby. Our purpose is the present the plasma flow conditions for all over 70 flybys of which we have Cassini Plasma Spectrometer (CAPS) measurements.

  6. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.

  7. Dielectric relaxation and pinning phenomenon of (Sr,Pb)TiO3 ceramics for dielectric tunable device application.

    PubMed

    Huang, Xian-Xiong; Zhang, Tian-Fu; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Feng, Zu-Yong; Zhou, Qi-Fa

    2016-09-15

    The behavior of ferroelectric domain under applied electric field is very sensitive to point defects, which can lead to high temperature dielectric relaxation behaviors. In this work, the phases, dielectric properties and ferroelectric switching behavior of strontium lead titanate ceramics were investigated. The structural characterization is confirmed by X-ray diffraction. The high dielectric tunability and high figure of merit of ceramics, especially Sr0.7Pb0.3TiO3 (SPT), imply that SPT ceramics are promising materials for tunable capacitor applications. Oxygen vacancies induced dielectric relaxation phenomenon is observed. Pinched shape hysteresis loops appeared in low temperature, low electric field or high frequency, whereas these pinched hysteresis loops also can become normal by rising temperature, enhancing electric field or lowering frequency. The pinning and depinning effect can be ascribed to the interaction between oxygen vacancies and domain switching. A qualitative model and a quantitative model are used to explain this phenomenon. Besides, polarization and oxygen treated experiment can exert an enormous influence on pinning effect and the machanisms are also discussed in this work.

  8. Cosmic-rays induced Titan tholins and their astrobiological significances

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Taniuchi, Toshinori; Hosogai, Tomohiro; Kaneko, Takeo; Takano, Yoshinori; Khare, Bishun; McKay, Chris

    Titan is the largest satellite of Saturn. It is quite unique satellite since it has a dense atmosphere composed of nitrogen and methane, and has been sometimes considered as a model of primitive Earth. In Titan atmosphere, a wide variety of organic compounds and mists made of complex organics. Such solid complex organics are often referred to as tholins. A number of laboratory experiments simulating reactions in Titan atmosphere have been conducted. In most of them, ultraviolet light and discharges (simulating actions of electrons in Saturn magnetosphere) were used, which were simulation of the reactions in upper dilute atmosphere of Titan. We examined possible formation of organic compounds in the lower dense atmosphere of Titan, where cosmic rays are major energies. A Mixture of 35 Torr of methane and 665 Torr of nitrogen was irradiated with high-energy protons (3 MeV) from a van de Graaff accelerator (TIT, Japan) or from a Tandem accelerator (TIARA, QUBS, JAEA, Japan). In some experiments, 13 C-labelled methane was used. We also performed plasma discharges in a mixture of methane (10 %) and nitrogen (90 %) to simulate the reactions in the upper atmosphere of Titan. Solid products by proton irradiation and those by plasma discharges are hereafter referred to as PI-tholins and PD-tholins, respectively. The resulting PI-tholins were observed with SEM and AFM. They were characterized by pyrolysis-GC/MS, gel permeation chromatography, FT-IR, etc. Amino acids in PI-and PD-tholins were analyzed by HPLC, GC/MS and MALDI-TOF-MS after acid hydrolysis. 18 O-Labelled water was used in some cases during hydrolysis. Filamentary and/or globular-like structures were observed by SEM and AFM. By pyrolysis-GC/MS of PI-tholins, ammonia and hydrogen cyanide were detected, which was the same as the results obtained in Titan atmosphere during the Huygens mission. A wide variety of amino acids were detected after hydrolysis of both tholins. It was proved that oxygen atoms in the amino

  9. Titan's lower troposphere: thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Lebonnois, S.

    2011-12-01

    A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere

  10. Titan Cell Production Enhances the Virulence of Cryptococcus neoformans

    PubMed Central

    Crabtree, Juliet N.; Okagaki, Laura H.; Wiesner, Darin L.; Strain, Anna K.; Nielsen, Judith N.

    2012-01-01

    Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression. PMID:22890995

  11. Titan cell production enhances the virulence of Cryptococcus neoformans.

    PubMed

    Crabtree, Juliet N; Okagaki, Laura H; Wiesner, Darin L; Strain, Anna K; Nielsen, Judith N; Nielsen, Kirsten

    2012-11-01

    Infection with Cryptococcus neoformans begins when desiccated yeast cells or spores are inhaled and lodge in the alveoli of the lungs. A subset of cryptococcal cells in the lungs differentiate into enlarged cells, referred to as titan cells. Titan cells can be as large as 50 to 100 μm in diameter and exhibit a number of features that may affect interactions with host immune defenses. To characterize the effect of titan cell formation on the host-pathogen interaction, we utilized a previously described C. neoformans mutant, the gpr4Δ gpr5Δ mutant, which has minimal titan cell production in vivo. The gpr4Δ gpr5Δ mutant strain had attenuated virulence, a lower CFU, and reduced dissemination compared to the wild-type strain. Titan cell production by the wild-type strain also resulted in increased eosinophil accumulation and decreased phagocytosis in the lungs compared to those with the gpr4Δ gpr5Δ mutant strain. Phagocytosed cryptococcal cells exhibited less viability than nonphagocytosed cells, which potentially explains the reduced cell survival and overall attenuation of virulence in the absence of titan cells. These data show that titan cell formation is a novel virulence factor in C. neoformans that promotes establishment of the initial pulmonary infection and plays a key role in disease progression.

  12. ARPS Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Observer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced Stirling and Brayton Radioisotope Power Systems (RPS) are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  13. Abundance and Temperature Variations in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, A. E.; Nixon, C. A.; Chanover, N.; Molter, E.; Cordiner, M. A.; Serigano, J., IV; Irwin, P. G.; Charnley, S. B.; Teanby, N. A.

