Sample records for zn cr ni

  1. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.

    PubMed

    Arán, Daniela Silvina; Harguinteguy, Carlos Alfredo; Fernandez-Cirelli, Alicia; Pignata, María Luisa

    2017-08-01

    In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L -1 , Cr 4 μg L -1 , Ni 25 μg L -1 , and Zn 30 μg L -1 ; of treatment 2 (T2) were Pb 70 μg L -1 , Cr 70 μg L -1 , Ni 70 μg L -1 , and Zn 70 μg L -1 ; and of treatment 3 (T3) were Pb 1000 μg L -1 , Cr 1000 μg L -1 , Ni 500 μg L -1 , and Zn 100 μg L -1 , and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  2. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  3. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  4. Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Cheng, Bei; Jiang, Chuanjia; Qin, Jiaqian

    2018-03-01

    Hierarchical porous zinc oxide (ZnO)/nickel(II) oxide (NiO) hollow microspheres were fabricated by a facile hydrothermal approach and subsequent calcination process. The synthesized samples were used as adsorbent for removing Congo red (CR), a commercial azo dye. The synthesized hierarchical porous ZnO/NiO composites exhibit a superior adsorption capacity for CR (518 mg/g), compared with pure NiO (397 mg/g) and ZnO (304 mg/g). The high CR adsorption capacity of ZnO/NiO composites was associated with its hierarchical porous hollow structures and large specific surface area (130 m2/g), which provide a large quantity of active sites for CR molecules. The adsorption kinetics data were perfectly fitted to a pseudo-second-order model. The isotherms were accurately described by the Langmuir model. The results suggest that the as-prepared hierarchical porous ZnO/NiO composites are a highly efficient adsorbent for treating organic dye-impacted wastewater.

  5. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  6. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  7. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  8. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  9. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil.

    PubMed

    Gloaguen, Thomas Vincent; Passe, José João

    2017-11-01

    The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    NASA Astrophysics Data System (ADS)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  11. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  12. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  13. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  14. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  15. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  16. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  17. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  18. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  19. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.

    2016-07-15

    Graphical abstract: Variation of AC conductivity (σ{sub AC}) as a function of natural log of angular frequency (lnω) for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4} nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectricmore » constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr{sup +3} doped Ni-Zn nanoferrite samples with composition Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4}(x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr{sup +3} doped Ni-Zn ferrite nanoparticles, as the concentration of Cr{sup +3} increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ{sub AC}) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.« less

  20. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  2. Abundances of O, Mg, S, Cr, Mn, Ti, NI and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Astrophysics Data System (ADS)

    de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-11-01

    The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.

  3. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  4. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  5. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].

    PubMed

    Mizutani, M

    1990-03-01

    The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr

  6. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  7. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    PubMed

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  8. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    NASA Astrophysics Data System (ADS)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  9. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  10. Cr:ZnSe planar waveguide mid-IR laser

    NASA Astrophysics Data System (ADS)

    Willimas, J. E.; Martyshkin, D. V.; Fedorov, V. V.; Moskalev, I. S.; Camata, R. P.; Mirov, S. B.

    2011-02-01

    Middle infrared (mid-IR) chromium-doped zinc selenide (Cr:ZnSe) bulk lasers have attracted a lot of attention due to their unique combination of optical and laser properties facilitating a wide range of potential scientific, industrial, and medical applications. Utilization of thin film waveguide geometry enabling good thermal management and control of beam quality is a viable pathway for compact chip-integrated optical laser design. Cr:ZnSe thin films are also promising as saturable absorbers and mode-lockers of the cavities of solid state lasers operating over 1.3-2.1 μm. We recently reported the first successful demonstration of mid-IR Cr:ZnSe planar waveguide lasing at 2.6 μm under gain-switched short-pulse (5 ns) 1.56 μm excitation as well as the passive Q-switching of the cavity of a fiber-pumped Er:YAG laser operating at 1645 nm using a highly doped Cr:ZnSe thin film. PLD grown Cr:ZnSe waveguide were fabricated on sapphire substrates (Cr:ZnSe/sapphire) with chromium concentration of 1018-1019 cm-3. Further development of mid-IR lasing in the Cr:ZnSe planar waveguide under continuous wave excitation were investigated. In addition, deposition of Cr:ZnSe-based thin film structures on n-type GaAs substrates were also investigated for possible mid-IR electroluminescence.

  11. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  12. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  13. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  15. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  16. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  17. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    NASA Astrophysics Data System (ADS)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  18. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-12-01

    SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.

  19. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  20. High-Temperature Erosive Behavior of Plasma Sprayed Cr3C2-NiCr/Cenosphere Coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Doddamani, Mrityunjay; Ramesh, M. R.

    2018-02-01

    This research examines the deposition of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings on MDN 321 steel through the process of plasma spray. In this process, the solid particle erosion test is established at 200, 400, 600 °C with 30° and 90° impact angles. Alumina erodent is adopted to investigate the erosive behavior of the coating at higher temperatures. The properties of the Cr3C2-NiCr/cenosphere coating are established based on the microhardness, the adhesive strength, the fracture toughness, and the ductility. To quantify volume loss as a result of erosion, an optical profilometer is used. At higher temperature, decrease in the erosion volume loss of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings is observed. The erosion-resistive property of Cr3C2-NiCr/cenosphere coating is higher than that of MDN 321 steel by 76%. This property is influenced by high-temperature stability of mullite, alumina, and protective oxide layer that is formed at elevated temperatures. The morphology of eroded coating discloses a brittle mode of material removal.

  1. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  2. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    PubMed

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrodeposition and characterization of NiCr alloy nanowires

    NASA Astrophysics Data System (ADS)

    Maleki, K.; Alemipour, Z.

    2017-06-01

    The NiCr alloy nanowires were electrodeposited from an acidic sulphate baths into nanoporous anodized aluminume oxide (AAO). This template was fabricated by two-step anodization. The NiCr alloy nanowires were synthesized for Cr content up to 0.32% without any significant improvement in magnetic properties. Above this threshold, Cr clusters were formed and magnetic properties were decreased significantly. For Cr content of higher than 2.1% the wires were formed so short and incomplete which were like the nanoparticles. X-ray diffraction patterns revealed changing in the FCC crystal structure of Ni nanowires to an amorphous phase by increasing the Cr content. This leads to a significant decline in the magnetic properties like coercivity and squareness. The effect of thermal annealing on the magnetic properties of the NiCr alloy nanowires, showed that the squareness and the coercivity were improved by enhancing the amount of the temperature to 300 °C and were decreased by enhancing that to 500 °C.

  4. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  5. Energy Scaling of Nanosecond Gain-Switched Cr2+:ZnSe Lasers

    DTIC Science & Technology

    2011-01-01

    outcoupler or absorption from the lightly-doped active ions. Additionally, the edges of the crystals are cut at the Brewster angle , which raises...experiments we used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG pumping, the first Cr:ZnSe laser...the energy scaling of nanosecond gain-switched Cr:ZnSe lasers is optimization of the gain medium. In this study we used Brewster cut Cr:ZnSe gain

  6. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  7. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  8. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  9. The crystal structures of Ni{sub 3+x}Sn{sub 4}Zn and Ni{sub 6+x}Sn{sub 8}Zn and their structural relations to Ni{sub 3+x}Sn{sub 4}, NiSn and Ni{sub 5−δ}ZnSn{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmetterer, Clemens, E-mail: clemens.schmetterer@univie.ac.at; Effenberger, Herta Silvia; Rajamohan, Divakar

    2016-06-15

    The crystal structures of two new compounds were determined from single-crystal X-ray diffraction measurements: Ni{sub 3+x}Sn{sub 4}Zn, (x~1.35, a=7.110(2) Å, b=4.123(1) Å, c=10.346(3) Å, β=90.23(2)°, space group I2/m, Z=2. R1=0.025, wR2=0.059 for 748 unique reflections, 35 variable parameters) and Ni{sub 6+x}Sn{sub 8}Zn, x~1.35 (a=12.379(3) Å, b=4.095(1) Å, c=12.155(3) Å, β=116.25(3)°, space group C2/m, Z=2. R1=0.026, wR2=0.052 for 1346 unique reflections, 60 variable parameters). In addition, a structural refinement was performed for Ni{sub 3+x}Sn{sub 4}, x~0.13 (a=12.264(3) Å, b=4.066(1) Å, c=5.223(2) Å, β=104.85(3)°, space group C2/m, Z=2. R1=0.019, wR2=0.046 for 617 unique reflections, 29 variable parameters). The three compounds show pronouncedmore » similarities among each other as well as to the crystal structures of surrounding binary Ni–Sn and ternary Ni–Sn–Zn compounds. In particular, the two new compounds form a homologous series with Ni{sub 3+x}Sn{sub 4}, x~0.13. They contain “Ni{sub 4}Sn{sub 4}” and “Ni{sub 2}Sn{sub 4}” building blocks which by different interconnection build up the distinct structures. Topological relations with NiSn and Ni{sub 5−δ}Sn{sub 4}Zn, δ~0.25 are evident. - Graphical abstract: Projection of the structure of Ni{sub 6+x}ZnSn{sub 8}, x~1.35 and constituent building blocks. Display Omitted - Highlights: • The crystal structures of Ni{sub 6+x}Sn{sub 8}Zn and Ni{sub 3+x}Sn{sub 4}Zn were determined using single crystal XRD. • Topological relations to Ni–Sn and Ni–Sn–Zn compounds were established and discussed. • Common structural units were identified and their interconnection patterns described.« less

  10. Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Xi, Yuebin; Xu, Huidao; Wang, Lu

    2016-01-01

    Magnetic nanoparticles of Ni-Mn-Zn ferrite have been prepared by a sol-gel method making use of spent Ni-MH and Zn-Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The Ms values increase and the Hc values decrease as the size of the Ni-Mn-Zn ferrite particles increases.

  11. Different Effect of Co on the Formation of Topologically Close-Packed Phases in Ni-Cr-Mo and Ni-Cr-Re Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang

    2017-11-01

    In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.

  12. Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2015-03-01

    The hot-corrosion behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt.% CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Hot-corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60%V2O5 molten salt environment under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of hot-corrosion. XRD, FESEM/EDAX, and EDX mapping techniques were used to analyze the corrosion products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2-coated superalloy showed better hot-corrosion resistance as compared to bare and Cr3C2-NiCr-coated superalloys. The addition of CeO2 has improved micro-hardness, porosity, and surface roughness values of Cr3C2-NiCr-CeO2 coating. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2-coated superalloy were found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.

  13. Synthesis and characterization of Cd Cr and Zn Cd Cr layered double hydroxides intercalated with dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhang, He; Zhao, Lan; Li, Guo-Dong; Chen, Jie-Sheng; Xu, Lin

    2005-06-01

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr III and the Cr III-Cr III interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  14. Physical Properties of NiFeCrCo-based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zaddach, Alexander Joseph

    Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated

  15. Ionic displacement induced ferroelectricity in multiferroic Cr doped ZnO

    NASA Astrophysics Data System (ADS)

    Tiwari, Jeetendra Kumar; Ali, Nasir; Ghosh, Subhasis

    2018-05-01

    Cr doped ZnO thin film was grown on quartz substrate using RF magnetron sputtering. Room temperature magnetic and ferroelectric properties of Cr doped ZnO were investigated. It is shown that ZnO becomes ferromagnetic upon Cr doping. It is considered that breaking of centrosymmetry due strain developed by doping of Cr should be responsible for the ferroelectricity. These films were characterized by X-ray diffraction (XRD), which shows that the films possess crystalline structure with preferred orientation along the (002) crystal plane and there is no extra peak due to Cr i.e. single phase.

  16. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  17. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  18. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  19. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  20. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...

    2018-01-01

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  1. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  2. Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors

    PubMed Central

    Wei, Chengzhen; Cheng, Cheng; Zhao, Junhong; Wang, Zhangtao; Wu, Haipeng; Gu, Kaiyue; Du, Weimin; Pang, Huan

    2015-01-01

    Mesoporous ZnS–NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS–NiS composite materials have large surface areas (137.9 m2 g−1) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS–NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS–NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS–NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS–NiS composites are promising materials for nonenzymatic glucose sensors. PMID:25861568

  3. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  4. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  5. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    PubMed

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co <1 wt%) (Remanium CS; Dentaurum) with new alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (P<.01), and of Fe by the alloy (P<.01). Ion release from the recast alloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  7. Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,; Singh, Jasvir; Sharma, Sandeep

    2016-05-23

    The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interactionmore » that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.« less

  8. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  9. Solution Combustion Synthesis of Ni/NiO/ZnO Nanocomposites for Photodegradation of Methylene Blue Under Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Biglari, Z.; Masoudpanah, S. M.; Alamolhoda, S.

    2018-02-01

    In this work, Ni/NiO/ZnO nanocomposites were synthesized by the one-pot solution combustion synthesis method. Phase evolution investigated by the x-ray diffraction method showed that the ZnO and NiO contents can be tuned by addition of a zinc precursor. The microstructure characterized by electron microscopy exhibited granular morphology with a particle size of 1.1 μm decreasing to 90 nm as a function of the amounts of ZnO and NiO phases. Specific surface area determined by N2 adsorption-desorption isotherms increased from 1.4 m2/g to 25.6 m2/g with the increase of oxide phases. However, the saturation magnetization decreased from 51.3 emu/g to 25.9 emu/g in the presence of antiferromagnetic NiO and nonmagnetic ZnO phases. Photodegradation of methylene blue under ultraviolet light exhibited the maximum efficiency in the sample containing 16.25 wt.% of ZnO and 21.25 wt.% of NiO, and may be due to the synergic effect between ZnO and NiO.

  10. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  11. Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen

    Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.

  12. Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process

    NASA Astrophysics Data System (ADS)

    Safa, S.; Mokhtari, S.; Khayatian, A.; Azimirad, R.

    2018-04-01

    Encapsulated ZnO nanorods (NRs) with different Cr concentration (0-4.5 at.%) were prepared in two different steps. First, ZnO NRs were grown by hydrothermal method. Then, they were encapsulated by dip coating method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, and ultraviolet (UV)-visible spectrophotometer analyses. XRD analysis proved that Cr incorporated into the ZnO structure successfully. Based on optical analysis, band gap changes in the range of 2.74-3.84 eV. Finally, UV responses of all samples were deeply investigated. It revealed 0.5 at.% Cr doped sample had the most photocurrent (0.75 mA) and photoresponsivity (0.8 A/W) of all which were about three times greater than photocurrent and photoresponsivity of the undoped sample.

  13. Oxide compounds on Ni-Cr alloys.

    PubMed

    Baran, G R

    1984-11-01

    Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).

  14. Effect of boron on enhancing infrared emissivity of Ni-Cr system coating

    NASA Astrophysics Data System (ADS)

    Li, Yongjia; Ouyang, Taoyuan; Wang, Xiaohuan; Li, Shuhao; Mao, Jiawei; Cheng, Xudong

    2018-03-01

    High infrared emissivity coating possesses great value in practical application, whether in the military or civilian areas. In this study, B-NiCr precursor powder containing NiO, Cr2O3 and ZrB2 was calcined at 1300 °C and then used to prepare a high infrared emissivity B-NiCr coating via atmospheric plasma spraying. A large number of test methods were employed to analyze the powder and coating, including TG-DSC, XRD, FE-SEM, infrared spectrometer and so on. The result of infrared emissivity measurement indicates that the coating possesses maximum infrared emissivity of 0.908 at 1000 °C while the infrared emissivity is 0.901 after thermal shock test. Comparing with NiCr coating, Ni2CrO2(BO3) formed during calcination may be the main factor to improve the infrared emissivity of B-NiCr coating. The B-NiCr coating possesses good thermal shock resistance and can withstand 50 times thermal shock at least without falling off, from 800 °C to room temperature.

  15. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    PubMed Central

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  16. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinet, Gunjan, E-mail: gunjansrinet@gmail.com; Kumar, Ravindra, E-mail: gunjansrinet@gmail.com; Sajal, Vivek, E-mail: gunjansrinet@gmail.com

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  17. Compact Cr:ZnS Channel Waveguide Laser Operating at 2333 nm

    DTIC Science & Technology

    2014-03-24

    B. Mirov and V. V. Federov, “Mid-IR microchip laser : ZnS:Cr2+ laser with saturable absorber material,” (US Patent No 6,960,486., 2009). 23. A...Compact Cr:ZnS channel waveguide laser operating at 2333 nm John R. Macdonald,1* Stephen J. Beecher,2 Adam Lancaster,1 Patrick A. Berry,3 Kenneth...35294, USA *J.R.Macdonald@hw.ac.uk Abstract: A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling

  18. Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni{sub 1−x}Zn{sub x}O nanoparticles and Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposites via pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Kenfack Tsobnang, Patrice

    2015-10-15

    Nanoparticles of Ni{sub 1−x}Zn{sub x}O and Ni{sub 1−x}Zn{sub x}O/ZnO, which can be good candidates for selective gas sensors, were successfully obtained via a two-step synthetic route, in which the nickel zinc malonate precursor was first synthesized by co-precipitation from an aqueous solution, followed by pyrolysis in air at a relatively low temperature (~500 °C). The precursor was characterized by ICP-AES, FTIR and TG and the results indicate the molecular structure of the precursor to be compatible with Ni{sub 1−x}Zn{sub x}(OOCCH{sub 2}COO)·2H{sub 2}O. The decomposition product, characterized using various techniques (FTIR, XRD, ToF-SIMS, SEM, TEM and XPS), was established to bemore » a doped nickel oxide (Ni{sub 1−x}Zn{sub x}O for 0.01≤x≤0.1) and a composite material (Ni{sub 1−x}Zn{sub x}O/ZnO for 0.2≤x≤0.5). To elucidate the form in which the Zn is present in the NiO structure, three analytical techniques were employed: ToF-SIMS, XRD and XPS. While ToF SIMS provided a direct evidence of the presence of Zn in the NiO crystal structure, XRD showed that Zn actually substitutes Ni in the structure and XPS is a bit more specific by indicating that the Zn is present in the form of Zn{sup 2+} ions. - Highlights: • Coprecipitation synthesis of nickel zinc malonate single bath precursor was achieved. • The as synthesized precursors are an homogeneous mixture of nickel and zinc malonate. • XRD, ToF-SIMS, XPS, SEM and TEM was used to characterized decomposition products. • Ni{sub 1−x}Zn{sub x}O nanoparticles (0.01≤x≤0.1) formed after pyrolysis (~500 °C) of precursor. • Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposite (0.2≤x≤0.5) formed after pyrolysis at 500 °C of precursor.« less

  19. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

    NASA Astrophysics Data System (ADS)

    Nematollahi, Mohammadreza; Yang, Xiaodong; Seim, Eivind; Vullum, Per Erik; Holmestad, Randi; Gibson, Ursula J.; Reenaas, Turid W.

    2016-02-01

    We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0-5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

  20. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-08-08

    Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less

  1. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  2. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  3. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  4. Distribution and bioavailability of Cr in central Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Megremi, Ifigeneia

    2010-06-01

    Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.

  5. Characterisation of a Zn / Ni Plating Bath

    DTIC Science & Technology

    2009-09-03

    accelerated corrosion in the first stages which is then slowed down by its own product of corrosion, Zn(OH)212. Zinc hydroxide dehydrates in time to form ZnO ... Electrochemistry , 1991, 21, 642 [5] – Alfantasi, A.M., A study on the synthesis, characterization ans properties of pulse-plated ultrafine- grained Zn-Ni alloy

  6. In situ spectroscopic characterization of Ni 1-xZn x/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less

  7. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  8. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  9. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Laser generation in polycrystalline Cr{sup 2+}:ZnSe with undoped faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savin, D V; Gavrishchuk, E M; Ikonnikov, V B

    2015-01-31

    An original method has been suggested for producing polycrystalline Cr{sup 2+}:ZnSe samples with undoped faces. Generation characteristics of a Cr{sup 2+}:ZnSe laser are studied under pulse-periodic pumping by a Tm{sup 3+}:YLF-laser. The efficiency of converting the pump radiation into laser generation at a wavelength of 2350 nm is 20%. Cr{sup 2+}:ZnSe samples exhibit high resistance to surface breakdown. (lasers)

  11. Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak

    1994-01-01

    Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.

  12. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  13. Microstructure and Mechanical Properties of Zn-Ni-Al₂O₃ Composite Coatings.

    PubMed

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia; Li, Yan

    2018-05-21

    Zn-Ni-Al₂O₃ composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al₂O₃. The energy-dispersive spectroscopy results show that the Al₂O₃ content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al₂O₃ particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al₂O₃ and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  14. Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  15. Interfacial layers in high-temperature-oxidized NiCrAl

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.

    1983-01-01

    The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.

  16. State-of-technology for joining TD-NiCr sheet.

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding (EBW), gas-tungsten arc welding (GTAW), diffusion welding (DFW), resistance spot welding (RSW), resistance seam welding (RSEW), and brazing. Roll welding (RW) and explosion welding (EXW) have not been developed to the point where they can be used to make sound welds in TD-NiCr. Joining work that has previously been done on TD-NiCr by various organizations, both privately supported and under Air Force and NASA contracts, is described in this summary. Current work is also described that is being done at General Dynamics/Convair (under NASA contract) and at NASA/Lewis to develop and evaluate DFW, RSW, RSEW, and brazing. Preliminary comparisons of joining processes are made for typical applications. A brief description of the manufacture of TD-NiCr sheet by a recently standardized process (under NASA contract) also is given.

  17. Preparation and Investigation of Electrodeposited Ni-NANO-Cr2O3 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Jiang, Jibo; Feng, Chenqi; Qian, Wei; Yu, Libin; Ye, Fengying; Zhong, Qingdong; Han, Sheng

    2016-12-01

    The electrodeposition of Ni-nano-Cr2O3 composite coatings was studied in electrolyte containing different contents of Cr2O3 nanoparticles (Cr2O3 NPs) on mild steel surfaces. Some techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness, the potentiodynamic polarization curves (Tafel) and electrochemical impedance spectroscopy (EIS) were used to compare pure Ni coatings and Ni-nano-Cr2O3 composite coatings. The results show that the incorporation of Cr2O3 NPs resulted in an increase of hardness and corrosion resistance, and the maximum microhardness of Ni-nano-Cr2O3 composite coatings reaches about 495 HV. The coatings exhibit an active-passive transition and relatively large impedance values. Moreover, the effect of Cr2O3 NPs on Ni electrocrystallization is also investigated by cyclic voltammetry (CV) and EIS spectroscopy, which demonstrates that the nature of Ni-based composite coatings changes attributes to Cr2O3 NPs by offering more nucleation sites and less charge transfer resistance.

  18. Cr2O3-modified ZnO thick film resistors as LPG sensors.

    PubMed

    Patil, D R; Patil, L A

    2009-02-15

    Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr(2)O(3) were obtained by dipping pure ZnO thick films into 0.01M aqueous solution of chromium trioxide (CrO(3)). The dipped films were fired at 500 degrees C for 30 min. Upon firing, the CrO(3) would reduce to Cr(2)O(3). Cr(2)O(3)-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr(2)O(3) and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 degrees C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response ( approximately 18s) and fast recovery ( approximately 42s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.

