Science.gov

Sample records for zn em matrizes

  1. ZnO nanorods decorated with ZnS nanoparticles

    SciTech Connect

    Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less

  2. ZnS-Based ZnSTe:N/n-ZnS Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Ichino, Kunio; Kojima, Takahiro; Obata, Shunsuke; Kuroyanagi, Takuma; Nakazawa, Shoichi; Kashiyama, Shota

    2013-11-01

    ZnS1-xTex:N/n-ZnS diodes have been fabricated in an attempt to convert ZnS into p-type by Te incorporation and the resulting upward shift of the valence band maximum. The diodes exhibit clear rectification in the current-voltage characteristic and a peak of the electron-beam-induced current at the ZnS1-xTex:N/n-ZnS interface. Furthermore, a ZnS0.85Te0.15:N/n-ZnS diode exhibits blue-green electroluminescence due to self-activated emission in n-ZnS at 290 K under a forward current. These results suggest p-type conduction in ZnS1-xTex:N, and thus the LED operation of a ZnS-based pn-junction.

  3. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal

    2018-04-01

    This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.

  4. Zn precipitation and Li depletion in Zn implanted ZnO

    SciTech Connect

    Chan, K. S.; Jagadish, C.; Wong-Leung, J., E-mail: jenny.wongleung@anu.edu.au

    2016-07-11

    Ion implantation of Zn substituting elements in ZnO has been shown to result in a dramatic Li depletion of several microns in hydrothermally grown ZnO. This has been ascribed to a burst of mobile Zn interstials. In this study, we seek to understand the reason behind this interstitial mediated transient enhanced diffusion in Li-containing ZnO samples after Zn implantation. ZnO wafers were implanted with Zn to two doses, 5 × 10{sup 15} cm{sup −2} and 1 × 10{sup 17} cm{sup −2}. Secondary ion mass spectrometry was carried out to profile the Li depletion depth for different annealing temperatures between 600 and 800 °C. The 800 °C annealing hadmore » the most significant Li depletion of close to 60 μm. Transmission electron microscopy (TEM) was carried out in selected samples to identify the reason behind the Li depletion. In particular, TEM investigations of samples annealed at 750 °C show significant Zn precipitation just below the depth of the projected range of the implanted ions. We propose that the Zn precipitation is indicative of Zn supersaturation. Both the Li depletion and Zn precipitation are competing synchronous processes aimed at reducing the excess Zn interstitials.« less

  5. Effects of ZnSO4 and Zn-EDTA broadcast or banded to soil on Zn bioavailability in wheat (Triticum aestivum L.) and Zn fractions in soil.

    PubMed

    Zhao, Aiqing; Yang, Shu; Wang, Bini; Tian, Xiaohong; Zhang, Youlin

    2018-08-01

    Human Zn deficiency is prevalent in developing countries, and staple grains are commonly bio-fortified to increase their Zn contents. We measured Zn content, distribution, and bioavailability in calcareous soil and in wheat plants (Triticum aestivum L.) in Shaanxi Province, China, when either an organic Zn-ethylenediaminetetraacetate (Zn-EDTA) or an inorganic zinc sulfate heptahydrate (ZnSO 4 ·7H 2 O) Zn source was banded below the seedbed or broadcasted into soil. Compared with ZnSO 4 ·7H 2 O, Zn-EDTA fertilization produced higher Zn concentration and uptake in wheat plants. However, Zn bioavailability in grain remained low, with [phytate]/[Zn] ratio >15 and the resulting estimated dietary total absorbed zinc (TAZ) < 3 mg Zn/d. ZnSO 4 banded into soil had little short-term effect on grain Zn concentration but had a high residual effect and promoted the maintenance of a high concentration of the Zn fraction bound to loose organic matter (LOM-Zn) in rhizosphere soil. Both ZnSO 4 and Zn-EDTA were more efficient if uniformly mixed through the soil than if banded to soil. Both ZnSO 4 and Zn-EDTA had limited effects on Zn bioavailability in wheat plants due to the high rate of Zn fixation in this calcareous soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  7. Enhanced wound healing activity of Ag-ZnO composite NPs in Wistar Albino rats.

    PubMed

    Kantipudi, Sravani; Sunkara, Jhansi Rani; Rallabhandi, Muralikrishna; Thonangi, Chandi Vishala; Cholla, Raga Deepthi; Kollu, Pratap; Parvathaneni, Madhu Kiran; Pammi, Sri Venkata Narayana

    2018-06-01

    In the present study, silver (Ag) and Ag-zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound-healing efficacy on rat model. Ultraviolet-visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X-ray diffraction analysis Ag-ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face-centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag-ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi-hexagonal NPs with distribution of particle size of 20-40 nm. Furthermore, the authors investigated the wound-healing properties of Ag-ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.

  8. Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn

    PubMed Central

    Impa, Somayanda M.; Morete, Mark J.; Ismail, Abdelbagi M.; Schulin, Rainer; Johnson-Beebout, Sarah E.

    2013-01-01

    Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 μM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to −200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Zn. PMID:23698631

  9. Resistive switching in ZnO/ZnO:In nanocomposite

    NASA Astrophysics Data System (ADS)

    Khakhulin, D. A.; Vakulov, Z. E.; Smirnov, V. A.; Tominov, R. V.; Yoon, Jong-Gul; Ageev, O. A.

    2017-11-01

    A lot of effort nowadays is put into development of new approaches to processing and storage of information in integrated circuits due to limitations in miniaturisation. Our research is dedicated to one of actively developed concepts - oxide based resistive memory devices. A material that draws interest due to its promising technological properties is ZnO but pure ZnO lacks in performance in comparison with some other transition metal oxides. Thus our work is focused on improvement of resistive switching parameters in ZnO films by creation of complex nanocomposites. In this work we report characterisation of a nanocomposite based on PLD grown ZnO films with inclusions of In. Such solution allows us to achieve improvements of main parameters that are critical for ReRAM device: RHRS/RLRS ratio, endurance and retention.

  10. Photoluminescence spectra of n-ZnO/p-GaN:(Er + Zn) and p-AlGaN:(Er + Zn) heterostructures

    SciTech Connect

    Mezdrogina, M. M., E-mail: margaret.m@mail.ioffe.ru; Krivolapchuk, V. V., E-mail: vlad.krivol@mail.ioffe.ru; Feoktistov, N. A.

    2008-07-15

    Luminescence intensity of heterostructures based on n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) is higher by more than an order of magnitude than the corresponding intensity of separate n-ZnO, p-GaN:(Er + Zn), and AlGaN:(Er + Zn) layers. Most likely, this phenomenon is due to the effective tunneling recombination of charge carriers caused by a decrease in the concentration of the nonradiative recombination centers located between the n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) layers.

  11. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  12. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    NASA Astrophysics Data System (ADS)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (< 2%) because of reabsorption and non-radiative recombination due to a high density of non-radiative bulk traps. By annealing ZnO, bulk trap densities are reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation

  13. Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Evstropiev, S. K.; Nikonorov, N. V.; Vasilyev, V. N.; Evstropyev, K. S.

    2017-11-01

    Thin and uniform ZnO and ZnO:Al coatings were prepared on glass surfaces by using film-forming colloidal solutions containing small ZnS nanoparticles and polyvinylpyrrolidone as a polymer stabilizer. Film-forming ZnS sols were synthesized in the mixed water-propanol-2 solutions by chemical reaction between zinc nitrate and sodium sulfide. The addition of modifying component such as Al(NO3)3 into the film-forming solutions allows one to obtain thin and uniform ZnO:Al coatings. An increase in the sodium sulfide content in film-forming solutions leads to the growth of light absorption in the UV. The evolution of a coating material at all technological stages from the ZnS sols up to the transparent ZnO and ZnO:Al2O3 coatings (the latter kind being denoted further, in accord with a common practice, by ZnO:Al) was studied using the optical spectroscopy, XRD analysis, DSC-TGA, and SEM methods. The chemical processes of decomposing salts and the polymer occur by heating the intermediate composite ZnS/polyvinylpyrrolidone coatings in the 280-500 °C temperature range. Experimental data show that the ZnO and ZnO:Al coatings prepared consist of the slightly elongated oxide nanoparticles. These coatings fully cover the glass surface and demonstrate a high transparency in the UV and visible.