    2016-12-01

    Photochemistry in Titan's atmosphere produces a wealth of organic molecular species through the dissociation of it's main constituents: N2 and CH4. Chemical species including hydrocarbons (CXHY) and nitriles (CXHY[CN]Z) exhibit latitudinal variations in abundance as observed by Cassini, attributed to atmospheric circulation and Titan's seasonal cycle. Flux calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes smaller than Titan's angular diameter ( 0.7'') allow for measurements of rotational transition lines in spatially resolved regions of Titan's disk. We present nitrile abundance profiles and temperature measurements derived from CO lines obtained by ALMA in 2014, as Titan transitioned into northern summer. Vertical profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. We present a comparison of the abundance variations of chemical species to measurements made using Cassini data. Temperature profiles derived from CO lines are compared to Cassini Composite Infrared Spectrometer temperature fields. The techniques presented here will allow us to determine temporal changes in Titan's atmospheric chemical composition after the end of the Cassini mission by utilizing high resolution ALMA data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  14. 77 FR 59690 - Titan Resources International, Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Titan Resources International, Corp.; Order of... a lack of current and accurate information concerning the securities of Titan Resources International, Corp. (``Titan''). Titan is a Wyoming corporation purportedly based in Ontario, Canada. Questions...

  15. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    NASA Astrophysics Data System (ADS)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  16. Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Mainak; Arockiarajan, A.

    2013-08-01

    A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 106 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses.

  17. Titan's seasonal weather patterns, associated surface modification, and geological implications

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.

    2013-09-01

    Model predictions [e.g., 1-3] and observations [e.g., 4,5] illustrate changes in Titan's weather patterns related to the seasons (Fig. 1). In two cases, surface changes were documented following large cloud outbursts (Figs. 2, 3): the first in Arrakis Planitia at high southern latitudes in Fall 2004, during Titan's late southern summer [6]; and the second at lows southern latitudes in Concordia and Hetpet Regiones, Yalaing Terra (Fig. 3), and Adiri, in Fall 2010, just over a year after Titan's northern vernal equinox [4, 7, 8]. Not only do these storms demonstrate Titan's atmospheric conditions and processes, they also have important implications for Titan's surface process, its methane cycle, and its geologic history.

  18. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  19. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  20. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  1. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-08

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.

  2. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  3. Titan after Cassini Huygens

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  4. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  5. Numerical modelling of sedimentary structures in rivers on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-04-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. 2. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. 4. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our

  6. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    PubMed Central

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  7. Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability

    USGS Publications Warehouse

    Nelson, R.M.; Brown, R.H.; Hapke, B.W.; Smythe, W.D.; Kamp, L.; Boryta, M.D.; Leader, F.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 ??m ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of ??=0.1 is considered these numbers increase to 0.089-0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14-65?? compared to the same high brightness class for the hemisphere encompassing 122-156?? longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units. We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of

  8. Ground Based Monitoring of Cloud Activity on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Rojo, Patricio; Ádámkovics, Máté; Turtle, Elizabeth; Buratti, Bonnie

    2014-11-01

    We will report on the latest results of an on-going ground based monitoring campaign of Saturn’s moon Titan using the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument on the Very Large Telescope (VLT). Presently, much is still unknown about the complex and dynamic hydrologic system of Titan as observations have yet to be made through an entire Titan year (29.7 Earth years). Because of the limited ability to observe Titan with Cassini, a combined ground and spaced-based approach provides a steady cadence of observation throughout the duration of a Titan year. We will present the results of observations to date using the adaptive optics (AO) mode (weather dependent) of SINFONI. We have been regularly observing Titan since April 2014 for the purpose of monitoring and identifying clouds and have also been in collaboration with the Cassini team that has concurrent ISS observations and historical VIMS observations of clouds. Our discussion will focus on the various algorithms and approaches used for cloud identification and analysis. Currently, we are entering into a very interesting time for clouds and Titan hydrology as Saturn moves into north polar summer for the first time since Cassini entered the Saturnian system. The increased insolation that this will bring to the north, where the majority of the liquid methane lakes reside, will give us our first observations of the potentially complex interplay between surface liquid and atmospheric conditions. By carefully monitoring and characterizing clouds (size, optical depth, altitude, etc.) we will also be able to derive constraints that can help to guide and validate GCMs. Since the beginning of our observations, no clouds have been observed through ground based observations, while Cassini has only observed a single cloud event in the north polar region over Ligeia Mare. We will provide an update on the latest results of our cloud monitoring campaign and discuss how this

  9. Energy Budgets of the Giant Planets and Titan

    NASA Technical Reports Server (NTRS)

    Liming, Li; Smith, Mark A.; Conrath, Barney J.; Conrath, Peter J.; Simon-Miller, Amy A.; Baines, Kevin H.; West, Robert A.; Achterberg, Richard K.; Orton, Glenn S.; Santiago, Perez-Hoyos; hide

    2012-01-01

    As a fundamental property, the energy budget affects many aspeCts of planets and their moons, such as thermal structure, meteorology, and evolution. We use the observations from two Cassini spectrometers (i.e., CIRS and VIMS) to explore one important component of the energy budget the total emitted power of Jupiter, Saturn, and Titan (Li et al., 2010, 2011, 2012). Key results are: (1) The Cassini observations precisely measure the global-average emitted power of three bodies: 14.l0+/-0.03 Wm(exp -2), 4.952+/-0.035 Wm(exp -2), and 2.834+/-0.012 Wm(exp -2) for Jupiter, Saturn, and Titan, respectively. (2) The meridional distribution of emitted power displays a significant asymmetry between the northern and southern hemispheres on Jupiter and Saturn. On Titan, the meridional distribution of emitted power is basically symmetric around the equator. (3) Comparing with the Voyager measurements, the new Cassini observations reveal a significant temporal variation of emitted power on both Jupiter and Saturn: i) The asymmetry between the two hemisphere shown in the Cassini epoch (2000-2010) is not present in the Voyager epoch (1979-1980); and ii) From the Voyager epoch to the Cassini epoch, the global-average emitted power appeared to increase by approx 3.8% for Jupiter and approx 6.4% for Saturn. (4) Together with previous measurements of the absorbed solar power on Titan, the new Cassini measurements of emitted power provide the first observational evidence of the global energy balance on Titan. The uncertainty in the previous measurements of absorbed solar energy places an upper limit on its energy imbalance of 6.0% on Titan. The exploration of emitted power is the first part of a series of studies examining the temporal variability of the energy budget on the giant planets and Titan. Currently, We are measuring the absorbed solar energy in order to determine new constraints on the energy budgets of Jupiter, Saturn, and Titan.