  19. Role of Ni doping on transport properties of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less

  20. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  1. Local spin density in the Cr 7Ni antiferromagnetic molecular ring and 53Cr-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M; Bordonali, L; Furukawa, Yuji

    We present 53Cr-NMR spectra collected at low temperature in a single crystal of the heterometallic antiferromagnetic (AF) ring Cr 7Ni in the S = 1/2 ground state with the aim of establishing the distribution of the local electronic moment in the ring. Due to the poor S/N we observed only one signal which is ascribed to three almost equivalent 53Cr nuclei in the ring. The calculated spin density in Cr 7Ni in the ground state, with the applied magnetic field both parallel and perpendicular to the plane of the ring, turns out to be AF staggered with the greatest componentmore » of the local spin {s} for the Cr 3+ ions next to the Ni 2+ ion. The 53Cr-NMR frequency was found to be in good agreement with the local spin density calculated theoretically by assuming a core polarization field of H cp =₋ 11 T/μ B for both orientations, close to the value found previously in Cr 7Cd. Lastly, the observed orientation dependence of the local spin moments is well reproduced by the theoretical calculation and evidences the importance of single-ion and dipolar anisotropies.« less

  2. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    NASA Astrophysics Data System (ADS)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face

  3. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  4. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  5. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  6. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yahia, H. Ben; Essehli, R., E-mail: ressehli@qf.org.qa; Avdeev, M.

    The new compounds NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} crystallize with a stuffed α-CrPO{sub 4}-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structuresmore » of NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} a statistical disorder Ni{sup 2+}/Cr{sup 3+} was observed on both the 8g and 4a atomic positions, whereas in NaCoCr{sub 2}(PO{sub 4}){sub 3} the statistical disorder Co{sup 2+}/Cr{sup 3+} was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} delivered specific capacities of 352, 385, and 368 mA h g{sup −1}, respectively, which attests to the electrochemical activity of sodium in these compounds. - Highlights: • NaCoCr{sub 2}(PO{sub 4}){sub 3}, NaNiCr{sub 2}(PO{sub 4}){sub 3}, and Na{sub 2}Ni{sub 2}Cr(PO{sub 4}){sub 3} were synthesized by sol-gel method. • The crystal structures were determined by using neutron powder diffraction data. • The three compounds crystallize with a stuffed α-CrPO{sub 4}-type structure. • The three compounds were tested as anodes in sodium-ion batteries. • Relatively high specific capacities were obtained for these compounds.« less

  7. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  8. Australasian microtektites: Impactor identification using Cr, Co and Ni ratios

    NASA Astrophysics Data System (ADS)

    Folco, L.; Glass, B. P.; D'Orazio, M.; Rochette, P.

    2018-02-01

    Impactor identification is one of the challenges of large-scale impact cratering studies due to the dilution of meteoritic material in impactites (typically < 1 wt%). The nature of the impactor that generated the Australasian tektite/microtektite strewn field, i.e., the largest Cenozoic strewn field (∼15% of the Earth's surface), the youngest (∼0.78 Myr old) on Earth, and the only one without an associated impact crater so far, is an outstanding issue. We identify a chondritic impactor signature in 77 Australasian microtektites (size range: ∼200-700 μm) from within 3000 km from the hypothetical impact location in Indochina (∼17°N, 107°E) based on variations of Cr, Co and Ni interelement ratios in a Co/Ni vs Cr/Ni space (46 microtektites analyzed in this work by Laser Ablation-Inductively Coupled Plasma -Mass Spectrometry and 31 from literature by means of Neutron Activation Analyses with Cr, Co and Ni concentrations up to ∼370, 50 and 680 μg/g, respectively). Despite substantial overlap in Cr/Ni versus Co/Ni composition for several meteorite types with chondritic composition (chondrites and primitive achondrites), regression calculation based on ∼85% of the studied microtektites best fit a mixing line between crustal compositions and an LL chondrite. However, due to some scatter mainly in the Cr versus Ni ratios in the considered dataset, an LL chondrite may not be the best fit to the data amongst impactors of primitive compositions. Eight high Ni/Cr and five low Ni/Cr outlier microtektites (∼15% in total) deviate from the above mixing trend, perhaps resulting from incomplete homogenization of heterogeneous impactor and target precursor materials at the microtektite scale, respectively. Together with previous evidence from the ∼35 Myr old Popigai impact spherules and the ∼1 Myr old Ivory Coast microtektites, our finding suggests that at least three of the five known Cenozoic distal impact ejecta were generated by the impacts of large stony

  9. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun

    2017-12-01

    The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.

  10. Constructing CrIII-centered heterometallic complexes: [NiCrIII] and [CoCrIII] wheels.

    PubMed

    Kakaroni, Foteini E; Collet, Alexandra; Sakellari, Eirini; Tzimopoulos, Demetrios I; Siczek, Milosz; Lis, Tadeusz; Murrie, Mark; Milios, Constantinos J

    2017-12-19

    The solvothermal reaction between Cr(acac) 3 , MCl 2 ·6H 2 O (M = Ni, Co) and 2-hydroxy-4-methyl-6-phenyl-pyridine-3-amidoxime (H 2 L), under basic conditions, led to the synthesis of the heterometallic heptanuclear clusters [MCr(HL zw ) 6 (HL) 6 ]·3Cl (M = Ni, 1; Co, 2), with the nickel analogue displaying an S = 9/2 spin ground-state.

  11. A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.

    PubMed

    Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong

    2015-09-21

    Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .

  12. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  13. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  14. Bottle-brush-shaped heterostructures of NiO-ZnO nanowires: growth study and sensing properties

    NASA Astrophysics Data System (ADS)

    Baratto, C.; Kumar, R.; Comini, E.; Ferroni, M.; Campanini, M.

    2017-11-01

    We present here heterostructured ZnO-NiO nanowires (NWs), constituted by a core of single crystalline ZnO NWs, covered by poly-crystalline NiO nanorods (NRs). The bottle-brush shape was investigated by scanning electron microscopy and transmission electron microscope, confirming that a columnar growth of NiO occurred over the ZnO core, with a preferred orientation of NiO over ZnO NWs. The heterostructured devices are proposed for gas sensing application. Bare ZnO NWs and heterostructured sensors with two different thicknesses of NiO poly-crystalline NRs were analysed for acetone, ethanol, NO2 and H2 detection. All sensors maintained n-type sensing mechanism, with improved sensing performance for lower thickness of NiO, due to high catalytic activity of NiO. The sensing dynamic is also strongly modified by the presence of heterojunction of NiO/ZnO, with a reduction of response and recovery times towards ethanol and acetone at 400 °C.

  15. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Z. Q.; Zou, B.; Zhao, X. G.; Tang, Z.; Wang, S. J.

    2012-10-01

    NiO/ZnO nanocomposites with NiO content of 4 at. % and 20 at. % were annealed up to 1200 °C to get Ni doped ZnO nanocrystals. Raman scattering spectra illustrate a broad and strong band at 500-600cm-1 in all nanocomposites after annealing above 700 °C, which suggests incorporation of Ni in the ZnO lattice. However, x-ray diffraction measurements show that NiO phase can be still observed in all nanocomposites after annealing, which indicates that Ni is partially doped into the ZnO structure. Positron annihilation measurements reveal large number of vacancy defects in the interface region of all nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room temperature ferromagnetism can be observed in the NiO/ZnO nanocomposites, which is stronger in the 20 at. % NiO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. This indicates that the ferromagnetism at low annealing temperatures originates from the NiO nanograins, and they become antiferromanetic after subsequent higher temperature annealing which leads to the weakening of ferromagnetism. After annealing up to 1000 °C, the ferromagnetism in both the two samples becomes nearly invisible. The disappearance of ferromagnetism shows good coincidence with the recovery of vacancy defects in NiO/ZnO nanocomposites. It can be inferred that the ferromagnetism is mediated by vacancy defects which are distributed in the interface region.

  16. A New Method to Produce Ni-Cr Ferroalloy Used for Stainless Steel Production

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Chu, Shao-Jun; Zhang, Guo-Hua

    2016-08-01

    A new electrosilicothermic method has been proposed in the present paper to produce Ni-Cr ferroalloy, which can be used for the production of 300 series stainless steel. Based on this new process, the Ni-Si ferroalloy is first produced as the intermediate alloy, and then the desiliconization process of Ni-Si ferroalloy melt with chromium concentrate is carried out to generate Ni-Cr ferroalloy. The silicon content in the Ni-Si ferroalloy produced in the submerged arc furnace should be more than 15 mass% (for the propose of reducing dephosphorization), in order to make sure the phosphorus content in the subsequently produced Ni-Cr ferroalloy is less than 0.03 mass%. A high utilization ratio of Si and a high recovery ratio of Cr can be obtained after the desiliconization reaction between Ni-Si ferroalloy and chromium concentrate in the electric arc furnace (EAF)-shaking ladle (SL) process.

  17. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  18. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    NASA Astrophysics Data System (ADS)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-04-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  19. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  20. Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations.

    PubMed

    Ketrat, Sombat; Maihom, Thana; Wannakao, Sippakorn; Probst, Michael; Nokbin, Somkiat; Limtrakul, Jumras

    2017-11-20

    The oxidation of CO by N 2 O over metal-organic framework (MOF) M 3 (btc) 2 (M = Fe, Cr, Co, Ni, Cu, and Zn) catalysts that contain coordinatively unsaturated sites has been investigated by means of density functional theory calculations. The reaction proceeds in two steps. First, the N-O bond of N 2 O is broken to form a metal oxo intermediate. Second, a CO molecule reacts with the oxygen atom of the metal oxo site, forming one C-O bond of CO 2 . The first step is a rate-determining step for both Cu 3 (btc) 2 and Fe 3 (btc) 2 , where it requires the highest activation energy (67.3 and 19.6 kcal/mol, respectively). The lower value for the iron compound compared to the copper one can be explained by the larger amount of electron density transferred from the catalytic site to the antibonding of N 2 O molecules. This, in turn, is due to the smaller gap between the highest occupied molecular orbital (HOMO) of the MOF and the lowest unoccupied molecular orbital (LUMO)  of N 2 O for Fe 3 (btc) 2 compared to Cu 3 (btc) 2 . The results indicate the important role of charge transfer for the N-O bond breaking in N 2 O. We computationally screened other MOF M 3 (btc) 2 (M = Cr, Fe, Co, Ni, Cu, and Zn) compounds in this respect and show some relationships between the activation energy and orbital properties like HOMO energies and the spin densities of the metals at the active sites of the MOFs.

  1. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  2. Structural, electrical, optical and magnetic properties of NiO/ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sushmitha, V.; Maragatham, V.; Raj, P. Deepak; Sridharan, M.

    2018-02-01

    Nickel oxide/Zinc oxide (NiO/ZnO) thin films have been deposited onto thoroughly cleaned glass substrates by reactive direct current (DC) magnetron sputtering technique and subsequently annealed at 300 °C for 3 h in vacuum. The NiO/ZnO thin films were then studied for their structural, optical and electrical properties. X-ray diffraction (XRD) pattern of ZnO and NiO showed the diffraction planes corresponding to hexagonal and cubic phase respectively. The optical properties showed that with the increase in the deposition time of NiO the energy band gap varied between 3.1 to 3.24 eV. Hence, by changing the deposition time of NiO the tuning of band gap and conductivity were achieved. The magnetic studies revealed the diamagnetic nature of the NiO/ZnO thin films.

  3. Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping

    NASA Astrophysics Data System (ADS)

    Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.

    2017-04-01

    In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.

  4. Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Sedky, A.; Mohamed, S. B.

    2014-01-01

    We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300-500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.

  5. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  6. Cr:ZnSe laser pumped with Tm:YAP microchip laser

    NASA Astrophysics Data System (ADS)

    Koranda, Petr; Sulc, Jan; Doroshenko, Maxim; Jelinková, Helena; Basiev, Tasoltan T.; Osiko, Vjatcheslav; Badikov, V. V.; Badikov, D.

    2010-02-01

    Cr:ZnSe laser coherently longitudinally pumped with Tm:YAP microchip laser was realised. The pumping laser consisted of Tm:YAP crystal (3x3 mm) with resonator mirrors deposited directly on its faces (on rear face the dielectric layer with high reflectance for 1998 nm wavelength and high transmittance for 790 nm pumping radiation wavelength; on output face the dielectric layer with reflectance 97% at 1998 nm wavelength). The maximal output power was 5.5 W and the generated radiation wavelength was 1998 nm. The main advantage of this pumping was stable and still output without relaxation spikes (non-spiking). The Tm:YAP laser radiation was collimated and focused by the set of two CaF2 lenses. The pumping beam spot diameter inside the Cr:ZnSe crystal was 300 μm. The Cr:ZnSe laser resonator consisted of flat rear mirror (HT at 1998 nm and HR at 2100 - 2900 nm) and curved output coupler (r = -150 mm, R = 95% at 2100 - 2700 nm). The maximal output energy of stable radiation was 4 mJ (pulse duration 10 ms, repetition rate 10 Hz). For wavelength tuning the Lyott filter (quartz plate under Brewster angle) was placed between the Cr:ZnSe crystal and output coupler. The generated radiation wavelength was continuously tunable from 2246 - 2650 nm.

  7. Wetting of Sn-Zn-Ga and Sn-Zn-Na Alloys on Al and Ni Substrate

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Bobrowski, Piotr; Pawlak, Sylwia; Schell, Norbert; Chulist, Robert; Janik, Katarzyna

    2018-01-01

    Wetting of Al and Ni substrate by Sn-Zn eutectic-based alloys with 0.5 (wt.%) of Ga and 0.2 (wt.%) of Na was studied using the sessile drop method in the presence of ALU33® flux. Spreading tests were performed for 60 s, 180 s, and 480 s of contact, at temperatures of 503 K, 523 K and 553 K (230°C, 250°C, and 280°C). After cleaning the flux residue from solidified samples, the spreading areas of Sn-Zn0.5Ga and Sn-Zn0.2Na on Al and Ni substrate were determined. Selected, solidified solder-pad couples were cross-sectioned and subjected to scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction study and synchrotron measurements of the interfacial microstructure and identification of the phases. The growth of the intermetallic Ni5Zn21 phase layer was studied at the solder/Ni substrate interface, and the kinetics of the formation and growth of the intermetallic layer were determined. The formation of interlayers was not observed on the Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  8. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  9. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  10. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Chang, S. Y.; Huang, W. H.; Chen, Y. T.; Hsu, C. W.; Hu, Y. M.; Chen, J. M.; Chen, C.-H.; Kumar, K.; Guo, J.-H.

    2011-03-01

    X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS) were used to characterize the Cr secondary oxide phases in ZnO films that had been prepared using a co-sputtering method. Analysis of the Cr L3,2-edge XANES spectra reveals that the intensity of white-line features decreases subtly as the sputtering power increases, indicating that the occupation of Cr 3 d orbitals increases with Cr concentration in (Zn, Cr)O films. The O K-edge spectra show that the intensity of XANES features of (Zn, Cr)O films is lower than those of ZnO film, suggesting enhanced occupation of O 2 p-derived states through O 2 p-Cr 3 d hybridization. The XES and XPS spectra indicate that the line shapes in the valence band of (Zn, Cr)O films are quite different from those of ZnO and that the Cr 2O 3 phase dominates the spinel structure of (Zn, Cr)O films increasingly as the Cr sputtering power is increased. Over all results suggest that the non-ferromagnetic behavior of (Zn, Cr)O films can be attributed to the dominant presence of Cr 2O 3, whereas the bulk comprise phase segregations of Cr 2O 3 and/or ZnCr 2O 4, which results them the most stable TM-doped ZnO material against etching.

  11. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  12. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    NASA Astrophysics Data System (ADS)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  13. Field dependence of TB in NiO and (Ni, Zn)O Nanoclusters

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Peck, M.; Skomski, R.; Zhang, R.; Kharel, P.; Allison, M.; Sellmyer, D.; Langell, M.

    2011-03-01

    Size dependence of magnetic properties of rocksalt NiO and Zn substituted NiO nanoparticles are investigated. Nanoparticle diameters are determined from 8 to 30 nm by XRD and AFM. Uncompensated spins at the nanoparticle surface contribute to superparametism at low temperatures and their blocking temperatures increase with stronger applied field. The field induced spin canting of the antiferromagnetic sublattices is a bulk effect and studied by the substitution of Zn with transition metal. Nanoparticles start exhibiting bulk magnetic behavior with size greater than 18 nm. Magnetization rotation of uncompensated spins under the magnetic field is mainly due to nanoscale size effect. The anisotropy of the nanoparticle is about four times larger than that of the bulk NiO. This research is supported by the NSF (CHE-1012366 and Nebraska MRSEC Grant DMR-0820521), the DOE Grant DE-FG02-04ER46152 (P. K. and D. J. S.) and NCMN.

  14. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  15. High-Temperature Exposure Studies of HVOF-Sprayed Cr3C2-25(NiCr)/(WC-Co) Coating

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Kaur, Manpreet; Prakash, Satya

    2016-08-01

    In this research, development of Cr3C2-25(NiCr) + 25%(WC-Co) composite coating was done and investigated. Cr3C2-25(NiCr) + 25%(WC-Co) composite powder [designated as HP2 powder] was prepared by mechanical mixing of [75Cr3C2-25(NiCr)] and [88WC-12Co] powders in the ratio of 75:25 by weight. The blended powders were used as feedstock to deposit composite coating on ASTM SA213-T22 substrate using High Velocity Oxy-Fuel (HVOF) spray process. High-temperature oxidation/corrosion behavior of the bare and coated boiler steels was investigated at 700 °C for 50 cycles in air, as well as, in Na2SO4-82%Fe2(SO4)3 molten salt environment in the laboratory. Erosion-corrosion behavior was investigated in the actual boiler environment at 700 ± 10 °C under cyclic conditions for 1500 h. The weight-change technique was used to establish the kinetics of oxidation/corrosion/erosion-corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), and EDS elemental mapping techniques were used to analyze the exposed samples. The uncoated boiler steel suffered from a catastrophic degradation in the form of intense spalling of the scale in all the environments. The oxidation/corrosion/erosion-corrosion resistance of the HVOF-sprayed HP2 coating was found to be better in comparison with standalone Cr3C2-25(NiCr) coating. A simultaneous formation of protective phases might have contributed the best properties to the coating.

  16. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  17. Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase.

    PubMed

    Schneider, L; Zaitsev, S V; Jin, W; Kompch, A; Winterer, M; Acet, M; Bacher, G

    2009-04-01

    High quality Cr-doped ZnO nanoparticles from the gas phase were prepared and investigated with respect to their structural, optical and magnetic properties. The extended x-ray absorption fine structure and the x-ray absorption near edge structure of the particles verify that after nanoparticle preparation Cr is incorporated as Cr3+ ) at least partially on sites with a 4-fold oxygen configuration, most likely on a Zn site, into the wurtzite lattice. Despite the fact that Cr is known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained up to room temperature even for a nominal Cr concentration of 10 at.%. Annealing at 1000 degrees C results in a significant improvement of the photoluminescence efficiency and a reduced PL linewidth down to 2.9 meV at low temperatures while the structural and magnetic data indicate the formation of ZnCr2O4 clusters.

  18. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Bhatt, N. K.; Jani, A. R.

    2011-12-01

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni10Cr90 and Co20Cr80 alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  19. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  20. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    NASA Astrophysics Data System (ADS)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  1. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  2. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  3. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    PubMed Central

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia

    2018-01-01

    Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391

  4. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  5. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  6. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  7. Precipitation of coherent Ni{sub 2}(Cr, W) superlattice in an Ni–Cr–W superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiangyu; Hu, Rui, E-mail: rhu@nwpu.edu.cn; Zhang, Tiebang

    2016-01-15

    It is demonstrated that a nanometer-sized Ni{sub 2}(Cr, W) superlattice with a Pt{sub 2}Mo-type structure can precipitate in an Ni–Cr–W alloy by means of a simple aging treatment at 550 °C. The dark-field image of short-range order domains has been found for the first time experimentally. The mechanism of short-range order to long-range order transformation has been revealed based on transmission electron microscopy result and static concentration waves theory and found to be continuous ordering. The randomness of the transformation of static concentration waves leads to equiprobable occurrence of the different variants. The transformation of short-range order to long-range ordermore » gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W) superlattice. The interfaces between Ni{sub 2}(Cr, W) and Ni-based matrix and the different variants of Ni{sub 2}(Cr, W) have been investigated by high resolution transmission electron microscopy. The results reveal that the interfaces between Ni{sub 2}(Cr, W) and surrounding matrix are coherent at the atomic scale. - Highlights: • The DF image of SRO cluster has been found for the first time experimentally. • The transformation of SRO to LRO gives rise to the Pt{sub 2}Mo-type Ni{sub 2}(Cr, W). • Variants of Ni{sub 2}(Cr, W) occur equiprobably. • The interfaces between Ni{sub 2}(Cr, W) and matrix are coherent at the atomic scale.« less

  8. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  9. Correlation and nuclear distortion effects of Cr-substituted ZnSe.

    PubMed

    Tablero, C

    2007-04-28

    There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.

  10. Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation

    NASA Astrophysics Data System (ADS)

    Dostovalov, A. V.; Korolkov, V. P.; Terentyev, V. S.; Okotrub, K. A.; Dultsev, F. N.; Babin, S. A.

    2017-07-01

    The formation of femtosecond laser-induced periodic surface structures (LIPSS's) on Cr, Ti, Ni and NiCr films (with different Cr contents) is investigated. It is established that thermochemical LIPSS's with periods of 950, 930 and 980 nm are formed, respectively, on the surfaces of titanium, chromium, and nichrome (with a chromium content of 20%); however, thermochemical LIPSS's are not formed on the surfaces of nickel and nichrome with a low chromium content, although Raman data indicate that oxidation occurs in all cases. A weakly ordered ablated structure with a period of 250-300 nm is found to be formed on oxidised areas of thermochemical LIPSS's in the case of chromium and nichrome (80/20). Experimental data on selective etching of thermochemical LIPSS's on titanium and chromium films are presented.

  11. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  12. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu

    2018-07-01

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.

  13. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering.

    PubMed

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Hung; Ho, Ting-Hsiu

    2018-05-03

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1,300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface. © 2018 IOP Publishing Ltd.

  14. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  15. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  16. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.; Was, Gary S.

    2007-06-01

    The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

  17. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  18. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  19. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  20. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  1. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    NASA Astrophysics Data System (ADS)

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-01

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni) 6(SO 4)(OH,Cl) 10·5H 2O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO 4·7H 2O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn 3.52Ni 1.63)(SO 4) 1.33(OH 7.64)·4.67H 2O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with {1}/{4} empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates.

  2. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.

    2011-12-12

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function aremore » in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.« less

  3. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  4. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni 50Mn 37In 13

    DOE PAGES

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; ...

    2017-03-15

    Here, the structural, magnetic, and magnetotransport properties of Ni 50-xCr xMn 37In 13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD), field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni 50Mn 37In 13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (T M). This system also shows a large negative entropy change at the Curie temperature (T C), making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC) values atmore » T M and T C increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni 45Cr 5Mn 37In 13. The influence of Cr substitution on the transport properties of Ni 48Cr 2Mn 37In 13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near T M for Ni 48Cr 2Mn 37In 13.« less

  5. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni 50Mn 37In 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil

    Here, the structural, magnetic, and magnetotransport properties of Ni 50-xCr xMn 37In 13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD), field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni 50Mn 37In 13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (T M). This system also shows a large negative entropy change at the Curie temperature (T C), making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC) values atmore » T M and T C increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni 45Cr 5Mn 37In 13. The influence of Cr substitution on the transport properties of Ni 48Cr 2Mn 37In 13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near T M for Ni 48Cr 2Mn 37In 13.« less

  6. Formation of Cr2O3 Diffusion Barrier Between Cr-Contained Stainless Steel and Cold-Sprayed Ni Coatings at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-02-01

    A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.

  7. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  8. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  10. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  11. [Effect of different heat treatment on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys].