  14. Zn uptake behavior of rice genotypes and its implication on grain Zn biofortification

    PubMed Central

    Johnson-Beebout, Sarah E.; Goloran, Johnvie Bayang; Rubianes, Francis H. C.; Jacob, Jack D. C.; Castillo, Oliver B.

    2016-01-01

    Understanding Zn uptake dynamics is critical to rice grain Zn biofortification. Here we examined soil Zn availability and Zn uptake pathways as affected by genotype (high-grain Zn varieties IR69428 and IR68144), Zn fertilization and water management in two pot experiments. Results showed significant interactions (P < 0.05) between genotypes and Zn fertilization on DTPA (diethylenetriaminepentaacetic acid)-extractable soil Zn from early tillering to flowering. DTPA-extractable Zn in soils grown with IR69428 was positively correlated with stem (r = 0.78, P < 0.01), flagleaf (r = 0.60, P < 0.01) and grain (r = 0.67, P < 0.01) Zn concentrations, suggesting improved soil Zn availability and continued soil Zn uptake by IR69428 even at maturity. Conversely for IR68144, DTPA-extractable Zn was positively correlated only with leaf Zn uptake (r = 0.60, P < 0.01) at active tillering, indicating dependence on remobilization for grain Zn loading. Furthermore, the highest grain Zn concentration (P < 0.05) was produced by a combination of IR69428 and Zn fertilization applied at panicle initiation (38.5 μg g−1) compared with other treatments (P < 0.05). The results highlight that Zn uptake behavior of a rice genotype determines the fate of Zn from the soil to the grain. This has implications on overcoming Zn translocation barriers between vegetative parts and grains, and achieving grain Zn biofortification targets (30.0 μg g−1). PMID:27910900

  15. Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bae, KiTae; La, JoungHyun; Lee, InGyu; Lee, SangYul; Nam, KyungHoon

    2017-05-01

    Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

  16. Characterisation of a Zn / Ni Plating Bath

    DTIC Science & Technology

    2009-09-03

    accelerated corrosion in the first stages which is then slowed down by its own product of corrosion, Zn(OH)212. Zinc hydroxide dehydrates in time to form ZnO ... Electrochemistry , 1991, 21, 642 [5] – Alfantasi, A.M., A study on the synthesis, characterization ans properties of pulse-plated ultrafine- grained Zn-Ni alloy

  17. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Xueliang; Zou, Xingli; Lu, Xionggang; Lu, Changyuan; Cheng, Hongwei; Xu, Qian; Zhou, Zhongfu

    2016-11-01

    The electrodeposition of Zn and Cu-Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu-Zn alloy films have also been electrodeposited directly from CuO-ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu-Zn alloy depends on the electrodeposition potential.

  18. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management.

    PubMed

    Wang, Yu-yan; Wei, Yan-yan; Dong, Lan-xue; Lu, Ling-li; Feng, Ying; Zhang, Jie; Pan, Feng-shan; Yang, Xiao-e

    2014-04-01

    Zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.

  19. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, M.; Zapien, J. A.

    2017-04-01

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core-shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J sc = 20.60 mA/cm2, V oc = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  20. Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Mashazi, Philani; Nyokong, Tebello; Forbes, Patricia B. C.

    2016-04-01

    Fluorescent alloyed ternary ZnSeS quantum dots (QDs) have been synthesized via the pyrolysis of organometallic precursors. The effects of passivation of ZnTe and ZnTe/ZnS shells on the optical properties of the ternary alloyed ZnSeS core have been studied. A ligand exchange reaction using L-cysteine as a capping ligand was used to obtain water-soluble nanocrystals. The nanocrystals were each characterized by UV/vis absorption and fluorescence spectroscopy, transmission electron microscopy, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) quantum yield (QY) of alloyed ZnSeS QDs was 14% and this value increased to 27% when ZnTe was overcoated around the surface but further coating with a ZnS shell decreased the PL QY slightly to 24%. This implies that ZnTe shell suppressed non-radiative recombination exciton states in the alloyed core while further layering with a ZnS shell offered no further improvement in suppressing the defect states. XPS analysis confirmed the presence of the first shell layering but showed a weakened intensity signal of S (2p) and Se (3d) for the ZnSeS/ZnTe/ZnS QDs. Our work demonstrates for the first time that shell passivation of alloyed Zn-based QDs can offer improved optical properties. We hope the optical information presented in this work will be useful in the selection of alloyed Zn-based QDs appropriate for the intended application.

  1. Effect of thermal treatment on Zn nanodisks

    SciTech Connect

    Acuña-Avila, Pedro E., E-mail: pacunaa004@alumno.uaemex.mx; López, Roberto; Vigueras-Santiago, Enrique

    2015-06-15

    Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm{sup −1} of Raman scatteringmore » corresponded at surface vibrational modes not observed at higher temperature.« less

  2. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    PubMed Central

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  3. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    PubMed

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  4. Zn vacancy-donor impurity complexes in ZnO

    NASA Astrophysics Data System (ADS)

    Frodason, Y. K.; Johansen, K. M.; Bjørheim, T. S.; Svensson, B. G.; Alkauskas, A.

    2018-03-01

    Results from hybrid density functional theory calculations on the thermodynamic stability and optical properties of the Zn vacancy (VZn) complexed with common donor impurities in ZnO are reported. Complexing VZn with donors successively removes its charge-state transition levels in the band gap, starting from the most negative one. Interestingly, the presence of a donor leads only to modest shifts in the positions of the VZn charge-state transition levels, the sign and magnitude of which can be interpreted from a polaron energetics model by taking hole-donor repulsion into account. By employing a one-dimensional configuration coordinate model, luminescence lineshapes and positions were calculated. Due to the aforementioned effects, the isolated VZn gradually changes from a mainly nonradiative defect with transitions in the infrared region in n -type material, to a radiative one with broad emission in the visible range when complexed with shallow donors.

  5. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan Haur; Su, Wei Ming; Li, Cheng Yuan; Weng, Wei Chih; Weng, Chen Yuan; Cheng, Chin-Chi; Lin, Yung-Sen; Lin, Chia Feng; Chen, Hsiang

    2018-06-01

    In this research, ZnS nanoparticles were synthesized on ZnO/silver wires to form ZnS/ZnO core shell structures. Various outward appearance and colors could be observed by different ZnO growth and sulfurization conditions. To evaluate the properties of these nanostructures, optical properties and chemical bindings were analyzed by photoluminescence, Raman analysis, and X-ray photoelectron spectroscopy. Furthermore, material characterizations including transmission electron microscopy and X-ray diffraction confirmed that cubic ZnS (311)/ZnO nanostructures were grown on silver wires for the first time. ZnS/ZnO core shell structures on silver wires are promising for future optoelectronic and biomedical applications.

  6. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    SciTech Connect

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method.more » The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.« less

  7. Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis

    PubMed Central

    Pertusa, José A. G.; León-Quinto, Trinidad; Berná, Genoveva; Tejedo, Juan R.; Hmadcha, Abdelkrim; Bedoya, Francisco J.; Soria, Bernat

    2017-01-01

    β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of “slow” Zn2+-insulin into “fast” insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation. PMID:29099856

  8. Energy band-gap calculations of short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Yi-hong; Fujita, Shizuo; Fujita, Shigeo

    1990-01-01

    We report on the calculations of energy band gaps based on the semiempirical tight-binding model for short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices (SLSs). During the calculation, much attention has been paid to the modeling of strain effect. It is found that (ZnTe)m(ZnSe)n superlattices grown on InAs, InP, and GaAs substrates show very different electronic properties from each other, which is consistent with experimental results now available. Assuming that the emission observed for (ZnTe)m(ZnSe)n SLS originates from intrinsic luminescence, we obtain an unstrained valence-band offset of 1.136±0.1 eV for this superlattice. On the other hand, the band gap of (ZnS)m(ZnSe)n superlattice grown coherently on GaP is found to exhibit a much stronger structure dependence than that grown coherently on GaAs. The difference of energy gap between superlattice with equal monolayers (m=n) and the corresponding alloy with equal chalcogenide composition is also discussed.