  10. Cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.

    2008-12-01

    Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions

  11. Stress dependence of the Raman spectrum of polycrystalline barium titanate in presence of localized domain texture

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Deluca, Marco; Yamamoto, Shinsuke; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-06-01

    The stress dependence of the Raman spectrum of polycrystalline barium titanate (BaTiO3, BT) ceramics has been examined with microprobe polarized Raman spectroscopy. The angular dependence of the Raman spectrum of the tetragonal BT crystal has been theoretically established, enabling us to assess the stress dependence of selected spectral modes without the influence of crystallographic domain orientation. Upon considering the frequency shift of selected Raman modes as a function of orientation between the crystallographic axis and the polarization vector of incident and scattered light, a suitable instrumental configuration has been selected, which allowed a direct residual stress measurement according to a modified piezospectroscopic procedure. The analysis is based on the selection of mixed photostimulated spectral modes in two perpendicular angular orientations.

  12. Titan's missing ethane: From the atmosphere to the subsurface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.; Lerman, Abraham

    2016-09-01

    The second most abundant component of the present-day Titan atmosphere, methane (CH4), is known to undergo photolytic conversion to ethane (C2H6) that accumulates as a liquid on Titan's surface. Condensation temperature of ethane is higher than that of methane, so that ethane "rain" may be expected to occur before the liquefaction of methane. At present, the partial pressure of ethane in the atmosphere is 1E-5 bar, much lower than 1E-1 bar of CH4. Estimated 8.46E17 kg or 1.37E6 km3 of C2H6 have been produced on Titan since accretion. The Titan surface reservoirs of ethane are lakes and craters, of estimated volume of 50,000 km3 and 61,000 km3, respectively. As these are smaller than the total volume of liquid ethane produced in the course of Titan's history, the excess may be stored in the subsurface of the crust, made primarily of water ice. The minimum porosity of the crust needed to accommodate all the liquid ethane would be only 0.9% of the uppermost 2 km of the crust. The occurrence of CH4 and liquid C2H6 on Titan has led to much speculation on the possibility of life on that satellite. The aggregation of organic molecules in a "primordial soup or bullion" depends in part on the viscosity of the medium, diffusivity of organic molecules in it, and rates of polymerization reactions. The temperatures on Titan, much lower than on primordial Earth, are less favorable to the "Second Coming of life" on Titan.

  13. A Single Deformed Bow Shock for Titan-Saturn System

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  14. DISCOVERY OF FOG AT THE SOUTH POLE OF TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Smith, A. L.; Chen, C.

    2009-11-20

    While Saturn's moon Titan appears to support an active methane hydrological cycle, no direct evidence for surface-atmosphere exchange has yet appeared. The indirect evidence, while compelling, could be misleading. It is possible, for example, that the identified lake features could be filled with ethane, an involatile long-term residue of atmospheric photolysis; the apparent stream and channel features could be ancient remnants of a previous climate; and the tropospheric methane clouds, while frequent, could cause no rain to reach the surface. We report here the detection of fog at the south pole of Titan during late summer using observations from themore » VIMS instrument on board the Cassini spacecraft. While terrestrial fog can form from a variety of causes, most of these processes are inoperable on Titan. Fog on Titan can only be caused by evaporation of nearly pure liquid methane; the detection of fog provides the first direct link between surface and atmospheric methane. Based on the detections presented here, liquid methane appears widespread at the south pole of Titan in late southern summer, and the hydrological cycle on Titan is currently active.« less

  15. On the Discovery of CO Nighttime Emissions on Titan by Cassini/VIMS: Derived Stratospheric Abundances and Geological Implications

    NASA Technical Reports Server (NTRS)

    Bainesa, Kevin H.; Drossart, Pierre; Lopez-Valverde, Miguel A.; Atreya, Sushil K.; Sotin, Christophe; Momary, Thomas W.; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Philip D.

    2006-01-01

    atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi: 10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer-Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is approximately 0.02 km(exp 3) yr (exp -1), a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant geological processes reshaping the surface of Titan.

  16. On the discovery of CO nighttime emissions on Titan by Cassini/VIMS: Derived stratospheric abundances and geological implications

    USGS Publications Warehouse

    Baines, K.H.; Drossart, P.; Lopez-Valverde, M. A.; Atreya, S.K.; Sotin, Christophe; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2006-01-01

    low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer-Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is ???0.02 km3 yr-1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Equatorial Titan Clouds

    NASA Image and Video Library

    2011-03-17

    NASA Cassini spacecraft chronicles the change of seasons as it captures clouds concentrated near the equator of Saturn largest moon, Titan. Methane clouds in the troposphere, the lowest part of the atmosphere, appear white here.

  18. Northern Summer on Titan

    NASA Image and Video Library

    2017-06-14

    NASA's Cassini spacecraft sees bright methane clouds drifting in the summer skies of Saturn's moon Titan, along with dark hydrocarbon lakes and seas clustered around the north pole. Compared to earlier in Cassini's mission, most of the surface in the moon's northern high latitudes is now illuminated by the sun. The image was taken with the Cassini spacecraft narrow-angle camera on June 9, 2017, using a spectral filter that preferentially admits wavelengths of near-infrared light centered at 938 nanometers. Cassini obtained the view at a distance of about 315,000 miles (507,000 kilometers) from Titan. https://photojournal.jpl.nasa.gov/catalog/PIA21615

  19. Expansion of Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Salem, S.; Moslem, W. M.; Radi, A.

    2017-05-01

    Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.

  20. Titan brighter at twilight than in daylight

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Lavvas, P.; West, R. A.