    PubMed

    Liang, Rui-ying; Li, Chang-yi; Han, Ya-jing; Hu, Xin; Zhang, Lian-yun

    2008-11-01

    To evaluate the effect of heat treatment and porcelain-fused-to-metal (PFM) processing on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys. Samples of CoCr-NiCr dissimilar alloys with 0.5 mm thickness were laser-welded single-side under the setting parameters of 280 V, 10 ms pulse duration. After being welded, samples were randomly assigned to three groups, 10 each. Group1 and 2 received heat treatment and PFM processing, respectively. Group 3 was control group without any treatment. Tensile strength, microstructure and element distribution of samples in the three groups were tested and observed using tensile test, metallographic examinations, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) analysis. After heat treatment and PFM processing, tensile strength of the samples were (537.15 +/- 43.91) MPa and (534.58 +/- 48.47) MPa respectively, and elongation rates in Group 1 and 2 were (7.65 +/- 0.73)% and (7.40 +/- 0.45)%. Ductile structure can be found on tensile fracture surface of samples and it was more obvious in heat treatment group than in PFM group. The results of EDS analysis indicated that certain CoCr alloy diffused towards fusion zone and NiCr side after heat treatment and PFM processing. Compared with PFM processing group, the diffusion in the heat treatment group was more obvious. Heat treatment and PFM processing can improve the mechanical properties and microstructure of welded CoCr-NiCr dissimilar alloy to a certain degree. The improvements are more obvious with heat treatment than with porcelain treatment.

  12. An improved diffusion welding technique for TD-NiCr

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1973-01-01

    An improved diffusion welding technique has been developed for TD-NiCr sheet. In the most preferred form, the improved technique consists of diffusion welding 320-grit sanded plus chemically polished surfaces of unrecrystallized TD-NiCr at 760 C under 140 MN/m2 pressure for 1hr followed by postheating at 1180 C for 2hr. Compared to previous work, this improved technique has the advantages of shorter welding time, lower welding temperature, lower welding pressure, and a simpler and more reproducible surface preparation procedure. Weldments were made that had parent-metal creep-rupture shear strength at 1100 C.

  13. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  14. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    PubMed Central

    Chen, Yunxia; Cui, Haichao; Lu, Binfeng; Lu, Fenggui

    2017-01-01

    The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability. PMID:28772745

  15. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  16. Rietveld refinement and electrical properties of Ni-Zn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana

    2017-05-01

    NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.

  17. Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Al-Hardan, N.; Abdullah, M. J.; Aziz, A. Abdul

    2011-08-01

    Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.

  18. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    NASA Astrophysics Data System (ADS)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  19. Thermostructural behaviour of Ni-Cr materials: modelling of bulk and nanoparticle systems.

    PubMed

    Ortiz-Roldan, Jose M; Rabdel Ruiz-Salvador, A; Calero, Sofía; Montero-Chacón, Francisco; García-Pérez, Elena; Segurado, Javier; Martin-Bragado, Ignacio; Hamad, Said

    2015-06-28

    The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available. Similarly, NPs with diameters of 3, 5, 7, and 10 nm were studied. We found a very rapid convergence of NP properties with the size of the systems, showing already the 5 nm NPs with a thermostructural behaviour similar to the bulk. MD simulations of two 5 nm NPs show very little sintering and thermally induced damage, for temperatures between 300 K and 1000 K, suggesting that materials formed by agglomeration of Ni-Cr NPs meet the thermostructural stability requirements for catalysis applications.

  20. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  1. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  2. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  3. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  4. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  5. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrois, Martin; Jablonski, Paul D.

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less

  6. A secondary, coplanar design Ni/MCM-41/Zn microbattery

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    A secondary Ni/Zn microbattery (∼200 µm thick) has been developed in a coplanar electrode configuration. The cell is essentially of a circular shape (∼30 mm in diameter) consisting of a fine circular ring (cathode) and a circle (anode) split apart (~800 µm). Unlike the stacking cell architecture, coplanar configuration offers simple design, ease of fabrication and eventually cost saving. The use of MCM-41 mesoporous silica as the membrane separator cum electrolyte reservoir enables the successful implementation of coplanar configuration. The fabrication of Ni/Zn microbattery first begins with electrodeposition of zinc (Zn) and nickel hydroxide (Ni(OH)2) thin films onto patterned FR4 printed circuit board, followed by deposition of zinc oxide (ZnO) slurry onto the zinc active layer, and finally ends by multiple drop-coating procedures of MCM-41 from its precursor solution at ambient temperature. Once a potassium hydroxide (6 M KOH)/MCM-41 electrolyte-separator mixture is incorporated, the cell is sealed with an acrylic sheet and epoxy adhesive. The fabricated microbatteries were capable to sustain around 130 deep charge-discharge cycles. When rated at 0.1 mA, the energy density of the microbattery was around 3.82 Wh l-1 which is suitable for low rate applications and storage for micro energy harvesters such as piezoelectric generators.

  7. On processing of Ni-Cr3C2 based functionally graded clads through microwave heating

    NASA Astrophysics Data System (ADS)

    Kaushal, Sarbjeet; Gupta, Dheeraj; Bhowmick, Hiralal

    2018-06-01

    In the current study, functionally graded clads (FGC) of Ni-Cr3C2 based composite powders with varying percentage of Cr3C2 (0%–30% by weight) were developed on austenitic stainless steel (SS-304) substrate through microwave hybrid heating method. A domestic microwave oven working at 2.45 GHz and variable power level of 180–900 W was used to conduct the experimental trials. The exposure time was varied with compositional gradient and was optimized. Scanning electron microscopic (SEM) image of the FGC shows the uniform distribution of Cr3C2 particles inside the Ni matrix. Presence of Ni3C, Ni3Si, Ni3Cr2, and Cr3C2 phases was observed in the different layers of FGC. The top FGC layer exhibits the maximum value of microhardness of order 576 ± 25 HV which was 2.5 times more than that of the substrate.

  8. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  9. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  10. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  11. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  12. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Amado, J. M.; Tobar, M. J.; Yáñez, A.; Amigó, V.; Candel, J. J.

    The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nominal values were defined. The effect of Cr content respect to the microstructure, susceptibility for cracking and the wear rate of the resulting coating will also be discussed.

  13. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  14. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  15. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mansoor, Qaisar; Mahmood, Arshad; Ahmad, Amaar

    2014-07-01

    In this paper, ZnO nanorods doped with varying amounts of Ni have been prepared by chemical co-precipitation technique. Structural investigations provide the evidence that Ni is successfully doped into ZnO host matrix without having any secondary phases. Scanning electron microscopy (SEM) images reveal the formation of rodlike structure of undoped ZnO with average length and diameter of 1 μm and 80 nm, respectively. Raman spectroscopy results show that the E1LO phonons mode band shifts to the higher values with Ni doping, which is attributed to large amount of crystal defects. Ni doping is also found to greatly influence the optical properties of ZnO nanorods. The influence of Ni doping on antibacterial characteristics of ZnO nanorods have been studied by measuring the growth curves of Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria in the presence of prepared nanorods. ZnO nanorods antibacterial potency is found to increase remarkably with Ni doping against S. aureus and P. aeruginosa microbials, which might possibly be due to the increase in reactive oxygen species (ROS) generation. Interestingly, it is observed that Ni doped ZnO nanorods completely eradicates these multi-drug resistant bacteria.

  16. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  17. Surface half-metallicity of CrS thin films and perfect spin filtering and spin diode effects of CrS/ZnSe heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Yao, K. L., E-mail: klyao@mail.hust.edu.cn

    2014-11-03

    Recently, ferromagnetic zinc-blende Mn{sub 1−x}Cr{sub x}S thin films (above x = 0.5) were fabricated experimentally on ZnSe substrate, which confirmed the previous theoretical prediction of half-metallic ferromagnetism in zinc-blende CrS. Here, we theoretically reveal that both Cr- and S-terminated (001) surfaces of the CrS thin films retain the half-metallicity. The CrS/ZnSe(001) heterogeneous junction exhibits excellent spin filtering and spin diode effects, which are explained by the calculated band structure and transmission spectra. The perfect spin transport properties indicate the potential applications of half-metallic CrS in spintronic devices. All computational results are obtained by using the density functional theory combined with nonequilibrium Green'smore » function.« less

  18. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen

    2017-02-13

    In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less

  19. Inducing tunable host luminescence in Zn2GeO4 tetrahedral materials via doping Cr3+

    NASA Astrophysics Data System (ADS)

    Bai, Qiongyu; Li, Panlai; Wang, Zhijun; Xu, Shuchao; Li, Ting; Yang, Zhiping; Xu, Zheng

    2018-06-01

    Zn2GeO4 consisting of tetrahedron, and it is a self-luminescent material due to the presence of the native defects and shows a bluish white emission excited by ultraviolet. Although Cr3+ doped in a tetrahedron generally cannot show luminescence, in this research, new defects are formed as Cr3+ doped in Zn2GeO4, hence a green emission band can be obtained. Meanwhile, the intensity of host emission is also decreased. Therefore, Zn2GeO4:Cr3+ are synthesized using a high-temperature solid-phase method. Thermoluminescence (TL) and luminescence decay curves are used to investigate the variation of native defects. The emission colour can be tuned from bluish white to green when Cr3+ doped in Zn2GeO4. This result has guidance for controlling the native emission of self-luminescent material.

  20. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  1. Short-pulsed gain-switched Cr2+:ZnSe laser

    NASA Astrophysics Data System (ADS)

    Gorajek, L.; Jabczynski, J. K.; Kaskow, M.

    2014-04-01

    We report the first demonstration of gain-switched, ultra-low-threshold Cr2+:ZnSe laser generating pulses as short as 1.75 ns. A diode pumped Tm3+:YLF laser delivering up to 5 mJ energy in 11 ns pulses was utilized as a pump source. The laser operated at 20 Hz repetition rate with 0.1 duty factor allowing us to reduce thermal effects in an active crystal. In a short resonator (length, 70 mm) we obtained more than 0.5 mJ of output energy and 300 kW of corresponding peak power. The Cr2+:ZnSe laser was characterized by very low losses manifesting themselves by an extremely low generation threshold of less than 7 μJ and very high slope efficiency (reaching the quantum efficiency) determined with respect to absorbed pump power.

  2. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  3. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  4. Structural behavior of ZnCr 2S 4 spinel under pressure

    DOE PAGES

    Efthimiopoulos, I.; Lochbiler, T.; Tsurkan, V.; ...

    2016-12-15

    Here, the series of Cr-chalcogenide spinels ACr 2X 4 (A = Zn, Cd, Hg; X = S, Se) exhibits a rich phase diagram upon compression, as revealed by our recent investigations. There exist, however, some open questions regarding the role of cations in the observed structural transitions. In order to address these queries, we have performed X-ray diffraction and Raman spectroscopic studies on the ZnCr 2S 4 spinel up to 42 GPa, chosen mainly due to the similarity of the Zn 2+ and Cr 3+ cationic radii. Two reversible structural transitions were identified at 22 and 33 GPa, into a I4 1/ amd and an orthorhombic phase, respectively. Close comparison with the behavior of relevant Cr-spinels revealed that the structural transitions are mainly governed by the competition of the magnetic exchange interactions present in these systems, and not by steric effects. In addition, careful inspection of the starting Fdmore » $$\\bar{3}$$m phase revealed a previously unnoticed isostructural transition. The latter is intimately related to changes in the electronic properties of these systems, as evidenced by our Raman studies. Our results provide insights for tuning the physical and chemical properties of these materials, even under moderate compression, as well as promoting the understanding of similar pressure-induced effects in relevant systems.« less

  5. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  6. Control of the electrical resistivity of Ni-Cr wires using low pressure chemical vapor deposition of tin

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Hyun; Bak, Jeong Geun; Lee, Kangtaek; Kim, Chang-Koo

    2018-01-01

    Control of the electrical resistivity of Ni-Cr wires is demonstrated using low pressure chemical vapor deposition (LPCVD) of tin on the surface of the wire, after which the effects of the deposition temperature on the structural, morphological, and compositional characteristics of the tin-deposited Ni-Cr wires are investigated. As the deposition temperature is increased, the resistivity of the Ni-Cr wires increases in the temperature range 300-400 °C; then remains nearly constant as the temperature increased to 700 °C. The increase in the resistivity of the Ni-Cr wires is attributed to formation of Ni3Sn2 particulates on the surface of the wire. Compositional analysis shows that the pattern of change in the tin content with the deposition temperature is similar to that of resistivity with temperature, implying that the atomic content of tin on Ni-Cr directly affects the electrical resistivity.

  7. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    PubMed

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  8. Oxidation kinetics of some Ni-Cr alloys.

    PubMed

    Baran, G

    1983-01-01

    Oxidation kinetics of four Ni-Cr alloys and a high-purity nickel standard was determined under isothermal conditions in an air atmosphere. In addition, weight gains of the alloys were measured during a simulated pre-oxidation treatment. The alloys' behavior suggests that mechanisms of oxidation vary with temperature and alloy composition.

  9. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys

    DOE PAGES

    He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...

    2016-12-31

    Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less

  10. Experimental investigation and micromagnetic simulations of hybrid CoCr2O4/Ni coaxial nanostructures.

    PubMed

    Li, W J; Wang, C J; Zhang, X M; Irfan, M; Khan, U; Liu, Y W; Han, X F

    2018-06-15

    Multiphase CoCr 2 O 4 /Ni core-shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol-gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr 2 O 4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr 2 O 4 NT shell and hybrid CoCr 2 O 4 /Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr 2 O 4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr 2 O 4 /Ni core-shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr 2 O 4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.

  11. Experimental investigation and micromagnetic simulations of hybrid CoCr2O4/Ni coaxial nanostructures

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Wang, C. J.; Zhang, X. M.; Irfan, M.; Khan, U.; Liu, Y. W.; Han, X. F.

    2018-06-01

    Multiphase CoCr2O4/Ni core–shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol–gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr2O4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr2O4 NT shell and hybrid CoCr2O4/Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr2O4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr2O4/Ni core–shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr2O4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.

  12. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less

  13. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less

  14. The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner

    2018-02-01

    Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.

  15. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  16. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  17. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil.

    PubMed

    Zhao, Ling; Ding, Zhenliang; Sima, Jingke; Xu, Xiaoyun; Cao, Xinde

    2017-09-01

    This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO 4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO 4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO 4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO 4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO 4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH) 3 or Cr x Fe (1-x) (OH) 3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO 4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO 4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less

  19. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye

    2013-03-01

    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  20. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  1. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  2. NiCrNx interlayer thickness dependence of spectral performance and environmental durability of protected-silver mirrors

    NASA Astrophysics Data System (ADS)

    Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming

    2018-04-01

    Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.

  3. Exploring the Cr{sup 2+} doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com

    2016-05-23

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less

  4. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  6. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru).

    PubMed

    Wade, Casey R; Dincă, Mircea

    2012-07-14

    The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).

  7. Formation of Superhard Chromium Carbide Crystal Microrods in Ni-Cr-C Systems

    NASA Astrophysics Data System (ADS)

    Val'chuk, V. P.; Zmienko, D. S.; Kolesov, V. V.; Chernozatonskii, L. A.

    2018-04-01

    Ni-Cr-C materials with a high hardness determined by the presence of regions consisting of Cr3C2 microrods with a record microhardness reaching 3200 kg/mm2 have been obtained. Their self-organization in a powder consisting of Ni, Cr, and carbon microparticles with a high weight percentage occurs in the process of its sintering at a temperature of 1300°C and the subsequent sharp cooling of the resulting alloy. A model has been proposed for the process of formation of such crystal microrods whose characteristics have been determined by hardness measurement, electron microscopy, and microchemical and X-ray diffraction analyses.

  8. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  9. Electrical characterization of ZnO/NiO p-n junction prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Merih Akyuzlu, A.; Dagdelen, Fethi; Gultek, Ahmet; Hendi, A. A.; Yakuphanoglu, Fahrettin

    2017-04-01

    ZnO and NiO films were synthesized on fluourine-doped tin oxide (FTO) glass substrate by the sol-gel method. The surface morphology of the films was investigated by atomic force microscopy. The optical band gaps of the ZnO and NiO films were found to be 3.198 and 3.827eV, respectively. A ZnO/NiO p-n junction diode was prepared and electrical charge transport mechanism of the diode was analyzed using thermionic emission and Norde functions. The ideality factor, barrier height and series resistance of the diode were determined to be 6.46, 1.036eV and 39.1 M {Ω} , respectively. The obtained results indicate that ZnO/NiO p-n junction can be used as transparent diode for optic communications.

  10. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  11. Integrated spectral photocurrent density and reproducibility analyses of excitonic ZnO/NiO heterojunction.

    PubMed

    Patel, Malkeshkumar; Kim, Joondong

    2017-12-01

    In this data article, the excitonic ZnO/NiO heterojunction device (Patel et al., 2017) [1] was measured for the integrated photocurrent density and reproducibility. Photograph of the prepared devices of ZnO/NiO on the FTO/glass is presented. Integrated photocurrent density as a function of photon energy from the sunlight is presented. Quantum efficiency measurement system (McScienceK3100, Korea) compliance with International Measurement System was employed to measure ZnO/NIO devices. These data are shown for the 300-440 nm of segment of the sunlight (AM1.5G, http://rredc.nrel.gov/solar/spectra/am1.5/). Reproducibility measure of ZnO/NiO device was presented for nine devices with the estimated device performance parameters including the open circuit voltage, short circuit current density, fill factor and power conversion efficiency.

  12. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    PubMed Central

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao; Pryds, Nini

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  13. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsib, Mohamed Faouzi, E-mail: Mohamed.faouzi.ncib@gmail.com; National School of Engineers; Naffati, Naima

    2015-10-15

    Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM aremore » used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.« less

  14. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    DOEpatents

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  15. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  16. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?

    PubMed

    January, Mary C; Cutright, Teresa J; Van Keulen, Harry; Wei, Robert

    2008-01-01

    Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.

  17. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  18. on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

    NASA Astrophysics Data System (ADS)

    Mo, Wenlin; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2014-10-01

    The effects of M 23C6 ( M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M 23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M 23C6 has the coherence relationship with the same grain. The grain with a coherent M 23C6 has a Cr-depletion region. The number and size of M 23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [ T E1: 923 K to 1083 K (650 °C to 810 °C) and T E2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between T E1 and T E2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below T E1 or over T E2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M 23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between T E1 and T E2. M 23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX ( M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M 23C6, and mitigate the precipitation of M 23C6, which is helpful for minimizing DDC in the weld.

  19. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  20. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGES

    Shao, Lin; Chen, Di; Wei, Chaochen; ...

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  1. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long

  2. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.

    2015-01-01

    High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

  3. Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils

    NASA Astrophysics Data System (ADS)

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou

    2013-09-01

    High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.

  4. Effect of calcination temperature on the photodegradation efficiency of Ni/ZnO composite in removal of organic dye

    NASA Astrophysics Data System (ADS)

    Thein, Myo Thuya; Pung, Swee-Yong; Aziz, Azizan; Lockman, Zainovia; Itoh, Mitsuru

    2017-07-01

    ZnO based composite is an attractive UV light driven semiconductor photocatalyst to degrade organic compounds attributed to its wide bandgap (3.37 eV). In this study, Ni/ZnO composites were synthesized via solution precipitation method. The composites were calcinated at various temperature, i.e. from 250 °C to 700 °C and subsequently annealed at 500°C in reductive environment (hydrogen atmosphere). The diffraction peaks of all samples could be indexed to the hexagonal wurtzite ZnO. No diffraction peaks from Ni could be observed in all samples, suggesting that the amount of Ni in the composites were below the detection limit of X-ray diffraction (XRD). The field emission scanning electron microscope (FESEM) images confirm that all samples were rod-like structure with hexagonal tips. In addition, small Ni particles were homogeneously deposited on the surface of ZnO rods. This observation is supported by energy dispersive X-ray spectroscopy (EDX) analysis, showing present of Zn, O and Ni elements. It is noted that ZnO rods coupled with Ni experienced quenching of visible emission and enhancing of UV emission in room temperature photoluminescence (RTPL) analysis. The photodegradation efficiency of Ni/ZnO rods was improved when a higher calcination temperature was used. The removal of RhB dye under UV light (352 nm) by these photocatalysts followed pseudo first-order kinetic reaction. The Ni/ZnO composites synthesized at calcination temperature of 500 °C demonstrated the highest photodegradation efficiency of 37 % and the largest rate constant of 0.0053 min-1 after 75 min UV irradiation.

  5. High temperature ferromagnetism in Ni doped ZnO nanoparticles: Milling time dependence

    NASA Astrophysics Data System (ADS)

    Pal, Bappaditya; Giri, P. K.; Sarkar, D.

    2014-04-01

    We report on the room temperature ferromagnetism (RT FM) in the Zn1-xNixO (x = 0, 0.03, and 0.05) nanoparticles (NPs) synthesized by a ball milling technique. X-ray diffraction analysis confirms the single crystalline ZnO wurtzite structure with presence of small intensity secondary phase related peak which disappear with increasing milling time for Ni doped samples. HRTEM lattice images show that the doped NPs are single crystalline with a dspacing of 2.44 Å. Energy-dispersive X-ray spectroscopy analysis confirms the presence of Ni ions in the ZnO matrix. Magnetic measurement (RT) exhibits the hysteresis loop with saturation magnetization (Ms) of 1.6-2.56 (emu/g) and coercive field (Hc) of 296-322 Oe. M-T measurement shows a Curie temperature of the order of 325°C for 3% Ni doped sample. Micro -Raman studies show doping/disorder induced additional modes at ˜510, 547, 572 cm-1 in addition to 437 cm-1 peak of pure ZnO. UV-Vis absorption spectra illustrate band gap shift due to doping. Alteration of Ms value with the variation of doping concentration and milling time has been studied and discussed.

  6. Basin-scale contributions of Cr, Ni and Co from Ortegal Complex to the surrounding coastal environment (SW Europe).

    PubMed

    Prego, Ricardo; Caetano, Miguel; Ospina-Alvarez, Natalia; Raimundo, Joana; Vale, Carlos

    2014-01-15

    The enrichment of Cr and Ni in the coastal zones is usually associated with anthropogenic sources such as the tanning, galvanization, ceramic, and cement industries. However, geological complexes of specific lithologic composition located near shorelines may act as natural sources of metals to the continental shelf. Cape Ortegal (SW Europe) is an ultramafic complex that has Cr, Ni and Co enriched in rocks due to the minerals chromite, chromospinel, gersdorfite and pentlandite. Thus, the hypothesis that this geological complex contributes to metal enrichment in Ortigueira and Barqueiro Rias and the adjacent continental shelf was tested. Chromium, Ni, and Co were determined in water and in suspended particulate matter of ria tributaries, rainfall, surface sediments, mussels, and algae. High contents of Cr (max. 1670mg·kg(-1)) and Ni (max. 1360 mg · kg(-1)) were found in the sediments surrounding Cape Ortegal and the Ortigueira Ria as a result of erosion of exposed cliffs. Dissolved Cr and Ni concentrations in fluvial waters were significantly higher in the rivers that crosses the Ortegal Complex, i.e. Lourido (0.47 μg Cr · L(-1); 9.4 μg Ni · L(-1)) and Landoi (0.37 μg Cr · L(-1); 4.3 μg Ni · L(-1)), in comparison with the nearby basin out of the complex influence (Sor River: <0.01 μg Cr · L(-1); 0.57 μg Ni · L(-1)). The annual fluvial contributions of Cr and Ni to the Ortigueira Ria were higher than fluxes into the Barqueiro Ria. Moreover, the increase in Cr and Ni in the rainfall in summer demonstrated the importance of the atmosphere pathway for introducing these elements into the aquatic environment. As a consequence, the contents of these metals in soft tissues and shell of mussels and algae from the Ortigueira Ria were higher than the organisms from Barqueiro Ria. Thus, geological complexes, such as the Cape Ortegal, located in an uncontaminated area, can increase the land-sea exchange of trace metals. © 2013.