  9. Diseno de una matriz de soporte compuesta de colageno de piel de tiburon-aloe para ingenier a tisular (Design of Shark Skin Collagen-Aloe Composite Scaffold for Tissue Engineering)

    DTIC Science & Technology

    2008-01-01

    colágeno es un nuevo biomaterial utilizado para la administración de fármacos, la fabri- cación de apósitos o como sustrato para ingeniería tisular cuya...crecimiento de fi broblastos in vitro. MATERIALES Y MÉTODOS Materiales El tiburón lechoso (Rhizoprionodon acutus) se capturó en la costa local y se...1000 rpm durante 3-5 minutos, se suspendieron de nuevo en medio fresco con FCS al 10%, se sembraron por la matriz de soporte (25.000 células

  10. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  11. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    NASA Astrophysics Data System (ADS)

    Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun

    2015-04-01

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100-200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800-3200 mg/kg). Both Zn concentration in shoots and roots correlated positively ( P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO4) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO4. Although significantly lower compared to bulk ZnO and ZnSO4, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

  12. ZnO-based ultraviolet photodetectors.

    PubMed

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2010-01-01

    Ultraviolet (UV) photodetection has drawn a great deal of attention in recent years due to a wide range of civil and military applications. Because of its wide band gap, low cost, strong radiation hardness and high chemical stability, ZnO are regarded as one of the most promising candidates for UV photodetectors. Additionally, doping in ZnO with Mg elements can adjust the bandgap largely and make it feasible to prepare UV photodetectors with different cut-off wavelengths. ZnO-based photoconductors, Schottky photodiodes, metal-semiconductor-metal photodiodes and p-n junction photodetectors have been developed. In this work, it mainly focuses on the ZnO and ZnMgO films photodetectors. We analyze the performance of ZnO-based photodetectors, discussing recent achievements, and comparing the characteristics of the various photodetector structures developed to date.

  13. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization

    PubMed Central

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira e

    2018-01-01

    Abstract Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 – 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties. PMID:29742262

  14. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization.

    PubMed

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira E; Silva, Eduardo Moreira da

    2018-01-01

    Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 - 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties.

  15. Cs promoted oxidation of Zn and CuZn surfaces: a combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Sanjay; Rodriguez, JoséA.; Hrbek, Jan

    1997-07-01

    The interaction of O 2 with Zn, {Cs}/{Zn} and {Cs}/{CuZn} surfaces was investigated using photoemission and ab initio self-consistent-field (SCF) calculations. On zinc films, the sticking probability of O 2 is extremely low (10 -3-10 -2), and O 2 exposures in the range of 10 3 to 10 4 langmuirs are necessary to produce a significant adsorption of oxygen and the transformation of metallic zinc into zinc oxide. The presence of sub monolayer coverages of cesium enhances the oxidation rate of zinc by 2-3 orders of magnitude. In the {Cs}/{Zn} system, the alkali atom donates electrons to zinc. This charge transfer facilitates the formation of Zn→O 2 dative bonds and breaking of the OO bond. For the coadsorption of Cs and O 2 on Zn(001), the larger the electron transfer from Zn into the O 2 (1 πg) orbitals, the bigger the adsorption energy of the molecule and the elongation of the OO bond. In general, cesium does not promote the oxidation of copper. In the {Cs}/{CuZn} system, copper withdraws electrons from zinc. The presence of copper in the {Cs}/{CuZn} system inhibits the oxidation of the Zn component compared with the {Cs}/{Zn} system by lowering the electron density on the Zn atoms. After exposing the {Cs}/{CuZn} system to O 2, zinc is oxidized at a rate that is larger than that found for clean CuZn surfaces and smaller than seen in {Cs}/{Zn} surfaces. Molecular hydrogen is found to have no effect on oxidized Cu, Zn and CuZn films. However, atomic hydrogen reduces ZnO to metallic zinc and CuO to Cu 2O. In the oxidized CuZn alloy, CuO is reduced first followed by the reduction of ZnO. A comparison of the behavior of O 2/Cs/Zn and H 2O/Cs/Zn systems shows that while O 2 causes severe oxidation of Cs promoted Zn surfaces, H 2O has little or no effect.

  16. All-wurtzite ZnO/ZnSe hetero-nanohelix: formation, mechanics and luminescence

    NASA Astrophysics Data System (ADS)

    Sun, Luwei; Ye, Zhizhen; He, Haiping

    2015-04-01

    A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures.A unique all-wurtzite ZnO/ZnSe hetero-nanohelix is formed via growing wurtzite ZnSe nanoteeth on ZnO nanobelts through a one step thermal evaporation method. The microstructure and growth mechanism of the hetero-nanohelix are investigated in detail. The formation of metastable wurtzite ZnSe is attributed to the wurtzite ZnO template. Mechanical forces, thermal expansion and polar plane in hexagonal crystals are suggested to contribute to the bending of the nanohelix. A boomerang-like structural block is proposed to assemble the zigzag ZnO nanobelts. The incorporation of Se into ZnO results in a strong orange emission. The heterostructure of the ZnO/ZnSe nanohelix is confirmed by elemental mapping and luminescence imaging. The fabrication of such a hetero-nanohelix may provide insights into the growth mechanism of the rich family of ZnO-based nanostructures. Electronic supplementary information (ESI) available: HRTEM image, EDS elemental mapping, XRD data, and calculation of bending mechanics. See DOI: 10.1039/c5nr00567a

  17. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N [Littleton, CO

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  18. Decorin is a Zn(2+) Metalloprotein

    NASA Technical Reports Server (NTRS)

    Yang, Vivian W.-C.; LaBrenz, Steven R.; Rosenberg, Lawrence C.; McQuillan, David; Hoeoek, Magnus

    1998-01-01

    Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. We here demonstrate that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells, has a high affinity for Zn(2+). Binding of Zn(2+) to decorin is demonstrated by Zn(2+) chelating chromatography and equilibrium dialyses. The Zn(2+) binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in the spacing reminiscent of a Zn finger. A recombinant 41 amino acid long peptide representing the N-terminal domain of decorin has full Zn(2+) binding activity and binds two Zn(2+) ions with an average K(D) of 3 x 10(exp -7) M. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn(2+) binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, did not bind Zn(2+) with high affinity.

  19. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  20. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  1. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes.

    PubMed

    Lin, Shi-Tsung; Thirumavalavan, Munusamy; Jiang, Ting-Yan; Lee, Jiunn-Fwu

    2014-05-25

    A complete set of experiments in two aspects of studies combining the various factors affecting both the preparation and photocatalytic activity of ZnO/Zn nanocomposite obtained using corn starch and cellulose (native and modified) as chelating agents for the photodegradation of methylene blue, and congo red was carried out and discussed. The resulting ZnO/Zn nanoparticles obtained using modified polysaccharides exhibited super catalytic capability. The ZnO/Zn nanoparticles possessed favored surface area (11.8443-15.7100m(2)/g) and pore size (12.3473-13.7453nm). The photocatalytic degradation of nano ZnO/Zn was directly proportional to the surface area of nano ZnO/Zn. Regardless of the dye pollutants, nano ZnO/Zn obtained using modified corn starch showed enhanced catalytic activity than that of cellulose and methylene blue had comparatively faster degradation rate. Our findings shed light on the optimization of both preparation conditions of photocatalysts and their photocatalytic experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    PubMed

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  3. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  4. Electroluminescence of ZnO-based semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Novodvorskii, O. A.; Lotin, A. A.; Panchenko, Vladislav Ya; Parshina, L. S.; Khaidukov, E. V.; Zuev, D. A.; Khramova, O. D.

    2011-01-01

    Using pulsed laser deposition, we have grown n-ZnO/p-GaN, n-ZnO/i-ZnO/p-GaN and n-ZnO/n-Mg0.2Zn0.8O/i-Cd0.2Zn0.8O/p-GaN light-emitting diode (LED) heterostructures with peak emission wavelengths of 495, 382 and 465 nm and threshold current densities (used in electroluminescence measurements) of 1.35, 2, and 0.48 A cm-2, respectively. Because of the spatial carrier confinement, the n-ZnO/n-Mg0.2Zn0.8O/i-Cd0.2Zn0.8O/p-GaN double heterostructure LED offers a higher electroluminescence intensity and lower electroluminescence threshold in comparison with the n-ZnO/p-GaN and n-ZnO/i-ZnO/p-GaN LEDs.