    2017-04-01

    Investigating the overall brightness of planets (and moons) provides insights into their envelopes and energy budgets 1-4 . Phase curves (a representation of the overall brightness versus the Sun-object-observer phase angle) for Titan have been published over a limited range of phase angles and spectral passbands 5,6 . Such information has been key to the study of the stratification, microphysics and aggregate nature of Titan's atmospheric haze 7,8 and has complemented the spatially resolved observations showing that the haze scatters efficiently in the forward direction 7,9 . Here, we present Cassini Imaging Science Subsystem whole-disk brightness measurements of Titan from ultraviolet to near-infrared wavelengths. The observations show that Titan's twilight (loosely defined as the view at phase angles ≳150°) outshines its daylight at various wavelengths. From the match between measurements and models, we show that at even larger phase angles, the back-illuminated moon will appear much brighter than when fully illuminated. This behaviour is unique in our Solar System to Titan and is caused by its extended atmosphere and the efficient forward scattering of sunlight by its atmospheric haze. We infer a solar energy deposition rate (for a solar constant of 14.9 W m-2) of (2.84 ± 0.11) × 1014 W, consistent to within one to two standard deviations with Titan's time-varying thermal emission from 2007 to 2013 10,11 . We propose that a forward scattering signature may also occur at large phase angles in the brightness of exoplanets with extended hazy atmospheres and that this signature has a valuable diagnostic potential for atmospheric characterization.

  1. Volcanic Destabilisation of Methane Clathrate Hydrate on Titan: the Mechanism for Resupplying Atmospheric CH4?

    NASA Astrophysics Data System (ADS)

    Davies, Ashley; Sotin, C.; Choukroun, M.; Matson, D. L.; Johnson, T. V.

    2013-10-01

    Titan may have an upper crust rich in methane clathrates which would have formed early in Titan’s history [1-3]. The abundance of atmospheric methane, which has a limited lifetime, and the presence of 40Ar require replenishment over time. Volcanic processes may release these gases from Titan’s interior, although, so far, no conclusive evidence of an ongoing volcanic event has been observed: no “smoking gun” has been seen. Still, some process has recently supplied a considerable amount of methane to Titan’s atmosphere. We have investigated the emplacement of “cryolavas” of varying composition to quantify thermal exchange and lava solidification processes to model thermal wave penetration into a methane-rich substrate (see [4]), and to determine event detectability. Clathrate destabilisation releases methane and other trapped gases, such as argon. A 10-m-thick cryolava covering 100 km2 raises 3 x 108 m3 of substrate methane clathrates to destabilization temperature in ~108 s. With a density of 920 kg/m3, and ≈13% of the mass being methane, 4 x 1010 kg of methane is released. This is an impressive amount, but it would take 5 million similar events to yield the current mass of atmospheric methane. However, meeting Titan’s current global methane replenishment rate is feasible through the thermal interaction between cryolavas and methane clathrate deposits, but only (1) after the flow has solidified; (2) if cracks form, connecting surface to substrate; and (3) the cracks form while the temperature of the clathrates is greater than the destabilisation temperature. The relatively small scale of this activity may be hard to detect. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Choukroun, M. and Sotin, C. (2012) GRL, 39, L04201. [2] Tobie, G. et al. (2006) Nature, 440, 61-64. [3] Lunine, J. et al. (2009) Origin and Evolution of Titan, in Titan From Cassini-Huygens, ed. R. Brown et al

  2. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  3. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.

  4. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  5. Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy

    2016-06-01

    Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.

  6. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  7. Constraints on Titan rotation from Cassini radar

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective

  8. Titan gravity investigation with the Oceanus mission

    NASA Astrophysics Data System (ADS)

    Tortora, Paolo; Zannoni, Marco; Nimmo, Francis; Mazarico, Erwan; Iess, Luciano; Sotin, Christophe; Hayes, Alexander; Malaska, Michael

    2017-04-01

    Oceanus is a proposed mission for NASA's New Frontiers 4 Announcement of Opportunity to study Saturn's largest moon Titan. One of the main goals of Oceanus is to examine crustal properties and determine the potential interaction of organics with the subsurface ocean, with implications for potential habitability of Titan. To this end, Oceanus could potentially characterize the thickness of the external icy shell and determine the extent of convection in the shell. The product (average ice rigidity) x (ice shell thickness) can be retrieved from the Love numbers k2 and h2, which describe Titan's gravity and shape response to Saturn's tidal field during its orbital motion around the planet, using a combined analysis of gravity and topography but also measuring Titan's physical librations from gravity data and the on-board camera surface landmarks. The gravity science experiment is crucial to accomplish the mission goals, because precise orbit determination of the spacecraft provides a direct measure of Titan's static gravitational field, the real and imaginary parts of the Love number k2, and its rotational state (obliquity and amplitude of physical librations in longitude). Moreover, a precise spacecraft orbit reconstruction throughout the entire mission is necessary to process radar altimetry data and accurately measure Titan's h2 through crossover analysis. We present the expected accuracy in the estimation of the scientific parameters of interest, obtained through numerical simulations of the orbit determination of the Oceanus spacecraft during its 2-year mission around Titan. The main observable quantities used in the analysis are two-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a realistic standard deviation obtained from an accurate noise budget derived from the experience with Cassini Ka

  9. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  10. Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Lim, Ryan S.

    2013-01-01

    One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.

  11. Polyploid Titan Cells Produce Haploid and Aneuploid Progeny To Promote Stress Adaptation

    PubMed Central

    Gerstein, Aleeza C.; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L.; Fraser, James A.; Berman, Judith

    2015-01-01

    ABSTRACT Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. PMID:26463162

  12. Lead zirconate titanate-nickel zink ferrite thick-film composites: obtaining by the screen printing technique and magnetoelectric properties

    NASA Astrophysics Data System (ADS)

    Bush, A. A.; Shkuratov, V. Ya.; Chernykh, I. A.; Fetisov, Y. K.

    2010-03-01

    Layered thick-film composites containing one lead zirconate titanate (PZT) layer, one nickel zinc ferrite (NZF) layer, two PZT-NZF layers, or three PZT-NZF-PZT layers each 40-50 μm thick are prepared. The layers are applied by screen printing on a ceramic aluminum oxide substrate with a preformed contact (conducting) layer. The dielectric properties of the composites are studied in the temperature interval 80-900 K and the frequency interval 25 Hz-1 MHz. Polarized samples exhibit piezoelectric, pyroelectric, and magnetoelectric effects. In tangentially magnetized two- and three-layer composites, the magnetoelectric conversion factor equals 57 kV/(m T) at low frequencies and reaches 2000 kV/(m T) at the mechanical resonance frequency.