  7. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite

    PubMed Central

    Dasan, Y. K.; Guan, B. H.; Zahari, M. H.; Chuan, L. K.

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles. PMID:28081257

  8. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    PubMed

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  9. Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, D.; Leygraf, C.

    Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less

  10. Enhanced room temperature ferromagnetism in Cr-doped ZnO nanoparticles prepared by auto-combustion method

    NASA Astrophysics Data System (ADS)

    Haq, Khizar-ul; Irfan, M.; Masood, Muhammad; Saleem, Murtaza; Iqbal, Tahir; Ahmad, Ishaq; Khan, M. A.; Zaffar, M.; Irfan, Muhammad

    2018-04-01

    Zn1‑x Cr x O (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) nanoparticles were synthesized, by an auto-combustion method. Structural, optical, and magnetic characteristics of Cr-doped ZnO samples calcined at 600 °C have been analyzed by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV–Vis spectroscopy and vibrating sample magnetometer (VSM). The XRD data confirmed the hexagonal wurtzite structure of pure and Cr-doped ZnO nanoparticles. The calculated values of grain size using Scherrer's formula are in the range of 30.7–9.2 nm. The morphology of nanopowders has been observed by FESEM, and EDS results confirmed a systematic increase of Cr content in the samples and clearly indicate with no impurity element. The band gaps, computed by UV–Vis spectroscopy, are in the range of 2.83–2.35 eV for different doping concentrations. By analyzing VSM data, significantly enhanced room temperature ferromagnetism is identified in Cr-doped ZnO samples. The value of magnetization is a 12 times increased of the value reported by Daunet al. (2010). Room temperature ferromagnetism of the nanoparticles is of vital prominence for spintronics applications. Project supported by the Office of Research, Innovation, and Commercialization (ORIC), MUST Mirpur (AJK).

  11. Air Force Successes and Challenges in Cr(VI) Elimination

    DTIC Science & Technology

    2011-05-10

    ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc-nickel (Zn-Ni) coating...interested in results Anodized T-38 aileron levers 10 Chromium -Free Conversion Coatings  Identify and evaluate chromium -free conversion coatings (CFCCs...the chromium -based conversion coating for treatment of aluminum alloys at OC-ALC • Conduct technology assessment to identify suitable Cr-free

  12. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  13. Properties of NiZnO Thin Films with Different Amounts of Al Doping

    NASA Astrophysics Data System (ADS)

    Kayani, Zohra N.; Fatima, Gulnaz; Zulfiqar, Bareera; Riaz, Saira; Naseem, Shahzad

    2017-10-01

    Transparent Al-doped NiZnO thin films have been fabricated by sol-gel dip coating and investigated using scanning electron microscopy, x-ray diffraction analysis, ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometry, vibrating-sample magnetometry, and Fourier-transform infrared spectroscopy. The Al-doped NiZnO films consisted of ZnO hexagonal and α-Al2O3 rhombohedral phases as the Al incorporation was gradually increased from 1 at.% up to 3 at.%. A decrease in the optical bandgap from 3.90 eV to 3.09 eV was observed for films grown with Al content of 1 at.% to 2.5 at.%, but at 3 at.% Al, the bandgap increased to 3.87 eV. Optical transmittance of 96% was achieved for these transparent oxide films. Study of their magnetic properties revealed that increasing Al percentage resulted in enhanced ferromagnetism. The saturated magnetization increased with increasing Al percentage. The ferromagnetic properties of Al-doped NiZnO are mediated by electrons. The surface of the deposited thin films consisted of nanowires, nanorods, porous surface, and grains.

  14. Photoluminescence and applications of Ni:ZnS in photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kalya Tulasidas, Vadiraj; Belagali, Shiddappa L.; Palakkandy, Arun; Kumar, Kuldeep

    2018-05-01

    An enormous amount of development has been made in the field of photovoltaics in the last 50 odd years. In recent years, the uses of semiconductor nanoparticles have given a new impetus and direction to research in the field of solar cells. This is due to the excellent photoemission properties shown by semiconductors in the quantum dot (QD) state. ZnS QDs show a further interesting feature where their photoemission properties show perceivable changes on adding dopants such as nickel. In the present work, we describe the characterization studies made on Ni:ZnS thin films using photoluminescence (PL), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), and further reports their performance as an absorbing layer in a hybrid solar cell along with poly(3-hexylthiophene) (P3HT). Fabricated Ni:ZnS cell showed a conversion efficiency of 0.25 ± 0.05% with V OC and J SC of 560 mV and 0.11 mA/cm2, respectively. Although the absolute conversion efficiency appears low (only 0.25%), the addition of nickel was found to have improved the efficiency by a hundredfold compared with undoped ZnS.

  15. Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass

    NASA Astrophysics Data System (ADS)

    Erkan, Selen; Arpat, Erdem; Peters, Sven

    2017-11-01

    Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.

  16. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  17. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  18. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGES

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  19. Low-cost Fe--Ni--Cr alloys for high temperature valve applications

    DOEpatents

    Muralidharan, Govindarajan

    2017-03-28

    An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.

  20. [Clinical evaluation of the effect of gold alloy and Ni-Cr alloy porcelain fused metal crown restorations].

    PubMed

    Sun, Wei-ge; Liu, Xiang-hui; Zhang, Ling; Zhang, Chun; Xie, Ming-yi; Zhou, Wen-juan

    2009-02-01

    To observe the clinical effect of gold alloy porcelain fused metal (PFM) crown restoration and Ni-Cr alloy PFM crown restoration. A total of 168 teeth from 48 patients were restored with gold alloy PFM crown. The other 48 patients, with a total of 179 teeth were restored with Ni-Cr alloy PFM crown. They were examined in integrality, retention, shade, cervical margin, and gingival health immediately, 6 months, one year, two years ,and three years after restoration. The date was analyzed by rank sum test using SPSS12.0 software package. The clinical effect of Ni-Cr alloy PFM crown was as good as gold alloy PFM crown when checked up after cementation at once. However, when they were examined 6 months, one year, two years ,and three years after restoration, the clinical effect of gold alloy PFM crown group was significantly better than that of Ni-Cr alloy PFM crown, P<0.05. The gold alloy PFM crown has better properties than Ni-Cr alloy PFM crown as a kind of long-term restoration, especially on the aspect of shade.

  1. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  2. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  3. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  4. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  5. Coexisting exchange bias effect and ferroelectricity in geometrically frustrated ZnCr2O4

    NASA Astrophysics Data System (ADS)

    Dey, J. K.; Majumdar, S.; Giri, S.

    2018-06-01

    Concomitant occurrence of exchange bias effect and ferroelectric order is revealed in antiferromagnetic spinel ZnCr2O4. The exchange bias effect is observed below antiferromagnetic Neél temperature (T N) with a reasonable value of exchange bias field ( Oe at 2 K). Intriguingly, the ratio is found unusually high as  ∼2.2, where H C is the coercivity. This indicates that large H C is not always primary for obtaining large exchange bias effect. Ferroelectric order is observed at T N, where non-centrosymmetric magnetic structure with space group associated with the magnetoelectric coupling correlates the ferroelectric order, proposing that, ZnCr2O4 is an improper multiferroic material. Rare occurrence of exchange bias effect and ferroelectric order in ZnCr2O4 attracts the community for fundamental interest and draws special attention in designing new materials for possible electric field control of exchange bias effect.

  6. Dramatic Improvement on Catalyst Loadings and Molar Ratios of Coupling Partners for Ni/Cr-Mediated Coupling Reactions: Heterobimetallic Catalysts

    PubMed Central

    Liu, Xiang; Henderson, James A.; Sasaki, Takeo; Kishi, Yoshito

    2009-01-01

    Two new ligands 1a,b have been reported. Upon treatment with one equivalent of NiCl2·(MeOCH2)2, 1a,b give the corresponding Ni-complexes. X-ray analysis of 1a·NiCl2 has established that the NiCl2 is selectively coordinated to the phenanthroline nitrogens. Ni/Cr-heterobimetallic catalysts 1a,b·CrCl2/NiCl2, prepared from 1a,b·NiCl2, have been shown to behave exceptionally well for the catalytic asymmetric Ni/Cr-mediated couplings, with the highlights including: (1) 1~2 mol % catalysts are sufficient to complete the coupling, (2) only a negligible amount of the dimers, by-products formed through the alkenyl Ni-species, is observed, (3) the coupling completes even with a 1:1 molar ratio of the coupling partners, and (4) the asymmetric induction is practically identical with that obtained in the coupling with the Cr-catalyst prepared from (S)-sulfonamide 2a,b. Using 4 additional aldehydes, a scope of the new Ni/Cr-heterobimetallic catalysts is briefly studied. Applicability of new catalysts to polyfunctional substrates has been demonstrated, with use of two C-C bond-formations chosen from the halichondrin/E7389 synthesis as examples. PMID:19874019

  7. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth.

    PubMed

    Yu, Jiangdong; Jiang, Chunyan; Guan, Qingqing; Ning, Ping; Gu, Junjie; Chen, Qiuling; Zhang, Junmin; Miao, Rongrong

    2018-03-01

    Biochar derived from waste water hyacinth was prepared and modified by ZnO nanoparticles for Cr(VI) removal from aqueous solution with the aim of Cr(VI) removal and management of waste biomass. The effect of carbonization temperature (500-800 °C), ZnO content (10-50 wt%) loaded on biochar and contact time (0.17-14 h) on the Cr(VI) removal were investigated. It was found that higher than 95% removal efficiency of Cr(VI) can be achieved with the biochar loaded 30 wt% ZnO. The adsorption kinetics of the sorbent is consistent with the pseudo-second-order kinetic model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 43.48 mg g -1 for Cr(VI). Multiple techniques such as XRD, XPS, SEM, EDX and FT-IR were performed to investigate the possible mechanisms involved in the Cr (VI) adsorption. The results show that there is precipitation between chromium ions and Zn oxide. Furthermore, the ZnO nanoparticles acts as photo-catalyst to generate photo-generated electrons to enhance the reduction of Cr(VI) to Cr(III). The as-prepared ZnO/BC possess good recyclability and the removal ratio remained at about 70% in the fifth cycle, which suggests that both contaminants removal and effective management of water hyacinth can be achieved by the approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Magnetic studies of Co2+, Ni2+, and Zn2+-modified DNA double-crossover lattices

    NASA Astrophysics Data System (ADS)

    Dugasani, Sreekantha Reddy; Oh, Young Hoon; Gnapareddy, Bramaramba; Park, Tuson; Kang, Won Nam; Park, Sung Ha

    2018-01-01

    We fabricated divalent-metal-ion-modified DNA double-crossover (DX) lattices on a glass substrate and studied their magnetic characteristics as a function of ion concentrations [Co2+], [Ni2+] and [Zn2+]. Up to certain critical concentrations, the DNA DX lattices with ions revealed discrete S-shaped hysteresis, i.e. characteristics of strong ferromagnetism, with significant changes in the coercive field, remanent magnetization, and susceptibility. Induced magnetic dipoles formed by metal ions in DNA duplex in the presence of a magnetic field imparted ferromagnetic behaviour. By considering hysteresis and the magnitude of magnetization in a magnetization-magnetic field curve, Co2+-modified DNA DX lattices showed a relatively strong ferromagnetic nature with an increasing (decreasing) trend of coercive field and remanent magnetization when [Co2+] ≤ 1 mM ([Co2+] > 1 mM). In contrast, Ni2+ and Zn2+-modified DNA DX lattices exhibited strong and weak ferromagnetic behaviours at lower (≤1 mM for Ni2+ and ≤0.5 mM for Zn2+) and higher (>1 mM for Ni2+ and >0.5 mM for Zn2+) concentrations of ions, respectively. About 1 mM of [Co2+], [Ni2+] and [Zn2+] in DNA DX lattices was of special interest with regard to physical characteristics and was identified to be an optimum concentration of each ion. Finally, we measured the temperature-dependent magnetic characteristics of the metal-ion-modified DNA DX lattices. Nonzero magnetization and inverse susceptibility with almost constant values were observed between 25 and 300 K, with no indication of a magnetic transition. This indicated that the magnetic Curie temperatures of Co2+, Ni2+ and Zn2+-modified DNA DX lattices were above 300 K.

  9. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  10. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  11. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  12. TDNiCr (ni-20Cr-2ThO2) forging studies

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1974-01-01

    Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.

  13. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  14. One step synthesis of Co/Cr-codoped ZnO nanoparticle with superb adsorption properties for various anionic organic pollutants and its regeneration.

    PubMed

    Li, Zhenjiang; Sun, Yongkai; Xing, Jing; Xing, Yucheng; Meng, Alan

    2018-06-15

    Adsorption is an effective means to remove organic pollutant. However, it is challenging to prepare the adsorbents with high adsorption capacities and their regeneration. Herein, Co/Cr-codoped ZnO nanoparticles (NPs) with superb adsorption for dyes and antibiotics have been successfully synthesized by a mild solvothermal method. At the optimal Co:Cr:Zn doping moral ratio of 4:6:100, the maximum adsorption capacities of methyl orange (MO) and tetracycline hydrochloride (TC-HCl) on Co/Cr-codoped ZnO NPs is 1057.90 mg g -1 and 874.46 mg g -1 , respectively. The adsorption process of the sample over MO and TC-HCl both agreed well with the pseudo-second-order kinetic model and Langmuir isotherm model. Adsorption thermodynamics proved that the adsorption of MO and TC-HCl on Co/Cr-codoped ZnO NPs was a spontaneous and endothermic process. The mechanism shows that the surface of Co/Cr-codoped ZnO NPs have more positive charges, larger specific surface area and more crystal defects due to Co 3+ and Cr 3+ substitutes Zn 2+ in ZnO lattice, improving their adsorption property. In addition, Co/Cr-codoped ZnO NPs have also excellent adsorption capacity for Direct Red, Congo Red, Evans Blue and Methyl Blue. More importantly, the regeneration of adsorbents was studied to achieve the reuse of materials, and avoid secondary pollution. Co/Cr-codoped ZnO NPs will be a promising choice for wastewater treatment owing to its excellent adsorption capacity and relatively low cost. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very

  16. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.

    PubMed

    Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao

    2005-08-01

    Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy.

  17. [Research of the surface oxide film on anodizing Ni-Cr porcelain alloy].

    PubMed

    Zhu, Song; Sun, Hong-Chen; Zhang, Jing-Wei; Li, Zong-Hui

    2006-08-01

    To study the shape, thickness and oxide percentage of major metal element of oxide film on Ni-Cr porcelain alloy after anodizing pretreatment. 10 samples were made and divided into 2 groups at random. Then after surface pretreatment, the oxide films of two samples of each group were analyzed using electronic scanning microscope. The rest 3 samples were measured by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Lightly selective solution appeared because the different component parts of the alloy have dissimilar electrode, whose dissolve velocity were quite unlike. The sample's metal surface expanded, so the mechanical interlocking of porcelain and metal increased bond strength. The thickness of oxide film was 1.72 times of the control samples. The oxide percentage of major metal elements such as Cr, Ni and Mo were higher, especially Cr. It initially involved the formation of a thin oxide bound to the alloy and second, the ability of the formed oxide to saturate the porcelain, completing the chemical bond of porcelain to metal. The method of anodizing Ni-Cr porcelain alloy can easily control the forming of oxide film which was thin and its surface pattern was uniform. It is repeated and a good method of surface pretreatment before firing cycle.

  18. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    PubMed

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p < 0.005). Ni-Cr microparticles showed less

  19. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  20. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  1. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  2. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  3. Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Nickel (Ni)-doped zinc oxide (ZnO) nanorod array films were synthesised using sonicated sol-gel immersion method. The FESEM images showed that the Ni-doped ZnO nanorod arrays possess hexagonal shape with average diameter about 120 nm and thickness about 1.10 µm. The Ni-doped ZnO nanorod arrays possess better transmittance properties with 3.27 eV of optical band gap energy and 40 meV of urbach energy. The current-voltage (I-V) measurement indicated that the conductivity of ZnO film slightly improved with Ni-doping. The doped film displayed good humidity sensing performance with sensitivity of 1.21.

  4. Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.

    PubMed

    Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping

    2018-05-11

    Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.

  5. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  6. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  7. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  8. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  9. Photoelectrochemical performance of NiO-coated ZnO-CdS core-shell photoanode

    NASA Astrophysics Data System (ADS)

    Iyengar, Pranit; Das, Chandan; Balasubramaniam, K. R.

    2017-03-01

    A nano-structured core-shell ZnO-CdS photoanode device with a mesoporous NiO co-catalyst layer was fabricated using solution-processing methods. The growth of the sparse ZnO nano-rod film with a thickness of ca. 930 nm was achieved by optimizing parameters such as the thickness of the ZnO seed layer, choice of Zn precursor salt and the salt concentration. CdS was then coated by a combination of spin coating and spin SILAR (Successive Ionic Layer Adsorption and Reaction) methods to completely fill the interspace of ZnO nano-rods. The uniform CdS surface facilitated the growth of a continuous mesoporous NiO layer. Upon illumination of 100 mW·cm-2 AM 1.5 G radiation the device exhibits stable photocurrents of 2.15 mA·cm-2 at 1.23 V and 0.92 mA·cm-2 at 0.00 V versus RHE, which are significantly higher as compared to the bare ZnO-CdS device. The excellent performance of the device can be ascribed to the higher visible region absorption by CdS, and effective separation of the photogenerated charge carriers due to the suitable band alignment and nanostructuring. Additionally, the mesoporous NiO overlayer offered a larger contact area with the electrolyte and promoted the kinetics enabling higher and stable photocurrent even till the 35th min. of testing.

  10. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.

    2018-05-01

    In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.

  11. Effect of Annealing Process on the Properties of Ni(55%)Cr(40%)Si(5%) Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Pei-Jou; Yang, Cheng-Fu; Huang, Hong-Hsin

    2015-01-01

    Resistors in integrated circuits (ICs) are implemented using diffused methods fabricated in the base and emitter regions of bipolar transistor or in source/drain regions of CMOS. Deposition of thin films on the wafer surface is another choice to fabricate the thin-film resistors in ICs’ applications. In this study, Ni(55%)Cr(40%)Si(5%) (abbreviated as NiCrSi) in wt % was used as the target and the sputtering method was used to deposit the thin-film resistors on Al2O3 substrates. NiCrSi thin-film resistors with different thicknesses of 30.8 nm~334.7 nm were obtained by controlling deposition time. After deposition, the thin-film resistors were annealed at 400 °C under different durations in N2 atmosphere using the rapid thermal annealing (RTA) process. The sheet resistance of NiCrSi thin-film resistors was measured using the four-point-probe method from 25 °C to 125 °C, then the temperature coefficient of resistance could be obtained. We aim to show that resistivity of NiCrSi thin-film resistors decreased with increasing deposition time (thickness) and the annealing process had apparent effect on the sheet resistance and temperature coefficient of resistance. We also aim to show that the annealed NiCrSi thin-film resistors had a low temperature coefficient of resistance (TCR) between 0 ppm/°C and +50 ppm/°C. PMID:28793598

  12. Effect of Annealing Process on the Properties of Ni(55%)Cr(40%)Si(5%) Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Pei-Jou; Yang, Cheng-Fu; Huang, Hong-Hsin

    2015-10-02

    Resistors in integrated circuits (ICs) are implemented using diffused methods fabricated in the base and emitter regions of bipolar transistor or in source/drain regions of CMOS. Deposition of thin films on the wafer surface is another choice to fabricate the thin-film resistors in ICs' applications. In this study, Ni(55%)Cr(40%)Si(5%) (abbreviated as NiCrSi) in wt % was used as the target and the sputtering method was used to deposit the thin-film resistors on Al2O3 substrates. NiCrSi thin-film resistors with different thicknesses of 30.8 nm~334.7 nm were obtained by controlling deposition time. After deposition, the thin-film resistors were annealed at 400 °C under different durations in N₂ atmosphere using the rapid thermal annealing (RTA) process. The sheet resistance of NiCrSi thin-film resistors was measured using the four-point-probe method from 25 °C to 125 °C, then the temperature coefficient of resistance could be obtained. We aim to show that resistivity of NiCrSi thin-film resistors decreased with increasing deposition time (thickness) and the annealing process had apparent effect on the sheet resistance and temperature coefficient of resistance. We also aim to show that the annealed NiCrSi thin-film resistors had a low temperature coefficient of resistance (TCR) between 0 ppm/°C and +50 ppm/°C.

  13. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide.

    PubMed

    Ma, Chi; Wang, Fenghua; Zhang, Chang; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Li, Yongqiu; Li, Zihao; Zhu, Mengying; Shen, Liuqing; Zeng, Guangming

    2017-02-01

    The new nanophotocatalyst MgZnCr-TiO 2 was prepared by co-precipitation under different molar ratio of metals (Zn:Cr) and the loaded amount of TiO 2 . And it was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy et al. Langmuir model fitted well the adsorption isotherm with the value of R 2 0.9765, the maximum adsorption capacity was 526.32 mg g -1 , the adsorption followed pseudo second order kinetic by MgZnCr-TiO 2 (1:1:2-0.05). The photocatalytic oxidation of Congo red was used to determine the photocatalytic performance of MgZnCr-TiO 2 (1:1:2-0.05) under visible light irradiation, and the removal rate reached 98% after reaction for 40 min. The degradation mechanism of Congo red also was proposed, and the MgZnCr-TiO 2 (1:1:2-0.05) was stable after five cycles. Compared to the adsorption, Congo red was removed fundamentally by photocatalysis and it is expected to be an effective way to eliminate Congo red. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.

  15. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit.

    PubMed

    Liu, Chang; Zhao, Liupeng; Wang, Boqun; Sun, Peng; Wang, Qingji; Gao, Yuan; Liang, Xishuang; Zhang, Tong; Lu, Geyu

    2017-06-01

    NiO/ZnO composites were synthesized by decorating numerous NiO nanoparticles on the surfaces of well dispersed ZnO hollow spheres using a facile solvothermal method. Various kinds of characterization methods were utilized to investigate the structures and morphologies of the hybrid materials. The results revealed that the NiO nanoparticles with a size of ∼10nm were successfully distributed on the surfaces of ZnO hollow spheres in a discrete manner. As expected, the NiO/ZnO composites demonstrated dramatic improvements in sensing performances compared with pure ZnO hollow spheres. For example, the response of NiO/ZnO composites to 100ppm acetone was ∼29.8, which was nearly 4.6 times higher than that of primary ZnO at 275°C, and the response/recovery time were 1/20s, respectively. Meanwhile, the detection limit could extend down to ppb level. The likely reason for the improved gas sensing properties was also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Room temperature ferromagnetism and luminescent behavior of Ni doped ZnO nanoparticles prepared by coprecipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Deepawali; Mahajan, Aman; Kaur, Parvinder

    2016-05-23

    The samples of Zn{sub 1-x}Ni{sub x}O (x= 0.00 and 0.05) were prepared using coprecipitation method and annealed at different temperatures. The effect of Ni ion substitution on the structural and optical properties has been studied using X-ray Diffraction, UV-Visible, Photoluminescence and Magnetic measurements. XRD measurements demonstrate that all the prepared samples are wurtzite polycrystalline single phase in nature, ruling out the presence of any secondary phase formation. Ultraviolet visible measurements showed a decrease in band gap with the increase in annealing temperature and doping concentration. The PL data shows the red shift in all the samples and luminescence quenching withmore » Ni doping. Compared to undoped ZnO, Ni doped ZnO showed room temperature ferromagnetism.« less

  17. Cation distribution of Ni-Zn-Mn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parvatheeswara Rao, B.; Dhanalakshmi, B.; Ramesh, S.; Subba Rao, P. S. V.