  5. Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire

    NASA Astrophysics Data System (ADS)

    Petukhov, Vladimir; Bakin, Andrey; Tsiaoussis, Ioannis; Rothman, Johan; Ivanov, Sergey; Stoemenos, John; Waag, Andreas

    2011-05-01

    The main challenge in fabrication of ZnO-based devices is the absence of reliable p-type material. This is mostly caused by insufficient crystalline quality of the material and not well-enough-developed native point defect control of ZnO. At present high-quality ZnO wafers are still expensive and ZnO heteroepitaxial layers on sapphire are the most reasonable alternative to homoepitaxial layers. But it is still necessary to improve the crystalline quality of the heteroepitaxial layers. One of the approaches to reduce defect density in heteroepitaxial layers is to introduce a strained-layer superlattice (SL) that could stop dislocation propagation from the substrate-layer interface. In the present paper we have employed fifteen periods of a highly strained SL structure. The structure was grown on a conventional double buffer layer comprising of high-temperature MgO/low-temperature ZnO on sapphire. The influence of the SLs on the properties of the heteroepitaxial ZnO layers is investigated. Electrical measurements of the structure with SL revealed very high values of the carrier mobility up to 210 cm2/Vs at room temperature. Structural characterization of the obtained samples showed that the dislocation density in the following ZnO layer was not reduced. The high mobility signal appears to come from the SL structure or the SL/ZnO interface.

  6. White organic light-emitting diodes with Zn-complexes.

    PubMed

    Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo

    2014-02-01

    This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.

  7. Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles

    PubMed Central

    Renaud, Adèle; Cario, Laurent; Rocquelfelte, Xavier; Deniard, Philippe; Gautron, Eric; Faulques, Eric; Das, Tilak; Cheviré, François; Tessier, Franck; Jobic, Stéphane

    2015-01-01

    Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles. PMID:26333510

  8. Electrodeposition of nanostructured Sn-Zn coatings

    NASA Astrophysics Data System (ADS)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  9. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application.

    PubMed

    Qian, Fang; Zhang, Changli; Zhang, Yumin; He, Weijiang; Gao, Xiang; Hu, Ping; Guo, Zijian

    2009-02-04

    The UV- and sensor-induced interferences to living systems pose a barrier for in vivo Zn(2+) imaging. In this work, an intramolecular charge transfer (ICT) fluorophore of smaller aromatic plane, 4-amino-7-nitro-2,1,3-benzoxadiazole, was adopted to construct visible light excited fluorescent Zn(2+) sensor, NBD-TPEA. This sensor demonstrates a visible ICT absorption band, a large Stokes shift, and biocompatibility. It emits weakly (Phi = 0.003) without pH dependence at pH 7.1-10.1, and the lambda(ex) and lambda(em) are 469 (epsilon(469) = 2.1 x 10(4) M(-1) cm(-1)) and 550 nm, respectively. The NBD-TPEA displays distinct selective Zn(2+)-amplified fluorescence (Phi = 0.046, epsilon(469) = 1.4 x 10(4) M(-1) cm(-1)) with emission shift from 550 to 534 nm, which can be ascribed to the synergic Zn(2+) coordination by the outer bis(pyridin-2-ylmethyl)amine (BPA) and 4-amine. The Zn(2+) binding ratio of NBD-TPEA is 1:1. By comparison with its analogues NBD-BPA and NBD-PMA, which have no Zn(2+) affinity, the outer BPA in NBD-TPEA should be responsible for the Zn(2+)-induced photoinduced electron transfer blockage as well as for the enhanced Zn(2+) binding ability of 4-amine. Successful intracellular Zn(2+) imaging on living cells with NBD-TPEA staining exhibited a preferential accumulation at lysosome and Golgi with dual excitability at either 458 or 488 nm. The intact in vivo Zn(2+) fluorescence imaging on zebrafish embryo or larva stained with NBD-TPEA revealed two zygomorphic luminescent areas around its ventricle which could be related to the Zn(2+) storage for the zebrafish development. Moreover, high Zn(2+) concentration in the developing neuromasters of zebrafish can be visualized by confocal fluorescence imaging. This study demonstrates a novel strategy to construct visible light excited Zn(2+) fluorescent sensor based on ICT fluorophore other than xanthenone analogues. Current data show that NBD-TPEA staining can be a reliable approach for the intact in vivo Zn(2

  10. Quaternary BeMgZnO by plasma-enhanced molecular beam epitaxy for BeMgZnO/ZnO heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ullah, M. B.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Smith, D. J.; Morkoç, H.

    2017-02-01

    We investigated the crystal structure, growth kinetics and electrical properties of BeMgZnO/ZnO heterostructures grown by Molecular Beam Epitaxy (MBE). Transmission Electron Microscopy (TEM) studies revealed that incorporation of Mg into the BeZnO solid solution eliminates the high angle grain boundaries that are the major structural defects in ternary BeZnO. The significant improvement of x-ray diffraction intensity from quaternary BeMgZnO alloy compared to ternary BeZnO was attributed to the reduction of lattice strain, which is present in the latter due to the large difference of covalent radii between Be and Zn (1.22 Å for Zn, 0.96 Å for Be). Incorporation of Mg, which has a larger covalent radius of 1.41Å, reduced the strain in BeMgZnO thin films and also enhanced Be incorporation on lattice sites in the wurtzite lattice. The Zn/(Be + Mg) ratio necessary to obtain single-crystal O-polar BeMgZnO on (0001) GaN/sapphire templates was found to increase with increasing substrate temperature:3.9, 6.2, and 8.3 at substrate temperatures of 450°C, 475°C, and 500°C, respectively. Based on analysis of photoluminescence spectra from Be0.03MgyZn0.97-yO and evolution of reflection high-energy electron diffraction patterns observed in situ during the MBE growth, it has been deduced that more negative formation enthalpy of MgO compared to ZnO and the increased surface mobility of Mg adatoms at elevated substrate temperatures give rise to the nucleation of a MgO-rich wurtzite phase at relatively low Zn/(Be + Mg) ratios. We have demonstrated both theoretically and experimentally that the incorporation of Be into the barrier in Zn-polar BeMgZnO/ZnO and O-polar ZnO/BeMgZnO polarization doped heterostructures allows the alignment of piezoelectric polarization vector with that of spontaneous polarization due to the change of strain sign, thus increasing the amount of net polarization. This made it possible to achieve Zn-polar BeMgZnO/ZnO heterostructures grown on Ga

  11. Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1997-03-01

    We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)

  12. Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots

    NASA Astrophysics Data System (ADS)

    Gonzales, Gavin P.; Alas, Gema; Senthil, Arjun; Withers, Nathan J.; Minetos, Christina; Sandoval, Alejandro; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Osiński, Marek

    2018-02-01

    Quantum dots (QDs) emitting in the visible are of interest for many biomedical applications, including bioimaging, biosensing, drug targeting, and photodynamic therapy. However, a significant limitation is that QDs typically contain cadmium, which makes prospects for their FDA approval very unlikely. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have also been shown to be cytotoxic. High-efficiency luminescent ZnTe-based QDs could be a reasonable alternative to Cd-containing QDs. In this paper, we present preliminary results of our recent studies of ZnTe-based QDs, including their synthesis, structural characterization, and optical properties.

  13. Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.

    PubMed

    Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua

    2009-01-01

    In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.

  14. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  15. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

    PubMed Central

    Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih

    2018-01-01

    ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671

  16. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO

    PubMed Central

    2014-01-01

    In this work we investigate the mechanism of Zn oxidation with CO2 and/or H2O to produce solar derived fuels (CO and/or H2) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO2 and H2O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al2O3 at 350–400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al2O3 diluent. PMID:26692637

  17. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO.

    PubMed

    Weibel, David; Jovanovic, Zoran R; Gálvez, Elena; Steinfeld, Aldo

    2014-11-25

    In this work we investigate the mechanism of Zn oxidation with CO 2 and/or H 2 O to produce solar derived fuels (CO and/or H 2 ) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO 2 and H 2 O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al 2 O 3 at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al 2 O 3 diluent.

  18. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil.

    PubMed

    Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke

    2017-01-01

    Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.

  19. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  20. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    SciTech Connect

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  1. Effect of ZnO facet on ethanol steam reforming over Co/ZnO

    SciTech Connect

    Yu, Ning; Zhang, He; Davidson, Stephen D.

    2016-01-01

    The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.

  2. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  3. Characterizing local EMS systems.