  13. Titan's atmosphere (clouds and composition): new results

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200 % on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9 % of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering ≤1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection might govern their evolution. Their short lives point to the presence of rain.

  14. Differences between evolution of Titan's and Earth's rivers - further conclusions

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2014-05-01

    Titan is the only celestial body, beside the Earth, where liquid is present on the surface. Liquid forms a number of lakes and rivers. In our research we use numerical model of the river to determine differences of evolution of rivers on the Earth and on Titan. We have found that transport of sediments on Titan is more effective than on Earth for the same river geometry and discharge. We have found also the theoretical explanations for this conclusion. 2.Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This paper is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Basic equations of our model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. 4. Parameters of the model We considered our model for a few kinds of liquid found on Titan. The liquid that falls as a rain (75% methane, 25% nitrogen) has different properties than the fluid forming lakes (74% ethane, 10% methane, 7% propane, 8.5% butane, 0.5% nitrogen). Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that transport of material by Titan's rivers is more efficient than by terrestrial rivers of the same geometry parameters

  15. Titan Two Halves

    NASA Image and Video Library

    2010-05-13

    Two different seasons on Titan in different hemispheres can be seen in this image. The moon northern half appears slightly darker than the southern half in this view taken in visible blue light by NASA Cassini spacecraft.

  16. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.

    PubMed

    Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten

    2015-10-13

    Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.

  17. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  18. Titan Aeromony and Climate Workshop

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  19. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  20. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.

    PubMed

    Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J

    2009-11-01

    Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.

  1. Evidence for a polar ethane cloud on Titan

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.

    2006-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  2. Evidence for a polar ethane cloud on Titan.

    PubMed

    Griffith, C A; Penteado, P; Rannou, P; Brown, R; Boudon, V; Baines, K H; Clark, R; Drossart, P; Buratti, B; Nicholson, P; McKay, C P; Coustenis, A; Negrao, A; Jaumann, R

    2006-09-15

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  3. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus. ??2008 Macmillan Publishers Limited. All rights reserved.

  4. Hydrocarbon lakes on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Showman, Adam P.; Lunine, Jonathan I.; Lorenz, Ralph D.

    2007-02-01

    The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50% ) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.

  5. Power harvesting using PZT ceramics embedded in orthopedic implants.

    PubMed

    Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua

    2009-09-01

    Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.

  6. Titan: Kraken and Ligeia In Sharper Focus

    NASA Image and Video Library

    2017-03-15

    As it sped away from a relatively distant encounter with Titan on Feb. 17, 2017, NASA's Cassini spacecraft captured this mosaic view of the moon's northern lakes and seas. Cassini's viewing angle over Kraken Mare and Ligeia Mare was better during this flyby than previous encounters, providing increased contrast for viewing these seas. Because the spacecraft is peering through less of Titan's haze toward Kraken and Ligeia, more details on their shorelines are visible, compared to earlier maps. This was one of several "non-targeted" Cassini Titan flybys in 2017 that allow the mission to image the moon's north polar region and track clouds there. ("Non-targeted" means Cassini did not have to use any rocket-thruster firings to steer itself toward the flyby.) Several prominent cloud streaks are visible at mid-latitudes between 45 and 55 degrees north latitude, on the right side of the image. Smaller bright clouds are seen just above the sea called Punga Mare (roughly at center). Scientists are seeing increasing cloud activity in Titan's north polar region as the seasons continue to change from spring to summer there, though not as much as predicted by models of Titan's atmosphere. The images in this mosaic were taken with the Cassini spacecraft narrow-angle camera using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 150,700 miles (242,500 kilometers) from Titan. Image scale is about 1.6 miles (2.6 kilometers) per pixel. The view is an orthographic projection centered on 68 degrees north latitude, 225 degrees west longitude. An orthographic view is most like the view seen by a distant observer looking through a telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21434

  7. Chapman Solar Zenith Angle variations at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  8. Titan's inventory of organic surface materials

    USGS Publications Warehouse

    Lorenz, R.D.; Mitchell, K.L.; Kirk, R.L.; Hayes, A.G.; Aharonson, O.; Zebker, H.A.; Paillou, P.; Radebaugh, J.; Lunine, J.I.; Janssen, M.A.; Wall, S.D.; Lopes, R.M.; Stiles, B.; Ostro, S.; Mitri, Giuseppe; Stofan, E.R.

    2008-01-01

    Cassini RADAR observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan surface materials: polar lake liquids and equatorial dune sands. Several hundred lakes or seas have been observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth. Dark dunes cover some 20% of Titan's surface, and comprise a volume of material several hundred times larger than Earth's coal reserves. Overall, however, the identified surface inventories (>3 ?? 104 km3 of liquid, and >2 ?? 105 km3 of dune sands) are small compared with estimated photochemical production on Titan over the age of the solar system. The sand volume is too large to be accounted for simply by erosion in observed river channels or ejecta from observed impact craters. The lakes are adequate in extent to buffer atmospheric methane against photolysis in the short term, but do not contain enough methane to sustain the atmosphere over geologic time. Unless frequent resupply from the interior buffers this greenhouse gas at exactly the right rate, dramatic climate change on Titan is likely in its past, present and future. Copyright 2008 by the American Geophysical Union.

  9. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  10. Titan Kraken Mare

    NASA Image and Video Library

    2011-11-28

    NASA Cassini spacecraft looks toward Saturn largest moon, Titan, and spies the huge Kraken Mare in the moon north. Kraken Mare, a large sea of liquid hydrocarbons, is visible as a dark area near the top of the image.