    2018-06-01

    Mn substituted Ni-Zn ferrite nanoparticles, Ni0.4Zn0.6-xMnxFe2O4 (x = 0.00-0.25 in steps of 0.05), using metal nitrates were prepared by sol-gel autocombustion in citric acid matrix. The samples were examined by X-ray diffraction and vibrating sample magnetometer techniques. Rietveld structural refinements using the XRD data were performed on the samples to consolidate various structural parameters like phase (spinel), crystallite size (24.86-37.43 nm), lattice constant (8.3764-8.4089 Å) etc and also to determine cation distributions based on profile matching and integrated intensity ratios. Saturation magnetization values (37.18-68.40 emu/g) were extracted from the measured M-H loops of these nanoparticles to estimate their magnetic moments. Experimental and calculated magnetic moments and lattice constants were used to confirm the derived cation distributions from Rietveld analysis. The results of these ferrite nanoparticles are discussed in terms of the compositional modifications, particle sizes and the corresponding cation distributions as a result of Mn substitutions.

  18. Effects of added Zn, Ni and Cd on desert shrubs grown in desert soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.M.; Wallace, A.; Romney, E.M.

    1980-01-01

    Desert shrubs - Ambrosia dumosa, Lycium andersonii, Larrea tridenata, and Ephedra nevadensis wre grown in a glasshouse in desert (calcarous) soil with different levels of added Zn, Ni, and Cd. The objective was to study effects of the metals on growth and yield and uptake and translocation of metals in desert plant species which are common in the Mojave Desert (areas of Nevada and southeast California). Zinc and Cd considerably decreased yields of all four species. Yields of E. nevadensis were increased by Ni at 250 and 500 mg/kg applied to desert soil. Ephedra nevadensis was more tolerant of Nimore » than were the other three desert shrubs. Some interactions were observed among various elements: manganese concentration was increased in shrubs by Zn. Particularly, application of Ni reduced the concentrations of Zn and Mn over the control.« less

  19. Field-Driven Quantum Criticality in the Spinel Magnet ZnCr2 Se4

    NASA Astrophysics Data System (ADS)

    Gu, C. C.; Zhao, Z. Y.; Chen, X. L.; Lee, M.; Choi, E. S.; Han, Y. Y.; Ling, L. S.; Pi, L.; Zhang, Y. H.; Chen, G.; Yang, Z. R.; Zhou, H. D.; Sun, X. F.

    2018-04-01

    We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr2 Se4 . At low temperatures, with an increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with behaviors such as an unconventional T2 -dependent specific heat and temperature-independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr2 Se4 under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr2 Se4 is a rare example of a 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.

  20. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.

    PubMed

    Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei

    2016-09-14

    Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.

  1. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  2. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  3. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less

  4. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  5. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  6. Theoretical study of local structure for Ni2+ ions at tetragonal sites in K2ZnF4:Ni2+ system.

    PubMed

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-15

    A theoretical method for studying the local lattice structure of Ni2+ ions in (NiF6)(4-) coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 x 45 complete energy matrices for d8 (d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters (R perpendicular and R || ) of Ni2+ ions in K2ZnF4:Ni2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K2ZnF4:Ni2+ system at 78 and 290 K are reported first.

  7. Theoretical study of local structure for Ni 2+ ions at tetragonal sites in K 2ZnF 4:Ni 2+ system

    NASA Astrophysics Data System (ADS)

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-01

    A theoretical method for studying the local lattice structure of Ni 2+ ions in (NiF 6) 4- coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 × 45 complete energy matrices for d8 ( d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters ( R⊥ and R||) of Ni 2+ ions in K 2ZnF 4:Ni 2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K 2ZnF 4:Ni 2+ system at 78 and 290 K are reported first.

  8. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  9. Non-chromate Passivation for LHE ZnNi

    DTIC Science & Technology

    2017-03-01

    control of coatings and processes. Development of an alternative methodology that is simple, repeatable, non -destructive, and capable of scanning across...FINAL REPORT Non -chromate Passivation for LHE ZnNi SERDP Project WP-2527 JANUARY 2017 Matt O’Keefe Missouri S&T...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From

  10. Effects of recasting on the biocompatibility of a Ni-Cr alloy.

    PubMed

    Zhang, Chang Yuan; Cheng, Hui; Lin, Dong Hong; Zheng, Ming; Ozcan, Mutlu; Zhao, Wei; Yu, Hao

    2012-01-01

    To evaluate the effects of recasting on the biocompatibility of a commercially available Ni-Cr alloy. The alloy tested was cast and subsequently recast four more times. For each cast condition, 24 disk shaped specimens were fabricated (5 mm in diameter, 0.5 mm in thickness). All the recasting was performed without adding new alloy. After the first cast and following each recast, the surface composition and microstructure of the alloy were determined using an X-ray fluorescence spectrometer and optical microscope, respectively. The in vitro cytotoxicity and in vivo mucous irritation potential of the cast and recast Ni-Cr alloy were investigated. The results were statistically analysed at the significance level of 0.05. Recasting neither yielded to cytotoxicity or to changes in the surface composition of the Ni-Cr alloy tested. However, an increase in impurities and porosity of the surface structure was observed with recasting. Also, the segregation of the impurities to grain boundaries was evident after multiple castings. After the fourth recast, the alloys showed significantly greater mucosal irritation than the control. After fourth recast, the alloy of this type may contribute to mucosal inflammation. Furthermore, there is a need for diverse methods addressing different biological endpoints for the evaluation of dental alloys.

  11. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  12. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  13. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  14. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  15. A comparison of the bonding in Cr(NO)4 and Ni(CO)4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1986-01-01

    The bonding in Cr(NO)4 is very ionic, with about 1.5 electrons donated from the Cr to the NO 2pi orbitals. There is also a NO sigma donation of about 0.5 electrons to the Cr, yielding a net charge of Cr of about 1. A large MCSCF expansion is needed to describe both the ionic and covalent contributions to the Cr 3d-NO 2pi bonding. This bonding is compared to that in the isoelectronic Ni(CO)4.

  16. Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability.

    PubMed

    Ouyang, Yu; Xia, Xifeng; Ye, Haitao; Wang, Liang; Jiao, Xinyan; Lei, Wu; Hao, Qingli

    2018-01-31

    In this work, we synthesized the hierarchical ZnO@C@NiO core-shell nanorods arrays (CSNAs) grown on a carbon cloth (CC) conductive substrate by a three-step method involving hydrothermal and chemical bath methods. The morphology and chemical structure of the hybrid nanoarrays were characterized in detail. The combination and formation mechanism was proposed. The conducting carbon layer between ZnO and NiO layers can efficiently enhance the electric conductivity of the integrated electrodes, and also protect the corrosion of ZnO in an alkaline solution. Compared with ZnO@NiO nanorods arrays (NAs), the NiO in CC/ZnO@C@NiO electrodes, which possess a unique multilevel core-shell nanostructure exhibits a higher specific capacity (677 C/g at 1.43 A/g) and an enhanced cycling stability (capacity remain 71% after 5000 cycles), on account of the protection of carbon layer derived from glucose. Additionally, a flexible all-solid-state supercapacitor is readily constructed by coating the PVA/KOH gel electrolyte between the ZnO@C@NiO CSNAs and commercial graphene. The energy density of this all-solid-state device decreases from 35.7 to 16.0 Wh/kg as the power density increases from 380.9 to 2704.2 W/kg with an excellent cycling stability (87.5% of the initial capacitance after 10000 cycles). Thereby, the CC/ ZnO@C@NiO CSNAs of three-dimensional hierarchical structure is promising electrode materials for flexible all-solid-state supercapacitors.

  17. Effects of Cr/Zn Substitutions on Dielectric Properties of CaCu{sub 3}Ti{sub 4}O{sub 12}(CCTO) Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajmi, R.; Yahya, A. K.; Deni, M. S. M.

    2010-07-07

    Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less

  18. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  19. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  20. Hydrogen vibrations in austenitic fcc Fe-Cr-Mn-Ni steels

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Fuess, H.; Wipf, H.; Ivanov, A.; Gavriljuk, V. G.; Delafosse, D.; Magnin, T.

    2003-07-01

    By neutron spectroscopy, we studied vibrations of H interstitials in two austenitic fcc steels (Fe0.55Cr0.20Mn0.10Ni0.15 and Fe0.54Cr0.27Ni0.19) doped with 0.37 and 0.33 at% H. The band modes, in which H vibrates with its metal neighbours, cause a weak intensity in the energy range of the acoustic vibrations of the H-free steels. The energies of the fundamental and the twofold local-mode excitations, in which H vibrates against its metal neighbours, were ~ 130 and ~ 260 meV, respectively. The respective peaks in the spectra were broadened because the metal neighbours of H, and thus its vibrational energies, vary from interstitial site to interstitial site. The above energy values support an H occupation of octahedral interstitial sites.

  1. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    NASA Astrophysics Data System (ADS)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  2. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins.

    PubMed

    Zemberyová, Mária; Barteková, Jana; Hagarová, Ingrid

    2006-12-15

    A modified three-step sequential extraction procedure for the fractionation of heavy metals, proposed by the Commission of the European Communities Bureau of Reference (BCR) has been applied to the Slovak reference materials of soils (soil orthic luvisols, soil rendzina and soil eutric cambisol), which represent pedologically different types of soils in Slovakia. Analyses were carried out by flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). The fractions extracted were: exchangeable (extraction step 1), reducible-iron/manganese oxides (extraction step 2), oxidizable-organic matter and sulfides (extraction step 3). The sum of the element contents in the three fractions plus aqua-regia extractable content of the residue was compared to the aqua-regia extractable content of the elements in the origin soils. The accuracy obtained by comparing the determined contents of the elements with certified values, using BCR CRM 701, certified for the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sediment following a modified BCR-three step sequential extraction procedure, was found to be satisfactory.

  3. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  4. Influence of a NiO intermediate layer on the properties of ZnO grown on Si by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.

    2018-04-01

    In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.

  5. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  6. Transformation and Precipitation Kinetics in 30Cr10Ni Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Fazarinc, Matevz; Terčelj, Milan; Bombač, David; Kugler, Goran

    2010-09-01

    To improve the microstructure during casting, hot forming, and heat treatment of 30Cr10Ni duplex stainless steel, accurate data on the precipitation and transformation processes at high temperatures are needed. In this article, the precipitation and transformation processes at various aging times in the temperature range 873 K to 1573 K (600 °C to 1300 °C) were studied. The 30Cr10Ni ferrous alloy contains a relatively large amount of Cr, Ni, and C, which results in a complex microstructure. In addition to the ferrite, austenite, and sigma phase, the M23C6 and MC carbides were also observed in the microstructure. The precipitation of the sigma phase was observed after just 3 minutes of aging, and after 30 minutes of aging at approximately 1053 K (780 °C), its fraction exceeded 40 pct. An intensive austenite-to-ferrite transformation was observed above 1423 K (1150 °C). Optical microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD), as well as micro-indentation hardness, hardness, impact toughness, and tensile tests, were carried out to evaluate the obtained microstructures of aged samples.

  7. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding.

    PubMed

    Zhang, Peilei; Li, Mingchuan; Yu, Zhishui

    2018-05-23

    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  8. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Ahmad, Zahoor; Meydan, Turgut

    2012-02-15

    Graphical abstract: Variation of saturation magnetization (M{sub S}) and magnetocrystalline anisotropy coefficient (K{sub 1}) with Ni-Cr content for Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5). Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using Law of Approach to saturation. Black-Right-Pointing-Pointer A considerable increase in the value of M{sub S} from 148 kA/m to 206 kA/m is achieved Black-Right-Pointing-Pointer {rho}{sup RT} enhanced to the order of 10{sup 9} {Omega}cm at potential operational range around 300 K. -- Abstract: The effect of variationmore » of composition on the structural, morphological, magnetic and electric properties of Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15-47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni-Cr. The dc-electrical resistivity ({rho}{sup RT}) at potential operational range around 300 K is increased from 7.5 Multiplication-Sign 10{sup 8} to 4.85 Multiplication-Sign 10{sup 9} {Omega}cm with the increase in Ni-Cr

  9. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  10. The phases and magnetic properties of (Ti, Co), and Cr doped Zn 2Y-type hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Wang, C. C.; Chin, T. S.; Yen, F. S.

    1988-04-01

    The phases and magnetic properties of Y-type hexagonal ferrite, Ba 2Zn 2 (Ti, Co) yFe 12-2 yO 22 doped with two sets of ions, (Ti, Co) and Cr were studied. In (Ti, Co) - doped ferrites the second phase appears at y ⩾ 0.6, which is a spinel type with the formula of (Zn 1-ηCo η)(Fe 2-δCo δ)O 4. Two resonant peaks are observed in ESR studies at the fields of 1020 and 2430 Oe, respectively, at a frequency of 9.684 GHz. The linewidth increases with the addition of the dopants. In chromium doped ferrite, two phases are identified as the amount of chromium is up to 0.2: spinel type of Zn(Fe 2-ɛCr ɛ)O 4 and orthorhombic BaCr 2O 4. Although the amount of Cr used does not influence the resonant field of the unique peak of the derivative curves from ESR, it eventually enlarges the linewidth.

  11. [Structure and luminescence properties of MgGa2O4 : Cr3+ with Zn substituted for Mg].

    PubMed

    Zhang, Wan-Xin; Wang, Yin-Hai; Li, Hai-Ling; Wang, Xian-Sheng; Zhao, Hui

    2013-01-01

    A series of red long afterglow phosphors with composition Zn(x) Mg(1-2) Ga2 O4 : Cr3+ (x = 0, 0.2, 0.6, 0.8, 1.0) were synthesized by a high temperature solid-state reaction method. The X-ray diffraction studies show that the phase of the phosphors is face-centered cubic structure. Photoluminescence spectra show that the red emission of Cr3+ originated from the transition of 2E-4A2. Due to the large overlap between absorption band of Cr3+ and emission band of the host. Cr3+ could obtain the excitation energy from the host via the effective energy transfer. The afterglow decay characteristics show that the phosphor samples with different Zn contents have different afterglow time and the afterglow time also changes with the value of x. The measurement of thermoluminescence reveals that the trap depth of the phosphor samples with different Zn contents is different. The samples with deeper traps have longer afterglow time.

  12. Effect of casting atmosphere on the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium.

    PubMed

    da Silva, Leandro J; Leal, Monica B; Valente, Mariana L C; de Castro, Denise T; Pagnano, Valéria O; Dos Reis, Andréa C; Bezzon, Osvaldo L

    2017-07-01

    The marginal adaptation of prosthetic crowns is still a significant clinical problem. The purpose of this in vitro study was to evaluate the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium under different casting conditions. Four casting conditions were selected: flame-torch, induction/argon, induction/vacuum, and induction/air; and 2 alloys were used, Ni-Cr-Be and Ni-Cr. For each group, 10 metal specimens were prepared. Silicone indirect impressions and analysis of the degree of rounding were used to evaluate the marginal deficiencies of metal copings, and a standardized device for the setting pressure associated with optical microscopy was used to analyze the marginal misfit. Results were evaluated with 2-way ANOVA (α=.05), followed by the Tukey honest significant difference post hoc test, and the Pearson correlation test (α=.05). Alloy (P<.001) and casting technique (P<.001) were shown to affect marginal deficiencies. The Ni-Cr cast using the torch technique showed the highest marginal deficiency, and the Ni-Cr-Be cast in a controlled argon atmosphere showed the lowest (P<.001). Alloy (P=.472) and casting techniques (P=.206) did not affect the marginal misfit, but significant differences were found in the interaction (P=.001); the lowest misfit was achieved using the Ni-Cr-Be, and the highest misfit occurred with the molten Ni-Cr, using the cast torch technique. No correlation was found between deficiency and marginal misfit (r=.04, P=.69). The interactions demonstrated that the alloy containing beryllium that was cast in an argon atmosphere led to reduced marginal deficiency. Improved marginal adaptation can be achieved for the same alloy by using the torch technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Structural, vibrational and morphological properties of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra, Débora M.

    2017-03-15

    Layered double hydroxides are anionic clays with formula [M{sup II}{sub 1−x} M{sup III}{sub x}(OH){sub 2}]{sup q+}[A{sup n−}]{sub q/n}·mH{sub 2}O, finding possible uses as catalyst support, adsorbents and so on. In this paper, we address the phase formation of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations, namely, NiZn-Al, NiZn-AlZr and NiZn-Zr compositions obtained by the coprecipitation method. Such systems were characterized by X-ray diffraction, confirming the phase formation for NiZn-Al and NiZn-AlZr samples. Infrared and Raman spectroscopies elucidated the anion and water molecules occurrence in the interlayer. Nitrogen physisorption (BET method) determined the presencemore » of pores and specific surface area. The isotherm shapes were Type IV, according to the IUPAC, and represent a mesoporous structure. A morphological study was performed by means of scanning and transmission electron microscopies, and particle size values of 120, 131 and 235 nm for NiZn-Al, NiZn-AlZr and NiZn-Zr, respectively, were determined. Thermogravimetric analysis of the decomposition of the systems revealed that their complete disintegration occurred at ~ 450 °C and resulted in mixed oxides.« less

  14. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  15. Sintered Cr/Pt and Ni/Au ohmic contacts to B 12P 2

    DOE PAGES

    Frye, Clint D.; Kucheyev, Sergei O.; Edgar, James H.; ...

    2015-04-09

    With this study, icosahedral boron phosphide (B 12P 2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B 12P 2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2×10 –4 Ω cm 2, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contactmore » resistance was ~l–4 × 10 –4 Ω cm 2 after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B 12P 2 at 700 °C and a reaction layer between Ni and B 12P 2 thinner than ~25 nm at 500 °C.« less

  16. [A study on the color difference between Au-Pt alloy porcelain and Ni-Cr alloy porcelain].

    PubMed

    Li, Yong; Zhao, Yunfeng; Li, Hong

    2003-06-01

    To investigate the color difference between Au-Pt alloy porcelain and Ni-Cr alloy porcelain. 30 metal-ceramic specimens with different dentin porcelain thickness were fabricated with two types of metal-ceramic alloy, each type of alloy had 15 specimens. L*, a*, b* were measured after opaque porcelain was applied, and dentin porcelain was fired 1, 3, 5, 7 times by MINOLTA CR-100. Then delta E was calculated which reflected the color difference between high-gold alloy porcelain and Ni-Cr alloy porcelain. Comparing with Ni-Cr alloy porcelain, the color of Au-Pt alloy porcelain was reddish, yellowish and less bright. The delta E between high-gold alloy porcelain and Ni-Cr alloy porcelain in shade A2 was largest when opaque porcelain was applied. It decreased when dentin porcelain was applied. It became smallest when fired 3 times, and increased along with the increase of fire times. It was larger than 1.5 except firing 3 times. When dentin porcelain was applied, delta E which was larger than 1.5 among different dentin porcelain thickness decreased along with the increase of dentin porcelain thickness. The color difference between the two types of metal-ceramic alloy should be carefully taken into account in order to improve the quality of color matching.

  17. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    PubMed

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  18. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  19. Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure

    NASA Astrophysics Data System (ADS)

    Sun, Jingchang; Li, Peida; Gao, Ruixue; Lu, Xue; Li, Chengren; Lang, Yueyi; Zhang, Xiwen; Bian, Jiming

    2018-01-01

    A photo-detector with n-ZnO nano-arrays/p-NiO film structure was synthesized on flexible Ni foil substrate. In contrast to conventional detectors that detect only the photon energies greater than the band gap of working materials, the visible light with smaller photon energies (3.0 eV) than the band gap of both ZnO (3.3 eV) and NiO (3.7 eV) can be sensitively detected by this detector due to the spatially indirect type-II transition between ZnO nano-arrays and NiO film. The increase in output currents of the photo-detector with illumination density was observed at both forward and reverse bias, and it can be further enhanced by exerting external compressive strain along the c axis of ZnO nano-arrays by piezo-phototronic effect. A maximum enhancement of 1020% of the responsivity (R) was achieved under external compressive strain. The similar behaviors were demonstrated at four different excitation wavelengths (325, 365, 388 and 405 nm), providing compelling evidence that the responses performance of the photo-detector can be effectively enhanced using piezo-phototronic effect. Moreover, the piezo-phototronic effect enhanced performance can be well elucidated by the corresponding energy band diagram.

  20. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  1. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  2. Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay

    2017-06-01

    Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.

  3. Thermal and composition driven phase transition in the co-operative Jahn-Teller distorted Zn1-xCuxCr2O4 spinel

    NASA Astrophysics Data System (ADS)

    Saraswathy, S.; Kalavathi, S.; Rajamadhavan, R.; Asuvathraman, R.

    2018-04-01

    Phase pure poly crystalline powder samples of spinel compounds with formula Zn1-xCuxCr2O4 have been synthesized. It is found that for a critical concentration of Cu with x=0.58 cubic structure of the parent ZnCr2O4 transforms into a tetragonal structure. The well-known co-operative Jahn-Teller effect induces the structural transition and the observed variation of lattice parameters as a function of Cu substitution displays the role of strain. Thermally driven destruction of the co-operative Jahn-Teller effect and the resultant reverting back to cubic structure is observed to complete at 850 K and 373 K in pristine CuCr2O4 and Zn0.4Cu0.6Cr2O4. A first order transition observed for Zn0.4Cu0.6Cr2O4 is at variance with the continuous transition observed in the literature for Mg0.46Cu0.54Cr2O4.

  4. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  5. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light.

    PubMed

    Parida, Kulamani; Mohapatra, Lagnamayee

    2012-01-28

    A series of novel photocatalysts Zn/Cr LDH with different Zn/Cr molar ratios (2 : 1, 3 : 1, 4 : 1 and 2 : 1-CO(3)) were fabricated by a co-precipitation method and evaluated for photodecomposition of water using visible light irradiation. Various characterization methods were employed to investigate the structures, morphologies and photocatalytic properties. In comparison to Zn/Cr (2 : 1) LDH, Zn/Cr-CO(3) (2 : 1) LDH extends the absorption edges to the visible region and exhibits good photocatalytic activity, even without the assistance of co-catalysts. The visible light photocatalytic activity is ascribed to the charge transfer spectra of octahedral Cr ions in LDH. Zn/Cr-CO(3) LDH shows enhanced photocatalytic activities compared to Zn/Cr LDH as carbonate ions oxidise by holes to form carbonate radicals, inhibit the rapid recombination of e(-) and h(+) charge carriers and thereby suppress the backward reaction to some extent. This work provides a detailed understanding of the semiconductor properties of LDHs for photocatalytical hydrogen evolution.

  6. Effect of Cu2+ substitution on the magnetic properties of co-precipitated Ni-Cu-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramakrishna, K. S.; Srinivas, Ch.; Tirupanyam, B. V.; Ramesh, P. N.; Meena, S. S.; Potukuchi, D. M.; Sastry, D. L.

    2017-05-01

    Spinel ferrite nanoparticles with chemical equation NixCu0.1Zn0.9-xFe2O4 (x = 0.5, 0.6, 0.7) have been synthsized using co-precipitation method followed by heat treatment at a temperature of 200 °C for 2h. The results of XRD, FE-SEM and VSM studies are reported. XRD patterns confirm the formation of cubic spinel phase of ferrite samples along with small amount of a secondary phase of α-Fe2O3 whose concentration decreases as Ni2+ concentration increases. The crystallite sizes (in the range of 7.5-13.9 nm) increase and the lattice parameter decreases with increase in Ni2+ ion concentration. These values are comparable to those of NiZn ferrite without Cu substitution. It has been observed that there is a considerable reduction in saturation magnetisation (Ms). This and differences in other magnetic parameters are attributed to considerable changes in cation distribution or core shell interactions of NiZn ferrite with 10 mole% Cu substitution in the place of Zn.

  7. Low-cost and facile synthesis of Ni(OH)2/ZnO nanostructures for high-sensitivity glucose detection

    NASA Astrophysics Data System (ADS)

    Strano, V.; Mirabella, S.