    DOT National Transportation Integrated Search

    2013-08-01

    Emergency medical services (EMS) systems are configured differently depending on several factors, including the size, demographics, geography, and politics of the local communities they serve. Although some information exists about the organization, ...

  4. EMS technology assessment template

    DOT National Transportation Integrated Search

    2008-01-01

    This technology assessment template is designed to evaluate information technology and EMS devices that provide data about patients, evaluation-oriented clinical patient information, or decision support tools. The template may also be used by consume...

  5. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  6. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  7. Light-controlled resistive switching characteristics in ZnO/BiFeO3/ZnO thin film

    NASA Astrophysics Data System (ADS)

    Liang, Dandan; Li, Xiaoping; Wang, Junshuai; Wu, Liangchen; Chen, Peng

    2018-07-01

    ZnO/BiFeO3/ZnO multilayer was fabricated on silicon (Si) substrate by radio-frequency magnetron sputtering system. The resistive switching characteristics in ZnO/BiFeO3/ZnO devices are observed, and the resistive switching behavior can be modulated by white light.

  8. Role of the Zn1 and Zn2 sites in metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to probe the role of the Zn(II) sites in metallo-β-lactamase L1, mononuclear metal ion containing and heterobimetallic analogs of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogs (ZnCo and ZnFe) analogs of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogs were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is five-coordinate in the resting state, proceeds through a four-coordinate species during the reaction, and is five-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate. PMID:18831550

  9. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.

    PubMed

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W

    2008-10-29

    In an effort to probe the role of the Zn(II) sites in metallo-beta-lactamase L1, mononuclear metal ion containing and heterobimetallic analogues of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogues were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is 5-coordinate in the resting state, proceeds through a 4-coordinate species during the reaction, and is 5-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate.

  10. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films

    NASA Astrophysics Data System (ADS)

    Hurma, T.

    2018-06-01

    ZnS and ZnS:Al films have been deposited by ultrasonic spray pyrolysis (USP) method. Three different atomic ratios of aluminium were used as the dopant element. The effects of aluminum incorporation on structural and optical properties of the ZnS films have been investigated. The XRD analysis showed that the cubic structure of the ZnS was not much affected by Al doping. The crystal size of the films decreased, as the Al ratio increased. Al incorporation caused an increase in the intensity of ZnS films' peaks observed in Raman spectra and nearly symmetrical peaks were observed. Al doping caused a small decrease in optical band gap of the ZnS film. The coating of ZnS:Al films on the surface was quite good and there were not any deformation in their crystallization levels. Reflectance values of films are about 5% in the visible region but a little decrease is seen with aluminum doping. We can say that Al doping tends to improve the optical properties of the ZnS:Al films when compared with the undoped ZnS.

  11. Flexible freestanding sandwich type ZnO/rGO/ZnO electrode for wearable supercapacitor

    NASA Astrophysics Data System (ADS)

    Ghorbani, Mina; Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2017-10-01

    The development of flexible supercapacitors with high energy and power density as one of the main components of wearable electronics is in an enormous interest. In this report, a unique flexible electrode based on freestanding sandwich type ZnO/rGO/ZnO paper is fabricated by a simple low cost sol-gel method for utilizing in flexible supercapacitor. ZnO layers are deposited on both sides of rGO paper which is prepared by a modified Hummer's method and evaporation induced assembly. The uniform and densely packed ZnO layers are formed on graphene oxide paper and the paper is simultaneously reduced. Structural analysis reveals the formation of ZnO thin films on both sides of rGO nanosheets, which leads to the sandwich architecture. Also, the effect of ZnO sol-gel process parameters on microstructure of sandwich paper are investigated and the most suitable condition for highest supercapacity performance is the solvent of 1-PrOH, stabilizer of TeA, sol concentration of 0.2 M, deposition speed of 30 mm min-1, and 10 deposited layers. The results of electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry confirm that the incorporation of ZnO improves the capacitive performance of rGO electrode. Moreover, ZnO/rGO/ZnO flexible electrode exhibits suitable capacitance value of 60.63 F g-1 at scan rate of 5 mV/s.

  12. ZnO-Based Amperometric Enzyme Biosensors

    PubMed Central

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing; Wang, Baoping; Jiang, Helong

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances. PMID:22205864

  13. A ZnO nanowire resistive switch

    NASA Astrophysics Data System (ADS)

    Karthik, K. R. G.; Ramanujam Prabhakar, Rajiv; Hai, L.; Batabyal, Sudip K.; Huang, Y. Z.; Mhaisalkar, S. G.

    2013-09-01

    An individual ZnO nanowire resistive switch is evaluated with Pt/ZnO nanowire/Pt topology. A detailed DC I-V curve analysis is performed to bring both the conduction mechanism and the device characteristics to light. The device is further studied at various vacuum pressures to ascertain the presence of polar charges in ZnO nanowires as the phenomenon leading to the formation of the switch. The disappearance of the resistive switching is also analyzed with two kinds of fabrication approaches Focused Ion/Electron Beam involved in the making the device and a summary of both length and fabrication dependences of resistive switching in the ZnO nanowire is presented.

  14. Sodium doping in ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1-3.5) × 1017 cm-3. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a NaZn level at ˜(220-270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4-5) orders of magnitude at room temperature.

  15. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  16. Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroshi; Aoki, Masaharu

    1981-01-01

    Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.

  17. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl 2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Light-mediated Zn uptake in photosynthetic biofilm

    USGS Publications Warehouse

    Morris, J.M.; Farag, A.M.; Nimick, D.A.; Meyer, J.S.

    2006-01-01

    Our experiments conducted under controlled laboratory conditions demonstrate diel uptake and release of zinc (Zn) in lab-cultured biofilm exposed to Zn concentrations that are present in some mining-impacted streams (1-2 mg Zn/l). Specifically, at constant pH, temperature, and aqueous Zn concentrations in the exposure water, biofilm accumulated Zn during the light periods of the photocycle and released Zn during the dark periods of the photocycle. The range of Zn uptake measured in biofilm during one light period in these laboratory experiments (0.6-8.3 mg Zn/g dw biofilm) encompassed the estimated Zn uptake (1.5-3.7 mg Zn/g dw biofilm) necessary to attribute aqueous diel Zn cycling in a mining-impacted stream in Montana (High Ore Creek) to uptake in biofilm. This is relevant to in situ studies of diel Zn cycling because we controlled three important parameters that naturally fluctuate daily in the field, thus demonstrating the potential for biofilm to remove large percentages of Zn from some mining-impacted streams. Researchers, modelers, regulators, and reclamation teams working in metals-contaminated streams should be aware of diel metal cycling, because the highest Zn concentrations (and therefore, perhaps the most toxic conditions) in the water column might occur at night, and the greatest exposure of grazers of phototrophs to dietborne Zn might occur during daylight hours. ?? Springer 2006.

  19. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  20. Source Identification of Zn Contamination around a Zn-smelting Facility in Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Jeon, S. K.

    2016-12-01

    With massive production of Zn for various industrial purposes, Zn release into the environment becomes highly possible, some of which might require a proper countermeasure depending on the residual concentration in environmental media. In order to set up an effective countermeasure, identification of contaminant source should be essential for determining the target object to be managed, and delineating the extent of necessary remedial work. In this study, we focus on a Zn-smelting facility located in eastern Korea where Zn concentrations in surrounding soils have been reported to exceed the contamination criteria. An abandoned mine which had been explored for Zn ores was located adjacent to the facility, and background concentration of Zn in the area was naturally high. The objective of the present study is to identify the major source of Zn contamination in the area, and to estimate the relative contributions of multiple sources, if so. In order to achieve these goals, we analyzed and compared the stable isotope ratios of Pb in the soil samples collected at different distances from the facility and the Zn concentrates (ZnS, sphalerite) of raw material in the facility. The Pb isotope ratios were further investigated by performing sequential extraction for each sample and comparing the isotopes ratios observed in each fraction of soil. In addition, possible presence of ZnS in the samples, which could be an evidence of Zn contamination by the smelting facility, was estimated by X-ray diffraction (XRD) analysis and scanning electron microscopy equipped with energy dispersive X-ray spectrometry (SEM-EDS) after separating the soil sample into the fractions with different particle sizes

  1. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    PubMed Central

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid

  2. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    PubMed

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for

  3. Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir

    2017-02-01

    In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.