  11. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  12. The seasonal cycle of Titan's detached haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Seignovert, Benoît.; Rannou, Pascal; Dumont, Philip; Turtle, Elizabeth P.; Perry, Jason; Roy, Mou; Ovanessian, Aida

    2018-06-01

    Titan's `detached' haze, seen in Voyager images in 1980 and 1981 and monitored by the Cassini Imaging Science Subsystem (ISS) during the period 2004-2017, provides a measure of seasonal activity in Titan's mesosphere with observations over almost half of Saturn's seasonal cycle. Here we report on retrieved haze extinction profiles that reveal a depleted layer (having a diminished aerosol content), visually manifested as a gap between the main haze and a thin, detached upper layer. Our measurements show the disappearance of the feature in 2012 and its reappearance in 2016, as well as details after the reappearance. These observations highlight the dynamical nature of the detached haze. The reappearance seems congruent with earlier descriptions by climate models but more complex than previously described. It occurs in two steps, first as haze reappearing at 450 ± 20 km and one year later at 510 ± 20 km. These observations provide additional tight and valuable constraints about the underlying mechanisms, especially for Titan's mesosphere, that control Titan's haze cycle.

  13. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  14. The seasonal cycle of Titan's detached haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Seignovert, Benoît; Rannou, Pascal; Dumont, Philip; Turtle, Elizabeth P.; Perry, Jason; Roy, Mou; Ovanessian, Aida

    2018-04-01

    Titan's `detached' haze, seen in Voyager images in 1980 and 1981 and monitored by the Cassini Imaging Science Subsystem (ISS) during the period 2004-2017, provides a measure of seasonal activity in Titan's mesosphere with observations over almost half of Saturn's seasonal cycle. Here we report on retrieved haze extinction profiles that reveal a depleted layer (having a diminished aerosol content), visually manifested as a gap between the main haze and a thin, detached upper layer. Our measurements show the disappearance of the feature in 2012 and its reappearance in 2016, as well as details after the reappearance. These observations highlight the dynamical nature of the detached haze. The reappearance seems congruent with earlier descriptions by climate models but more complex than previously described. It occurs in two steps, first as haze reappearing at 450 ± 20 km and one year later at 510 ± 20 km. These observations provide additional tight and valuable constraints about the underlying mechanisms, especially for Titan's mesosphere, that control Titan's haze cycle.

  15. Mountains on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  16. Aerocapture Systems Analysis for a Titan Mission

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary K.; Queen, Eric M.; Way, David W.; Powell, Richard W.; Edquist, Karl; Starr, Brett W.; Hollis, Brian R.; Zoby, E. Vincent; Hrinda, Glenn A.; Bailey, Robert W.

    2006-01-01

    Performance projections for aerocapture show a vehicle mass savings of between 40 and 80%, dependent on destination, for an aerocapture vehicle compared to an all-propulsive chemical vehicle. In addition aerocapture is applicable to multiple planetary exploration destinations of interest to NASA. The 2001 NASA In-Space Propulsion Program (ISP) technology prioritization effort identified aerocapture as one of the top three propulsion technologies for solar system exploration missions. An additional finding was that aerocapture needed a better system definition and that supporting technology gaps needed to be identified. Consequently, the ISP program sponsored an aerocapture systems analysis effort that was completed in 2002. The focus of the effort was on aerocapture at Titan with a rigid aeroshell system. Titan was selected as the initial destination for the study due to potential interest in a follow-on mission to Cassini/Huygens. Aerocapture is feasible, and the performance is adequate, for the Titan mission and it can deliver 2.4 times more mass to Titan than an all-propulsive system for the same launch vehicle.

  17. Investigations into the photochemistry of the current and primordial atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Hezekiah

    2002-08-01

    A comprehensive steady-state one-dimensional photochemical model of the atmosphere of Titan has been developed. This model has included updated chemistry with a focus on rate coefficients and cross sections measured under conditions most applicable for simulation of Titan's atmosphere. Through this simulation, the physical and chemical processes which affect the altitudinal distribution of constituents in Titan's atmosphere have been explored. The model results, in comparison to previous Titan photochemical models, compares favorably with ground-based and fly-by observations of Titan's atmosphere. As a result, the model has facilitated the analysis of key questions regarding the nature of Titan's present chemistry, involving the production of key molecules and hazes. These questions include the role constituent density profiles may play in constraining methane photolysis quantum yields, the existence and formation mechanisms of benzene in Titan's atmosphere, and the chemical origin of Titan haze. Results show that the determination of CH3C2H and C3H6 abundance profiles will help constrain the CH quantum yield from methane photolysis, which varies significantly among photolytic schemes. Results also show that benzene can be formed in Titan's atmosphere, and the aromatic chemistry that ensues is the likely source of the Titan haze which enshrouds the surface. The origin of Titan's atmosphere has also been studied through a pseudo-time-dependent model which describes the evolution of the likely primordial ammonia inventory during the early stages of the solar system. Assuming an enhanced T-Tauri solar flux, the conversion of ammonia to nitrogen, in the presence of methane and water vapor, is found to be a plausible mechanism to account for the present-day nitrogen inventory. Results from this model are presented in preparation for the retrieval and interpretation of data from the Cassini- Huygens spacecraft, which will arrive at Titan in 2004.

  18. A Saturnian gas ring and the recycling of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Mcdonough, T. R.; Brice, N. M.

    1973-01-01

    Atoms which escape Titan's atmosphere are unlikely to possess escape velocity from Saturn and can orbit the planet until lost by ionization or collision with Titan. It is predicted that a toroidal ring of between 1 and 1,000 atoms or molecules per cubic centimeter exists around Saturn at a distance of about 10 times the radius of the visible rings. This torus may be detectable from earth orbit and detection or nondetection of it may provide some information about the presence or absence of a Saturnian magnetic field, and the exospheric temperature and atmospheric escape rate of Titan. It is estimated that, if Titan has a large exosphere, 97% or more of the escaping atoms can be recaptured by Titan, thereby decreasing the effective net atmospheric loss rate by up to two orders of magnitude. It is shown that, if Saturn has a magnetic field comparable to Jupiter's the magnetospheric plasma can supply Titan with hydrogen at a rate comparable to the loss rates in some of the models of Trafton (1972) and Sagan (1973).

  19. Titan aerosol and gas experiment for the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Oberbeck, V.; Ohara, B. J.; Pollack, J. B.; Valentin, J. R.; Bar-Nun, A.; Cohen, M. J.; Ferris, J. P.; Greenberg, J. M.