    2018-01-01

    An efficient electrode for non-enzymatic glucose detection is produced with low-cost techniques on a Cu wire. ZnO nanorods (NRs) were grown on a Cu wire by chemical bath deposition and were used as the substrate for pulsed electrodeposition of nanostructured Ni(OH)2 flakes. The effect of the electrodeposition potential on the final morphology and electrochemical behavior of the Ni(OH)2/ZnO/Cu structures is reported. ZnO NRs resulted to be well dressed by Ni(OH)2 flakes and were tested as glucose sensing electrodes in 0.1 M NaOH solution, showing high sensitivities (up to 3 mA mM-1 cm-2) and long-term stability. The presence of ZnO NRs was shown to improve the performance of the glucose sensor in terms of electrochemical stability over the time and sensitivity compared to Ni(OH)2/Cu sample. The reported data demonstrate a simple, versatile and low-cost fabrication approach for effective glucose sensing system within a urban mines framework.

  8. Effects of point defect concentrations of the reactive element oxides on the oxidation kinetics of pure Ni and Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Yan, Ruey-Fong

    The addition of some reactive element oxides, e.g. Ysb2Osb3 or ZrOsb2, has significant effects, e.g. improvement in scale adhesion and reduction in oxidation rate, on the oxidation behavior of chromia and alumina scale forming alloys at high temperatures. However, there is little agreement about how a small addition of an oxygen-active element can cause such profound effects. It was the goal of this project to study the growth kinetics of an oxide scale when different reactive-element oxides were added to pure Ni and Ni-Cr alloys and, consequently, to aid in clarifying the mechanism of reactive element effects. The oxidation kinetics were measured using a thermogravimetric analysis (TGA) method and the material characterization of oxide scale was conducted. The relationship between point defect structures and oxidation kinetics was discussed. The results in this research showed that Ysb2Osb3 and ZrOsb2 exhibited the reactive element effects on the oxidation behaviors of Ni and Ni-Cr alloys. In addition, the point defect concentrations of the reactive element oxide, Ysb2Osb3, were changed by doping of different valent oxides. The modification of point defect concentrations of the reactive element oxide dispersed phases did change the oxidation kinetics of the pure Ni and Ni-Cr alloys containing Ysb2Osb3. These results indicate that the transport properties of the reactive element oxide dispersed phases are one of the important factors in determining the growth rate of an oxide scale.

  9. Surface structure and electrochemical characteristics of Ti-V-Cr bcc-type solid solution alloys sintered with Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu

    2000-07-01

    Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. Formore » the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.« less

  10. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

    PubMed

    Chen, Yuanzhi; Zeng, Deqian; Cortie, Michael B; Dowd, Annette; Guo, Huizhang; Wang, Junbao; Peng, Dong-Liang

    2015-03-25

    The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    NASA Astrophysics Data System (ADS)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  12. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  13. Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel

    NASA Astrophysics Data System (ADS)

    Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli

    2017-07-01

    The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.

  14. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    NASA Technical Reports Server (NTRS)

    Carro, G.; Flanagan, W. F.

    1992-01-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.

  15. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  16. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  17. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    PubMed

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  18. Structural, Optical and Magnetic Properties of Ni-Zn Ferrite Nanoparticles Prepared by a Microwave Assisted Combustion Method.

    PubMed

    Vijaya, J Judith; Bououdina, M

    2016-01-01

    Ni-doped ZnFe₂O₄(Ni(x)Zn₁₋xFe₂O₄; x = 0.0 to 0.5) nanoparticles were synthesized by a simple microwave combustion method. The X-ray diffraction confirms the presence of cubic spinel ZnFe₂O₄for all compositions. The lattice parameter decreases with an increase in Ni content resulting in the reduction of lattice strain. High resolution scanning electron microscope images revealed that the as-prepared samples are crystalline with particle size distribution in 40-50 nm range. Optical properties were determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy respectively. The saturation magnetization (Ms) shows the super paramagnetic nature of the sample for x = 0.0-0.2, whereas for x = 0.3-0.5, it shows ferromagnetic nature. The Ms value is 1.638 emu/g for pure ZnFe₂O₄ sample and it increases with increase in Ni content.

  19. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    PubMed

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  20. Effects of Sintering Holding Time on the Structural, Electrical and Magnetic Properties of Zn0.95Ni0.05O

    NASA Astrophysics Data System (ADS)

    Ginting, M.; Aryanto, D.; Kurniawan, C.; Sari, A. Y.; Subhan, A.; Sudiro, T.; Sebayang, P.; Tarigan, E. R.; Nasruddin, M. N.; Sebayang, K.

    2017-05-01

    Zn0.95Ni0.05O has been synthesized by mixing 5% mol of NiO into ZnO using solid state reaction and high-speed shaker mill method. The samples were sintered at 900 °C with holding time for 2, 4 and 8 hours. Crystal structure, electrical and magnetic properties of Zn0.95Ni0.05O were characterized by using XRD, I-V, C-V and VSM. XRD results showed that variation of holding time does not change the structure of ZnO and no other secondary phase observed. The value of lattice parameters (a and c) tends to decrease proportionally to the holding time. The Intensity value changes and the peak shifted to a higher 2θ angle due to holding time variation. In general, the conductance of Zn0.95Ni0.05O decreases and the magnetic properties decrease also as the holding time is increased.

  1. Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K

    NASA Technical Reports Server (NTRS)

    Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.

    1991-01-01

    Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.

  2. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  3. Sensitivity of Four Cyanobacterial Isolates from Tropical Freshwaters to Environmentally Realistic Concentrations of Cr(6+), Cd(2+) and Zn(2.).

    PubMed

    Munagamage, Thilini; Rathnayake, I V N; Pathiratne, A; Megharaj, Mallavarapu

    2016-06-01

    Sensitivity of four tropical cyanobacteria viz. Coelosphaerium sp., Synechococcus sp., Oscillatoria sp. and Chroococcus sp. to environmentally relevant concentrations of Cr(6+), Cd(2+) and Zn(2+)was assessed based on fluorescence change as a proxy for growth reduction. At 24 h exposure, the growth reduction inthe cyanobacteria followed the order: Zn(2+) < Cr(6+) ≤ Cd(2+). Of the four cyanobacteria, Synechococcus was the most sensitive for Cr(6+), where as Chroococcus was the most sensitive for Cd(2+)and Zn(2+). Sensitivity was gradually decreased by 96 h implying the acquisition of tolerance by cyanobacteria to heavy metal ions with prolonged exposure.

  4. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  5. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  6. Single-neutron orbits near 78Ni: Spectroscopy of the N = 49 isotope 79Zn

    DOE PAGES

    Orlandi, R.; Mücher, D.; Raabe, R.; ...

    2014-12-09

    Single-neutron states in the Z=30, N=49 isotope 79Zn have been populated using the 78Zn(d, p) 79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ -ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2 + configuration was assigned to a state at 983more » keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for 78Ni. Finally, these data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.« less

  7. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  8. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  9. Effects of Tantalum on the Temporal Evolution of a Model Ni-Al-Cr Superalloy During Phase Decomposition

    NASA Technical Reports Server (NTRS)

    Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.

    2009-01-01

    The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.

  10. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  11. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-08-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less

  12. The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure.

    PubMed

    Hu, Yaowen; Ji, Chuting; Wang, Xiaoxu; Huo, Jinrong; Liu, Qing; Song, Yipu

    2017-11-28

    The magnetic transition-metal (TM) @ oxide nanoparticles have been of great interest due to their wide range of applications, from medical sensors in magnetic resonance imaging to photo-catalysis. Although several studies on small clusters of TM@oxide have been reported, the understanding of the physical electronic properties of TM n @(ZnO) 42 is far from sufficient. In this work, the electronic, magnetic and optical properties of TM n @(ZnO) 42 (TM = Fe, Co and Ni) hetero-nanostructure are investigated using the density functional theory (DFT). It has been found that the core-shell nanostructure Fe 13 @(ZnO) 42 , Co 15 @(ZnO) 42 and Ni 15 @(ZnO) 42 are the most stable structures. Moreover, it is also predicted that the variation of the magnetic moment and magnetism of Fe, Co and Ni in TM n @ZnO 42 hetero-nanostructure mainly stems from effective hybridization between core TM-3d orbitals and shell O-2p orbitals, and a magnetic moment inversion for Fe 15 @(ZnO) 42 is investigated. Finally, optical properties studied by calculations show a red shift phenomenon in the absorption spectrum compared with the case of (ZnO) 48 .

  13. Si-Ca species modification and microwave sintering for NiZn ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi

    2004-12-01

    NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.

  14. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    PubMed

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  15. A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)

    DTIC Science & Technology

    2011-03-01

    34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  16. Synthesis and performance of Zn-Ni-P thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Ghita, M.; Constantin, V.; Miculescu, F.; Popescu, A. M.

    2015-03-01

    The electroplating of Zn-Ni-P thin film alloys from a sulfate bath containing phosphoric and phosphorous acid was investigated. The bath composition and the deposition parameters were optimized through Hull cell experiments, and the optimum experimental conditions were determined (pH = 2, temperature = 298-313 K, zinc sulfate concentration = 30 g·L-1, EDTA concentration = 15 g·L-1, and current density, = ,1.0-2.0 A·dm-2). The SEM analysis of the coating deposited from the optimum bath revealed fine-grained deposits of the alloy in the presence of EDTA. Optical microscopy analysis indicated an electrodeposited thin film with uniform thickness and good adhesion to the steel substrate. The good adherence of the coatings was also demonstrated by the scratch tests that were performed, with a maximum determined value of 25 N for the critical load. Corrosion resistance tests revealed good protection of the steel substrate by the obtained Zn-Ni-P coatings, with values up to 85.89% for samples with Ni contents higher than 76%. The surface analysis of the thin film samples before and after corrosion was performed by X-ray photoelectron spectroscopy (XPS). Project support by the Partnership Romanian Research Program (PNCDI2), CORZIFILM Project nr.72-221/2008-2011 and “EU (ERDF) and Romanian Government” that allowed for acquisition of the research infrastructure under POS-CEEO 2.2.1 project INFRANANOCHEM-Nr.19/01.03.2009.

  17. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  18. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  19. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  20. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  1. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  2. Production of Nanocrystalline Ni-20Cr Coatings for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Singh, Harpreet; Singh, Narinder

    2014-04-01

    Presynthesized nanocrystalline Ni-20Cr powder was deposited on SA 516 and T91 boiler steels by a high-velocity oxy-fuel spraying process. Ni-20Cr powder was synthesized by the ball milling approach. The high-temperature oxidation behavior of bare and coated samples was then studied under cyclic isothermal conditions at 900 °C for 50 cycles. The kinetics of oxidation was established using weight change measurements for the bare and coated boiler steels. Uncoated and coated samples of T91 steel were exposed to the superheated zone of a power plant boiler at 750 °C under cyclic conditions for 15 cycles. Each cycle consisted of 100 h of heating followed by 1 h of cooling. Attempts were made to study the kinetics of erosion-corrosion using weight change and thickness loss data for the samples. Different characterization techniques were used to study the oxidized and eroded-corroded samples, including x-ray diffraction, scanning electron microscopy/energy-dispersive spectroscopy, and x-ray mapping analyses. The Ni-20Cr alloy powder coating was found to offer excellent oxidation resistance to the base steels and was successful in reducing the weight gain of SA 516 steel by 98.5 % and that of T91 steel by 65 %. The coating was observed to reduce the erosion-corrosion rate of T91 steel by 86 % in terms of thickness loss. This indicates that the investigated nanostructured coating can be a better choice over conventional coating for erosion-corrosion control of boiler tubes.

  3. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys inmore » the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a

  4. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water.

    PubMed

    Kuehnel, Moritz F; Sahm, Constantin D; Neri, Gaia; Lee, Jonathan R; Orchard, Katherine L; Cowan, Alexander J; Reisner, Erwin

    2018-03-07

    A precious metal and Cd-free photocatalyst system for efficient CO 2 reduction in water is reported. The hybrid assembly consists of ligand-free ZnSe quantum dots (QDs) as a visible-light photosensitiser combined with a phosphonic acid-functionalised Ni(cyclam) catalyst, NiCycP. This precious metal-free photocatalyst system shows a high activity for aqueous CO 2 reduction to CO (Ni-based TON CO > 120), whereas an anchor-free catalyst, Ni(cyclam)Cl 2 , produced three times less CO. Additional ZnSe surface modification with 2-(dimethylamino)ethanethiol (MEDA) partially suppresses H 2 generation and enhances the CO production allowing for a Ni-based TON CO of > 280 and more than 33% selectivity for CO 2 reduction over H 2 evolution, after 20 h visible light irradiation ( λ > 400 nm, AM 1.5G, 1 sun). The external quantum efficiency of 3.4 ± 0.3% at 400 nm is comparable to state-of-the-art precious metal photocatalysts. Transient absorption spectroscopy showed that band-gap excitation of ZnSe QDs is followed by rapid hole scavenging and very fast electron trapping in ZnSe. The trapped electrons transfer to NiCycP on the ps timescale, explaining the high performance for photocatalytic CO 2 reduction. With this work we introduce ZnSe QDs as an inexpensive and efficient visible light-absorber for solar fuel generation.

  5. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion).

    PubMed

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Martínez-Agudo, J M

    2001-01-01

    The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT.

  6. Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions

    NASA Astrophysics Data System (ADS)

    Sultan, Muhammad; Mumtaz, Sundas; Ali, Asad; Khan, Muhammad Yaqoob; Iqbal, Tahir

    2017-12-01

    ZnO nanorods decorated by NiO nanostructures were fabricated using facile chemical route. The nanorods of ZnO were prepared by using chemical bath deposition technique and subsequently decorated by NiO using sol-gel spin coating. The density and orientation of the ZnO nanorods was controlled through the seed layer with preferential growth along c-axis and hexagonal face. X-Ray Photoelectron Spectroscopy (XPS) analysis was used to confirm stoichiometry of the materials and band alignment study of the heterostructures. Type-II band alignment was observed from the experimental results. The IV characteristics of the device depicting rectifying behavior at different temperatures were observed with photocurrent generation in response to light excitation. The electrical properties reported in this study are in line with earlier work where heterojunctions were fabricated by physical deposition techniques.

  7. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy.

    PubMed

    Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih

    2018-07-15

    Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Two feasible approaches to enhance the wear behaviors of NiCrBSi coating in atmosphere and aqueous environments

    NASA Astrophysics Data System (ADS)

    Ye, Yuwei; Wang, Chunting; Zheng, Wenru; Xiong, Wei; Wang, Yongxin; Li, Xiaogang

    2017-09-01

    NiCrBSi coating was deposited successfully on the surface of 316 stainless steel substrate by means of plasma spraying. The microstructures and mechanical property were analyzed by scanning electron microscopy, x-ray diffraction, and a Vickers hardness tester. The wear performances of the coatings sliding against the GCr15 ball under ambient air and water conditions were investigated, and two feasible approaches (tungsten carbide (WC)-doping and heat treatment) were used to improve the tribological performance. Results showed that the hardness of the NiCrBSi coating increased by 12.5% and 28.5% and the porosity decreased by 26.1% and 47.8%, respectively, after WC-doping and heat treatment. During dry friction, the friction coefficient and wear rate of the NiCrBSi coating were about 0.47 and 1.4  ×  10-5 mm3 N-1 m-1, respectively. These values were higher than those obtained on other coatings. In water conditions, all coatings showed a lower friction and wear rate than that in ambient air, which was as a result of the lubrication effect of water. Significantly, with WC-doping and heat treatment, the friction coefficients of both coatings were about 18.5% and 36.7%, respectively, lower than that of the NiCrBSi coating. Furthermore, the wear rates of both coatings were about 20% and 70%, respectively, lower than that of the NiCrBSi coating.

  9. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high

  10. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  11. Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Dupuis, M.; Lenzi, S. M.; Nowacki, F.; Obertelli, A.; Péru, S.; Pietralla, N.; Werner, V.; Wimmer, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Wu, J.; Xu, Z.

    2018-04-01

    Proton inelastic scattering of Ni,7472 and Zn,8076 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ -ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z =28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N =50 gap approaching 78Ni. These results are in agreement with QRPA and large-scale shell-model calculations.

  12. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part I. Dendritic Solidification Structure

    NASA Astrophysics Data System (ADS)

    Boettinger, W. J.; Newbury, D. E.; Wang, K.; Bendersky, L. A.; Chiu, C.; Kattner, U. R.; Young, K.; Chao, B.

    2010-08-01

    The solidification microstructures of three nine-element Zr-Ni-based AB2 type C14/C15 Laves hydrogen storage alloys are determined. The selected compositions represent a class of alloys being examined for usage as an MH electrode in nickel metal-hydride batteries that often have their best properties in the cast state. Solidification is accomplished by dendritic growth of hexagonal C14 Laves phase, peritectic solidification of cubic C15 Laves phase, and formation of cubic B2 phase in the interdendritic regions. The B2 phase decomposes in the solid state into a complex multivariate platelike structure containing Zr-Ni-rich intermetallics. The observed sequence C14/C15 upon solidification agrees with predictions using effective compositions and thermodynamic assessments of the ternary systems, Ni-Cr-Zr and Cr-Ti-Zr. Experimentally, the closeness of the compositions of the C14 and C15 phases required the use of compositional mapping with an energy dispersive detector capable of processing a very high X-ray flux to locate regions in the microstructure for quantitative composition measurement and transmission electron microscope examination.

  13. Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

    PubMed Central

    Wei, Liang; Chen, Yongjuan; Zhao, Jialin

    2013-01-01

    Summary In this study, NiS/ZnIn2S4 nanocomposites were successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible light irradiation was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn2S4 can be significantly increased by loading NiS as a co-catalyst. The formation of a good junction between ZnIn2S4 and NiS via the two step hydrothermal processes is beneficial for the directional migration of the photo-excited electrons from ZnIn2S4 to NiS. The highest photocatalytic hydrogen evolution rate (104.7 μmol/h), which is even higher than that over Pt/ZnIn2S4 nanocomposite (77.8 μmol/h), was observed over an optimum NiS loading amount of 0.5 wt %. This work demonstrates a high potential of the developing of environmental friendly, cheap noble-metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution. PMID:24455453

  14. Investigation of heat-resistant layered coating of Al-Cr-Ni

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Trykov, Y. P.; Bogdanov, A. I.; Taube, A. O.

    2016-02-01

    The paper shows the transformation of the structure and phase composition of the layered coating system Al-Cr-Ni, obtained by the heat treatment of multilayered composite H20N80+AD1, welded by explosion, in the time range 1-300 hours. The cyclic heat resistance of the coating at 1150 ° C is studied.

  15. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  16. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  17. Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co2Ni3ZnO8 Arrays for Aqueous Asymmetric Supercapacitors.

    PubMed

    Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin

    2016-08-10

    Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).

  18. High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Xu, X.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; He, J. J.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Xu, F. R.

    2017-04-01

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are - 29471 (11) keV, - 34477 (6) keV and - 39278 (4) keV, respectively. The superallowed 0+ →0+β-decay Q values were derived to be QEC (46Cr) = 7604 (11) keV, QEC (50Fe) = 8150 (6) keV and QEC (54Ni) = 8731 (4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected Ft values to be Ft (50Fe) = 3103 (70) s and Ft (54Ni) = 3076 (50) s. The main contribution to the Ft uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

  19. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; ...

    2017-07-28

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006more » ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.« less

  20. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  1. Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sobhani-Nasab, Ali; Zahraei, Zohreh; Akbari, Maryam; Maddahfar, Mahnaz; Hosseinpour-Mashkani, S. Mostafa

    2017-07-01

    In this research, for the first time, ZnLaFe2O4/NiTiO3 nanocomposites have been synthesized through a polyol assistant sol-gel method. To investigate the effect of different surfactants on the morphology and particle size of ZnLaFe2O4 nanostructure, cetrimonium bromide, sodium dodecyl sulfate, polyvinylpyrrolidone, polyvinyl alcohol, and oleic acid were used as surfactant agents. Based on the SEM results, it was found that morphology and particle size of the products could be affected by these surfactants. Furthermore, study on antibacterial effect of ZnLaFe2O4/NiTiO3 nanocomposites by colony forming unit (CFU) reduction assay showed that ZnLaFe2O4/NiTiO3 nanocomposites have antibacterial activity against Gram-negative Escherchia coli (ATCC 10536) and Gram-positive Staphylococcus aureus (ATCC 29737). Antibacterial results demonstrate that nanocomposite significantly reduced the growth rate of E. coli bacteria and S. aureus after 120 min. The structure and morphology of the resulting particles were characterized by XRD, FT-IR, EDX, and SEM analysis.

  2. Cross-section measurement for the 67Zn(n, α)64Ni reaction at 6.0 MeV

    NASA Astrophysics Data System (ADS)

    Zhang, Guohui; Wu, Hao; Zhang, Jiaguo; Liu, Jiaming; Chen, Jinxiang; Gledenov, Yu. M.; Sedysheva, M. V.; Khuukhenkhuu, G.; Szalanski, P. J.

    2010-01-01

    Up to now, no experimental cross-section data exist for the 67Zn ( n, α) 64Ni reaction in the MeV neutron energy region. In the present work, the cross-section of the 67Zn ( n, α) 64Ni reaction was measured at E n = 6.0 MeV. Experiments were performed at the Van de Graaff accelerator of Peking University, China. Fast neutrons were produced through the D ( d, n) 3He reaction using a deuterium gas target. Absolute neutron flux was determined by a small 238U fission chamber and a BF3 long counter was used as a neutron flux monitor. A twin gridded ionization chamber was employed as the α -particle detector and two back-to-back 67Zn samples were used for α events measurement. Background was measured and subtracted from foreground. The measured cross-section of the 67Zn ( n, α) 64Ni reaction was 7.3 (1±15%) mb at 6.0MeV. The present result was compared with existing evaluations and TALYS code calculations.

  3. Concentration Dependent Electrical Transport Properties of Ni-Cr Binary Alloys

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Khambholja, S. G.; Thakore, B. Y.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    The concentration dependent electrical transport properties viz. electrical resistivity and thermal conductivity of liquid Ni-Cr alloys are computed at 1400 K temperature. The electrical resistivity has been studied according to Faber-Ziman model in wide range of Cr concentration. In the present work, the electron-ion interaction is incorporated through our well tested local model potential with screening function due to Sarkar et al.. [S] along with the Hartree [H] dielectric function. Good agreement is achieved between the presently calculated results of resistivity as well as thermal conductivity with the experimental data found in the literature, confirming the applicability of model potential and Faber-Ziman model for such a study.

  4. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  5. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst.

    PubMed

    Baskar, G; Aberna Ebenezer Selvakumari, I; Aiswarya, R

    2018-02-01

    In the present study, castor oil with high free fatty acid was used for biodiesel production using heterogeneous Ni doped ZnO nanocatalyst. Ni doped ZnO nanocomposite calcinated at 800 °C has shown better catalytic activity. Process parameters on heterogeneous catalysis of castor oil into biodiesel were optimized using conventional and Response Surface Methodology (RSM). RSM was found more accurate in estimating the optimum conditions with higher biodiesel yield (95.20%). The optimum conditions for transesterification was found to be oil to methanol molar ratio of 1:8, catalyst loading 11% (w/w), reaction temperature of 55 °C for 60 min of reaction time by response surface method. The reusability studies showed that the nanocatalyst can be reused efficiently for 3 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy

    DOE PAGES

    Miao, Jiashi; Slone, C. E.; Smith, T. M.; ...