  4. Zn(2+) release behavior and surface characteristics of Zn/LDPE nanocomposites and ZnO/LDPE nanocomposites in simulated uterine solution.

    PubMed

    Yang, Zhihong; Xie, Changsheng; Xia, Xianping; Cai, Shuizhou

    2008-11-01

    To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn(2+) release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn(2+) release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn(2+) release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn(2+) release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn(2+) at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 mum. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.

  5. Enhanced photoluminescence properties of Al doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Ding, J. J.

    2018-01-01

    Al doped ZnO films are fabricated by radio frequency magnetron sputtering. In general, visible emission is related to various defects in ZnO films. However, too much defects will cause light emission quench. So it is still a controversial issue to control appropriate defect concentrations. In this paper, based on our previous results, appropriate Al doping concentration is chosen to introduce more both interstitial Zn and O vacancy defects, which is responsible for main visible emission of ZnO films. A strong emission band located at 405 nm and a long tail peak is observed in the samples. As Al is doped in ZnO films, the intensity of emission peaks increases. Zn interstitial might increase with the increasing Al3+ substitute because ZnO was a self-assembled oxide compound. So Zn interstitial defect concentration in Al doped ZnO films will increase greatly, which results in the intensity of emission peaks increases.

  6. In situ Zn/ZnO mapping elucidating for "shape change" of zinc electrode

    NASA Astrophysics Data System (ADS)

    Nakata, Akiyoshi; Arai, Hajime; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2018-04-01

    For the use of the zinc anode in secondary batteries, it is necessary to solve the "shape change" deterioration issue in that zinc species agglomerate in the center of the electrode to fade the available capacity. The local chemical compositions of the zinc electrodes during "shape change" were precisely analyzed using the synchrotron X-ray diffraction mapping analysis of practical zinc-nickel cells in a non-destructive manner. The in situ Zn/ZnO mapping shows that metallic Zn deposition chiefly occurs in the periphery of ZnO while ZnO are left in the center of electrode like a hill on charging. On discharging, the ZnO hill grows to the perpendicular direction on the electrode while metallic zinc is oxidized and dissolved. These findings allow us to propose a mechanism for the shape change; thus dissolved zincate species are decomposed on the ZnO hill during discharging to be accumulated in the center of the electrode. It is suggested that suppressing zincate dissolution and non-uniform zinc deposition slow the growth rate of the ZnO hill to enhance the cyclability of zinc-based secondary batteries.

  7. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGES

    Huso, Jesse; Morrison, John L.; Che, Hui; ...

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  8. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  9. MSM optical detector on the basis of II-type ZnSe/ZnTe superlattice

    SciTech Connect

    Kuznetzov, P. I., E-mail: pik218@ire216.msk.su; Averin, S. V., E-mail: sva278@ire216.msk.su; Zhitov, V. A.

    2017-02-15

    On the basis of a type-II ZnSe/ZnTe superlattice, a MSM (metal—semiconductor–metal) photodetector is fabricated and investigated. The detector features low dark currents and a high sensitivity. The spectral characteristic of the detector provides the possibility of the selective detection of three separate spectral portions of visible and near-infrared radiation.

  10. ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect

    DOE PAGES

    Liu, Wenyan; Zhang, Yu; Wang, Dan; ...

    2015-08-13

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half-maximum (FWHM) and power efficiencies (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed littlemore » due to the low emission temperature coefficients of 0.022, 0.050 and 0.068 nm/°C for red-, yellow- and green-emitting ZnCuInS/ZnSe/ZnS QDs. Lastly this indicates that ZnCuInS/ZnSe/ZnS QDs are more suitable for down-conversion LEDs compared to CdSe QDs.« less

  11. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  12. Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS

    NASA Astrophysics Data System (ADS)

    Jang, Eue-Soon; Won, Jung-Hee; Kim, Young-Woon; Cheng, Zhen; Choy, Jin-Ho

    2010-08-01

    Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na 2CO 3. As-synthesized ZnO nanobelts were grown along not only the [0 1 -1 0], but also the [2 -1 -1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.

  13. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis thaliana Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil.

    PubMed

    Kühnlenz, Tanja; Hofmann, Christian; Uraguchi, Shimpei; Schmidt, Holger; Schempp, Stefanie; Weber, Michael; Lahner, Brett; Salt, David E; Clemens, Stephan

    2016-11-01

    Phytochelatin (PC) synthesis is essential for the detoxification of non-essential metals such as cadmium (Cd). In vitro experiments with Arabidopsis thaliana seedlings had indicated a contribution to zinc (Zn) tolerance as well. We addressed the physiological role of PC synthesis in Zn homeostasis of plants under more natural conditions. Growth responses, PC accumulation and leaf ionomes of wild-type and AtPCS1 mutant plants cultivated in different soils representing adequate Zn supply, Zn deficiency and Zn excess were analyzed. Growth on Zn-contaminated soil triggers PC synthesis and is strongly impaired in PC-deficient mutants. In fact, the contribution of AtPCS1 to tolerating Zn excess is comparable with that of the major Zn tolerance factor MTP1. For plants supplied with a normal level of Zn, a significant reduction in leaf Zn accumulation of AtPCS1 mutants was detected. In contrast, AtPCS1 mutants grown under Zn-limited conditions showed wild-type levels of Zn accumulation, suggesting the operation of distinct Zn translocation pathways. Contrasting phenotypes of the tested AtPCS1 mutant alleles upon growth in Zn- or Cd-contaminated soil indicated differential activation of PC synthesis by these metals. Experiments with truncated versions identified a part of the AtPCS1 protein required for the activation by Zn but not by Cd. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. EMS Agenda for the Future

    DOT National Transportation Integrated Search

    1996-09-01

    The National Highway Traffic Safety Administration (NHTSA) and the Health Resources and Services Administration, Maternal and Child Health Bureau sponsored The EMS Agenda for the Future. This document focuses on aspects of EMS related to emergency ca...

  15. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  16. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  17. Influence of Frequency-Dependent Dielectric Loss on Electrorheology of Surface Modified ZnO Nanofluids

    NASA Astrophysics Data System (ADS)

    Zaid, H. M.; Adil, M.; Lee, KC; Latiff, N. R. A.

    2018-05-01

    The shear dependent viscosity change in dielectric nanofluids under the applied electric field, provide potentials for prospect applications especially in enhanced oil recovery. When nanofluids are activated by an applied electric field, it behaves as a non-Newtonian fluid under electrorheological effect (ER) by creating the chains of nanoparticles. In this research, the effect of dielectric loss on the electrorheological characteristic of dielectric nanofluids (NFs) was studied, corresponding to the applied frequency of 167 and 18.8 MHz. For this purpose, electrorheological characteristics of ZnO (55.7 and 117.1 nm) nanofluids with various nanoparticles (NPs) concentration (0.1, 0.05, 0.01 wt. %) were measured. The measurement was done via solenoid based EM transmitter under salt water as a propagation medium. The result shows that the applied electric field caused an apparent increase on the relative viscosity of ZnO NFs due to electrorheological effect. However, the relative viscosity shows a higher increment at 167 MHz due to the greater dielectric loss, compared to 18.8 MHz. The high dielectric loss allows the dipole moments to rotationally polarize at the interfaces of nanoparticles, which create stronger chains that align with the applied electric field. Additionally, the relative viscosity demonstrated an increment with the increase in particle size of ZnO nanoparticles from 55.7 to 117.1 nm. While the viscosity of nanofluid also indicated the high dependence on particle loading.

  18. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  19. Structural and Optical Studies of ZnCdSe/ZnSe/ZnMgSSe Separate Confinement Heterostructures with Different Buffer Layers

    NASA Astrophysics Data System (ADS)

    Tu, Ru-Chin; Su, Yan-Kuin; Huang, Ying-Sheng; Chen, Giin-Sang; Chou, Shu-Tsun

    1998-09-01

    Detailed structural and optical studies of ZnCdSe/ZnSe/ZnMgSSe separate confinementheterostructures (SCH) grown on ZnSe, ZnSe/ZnSSe strained-layer superlattices (SLS),and GaAs buffer layers at the II VI/GaAs interface have been carried out by employingtransmission electron microscopy, variable temperature photoluminescence (PL), andcontactless electroreflectance (CER) measurements. A significant improvement onthe defect reduction and the optical quality has been observed by using either theZnSe/ZnSSe SLS or GaAs as the buffer layers when compared to that of the sample usingonly ZnSe as the buffer layer. However, the sample grown with the SLS buffer layersreveals a room temperature PL intensity higher than that of the sample grown witha GaAs buffer layer, which may still suffer from the great ionic differences betweenthe II V and III V atoms. Using 15 K CER spectra, we have also studied variousexcitonic transitions originating from strained Zn0.80Cd0.20Se/ZnSe single quantumwell in SCH with different buffer layers. An analysis of the CER spectra has ledto the identification of various excitonic transitions, mnH (L), between the mthconduction band state and the nth heavy (light)-hole band state. An excellentagreement between experiments and theoretical calculations based on the envelopefunction approximation model has been achieved.