    1991-01-01

    The Cassini Mission is a joint undertaking of NASA and the European Space Agency (ESA) to explore the Saturnian System with a Saturn Orbiter and a Titan Probe. The launch vehicle and the Saturn Orbiter are the responsibility of NASA while the Huygens Probe (detachable Titan Probe) is the responsibility of ESA. The spacecraft will be launched in 1996 and the Huygens Probe will arrive at Titan in 2003. The Cassini Mission-Huygens Probe provides a unique opportunity to obtain detailed information about the atmosphere and, possibly, the surface of Titan. Titan possesses a substantial nitrogen atmosphere containing methane and many other organic compounds. Aerosols play an important role in the atmospheric processes on Titan. The Huygens Probe offers an opportunity to determine how organic particles are formed and grow which will clarify their role on Earth. A powerful analytical instrument, capable of addressing the above technology and other science questions, was recently proposed for the Huygens Probe. It is comprised of an aerosol and gas sampler and processor, and a gas chromatograph-ion mobility spectrometer. The instrument will be able to measure complex organics that make up the collected aerosols to the approximate 1 ppm level. Gases will be measured to approximately 10 ppb. Because the Titan atmosphere is expected to be quite complex, a gas chromatograph-ion mobility spectrometer is used to provide unequivocal identification of the components of the analytes. Further details of the science question to be investigated and the proposed instrument are described. The expected results and their implications are also addressed.

  20. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  1. Titan Radar Mapper observations from Cassini's T3 fly-by

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  2. The exploration of Titan with an orbiter and a lake probe

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Coustenis, Athena; Fanchini, Gilbert; Hayes, Alex G.; Iess, Luciano; Khurana, Krishan; Lebreton, Jean-Pierre; Lopes, Rosaly M.; Lorenz, Ralph D.; Meriggiola, Rachele; Moriconi, Maria Luisa; Orosei, Roberto; Sotin, Christophe; Stofan, Ellen; Tobie, Gabriel; Tokano, Tetsuya; Tosi, Federico

    2014-12-01

    Fundamental questions involving the origin, evolution, and history of both Titan and the broader Saturnian system can be answered by exploring this satellite from an orbiter and also in situ. We present the science case for an exploration of Titan and one of its lakes from a dedicated orbiter and a lake probe. Observations from an orbit-platform can improve our understanding of Titan's geological processes, surface composition and atmospheric properties. Further, combined measurements of the gravity field, rotational dynamics and electromagnetic field can expand our understanding of the interior and evolution of Titan. An in situ exploration of Titan's lakes provides an unprecedented opportunity to understand the hydrocarbon cycle, investigate a natural laboratory for prebiotic chemistry and habitability potential, and study meteorological and marine processes in an exotic environment. We briefly discuss possible mission scenarios for a future exploration of Titan with an orbiter and a lake probe.

  3. The magnetic geometry of Titan's induced magnetosphere

    NASA Astrophysics Data System (ADS)

    Bertucci, C.; Achilleos, N.; Dougherty, M. K.

    2011-12-01

    As a result of the virtual absence of an intrinsic field at Titan, an induced magnetosphere is formed from the direct interaction between its atmosphere and the plasma environment. Observations at unmagnetized objects such as comets, or planets like Venus and Mars, have shown that the orientation of the magnetic field within an induced magnetosphere is, on average, symmetric with respect to the plane generated by the upstream magnetic field and plasma velocity vectors. Analyses of Voyager and early Cassini magnetometer data around Titan confirm this feature. In this work, we study the efficiency of the background magnetic field-based 'draping coordinate system' (DRAP) introduced in Neubauer et al., [2006] to organize Cassini magnetometer (MAG) measurements within the induced magnetosphere of Titan for all the close flybys of the Prime Mission where MAG data is available. We find that, in general, DRAP coordinates are efficient in organizing the orientation of the draped magnetic field according to the pattern expected for an induced magnetosphere, suggesting that the same system could be used to spatially organize plasma measurements. Departures from this picture are likely related to non stationarity in the upstream flow, fossil fields and, induced currents within Titan's ionosphere and, probably, its interior. REFERENCES: Neubauer, F. M., et al. (2006). Titan's near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. Journal of Geophysical Research, 111(A10), 1-15. doi: 10.1029/2006JA011676.

  4. Composition of Titan's surface from Cassini VIMS

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; D'Aversa, E.; Griffith, C.A.; Baines, E.K.H.; Brown, R.H.; Dalle, Ore C.M.; Filacchione, G.; Formisano, V.; Hibbitts, C.A.; Jaumann, R.; Lunine, J.I.; Nelson, R.M.; Sotin, Christophe

    2006-01-01

    Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 ??m were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 ??m in the poorly understood 2.8-??m methane window is ignored. The spectra for brighter regions are not matched by the spectrum of

  5. Aerothermodynamic environment for a Titan probe with deployable decelerator

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Swenson, B. L.; Balakrishnan, A.

    1985-01-01

    It is pointed out that further exploration of Titan, Saturn's largest moon, is of current interest to the scientific community, particularly from the standpoint of the organic chemical evolution of its atmosphere. For a suitable study of this Saturnian satellite, a mission involving a Titan atmospheric entry probe is to be conducted. The probe is to employ a deployable decelerator with the aim to allow scientific measurements in the haze layer. The present investigation is concerned with an assessment of the aerothermodynamic environment for the considered probe during its hypervelocity, low-Reynolds-number entry. Attention is given to the employed computational method, the Titan probe configuration, the Titan probe trajectory, the viscous-layer regime of the aerothermodynamic environment, and the incipient merged-layer regime.