    2017-05-15

    The equiatomic NiCoCr alloy exhibits an excellent combination of strength and ductility, even greater than the FeNiCrCoMn high entropy alloy, and also displays a simultaneous increase in strength and ductility with decreasing the testing temperature. To systemically investigate the origin of the exceptional properties of NiCoCr alloy, which are related to the evolution of the deformation substructure with strain, interrupted tensile testing was conducted on the equiatomic NiCoCr single-phase solid solution alloy at both cryogenic and room temperatures at five different plastic strain levels of 1.5%, 6.5%, 29%, 50% and 70%. The evolution of deformation substructure was examined using electronmore » backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), conventional transmission electron microscopy (CTEM), diffraction contrast imaging using STEM (DCI-STEM) and atomic resolution scanning transmission electron microscopy. While the deformation substructure mainly consisted of planar dislocation slip and the dissociation of dislocations into stacking faults at small strain levels (≤6.5%), at larger strain levels, additional substructures including nanotwins and a new phase with hexagonal close packed (HCP) lamellae also appeared. The volume fraction of the HCP lamellae increases with increasing deformation, especially at cryogenic temperature. First principles calculations at 0 K indicate that the HCP phase is indeed energetically favorable relative to FCC for this composition. In conclusion, the effects of the nanotwin and HCP lamellar structures on hardening rate and ductility at both cryogenic and room temperature are qualitatively discussed.« less

  7. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  9. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  10. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  11. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  12. The dielectric behavior of Zn1-xNixO/NiO two-phase composites

    NASA Astrophysics Data System (ADS)

    Joshi, D. C.; Thota, S.; Nayak, S.; Harish, D. D.; Mahesh, P.; Kumar, A.; Pamu, D.; Qureshi, Md

    2014-10-01

    The effect of nickel content on the dielectric permittivity ‘ɛr’ and the ac-electrical conductivity of Zn1-xNixO/NiO (0 ≤ x ≤ 0.55) two-phase composites were investigated. The antiferro to the paramagnetic Néel temperature TN (~ 523 K) of the NiO associated with the structural phase transition from the rhombohedral to the cubic phase has been exploited to realize a dielectric anomaly across 523-541 K in the Zn1-xNixO/NiO composite system. Also, a giant dielectric peak across 410 °C in pure NiO was observed together with an anomaly across TN. The formation of tiny polar clusters due to the compositional heterogeneity for the samples with x ≥ 0.16 drove the system to exhibit a weakly coupled relaxor-like behavior with a locally varying maximum temperature of T* (~ 530 K at 106 Hz), obeying the Vogel-Fulcher law and the Uchino-Nomura criteria. The values of the diffuseness-exponent ‘γ’ (1.91) and the shape-parameter ‘δ’ (88 °C) were determined by using the empirical scaling relation (ɛA/ɛr = 1 + 0.5 (T - TA)2/ δ2), which is often used to describe relaxor-like behavior. Our results provide strong evidence for the variable-range-hopping of charge carriers between the localized states. The effects of non-ohmic sample-electrode contact impedance and negative-capacitance on the global dielectric behavior of a Zn1-xNixO/NiO composite system are discussed.

  13. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Mo -Rigen; Wang, Shuai; Jin, Ke

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  14. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    DOE PAGES

    He, Mo -Rigen; Wang, Shuai; Jin, Ke; ...

    2016-07-25

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  15. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  16. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    NASA Astrophysics Data System (ADS)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  17. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence.

    PubMed

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2013-07-13

    Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.

  18. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  19. Interplay of electronic, structural and magnetic properties as the driving feature of high-entropy CoCrFeNiPd alloys

    NASA Astrophysics Data System (ADS)

    Calvo-Dahlborg, M.; Cornide, J.; Tobola, J.; Nguyen-Manh, D.; Wróbel, J. S.; Juraszek, J.; Jouen, S.; Dahlborg, U.

    2017-05-01

    The structural and magnetic properties of CoCrFe y Ni and CoCrFeNi-Pd x alloys earlier investigated experimentally by x-ray and neutron diffraction techniques and magnetometry have been theoretically reproduced using two complementary approaches for electronic structure calculations, i.e. the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) and implemented in the ab initio framework of density functional theory and the Vienna ab initio simulation package (VASP) for supercell models of high-entropy alloy (HEA) structures. The comparison between experimental results and calculations of the lattice constants by both calculation methods indicate that the structure of CoCrFe y Ni is well described by ordered fcc configurations. The values of local magnetic moments on Fe, Co, Cr, and Ni atoms depend not only on the Pd concentration but on chemical disordering. In the case of the CoCrFeNi-Pd x alloys, the KKR-CPA and the VASP calculations of disordered configurations reproduce the experimental values at 5 K up to equimolar composition and at 300 K above. The experimental values above the equimolar composition at 5 K are not satisfactorily reproduced by any of the calculations. The divergence between the experimental and calculated values is related to the variation of the ferromagnetic to paramagnetic transition temperature as a function of palladium content and to the existence of several phases, FeCoCr-rich above room temperature and FeCrPd-rich below, observed by diffraction and detected by microscopy and atom probe investigations. VASP calculations of a FeCrPd-rich phase effectively reproduced both the lattice constant and magnetization of the alloy above equimolar composition. An important conclusion of this work is that the combined analysis of the electronic, structural, and magnetic properties plays an important role in understanding the complexity of magnetic HEAs.

  20. Temperature sensing using a Cr:ZnGa2O4 new phosphor

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Glais, E.; Pellerin, M.; Chaneac, C.; Viana, B.

    2016-02-01

    The luminescence emission of a thermographic phosphor based on trivalent chromium doped ZGO (ZnGa2O4) bulk as well as nanoparticles is here reported. This material has a strong temperature dependence on the optical features such as ratio of their emission bands, bandwidths, bands position as well as the lifetime decay of the Cr3+. This makes this material well suitable as temperature sensor. ZnGa2O4 (ZGO), a normal spinel, exhibits a high brightness persistent luminescence, when doped with Cr3+ ions and shows an emission spectrum centered at 695 nm. At the nanometric scale, ZGO is used for in vivo imaging with a better signal to background ratio than classical fluorescent NIR probes. In this work we investigate the ability of the host to be a new thermographic phosphor. Several optical features are investigated in a broad temperature range (10 K-700 K). A comparison between bulk material and nanoparticles is introduced. The obtained results could be used to determine the optimal design parameters for sensor development.

  1. Investigation on structure, electronic and magnetic properties of Cr doped (ZnO)12 clusters: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic, and magnetic properties of (ZnO)12 clusters doped with Cr atoms have been investigated by using spin-polarized first-principles calculations. The exohedral a3 isomer is favorable than endohedral a2 isomer. The isomer a1 and a5 respectively have the narrowest and biggest gap between highest unoccupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) of 0.473 and 1.291 eV among these five monodoped isomers. The magnetic moment may be related to the local environment around the Cr atom that the a2 isomer whose total magnetic moment is 6 μB while the other monodoped isomers which all isomers have nearly total magnetic moments 4 μB . For Cr-doped (ZnO)12 on a1 or a3 isomer, the DOS of spin-up channel cross the Fermi level EF showing a finite magnitude near the Fermi level which might be useful for half metallic character. For the bidoped cases, the exohedral isomers are found to be most favorable. Including all bipoed isomers of substitutional, exohedral and endohedral bidoped clusters, the total magnetic moment of the ferromagnetic (antiferromagnetic) state is 8 (0) μB and the HOMO-LUMO gap of antiferromagnetic state is slightly larger than that of ferromagnetic state. The magnetic coupling between the Cr atoms in bidoped configurations is mainly governed by the competition between direct Cr and Cr atoms antiferromagnetic interaction and the ferromagnetic interaction between two Cr atoms via O atom due to strong p-d hybridization. Most importantly, we show that the exohedral bidoped (ZnO)12 clusters favor the ferromagnetic state, which may have the future applications in spin-dependent magneto-optical and magneto-electrical devices.

  2. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay, E-mail: drguptavinay@gmail.com

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V)more » characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.« less

  3. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species.

    PubMed

    Kim, Min-Ji; Seo, Ja-Yeon; Choi, Yong-Seok; Kim, Gyu-Hyeok

    2016-05-01

    This research explores the recovery of metals from spent Zn-Mn or Ni-Cd batteries by a bioleaching using six Aspergillus species. Two different nutrients, malt extract and sucrose, were used to produce different types of organic acids. Oxalic acid and citric acid were shown to be the dominant organic acid in malt extract and sucrose media, respectively. In the bioleaching, the metal removal was higher in sucrose media than malt extract. All species, except A. niger KUC5254, showed more than 90% removal of metals from Zn-Mn battery. For Ni-Cd battery, more than 95% of metals was extracted by A. niger KUC5254 and A. tubingensis KUC5037. As a result, A. tubingensis KUC5037 which is a non-ochratoxigenic fungus was considered to have the greatest potential for improving the safety and efficiency of the bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?

    PubMed

    Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J

    2013-01-01

    In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and

  5. Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950-1050°C

    NASA Astrophysics Data System (ADS)

    Jalowicka, A.; Duan, R.; Huczkowski, P.; Chyrkin, A.; Grüner, D.; Pint, B. A.; Unocic, K. A.; Quadakkers, W. J.

    2015-11-01

    An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni-Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950-1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. The oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbide and nitride but also of the Ni-W rich M6C. The width of the M6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M23C6 in the specimen core. With increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.

  6. Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.; Taylor, R. E.

    1973-01-01

    Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.

  7. Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over fluorinated NiO/Cr2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Luo, Jian-Wei; Song, Jian-Dong; Jia, Wen-Zhi; Pu, Zhi-Ying; Lu, Ji-Qing; Luo, Meng-Fei

    2018-03-01

    Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene was performed on a series of fluorinated NiO/Cr2O3 catalysts. The NiO/Cr2O3 catalysts were more active than the Cr2O3 because the new acid sites provided by NiF2 had higher turnover frequencies (9.43 × 10-3 - 12.08 × 10-3 s-1) than those on the Cr2O3 (4.55 × 10-3 s-1). Also, the NiO/Cr2O3 was more stable than the Cr2O3 due to its lower density of surface acid sites, which alleviated the coke deposition on the catalyst as evidenced by the Raman spectroscopic results. The kinetic results revealed that the15NiO/Cr2O3 had much lower activation energy (63.6 ± 4.5 kJ mol-1) than the Cr2O3 (127.6 ± 3.8 kJ mol-1). Accordingly, different reaction pathways on the two catalysts were proposed, which involved the cleavage of the Csbnd F and Csbnd H bonds on the surface acid and base sites, respectively.

  8. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  9. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    PubMed

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  10. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  11. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  12. Phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) cermet obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Suryana, Anis, Muhammad; Manaf, Azwar

    2018-04-01

    In this paper, we report the phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) with x = 0-0.5 cermet obtained by mechanical alloying of Ti, Mo, Ni, Cr and C elemental powders using a high-energy shaker ball mill under wet condition for 10 hours. The process used toluene as process control agent and the ball to mass ratio was 10:1. The mechanically milled powder was then consolidated and subsequently heated at a temperature 850°C for 2 hours under an argon flow to prevent oxidation. The product was characterized by X-ray diffraction (XRD) and scanning electron microscope equipped with energy dispersive analyzer. Results shown that, by the selection of appropriate condition during the mechanical alloying process, a metastable Ti-Ni-Cr-C powders could be obtained. The powder then allowed the in situ synthesis of TiC-(Ni,Cr) cermet which took place during exposure time at a high temperature that applied in reactive sintering step. Addition to molybdenum has caused shifting the TiC XRD peaks to a slightly higher angle which indicated that molybdenum dissolved in TiC phase. The crystallite size distribution of TiC is discussed in the report, which showing that the mean size decreased with the addition of molybdenum.

  13. A study of the kinetics and isotherms for Cr(VI) adsorption in a binary mixture of Cr(VI)-Ni(II) using hierarchical porous carbon obtained from pig bone.

    PubMed

    Li, Chengxian; Huang, Zhe; Huang, Bicheng; Liu, Changfeng; Li, Chengming; Huang, Yaqin

    2014-01-01

    Cr(VI) adsorption in a binary mixture Cr(VI)-Ni(II) using the hierarchical porous carbon prepared from pig bone (HPC) was investigated. The various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as initial concentration, pH, temperature and contact time were analyzed. The results showed excellent efficiency of Cr(VI) adsorption by HPC. The kinetics and isotherms for Cr(VI) adsorption from a binary mixture Cr(VI)-Ni(II) by HPC were studied. The adsorption equilibrium described by the Langmuir isotherm model is better than that described by the Freundlich isotherm model for the binary mixture in this study. The maximum adsorption capacity was reliably found to be as high as 192.68 mg/g in the binary mixture at pH 2. On fitting the experimental data to both pseudo-first- and second-order equations, the regression analysis of the second-order equation gave a better R² value.

  14. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    PubMed Central

    Hasan, Md Rezaul; Xie, Ting; Barron, Sara C.; Liu, Guannan; Nguyen, Nhan V.; Motayed, Abhishek; Rao, Mulpuri V.; Debnath, Ratan

    2016-01-01

    A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either front or back side. Morphology, structural, chemical and optical properties of sputtered NiO and ZnO films were also investigated. PMID:26900532

  15. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  16. High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler

    NASA Astrophysics Data System (ADS)

    Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.

    2013-06-01

    Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.

  17. Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia

    NASA Astrophysics Data System (ADS)

    Sebei, Abdelaziz; Helali, Mohamed Amine; Oueslati, Walid; Abdelmalek-Babbou, Chiraz; Chaabani, Fredj

    2018-01-01

    Tessa River is seen as one of the important rivers in Tunisia. Its catchment is known for its agricultural and mining activities, especially the Bougrine and Fedj Lahdhoum mines. Eighteen (18) surface sediments and five (5) water samples were collected from the Tessa River, near these two mining sites. Sediments are essentially sandy (>80%), the most important mineral is quartz (20-73%), then calcite (41%) and dolomites (4%). Heavy metal contents are relatively high near the mining sites, 356 μg g-1 for Pb, 3000 μg g-1 for Zn, and 5 μg g-1 for Cd. These values are lower downstream due to watercourse dilution effects. Other heavy metals: Cu, Ni and Cr, are low, and values are relatively constant in all the studied samples, even near the mining sites. The metals originate from natural sources and not from mining activities. This trend is confirmed by the enrichment factor (EF) where EFNi, EFCu and EFCr are lower or equal to 1, unlike EFPb, EFZn or EFCd where values are much higher (>20). Chemical speciation of these metals does not show any spatial variation. Except for cadmium which is bound to the residual fraction and in the carbonates; all other heavy metals are bound to the five sediment chemical fractions: the residual fraction (>52%), followed by the oxyhydroxides fraction (21%) and carbonates (16%), and finally bound to the organic matter and to the exchangeable fraction (<10%). The bioavailable fraction of the studied heavy metals exceeds 45%, which present risk of toxicity.

  18. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  19. Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom

    USGS Publications Warehouse

    El, Goresy A.; Chao, E.C.T.

    1976-01-01

    Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks. The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite. ?? 1976.

  20. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  1. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    NASA Astrophysics Data System (ADS)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  2. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-03-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.

  3. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    PubMed Central

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  4. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties.

    PubMed

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H 2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  5. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

  6. Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.

    PubMed

    Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T

    2001-03-01

    XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.

  7. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  8. Hydrothermal process assists undoped and Cr-doped semiconducting ZnO nanorods: Frontier of dielectric property

    NASA Astrophysics Data System (ADS)

    Debnath, Tanumoy; Saha, Papiya; Patra, Nesla; Das, Sukhen; Sutradhar, Soumyaditya

    2018-05-01

    The influence of the hydrothermal synthesis route on the grain morphology and thereby the modulation of dielectric response of undoped and Cr3+ ion doped semiconducting ZnO nanoparticles is investigated in this report. The X-ray diffraction study reveals that all the samples are in a polycrystalline single phase of a hexagonal wurtzite structure of ZnO. The field emission scanning electron microscopy study reveals the rod like structure of all the samples. The formation of synthesis route dependent morphology and the morphology dependent physical property of all the samples are the characteristic features of the present work and to date it has not been considered as the specific tool of dielectric property modulation by anyone else. The ultraviolet-visible measurement signifies the superior control over the charge density of the host semiconducting material due to the presence of Cr3+ ions in the structure of ZnO. In the photoluminescence measurement, no significant peak has been observed in the visible region. The frequency and temperature dependent dielectric constants of all the samples were investigated. The consequences of the dielectric measurement suggest that the hydrothermal synthesis route influences the growth mechanism of the semiconducting nanoparticles mostly towards the rod like structure and the doping element influences the charge density, nature of defects, and the defect densities inside the structure of ZnO nanomaterials. All these factors together make the semiconducting ZnO nanomaterials more effective for tailor made applications in magneto-dielectric devices.

  9. Magnetic state of a Zn1 - x Cr x Se bulk crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.

    2008-06-01

    The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.

  10. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr 18 FCC solid solution alloy

    DOE PAGES

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr 18 was successfully developed. This near-equiatomic FeNiMnCr 18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr 18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  11. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  12. Magnetic and low temperature phonon studies of CoCr2O4 powders doped with Fe(III) and Ni(II) ions

    NASA Astrophysics Data System (ADS)

    Ptak, M.; Mączka, M.; Pikul, A.; Tomaszewski, P. E.; Hanuza, J.

    2014-04-01

    Extensive temperature-dependent phonon studies and low-temperature magnetic measurements of CoCr2-xFexO4 (for x=0.5, 1 and 2) and Co0.9Ni0.1Cr2O4 polycrystalline powders are presented. The main aim of these studies was to obtain information on phonon and structural properties of these compounds as well as strength of spin-phonon coupling in the magnetically ordered phases. IR and Raman spectra show that doping of CoCr2O4 with Fe(III) ions leads to broadening of bands and appearance of new bands due to the formation of inverted spinel structure. In contrast to this behavior, doping with 10 mol% of Ni(II) ions leads to weak increase of band width only. Magnetization measured as a function of temperature and external magnetic field showed that magnetic properties of Co0.9Ni0.1Cr2O4 sample are similar to those reported for pure CoCr2O4, i.e., partial substitution of Ni(II) for Co(II) leads to slight shift of the ferrimagnetic phase transition at TC and spiral spin order transition at TS towards lower values. The change of crystallization preference induced by incorporation of increasing concentration of Fe(III) ions in the spinel lattice causes significant increase of TC and decrease of TS. The latter transition disappears completely for higher concentrations of Fe(III). The performed temperature-dependent IR studies revealed interesting anomalous behavior of phonons below TC for CoCr1.5Fe0.5O4 and Co0.9Ni0.1Cr2O4, which was attributed to spin-phonon coupling.

  13. Study of fracture toughness and bend test morphologies of HVOF sprayed Cr3C2-25% NiCr coating after heat treatment

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sharad; Upadhyaya, Rohit

    2018-04-01

    Majority of the industrial components are subjected to high temperature exposure, where crack propagation occurs due to shear failure. The paper involves the study of the fracture toughness of heat treated Cr3C2-NiCr coating at three different service temperatures (750°C, 850°C, and 950°C for 1-hour aging) using indentation techniques to measure the crack resistance of the coating. At 750°C and 850°C, the coating cracked at the bend area, but not spalled. At 950°C, the coating spalled and delaminated from the substrate indicating poor adhesion after prolonged exposure. The influence of heat treatment on the fracture toughness and adhesion properties of the Cr3C2-25%NiCr coating were also investigated. The high temperature exposure at 950°C, resulted in a shear failure of the coating due to the presence of splat contraction. The increase in temperature increases the fracture toughness KIC of the coating, with the decrease in hardness. It was observed that the oxidation levels enhanced on the top layer of the coating, which acted like a core region for crack initiation at 950°C resulting in shear failure during bend test.

  14. Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices

    NASA Astrophysics Data System (ADS)

    Ohteki, Yusuke; Sugiyama, Mutsumi

    2018-07-01

    A high-transparency ZnO thin film of high carrier concentration was grown by conventional RF sputtering, where the carrier concentration was continuously varied from 1016 to 1019 cm‑3 by controlling the amounts of O2 and H2 sputtering gases. To prevent the formation of a Schottky junction at the contact with In–Zn–O, and to improve the fill factor of a visible-light-transparent solar cell, a Ag-paste/NiO/ZnO/ZnO:H/IZO p–n diode structure with the carrier concentration of the ZnO:H layer of 1019 cm‑3 was fabricated. It is possible to reduce the depletion width and inverse the rectification action around ZnO/IZO by controlling the carrier concentration of the ZnO layer while maintaining the high transparency.

  15. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE PAGES

    Zhang, P.; Xu, X.; Shuai, P.; ...

    2017-01-23

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  16. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.; Xu, X.; Shuai, P.

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  17. Effect of Zn doping on structural and dielectric properties of tetragonal Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, S. A.; Dar, M. A.; Kumar, A.

    2015-06-24

    A series of Ni-Zn ferrite with compositional formula Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5) were prepared by solid-state reaction route. The influence of the Zn content on the structural and dielectric properties of NiFe{sub 2}O{sub 4} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and dielectric measurements. XRD analysis reveals that the samples are polycrystalline single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. Slight variation in the lattice parameter of Zn doped NiFe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Ramanmore » analysis reveals the doublet like nature of A{sub 1g} mode for all synthesized samples. Small shift in Raman modes and increment in the line width has been observed with the doping ions. Furthermore, room temperature dielectric properties of all the prepared samples have been reported. It is observed that for each sample the dielectric constant decreases with an increase of frequency and becomes constant at higher frequencies.« less

  18. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  19. Microstructural Characteristics and Oxidation Behavior of Low-Pressure Cold-Sprayed CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Lin-wei; Lu, Lei; Wang, Lu; Ning, Xian-jin; Wang, Quan-sheng; Wang, Ri-xin

    2017-10-01

    CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.

  20. Eddy-current testing of fatigue degradation upon contact fatigue loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating

    NASA Astrophysics Data System (ADS)

    Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.

    2017-12-01

    The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.

  1. Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers

    NASA Astrophysics Data System (ADS)

    Garcia, Jorge; Lowndes, Douglas H.

    2000-10-01

    During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.

  2. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    NASA Astrophysics Data System (ADS)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  3. Hybride ZnCdCrO embedded aminated polyethersulfone nanocomposites for the development of Hg2+ ionic sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Alenazi, Noof A.; Hussein, Mahmoud A.; Alam, M. M.; Alamry, Khalid A.; Asiri, Abdullah M.

    2018-06-01

    In this current study, ‑NH2 functions are introduced on Polyethersulfone (PES) by a nitration reaction then a reduction reaction to fabricate PES-NH2 materials with a better hydrophilicity property. The structure of PES-NH2 was first confirmed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared (FT-IR) spectroscopy. Then, the resultant polymer was doped with different concentrations of ZnCdCrO nanocomposites. The polymeric nanocomposites materials were characterized using FT-IR, x-ray powder diffraction (XRD), thermal analysis (TA), and energy dispersive x-ray (EDX) spectroscopy while the morphology was investigated using scanning electron microscopy (SEM). The performance PES-NH2-ZnCdCrO nanocomposites was investigated by sensor-probe towards the selective detection of Hg2+. The results showed the excellent thermal properties of PES-NH2-ZnCdCrO nanocomposites in comparison with non-doped polymer (PES-NH2). Here, Hg2+ ionic sensor was prepared using a flat glassy carbon electrode (GCE) coated with a thin-layer of PES-NH2-ZnCdCrO nanocomposites (20%) with nafion conducting nafion binder (5%). To evaluate the analytical performances of Hg2+ ion sensor, a calibration curve was drawn by plotting the current versus concentration. The sensitivity (0.6566 μAμM-1 cm‑2) and detection limit (14.46 ± 0.72 pM) are calculated using the slope of the calibration curve. It was determined the linearity (r2 = 0.9941) over the large linear dynamic range (LDR) (0.1 nM to 0.1 mM). Thus, this research approach might be an important route to the selective detection of environmental toxin (Hg2+ cation) from the aqueous system in broad scales for the safety of health care, environmental, and aquatic fields.