  20. Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.

    2011-05-01

    ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.

  1. Electronic topological transitions in Zn under compression

    NASA Astrophysics Data System (ADS)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  2. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.

    2014-01-01

    ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.

  3. Cyclotron production of 61Cu using natural Zn & enriched 64Zn targets

    NASA Astrophysics Data System (ADS)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I.

    2012-12-01

    Copper-61 (61Cu) shares with 64Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study 61Cu was produced using the 64Zn(p,α)61Cu reaction on natural Zn or enriched 64Zn targets. The enriched 64Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30μA; at 11.7, 14.5 or 17.6MeV over 30-60min. The 61Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The 64Zn target material was recovered after each run, for re-use. In a direct comparison with enriched 64Zn-target results, 61Cu production using the cheaper natZn target proved to be an effective alternative.

  4. Zn1-xCdxSe/ZnSe multiple quantum well photomodulators

    NASA Astrophysics Data System (ADS)

    Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo

    1996-10-01

    ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.

  5. Electron confinement at diffuse ZnMgO/ZnO interfaces

    NASA Astrophysics Data System (ADS)

    Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.

    2017-01-01

    Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.

  6. Identification of Zn vacancies in ZnTe doped with Cl and I

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, Palakkal; Alatalo, Matti; Wang, Wen

    1997-03-01

    The doping difficulties of II-VI semiconductors are well known. For example, ZnTe can be doped easily to have p-type conductivity but not n-type. We examined Cl and I doped ZnTe using positron annihilation spectroscopy to understand the role of vacancies in the compensation mechanism. The annihilation line shapes from inner-shell electrons can be used for elemental identification[1]. Results from ZnTe:Cl and ZnTe:I show an enhancement of annihilations with Te electrons compared to undoped samples, and is explained as arising due to first neighbor of a Zn vacancy. Theoretical calculations of the annihilation line shapes from bulk ZnTe and Zn and Te vacancies will also be presented. This work was supported in part by the US DOE under contract No. DE-AC02-76CH00016. [1] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, and K.G. Lynn, Phys. Rev. Lett. Vol. 77, 2097 (1996).

  7. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  8. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    SciTech Connect

    Asad, A. H.; Smith, S. V.; Chan, S.

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cumore » (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.« less

  9. Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun; Su, Ching-Hua; Lehoczky, S. L.

    1999-01-01

    ZnSe and ZnSeTe single crystals were grown by physical vapor transport (PVT) technique horizontally and vertically. The grown ZnSe and ZnSeTe single crystals were characterized by low temperature photoluminescence at 5 to 10 K using the 3.4 eV emission of an argon laser. The intensity of the sharp near band edge defect lines at 2.799, 2.783 eV and the intrinsic free exciton line at 2.802 eV were mapped on various crystal surfaces with different orientations to the gravitational field. The results show the effects of gravity vector orientation on the defect segregation. Comparison of the photoluminescence spectra of the ZeSe crystal before and after annealing in the Zn vapor shows that the 2.783 eV line of ZnSe crystal is related to the zinc vacancy. The photoluminescence spectra of the ternary ZnSeTe crystal were characterized by a single broad band from 2.2 to 2.4 eV, with a Full Width at Half Maximum (FWHM) of about 100 meV. The temperature dependence of the peak position and intensity were determined from 7 to 150 K.

  10. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.

    PubMed

    Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude

    2015-04-01

    Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.

  11. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.

    PubMed

    Zhang, Siwen; Yin, Bosi; Jiang, He; Qu, Fengyu; Umar, Ahmad; Wu, Xiang

    2015-02-07

    Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively. A metal catalyst (Au) to form a binary alloy has been used in the process. The as-obtained ZnO/ZnS products are characterized by using a series of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion X-ray spectroscopy (EDS), Raman spectroscopy and photoluminescence. A possible growth mechanism is temporarily proposed. The hybrid structures are also directly functionalized as supercapacitor (SC) electrodes without using any ancillary materials such as carbon black or binder. Results show that the as-synthesized ZnO/ZnS heterostructures exhibit a greatly reduced ultraviolet emission and dramatically enhanced green emission compared to pure ZnO nanorods. The SCs data demonstrate high specific capacitance of 217 mF cm(-2) at 1 mA cm(-2) and excellent cyclic performance with 82% capacity retention after 2000 cycles at a current density of 2.0 mA cm(-2).

  12. Bipolar Ag-Zn battery

    NASA Astrophysics Data System (ADS)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  13. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  14. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  15. Investigation of high density two-dimensional electron gas in Zn-polar BeMgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Ding, K.; Ullah, M. B.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2017-10-01

    Zn-polar BeMgZnO/ZnO heterostructures grown by molecular beam epitaxy on high resistivity GaN templates producing high-density two-dimensional electron gas (2DEG) are investigated. This is motivated by the need to reach plasmon-longitudinal optical (LO) phonon resonance for attaining minimum LO phonon lifetime. Achievement of high 2DEG concentration in MgZnO/ZnO heterostructures requires growth of the MgZnO barrier at relatively low temperatures, which compromises the ternary quality that in turn hinders potential field effect transistor performance. When this ternary is alloyed further with BeO, the sign of strain in the BeMgZnO barrier on ZnO switches from compressive to tensile, making the piezoelectric and spontaneous polarizations to be additive in the BeMgZnO/ZnO heterostructures much like the Ga-polar AlGaN/GaN heterostructures. As a result, a 2DEG concentration of 1.2 × 1013 cm-2 is achieved in the Be0.03Mg0.41Zn0.56O/ZnO heterostructure. For comparison, a 2DEG concentration of 7.7 × 1012 cm-2 requires 2% Be and 26% Mg in the barrier, whereas the same in the MgZnO/ZnO system would require incorporation of more than 40% Mg into the barrier, which necessitates very low growth temperatures. Our results are consistent with the demands on achieving short LO phonon lifetimes through plasmon-LO phonon resonance for high carrier velocity.

  16. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  17. Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.

    Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

  18. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    PubMed

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  19. Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology.

    PubMed

    Wang, Jian; Wang, Aili; Wang, Wen-Xiong

    2017-10-01

    Waterborne nanotoxicology of zinc oxide nanoparticles (nano-ZnOs) has been extensively studied over the past decade, whereas their potential dietary toxicity and applications were seldom investigated. In the present study, we systematically investigated both short-term bioavailability and chronic effects of nano-ZnOs to two marine fish (marine medaka Oryzias melastigma and red drum Sciaenops ocellatus). At normal supplementary level (80 mg Zn/kg), red drum (with a stomach) had similar assimilation efficiencies of nano-ZnOs and ZnCl 2 . Correspondingly, in vitro digestion experiments showed the continuous dissolution of nano-ZnOs in acid environment. In contrast, nano-ZnOs were more bioavailable than ZnCl 2 to medaka (stomach-less) at 80 mg Zn/kg supplementary level. There results were further validated by using bulk-ZnOs. Chronic dietary exposure to nano-ZnOs (80 mg/kg) significantly enhanced the antioxidative defenses in medaka, with no negative effect on fish growth. Beneficial effects disappeared in the high dietary nano-ZnOs (300 mg/kg) treatment. For the first time, we provided direct evidence that nano-ZnOs was more bioavailable than ZnCl 2 and bulk-ZnOs to stomach-less fish at normal dietary Zn inclusion level (<80 mg/kg), with potential benefits on antioxidative defenses. It is also necessary to pay attention to the dietary nano-ZnOs toxicity on stomach-less fish due to the presence of real 'nano-effects.'