  6. Detailed exploration of Titan with a Montgolfiere aerobot

    NASA Astrophysics Data System (ADS)

    Spilker, T.; Tipex Team

    The International Cassini/Huygens (CH) mission has verified the expectation that Saturn's moon Titan offers many opportunities for studying high-priority planetary and astrobiology science objectives. CH results to date show that this world, though entirely alien in its frigid environment, presents an Earth-like and diverse appearance due to the relative balance of competing forces such as geology/tectonics, meteorology, aeronomy, and cosmic impacts. But with the limitations of a single Huygens probe, and a finite number of Cassini flybys limited in proximity and remote sensing resolution by Titan's thick atmosphere and hazes, there is much science to be done there after the CH mission has ended. Detailed exploration of Titan's surface and lower atmosphere, especially for astrobiological objectives, is best addressed by in situ investigations. The atmosphere and its hazes severely restrict orbital remote sensing: Titan cannot be mapped from orbit in the same manner as Mars, at (essentially) arbitrarily high resolution, and limited infrared (IR) windows allow only gross compositional interpretations. After CH indeed there will be further orbital investigations to be carried out, notably completion of the global mapping by Synthetic Aperture Radar and IR mapping spectrometry begun by CH, at the best resolutions practical from orbit. But to fully understand Titan as an evolving, planetary-scale body and an abode of preserved protobiological chemistry will require a platform that has access to, and mobility at, the surface and the lowest few kilometers of the atmosphere. The TiPEx study team weighed the options for Titan in situ exploration, and finds that a mission based on a Montgolfiere (a type of hot-air balloon) aerobot is the best candidate for post-CH exploration. Ground-based platforms of the type used to date on Mars are far too limited in range to sample the diversity of Titan, and do not adequately investigate the lower atmosphere. Titan's cold, dense

  7. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    NASA Astrophysics Data System (ADS)

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  8. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  9. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  10. Project Cassini: a Saturn Orbiter/titan Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Gautier, D.; Ip, W. H.

    1984-12-01

    Titan is the only moon in the solar system with a substantial atmosphere. The organic chemistry of its N2-CH4 atmosphere may resemble that of the earth's primitive atmosphere before life arose. The investigation of the synthesis of prebiotic molecules in Titan's atmosphere and the atmospheric and surface environments of this planet-sized moon will be the focal point of the Cassini Project proposed to the European Space Agency for an international Saturn Orbiter/Titan Probe mission.

  11. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  12. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  13. Progressive Climate Change on Titan: Implications for Habitability

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; A. D. Howard

    2014-01-01

    Titan's landscape is profoundly shaped by its atmosphere and comparable in magnitude perhaps with only the Earth and Mars amongst the worlds of the Solar System. Like the Earth, climate dictates the intensity and relative roles of fluvial and aeolian activity from place to place and over geologic time. Thus Titan's landscape is the record of climate change. We have investigated three broad classes of Titan climate evolution hypotheses (Steady State, Progressive, and Cyclic), regulated by the role, sources, and availability of methane. We favor the Progressive hypotheses, which we will outline here, then discuss their implication for habitability.

  14. Engineering-Level Model Atmospheres for Titan and Neptune

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Engineering-level atmospheric models for Titan and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications in missions to the outer planets. Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design.

  15. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  16. Crater Topography on Titan: Implications for Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  17. Titan Ion Composition at Magnetosphere-Ionosphere Transition Region

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Hartle, R. E.; Shappirio, M.; Simpson, D. J.; COoper, J. F.; Burger, M. H.; Johnson, R. E.; Bertucci, C.; Luhman, J. G.; Ledvina, S. A.; hide

    2006-01-01

    Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.

  18. Design of a Long Endurance Titan VTOL Vehicle

    NASA Technical Reports Server (NTRS)

    Prakash, Ravi; Braun, Robert D.; Colby, Luke S.; Francis, Scott R.; Guenduez, Mustafa E.; Flaherty, Kevin W.; Lafleur, Jarret M.; Wright, Henry S.

    2006-01-01

    Saturn s moon Titan promises insight into many key scientific questions, many of which can be investigated only by in situ exploration of the surface and atmosphere of the moon. This research presents a vertical takeoff and landing (VTOL) vehicle designed to conduct a scientific investigation of Titan s atmosphere, clouds, haze, surface, and any possible oceans. In this investigation, multiple options for vertical takeoff and horizontal mobility were considered. A helicopter was baselined because of its many advantages over other types of vehicles, namely access to hazardous terrain and the ability to perform low speed aerial surveys. Using a nuclear power source and the atmosphere of Titan, a turbo expander cycle produces the 1.9 kW required by the vehicle for flight and operations, allowing it to sustain a long range, long duration mission that could traverse the majority of Titan. Such a power source could increase the lifespan and quality of science for planetary aerial flight to an extent that the limiting factor for the mission life is not available power but the life of the mechanical parts. Therefore, the mission could potentially last for years. This design is the first to investigate the implications of this potentially revolutionary technology on a Titan aerial vehicle.

  19. Electrodeposition of titania and barium titanate thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Roy, Biplab Kumar

    In order to address the requirement of a low-temperature low-cost cost processing for depositing high dielectric constant ceramic films for applications in embedded capacitor and flexible electronics technology, two different chemical bath processes, namely, thermohydrolytic deposition (TD) and cathodic electrodeposition (ED) have been exploited to generate titania thin films. In thermohydrolytic deposition technique, titania films were generated from acidic aqueous solution of titanium chloride on F: SnO2 coated glass and Si substrates by temperature assisted hydrolysis mechanism. On the other hand, in cathodic electrodeposition, in-situ electro-generation of hydroxyl ions triggered a fast deposition of titania on conductive substrates such as copper and F: SnO2 coated glass from peroxotitanium solution at low temperatures (˜0°C). In both techniques, solution compositions affected the morphology and crystallinity of the films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have been employed to perform such characterization. As both processes utilized water as solvent, the as-deposited films contained hydroxyl ligand or physically adsorbed water molecules in the titania layer. Besides that, electrodeposited films contained peroxotitanium bonds which were characterized by FTIR studies. Although as-electrodeposited titania films were X-ray amorphous, considerable crystallinity could be generated by heat treatment. The films obtained from both the processes showed v moderately high dielectric constant (ranging from 9-30 at 100 kHz) and high breakdown voltage (0.09-0.15 MV/cm) in electrical measurements. To further improve the dielectric constant, electrodeposited titania films were converted to barium titanate films in high pH barium ion containing solution at 80-90°C. The resultant film contained cubic crystalline barium titanate verified by XRD analysis. Simple low-temperature hydrothermal technique of conversion worked

  20. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although