  4. Synthesis and Magnetic Properties of Ni-DOPED ZnO Thin Films: Experimental and AB INITIO Study

    NASA Astrophysics Data System (ADS)

    Rouchdi, M.; Salmani, E.; Hat, A. El; Hassanain, N.; Mzerd, A.

    Structural and magnetic properties of Zn1-xNixO thin films and diluted magnetic semiconductors have been investigated. This sample has been synthesized using a spray pyrolysis technique with a stoechiometric mixture of zinc acetate (C4H6O4Znṡ2H2O) and Nickel acetate (C4H6O4Niṡ 2H2O) on a heated glass substrate at 450∘C. The films were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometry and Hall Effect measurements. These films of ZnO crystallized in the hexagonal Wurtzite structure. The optical study showed that the band-gap energy was increased, from 3.3eV to 3.5eV, with increasing the Ni concentration. The film resistivity was affected by Ni-doping, and the best resistivity value 1.15×10-2 (Ω cm) was obtained for the film doped with 2 at.% Ni. The electronic structure and optical properties of the Wurtzite structure Zn1-xNixO were obtained by first-principles calculations using the Korringa-Kohn-Rostoker method combined with the coherent potential approximation (CPA), as well as CPA confirm our results.

  5. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  6. Determination of Cd, Cr, Pb and Ni contents among Parkinson's disease individuals: a case-control study.

    PubMed

    Gupta, Vineeta; Ansari, Nasreen Ghazi; Garg, Ravindra Kumar; Khattri, Sanjay

    2017-09-01

    Various uses of metals in industries, including the domestic sphere, agriculture, medicine and technology, have led to their wide distribution in the environment. These result in raising concerns over their potential effects on human health and the environment. Because of their high degree of toxicity, Cd, Cr and Pb are some of the priority metals that are of public health significance. The levels of Cd, Cr, Pb and Ni were measured in Parkinson's disease (PD) patients. Blood samples were collected from 40 patients and 40 healthy controls, and stored at -80 °C until assayed. Atomic absorption spectrophotometry was used to determine the levels of metals. The level of Pb was significantly decreased in patients than in controls. However, the difference in the level of Ni between patients and controls failed to reach significance. Cr was not detectable in patients, but it was measurable in 12 controls (controls = 0.056-2.397 µg/ml). Similarly, Cd was not detectable in patients, but it was measurable in all the controls (controls = 0.004-1.268 µg/ml). Pb was the only metal that was found in all study participants (PD = 0.012-2.758 µg/ml and controls = 0.779-9.840 µg/ml). Ni could be measured only in six patients and in all the controls (PD = 0.154-0.754 µg/ml and controls = 0.034-1.691 µg/ml). Patients exhibited significantly decreased levels of Pb than in controls. However, Cd, Cr and Ni were too low to be measured among the patients. This indicates that these metals might play a probable role in PD.

  7. Impurity optical absorption spectra of ZnGa 2Se 4:Ni 2+ single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Wha-Tek; Jin, Moon-Seog; Cheon, Seung-Ho; Kim, Yong-Geun; Park, Byong-Seo

    1990-04-01

    The optical absorption of single crystals of ZnGa 2Se 4:Ni 2+ grown by the chemical transport reaction method was investigated in the temperature region 20-300 K. In the single crystals the impurity optical absorption peaks due to the transitions 3T1( 3F) → 3T2( 3F), 3T1( 3F) → 3A2( 3F) and 3T1( 3F) → 3T1( 3P) of the Ni 2+ ions sited in the host lattice of the ZnGa 2Se 4 single crystal with Td symmetry appeared at 4444, 7874 and 11 600 cm -1, respectively. The crystal-field parameter and the Racah parameter were given by Dq = 340 cm -1 and B = 615 cm -1, respectively. The peak due to the transition 3T1( 3F) → 3T1( 3P) split into four levels by first order spin-orbit-coupling effects of Ni 2+ ions in the lower temperature below 150 K. The spin-orbit-coupling parameter was found to be λ = -400 cm -1.

  8. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Purohit, Mamta S; Dave, Shailesh R

    2015-08-01

    Metal pollution due to the huge electronic waste (E-waste) accumulation is widespread across the globe. Extraction of copper, zinc and nickel from computer printed circuit boards (c-PCB) with a two-step bleaching process using ferric sulphate generated by Leptospirillum ferriphilum dominated consortium and the factors influencing the process were investigated in the present study. The studied factors with 10 g/L pulp density showed that pH 2.0 was optimum which resulted in 87.50-97.80% Cu-Zn-Ni extraction. Pre-treatment of PCB powder with acidified distilled water and NaCl solution showed 3.80-7.98% increase in metal extraction corresponding to 94.08% Cu, 99.80% Zn and 97.99% Ni extraction. Particle size of 75 μm for Cu and Zn while 1680 μm for Ni showed 2-folds increase in metal extraction, giving 97.35-99.80% Cu-Zn-Ni extraction in 2-6 days of reaction time. Whereas; 2.76-3.12 folds increase in Cu and Zn extraction was observed with the addition of 0.1% chelating agents. When the studies were carried out with high pulp density, ferric iron concentration of 16.57 g/L was found to be optimum for metal extraction from 75 g/L c-PCB and c-PCB addition in multiple installments resulted in 8.81-26.35% increase in metal extraction compared to single addition. The studied factors can be implemented for the scale-up aimed at faster recovery of multimetals from E-waste and thereby providing a secondary source of metal in an eco-friendly manner. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Laser photoelectron spectroscopy of CrH - , CoH - , and NiH - : Periodic trends in the electronic structure of the transition-metal hydrides

    NASA Astrophysics Data System (ADS)

    Stevens Miller, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1987-08-01

    The laser photoelectron spectra of CrH-, CoH-, and NiH- and the analogous deuterides are reported. The spectra are interpreted using a qualitative description of the electronic structure for the hydrides. This model is used to assign off-diagonal transitions in the photodetachment to low-spin states of the neutrals, and diagonal transitions to high-spin states of the neutrals. These data are used to identify the high-spin states of CoH and NiH; several other states of CrH, CoH, and NiH are also identified. Periodic trends in the bond lengths, vibrational frequencies, and electronic excitation energies for the MnH through NiH molecules are examined. Electron affinities are reported for CrH (0.563±0.010 eV), CoH (0.671±0.010 eV), and NiH (0.481±0.007 eV), and the corresponding deuterides.

  10. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  11. Water Droplet Erosion Behavior of High-Power Diode Laser Treated 17Cr4Ni PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-05-01

    This article deals with water droplet erosion (WDE) behavior of high-power diode laser (HPDL) treated 17Cr4Ni PH stainless steel. After HPDL treatment, the water droplet erosion resistance (WDER) of 17Cr4Ni PH stainless steel has not improved. The main reason is the surface hardness, which has not improved after HPDL treatment though the microstructure has become much finer. On the other hand, precipitation hardening of the alloy at 490°C for 3 h has resulted in improved WDER more than twice. This is because of its increased microhardness and improved modified ultimate resilience (MUR), and formation of fine grained microstructure. The WDER has been correlated with MUR, a single mechanical property, based upon microhardness, ultimate tensile strength, and Young's modulus. WDERs of HPDL treated, untreated, and precipitation hardened 17Cr4Ni PH stainless steel samples were determined using a WDE test facility as per ASTM G73-1978. The WDE damage mechanism, compared on the basis of MUR and scanning electron micrographs, is discussed and reported in this article.

  12. Microwave absorption through the martensitic and Curie transitions in Ni45Cr5Mn37In13

    NASA Astrophysics Data System (ADS)

    Pandey, Sudip; Vyzulin, Sergey; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Granovsky, Alexander; Stadler, Shane; Ali, Naushad

    2018-05-01

    We have investigated the electron spin resonance (ESR) of the Ni45Cr5Mn37In13 Heusler alloy near the structural and magnetic phase transition temperatures. Ni45Cr5Mn37In13 is characterized by a first order magnetostructural (martensitic) transition (MST) with magneto-responsive properties such as magnetoresistance, Hall and magnetocaloric effects, etc., in the vicinity of the MST. Since the details and origins of these behaviors are not well understood, we used a technique beyond magnetometry, i.e., "microwave absorption", to reveal new information. ESR studies of Ni45Cr5Mn37In13 shows that this compound is characterized by wide absorption spectra at temperatures greater than 250 K that depend on the angle of the magnetic field relative to the normal to the sample plate (α) and temperature (T). Two local maxima at about 5 and 6 kOe were detected for α close to zero degrees near the martensitic transition and Curie temperatures. The absorption spectra are discussed along with the results of the structural and magnetic studies.

  13. Content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured in modern farm at BLUPPB, Karawang, West Java

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Rahman, A.; Siswanting, T.; Pin, T. J.

    2018-03-01

    Heavy metal is one of the hazardous substances which often found in shrimp farm. Since this shrimp become mostly favorable food, it is necessary to determine the content of metal in this shrimps. This research was aimed to determine the content of Cr, Cu, Pb, and Zn on Pacific white shrimp cultured on the modern farm at BLUPPB, Karawang, West Java. Samples were taken from five farms. During transport, samples were kept in a more relaxed box. Farms used were designed using black plastic as the bottom layer to separate contact with soil. Heavy metal of Cr, Cu, Pb, and Zn on shrimp meat was analyzed using Atomic Absorption Spectrophotometry method. The content of Cr was ranged from 0.06 – 0.38 ppm and Pb were 0.02 – 0.05 ppm. The content of Cu was ranged from 1.89 – 15.25 ppm and Zn were 2.16 – 3.92 ppm. According to government rules and literature, those content were below a threshold which was 0.4 ppm for Cu, 0.5 ppm for Pb, 20 ppm for Cu and 0.2 ppm for Zn.

  14. Improvement in LPG sensing response by surface activation of ZnO thick films with Cr2O3

    NASA Astrophysics Data System (ADS)

    Hastir, Anita; Virpal, Kaur, Jasmeet; Singh, Gurpreet; Kohli, Nipin; Singh, Onkar; Singh, Ravi Chand

    2015-05-01

    Liquefied Petroleum Gas (LPG) sensing response of pure and Cr2O3 activated ZnO has been investigated in this study. Zinc oxide was synthesized by co-precipitation route and deposited as a thick film on an alumina substrate. The surface of ZnO sensor was activated by chromium oxide on surface oxidation by chromium chloride. The concentration of chromium chloride solution used to activate the ZnO sensor surface has been varied from 0 to 5 %. It is observed that response to LPG has improved as compared to pure ZnO.

  15. Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process

    NASA Astrophysics Data System (ADS)

    Wang, Min; Ji, Guangbin; Zhang, Baoshan; Tang, Dongming; Yang, Yi; Du, Youwei

    2015-03-01

    The binary composites of conducting polyaniline (PANI) and nickle zinc ferrite were synthesized by an in-situ polymerization process, and the electromagnetic absorption properties of the composites were also investigated. The FT-IR spectra present the peaks of PANI (1562, 1481, 1301, 1109, and 799 cm-1) and the bonds of NiZn ferrite (579 and 390 cm-1), indicating the existence of both NiZn ferrite particles and PANI in the composites. With the increasing ratio of nickle zinc ferrite, the composites distributes in irregular compared with pure PANI and Ni0.6Zn0.4Fe2O4. The TG curves of the pure PANI and PANI/Ni0.6Zn0.4Fe2O4 composites with different molar ratios clearly show the increase percentage of the ferrite in the composites. Furthermore, we found that the excellent electromagnetic absorption properties and wide absorption bandwidth can be achieved by adjusting proper molar ratios Ni0.6Zn0.4Fe2O4 to PANI. The maximum reflection loss of Ni0.6Zn0.4Fe2O4/PANI can reach to -41 dB at 12.8 GHz and the bandwidth exceeding -10 dB can reach to 5 GHz with the absorber thickness of 2.6 mm at the molar ratio of 1:2. This can be attributed to the enhancing magnetic loss and the better impedance matching. Therefore, Ni0.6Zn0.4Fe2O4/PANI ferrite composites can become a new kind of candidate in the field of the microwave absorbing.

  16. Geochemical studies of Fe, Mn, Co, As, Cr, Sb, Zn, Sc and V in surface sediments from Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Wu, Run; Li, Pei-Quan; Miao, Lu-Tian; Zhang, Shu-Xin; Tian, Wei-Zhi

    1994-12-01

    The contents of nearly forty-elements in surface sediments in Jiaozhou Bay were determined using a Neutron Activation Analysis Technique (Grancini, et al., 1976; Li Peiquan et al., 1985, 1986; Li Xiuxia et al., 1986). This paper's detailed discussion on only nine elements (Fe, Mn, Co, Cr, Sc, As, Sb, Zn and V) includes their distributions, concentrations, correlationships, material sources, background, etc. Based on Zavaristski's classification method, Fe, Mn, Co, Cr and V belong to the second group; As and Sb to the eighth groups: Sc and Zn to the third and sixth groups. It was found that their notably good correlationship is mainly due to the similarity of their ionic structures and that their variation is controlled by the Fe content (except Mn). The source of sediments is mainly terristrial material, and the composition of sediment is similar to that of shale and shale+clay. The contents for a large number of elements are within the scope of the background level, but there still is pollution of Zn and Cr, at least in a few stations.

  17. First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3

    NASA Astrophysics Data System (ADS)

    Rak, Zs.; Brenner, D. W.

    2018-04-01

    Diffusion of Fe and Ni and the energetics of Fe- and Ni-related defects in chromium oxide (α-Cr2O3) are investigated using first-principles Density Functional Theory calculations in combination with the climbing-image nudged elastic band method. The orientations of the spin magnetic moments of the migrating ions are taken into account and their effects on migration barriers are examined. Several possible diffusion pathways were explored through interstitial and vacancy mechanisms, and it was found that the principal mode of ion transport in Cr2O3 is via vacancies. Both interstitial- and vacancy-mediated diffusions are anisotropic, with diffusion being faster in the z-direction. The energetics of defect formation indicates that the Ni-related defects are less stable than the Fe-related ones. This is consistent with Ni-diffusion being faster than Fe-diffusion. The results are compared with previous theoretical and experimental data and possible implications in corrosion control are discussed.

  18. Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup

    2003-08-01

    It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.

  19. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  20. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr 2O 4) oxides, wherein the concentration of the FeCr 2O 4 phasemore » decreased from the surface to the bulk-oxide interface.« less

  1. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  2. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  3. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  4. Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets.

    PubMed

    Xiao, Lingfeng; Su, Tong; Wang, Zhuo; Zhang, Kun; Peng, Xiaoniu; Han, Yibo; Li, Quan; Wang, Xina

    2018-02-02

    Ni 2 P has been decorated on CdS nanowires or nanorods for efficient photocatalytic H 2 production, whereas the specific surface area remains limited because of the large size. Here, the composites of Cd 0.5 Zn 0.5 S quantum dots (QDs) on thin Ni 2 P porous nanosheets with high specific surface area were constructed for noble metal-free photocatalytic H 2 generation. The porous Ni 2 P nanosheets, which were formed by the interconnection of 15-30 nm-sized Ni 2 P nanoparticles, allowed the uniform loading of 7 nm-sized Cd 0.5 Zn 0.5 S QDs and the loading density being controllable. By tuning the content of Ni 2 P, H 2 generation rates of 43.3 μM h - 1 (1 mg photocatalyst) and 700 μM h - 1 (100 mg photocatalyst) and a solar to hydrogen efficiency of 1.5% were achieved for the Ni 2 P-Cd 0.5 Zn 0.5 S composites. The effect of Ni 2 P content on the light absorption, photoluminescence, and electrochemical property of the composite was systematically studied. Together with the band structure calculation based on density functional theory, the promotion of Ni 2 P in charge transfer and HER activity together with the shading effect on light absorption were revealed. Such a strategy can be applied to other photocatalysts toward efficient solar hydrogen generation.

  5. Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets

    NASA Astrophysics Data System (ADS)

    Xiao, Lingfeng; Su, Tong; Wang, Zhuo; Zhang, Kun; Peng, Xiaoniu; Han, Yibo; Li, Quan; Wang, Xina

    2018-02-01

    Ni2P has been decorated on CdS nanowires or nanorods for efficient photocatalytic H2 production, whereas the specific surface area remains limited because of the large size. Here, the composites of Cd0.5Zn0.5S quantum dots (QDs) on thin Ni2P porous nanosheets with high specific surface area were constructed for noble metal-free photocatalytic H2 generation. The porous Ni2P nanosheets, which were formed by the interconnection of 15-30 nm-sized Ni2P nanoparticles, allowed the uniform loading of 7 nm-sized Cd0.5Zn0.5S QDs and the loading density being controllable. By tuning the content of Ni2P, H2 generation rates of 43.3 μM h- 1 (1 mg photocatalyst) and 700 μM h- 1 (100 mg photocatalyst) and a solar to hydrogen efficiency of 1.5% were achieved for the Ni2P-Cd0.5Zn0.5S composites. The effect of Ni2P content on the light absorption, photoluminescence, and electrochemical property of the composite was systematically studied. Together with the band structure calculation based on density functional theory, the promotion of Ni2P in charge transfer and HER activity together with the shading effect on light absorption were revealed. Such a strategy can be applied to other photocatalysts toward efficient solar hydrogen generation.

  6. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  7. Effect of Solution Concentration on Magnetic Ni0.5Zn0.5Fe₂O₄ Nanoparticles and Their Adsorption Behavior of Neutral Red.

    PubMed

    Li, Shasha; Liu, Qifeng; Lu, Rongzhu; Wu, Xiaoyang; Chen, Jian

    2018-07-01

    Magnetic Ni0.5Zn0.5Fe2O4 nanoparticles were prepared via the methanol combustion process, the morphology, chemical composition, microstructure and magnetic properties of them were investigated by SEM, EDX, TEM, XRD, VSM, and BET. The experimental data revealed that the solution concentration was a key factor to the Ni0.5Zn0.5Fe2O4 nanoparticles, with the solution concentration of ferric nitrate decreasing from 3.37 to 1.12 mol/L, the saturation magnetization decreased from 69.3 Am2/kg to 37.2 Am2/kg, and the average crystalline size of Ni0.5Zn0.5Fe2O4 nanoparticles decreased from 32 to 25 nm. While, with the solution concentration of ferric nitrate decreasing from 1.12 to 0.56 mol/L, the saturation magnetization increased from 37.2 Am2/kg to 104.6 Am2/kg, and the average crystalline size increased from 25 to 44 nm. The adsorption behavior of neutral red (NR) onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was investigated by UV spectroscopy at room temperature; the adsorption kinetics data related to the adsorption of NR from aqueous solutions were in good agreement with the pseudo-second-order kinetic model in a range of initial concentration of 50-300 mg/L. By comparison of the Langmuir and Freundlich models for adsorption isotherm of NR, the Langmuir model (correlation coefficient R2 = 0.9918) could be used to evaluate the adsorption isotherm of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles at room temperature, which suggested that the adsorption of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was monolayer, and the adsorption energy was constant.

  8. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  9. An integrated tunable isolator based on NiZn film fabricated by spin-spray plating

    NASA Astrophysics Data System (ADS)

    Guo, Rongdi; Lin, Hwaider; Shi, Wei; Gao, Yuan; Wang, Zhiguang; Sun, Nian Xiang; Yu, Zhong; Lan, Zhongwen

    2018-05-01

    An innovative type of tunable isolator with a planar comb-like microstrip transmission line, which generate circular polarization magnetic field, has been realized with polycrystalline NiZn ferrite thick films fabricated by spin-spray plating (SSP) process with thickness of 10μm. The phase compositions, microstructure, magnetic hysteresis loop, and ferromagnetic resonance (FMR) linewidth of NiZn ferrite thick films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and electron spin resonance (ESR) spectrometer, respectively. The NiZn ferrite thick films possess 4800Gauss saturation magnetization and 190Oe FMR linewidth measured at X-band. With an in-plane dc magnetic bias perpendicular to the comb-like microstrip transmission line, the transmission direction of left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) were proved to be opposite. The non-reciprocal ferromagnetic resonance absorption leads to 11.6dB isolation and 5.78dB insertion loss at 17.57GHz with magnetic bias field of 3.5kOe. Furthermore, with external in-plane magnetic fields range from 0.5kOe to 3.5kOe, the central frequency was tuned from 5.63GHz to 17.57GHz. The state-of-the-art tunable isolator with a planar comb-like microstrip transmission line exhibit a great potential to be applied in different microwave components and radar system.

  10. Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.

    2016-08-08

    Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less

  11. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    PubMed Central

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  12. [Influence of SiO2 films on color reproduction of Ni-Cr alloy porcelain crowns].

    PubMed

    Wu, Dong; Feng, Yunzhi

    2011-08-01

    To study whether SiO2 films will influence the color of Ni-Cr metal ceramic restorations. For the film plating experimental group, Sol-gel method was employed to apply SiO2 films to the surface of the Ni-Cr copings, while no coating was applied for the non-film-plating control group. Veneering porcelains were then applied subsequently, and a total of 12 B2-colored maxillary incisor metal ceramic crowns were fabricated with 6 crowns in each group. A ShadeEye Ncc computer-aided colorimeter was employed to measure the shade of the samples, as well as 6 B2(Vitapan classical vita color tabs) shade standards. The color was expressed as C1E-1976-Lab coordinates. There was a statistically significant color difference between all metal ceramic crowns and the B2 shade standards (delta E>1.5). The L*, a*, b* values of all crowns were higher than those of the B2 shade standards, and the crowns were typically yellower or redder. While neither significant color difference nor difference in shade values was observed between the film plating experimental group and non-film-plating control group (delta E<1.5). SiO2 films applied to the Ni-Cr copings by means of Sol-gel technique do not impact the final color of the metal ceramic restorations.

  13. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  14. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems

    PubMed Central

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-01-01

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy. PMID:26923713

  15. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.

    PubMed

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-02-29

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.

  16. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  17. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  18. Investigating nuclear shell structure in the vicinity of 78Ni: Low-lying excited states in the neutron-rich isotopes Zn,8280

    NASA Astrophysics Data System (ADS)

    Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.

    2016-02-01

    The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.

  19. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study.

    PubMed

    Dai, Peng; Yan, Tao-Tao; Yu, Xin-Xin; Bai, Zhi-Man; Wu, Ming-Zai

    2016-12-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  20. Effect of citric acid on material properties of ZnGa2O4:Cr3+ nanopowder prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Hussen, Megersa K.; Dejene, Francis B.; Gonfa, Girma G.

    2018-05-01

    This paper reports the material properties of Cr3+ (1.0 mol%)-doped ZnGa2O4 nanopowders prepared by citric acid-assisted sol-gel method with metal cations (Zn + Ga) to citric (M:CA) molar ratios of (1:0.5, 1:1, 1:3 and 1:4). The X-ray diffraction (XRD) results show that the synthesized nanoparticles are cubic structured and concentration of citric acid did not affect the structure. The scanning electron microscope (SEM) shows that the increase of the M:CA molar ratio favors the formation of smaller nano particle of ZnGa2O4:Cr3+. The photoluminescence (PL) is found to be maximum for sample with M:CA ratio of 1:1. Further increase in citric acid leads to significant decrease in the PL intensity. Energy-dispersive X-ray spectroscopy (EDS) measurement confirms the presence of the Zn, Ga, O and Cr ions. Ultraviolet-visible (UV-Vis) spectrophotometer measurement shows an increase in reflectance in visible region and the energy band gap was found to decrease with an increase in citric acid molar ratio. The emission spectra, particle size and photoluminescence lifetimes are comparable with reports on bioimaging applications.