  20. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  1. Zn2+ at a cellular crossroads

    PubMed Central

    Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.

    2016-01-01

    Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344

  2. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  3. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil.

    PubMed

    García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D

    2015-11-01

    This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

  4. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  5. Kinetic control on Zn isotope signatures recorded in marine diatoms

    NASA Astrophysics Data System (ADS)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  6. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  7. Electroluminescence of ZnO-based semiconductor heterostructures

    SciTech Connect

    Novodvorskii, O A; Lotin, A A; Panchenko, Vladislav Ya

    2011-01-31

    Using pulsed laser deposition, we have grown n-ZnO/p-GaN, n-ZnO/i-ZnO/p-GaN and n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN light-emitting diode (LED) heterostructures with peak emission wavelengths of 495, 382 and 465 nm and threshold current densities (used in electroluminescence measurements) of 1.35, 2, and 0.48 A cm{sup -2}, respectively. Because of the spatial carrier confinement, the n-ZnO/n-Mg{sub 0.2}Zn{sub 0.8}O/i-Cd{sub 0.2}Zn{sub 0.8}O/p-GaN double heterostructure LED offers a higher electroluminescence intensity and lower electroluminescence threshold in comparison with the n-ZnO/p-GaN and n-ZnO/i-ZnO/p-GaN LEDs. (lasers)

  8. Photoluminescence of Zn-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1974-01-01

    The photoluminescence spectrum of Zn-implanted GaN peaks at 2.87 eV at room temperature. The emission efficiency decreases linearly with the logarithm of the Zn concentration in the range from 1 x 10 to the 18th to 20 x 10 to the 18th Zn/cu cm.

  9. Nanofibrillated Cellulose-Assisted Synthesis of Fiber-Like ZnO-ZnFe2O4 Composites with Enhanced Visible-Light-Driven Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Cai, Aijun; Guo, Aiying; Du, Liqiang; Chang, Yongfang; Wang, Xiuping

    2018-05-01

    In this article, fiber-like ZnO-ZnFe2O4 composites are obtained by using nanofibrillated cellulose as a biotemplate. The as-prepared composites exhibit strong absorbance in the visible-light region. The ZnO-ZnFe2O4 composites exhibit a similar bandgap (1.88 eV) compared with the ZnFe2O4 (1.85 eV). The ZnO-ZnFe2O4 composites can be easily collected by an external magnet, which contributes to improving the utilization efficiency of the photocatalysts. The photocatalytic activity of the ZnO-ZnFe2O4 catalysts was evaluated by photodegrading rhodamine B (RhB) under visible-light irradiation. Compared with ZnO and ZnFe2O4, the ZnO-ZnFe2O4 catalysts show higher photocatalytic activity due to the efficient electron-hole separation.

  10. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  11. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  12. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy, Ung Thi Dieu; Reiss, Peter; Liem, Nguyen Quang

    2010-11-01

    Chemically synthesized InP/ZnS core/shell quantum dots (QDs) are studied using time-resolved photoluminescence spectroscopy and x-ray diffraction. Zinc stearate, which is added during the synthesis of the InP core, significantly improves the optical characteristics of the QDs. The luminescence quantum yield (QY) reaches 60%-70% and the emission is tunable from 485 to 586 nm by varying the Zn2+:In3+ molar ratio and growth temperature. The observed increased Stokes shift, luminescence decay time, and QY in the presence of Zn are rationalized by the formation of an In(Zn)P alloy structure that causes band-edge fluctuation to enhance the confinement of the excited carriers.

  13. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  14. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    NASA Astrophysics Data System (ADS)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  15. Study of extending carrier lifetime in ZnTe quantum dots coupled with ZnCdSe quantum well

    NASA Astrophysics Data System (ADS)

    Fan, W. C.; Chou, W. C.; Lee, J. D.; Lee, Ling; Phu, Nguyen Dang; Hoang, Luc Huy

    2018-03-01

    We demonstrated the growth of a self-assembled type-II ZnTe/ZnSe quantum dot (QD) structure coupled with a type-I Zn0.88Cd0.12Se/ZnSe quantum well (QW) on the (001) GaAs substrate by molecular beam epitaxy (MBE). As the spacer thickness is less than 2 nm, the carrier lifetime increasing from 20 ns to nearly 200 ns was successfully achieved. By utilizing the time-resolved photoluminescence (TRPL) and PL with different excitation power, we identify the PL emission from the coupled QDs consisting of two recombination mechanisms. One is the recombination between electrons in ZnSe barrier and holes confined within ZnTe QDs, and the other is between electrons confined in Zn0.88Cd0.12Se QW and holes confined within ZnTe QDs. According to the band diagram and power-dependent PL, both of the two recombinations reveal the type-II transition. In addition, the second recombination mechanism dominates the whole carrier recombination as the spacer thickness is less than 2 nm. A significant extension of carrier lifetime by increasing the electron and hole separation is illustrated in a type-II ZnTe/ZnSe QD structure coupling with a type-I ZnCdSe/ZnSe QW. Current sample structure could be used to increase the quantum efficient of solar cell based on the II-VI compound semiconductors.

  16. Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono

    2018-03-01

    Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.

  17. XTEN Nationwide EMS Proposal.

    DTIC Science & Technology

    1979-01-01

    revenue producers.20 It is the co on carriers position to sell as much service as possible to users of the network while DCS is designed to provide...escalating costs in the United States Postal Service ( USPS ) (due to its labor intensive nature) and declining costs in the EMS industries (due to...Carrier Assoc. for Tele- communications (CCAT), GTE Service Corporation (GTE), Litton Micro- wave Cooking Products , Inc., Microband Corporation of American

  18. Ag-ZnO nanostructure for ANTA explosive molecule detection

    SciTech Connect

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  19. Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta.

    PubMed

    Ling, Shi-Cheng; Luo, Zhi; Chen, Guang-Hui; Zhang, Dian-Guang; Liu, Xu

    2018-02-01

    The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L -1 , respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  1. Theory of copper impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.

    Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.

  2. Electrochemical modification of properties of ZnO films

    NASA Astrophysics Data System (ADS)

    Abe, Koji; Okubo, Takamasa; Ishikawa, Hirohito

    2017-12-01

    The properties of Al-doped ZnO films and Li- and Al-doped ZnO films were modified by electrochemical treatment. A constant current was applied between a ZnO film and a Pt electrode in an electrolyte solution. The sheet resistance of the ZnO film increased and decreased depending on the direction of current flow during the electrochemical treatment. When the ZnO film was used as a cathode (forward biased condition), the sheet resistance of the ZnO film decreased with increasing treatment time. The optical bandgap of the H2-annealed ZnO film also depended on the direction of current flow and increased under the forward biased condition. The electrochemical treatment caused the Burstein-Moss effect.

  3. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  4. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  5. Nanostructured hybrid ZnO thin films for energy conversion

    PubMed Central

    2011-01-01

    We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled. PMID:21711909

  6. ZnO:Zn/6LiF scintillator-A low afterglow alternative to ZnS:Ag/6LiF for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Sykora, G. Jeff; Schooneveld, Erik M.; Rhodes, Nigel J.

    2018-03-01

    Current ZnS:Ag/6LiF based scintillation detectors are often count rate limited by the long lifetime afterglow in the scintillator. Despite this drawback, new instruments at neutron scattering facilities, like ISIS in the UK, would still like to use ZnS:Ag/6LiF detectors due to their low gamma sensitivity, high light output, simplicity of detector design and relatively inexpensive production. One particular advantage of ZnS:Ag/6LiF detectors is their ability to provide strong pulse shape discrimination between neutrons and gammas. Despite the advantages of these detectors, it is becoming clear that new and upgraded instruments will be limited by the count rate capability of ZnS:Ag/6LiF, so an alternative scintillator technology with equivalent simplicity is being sought. ZnO:Zn/6LiF is investigated here as a low afterglow alternative to ZnS:Ag/6LiF. Basic scintillation properties of ZnO:Zn are studied and are discussed. Pulse shape discrimination between neutrons and gammas is explored and taken advantage of through simple single photon counting methods. A further step toward a realistic detector for neutron scattering is also taken by fiber coupling the ZnO:Zn/6LiF to a PMT. In an initial study of this fiber coupled configuration, 60Co gamma sensitivity of ∼ 7 × 10-6 is shown and improvements in count rate capability of at least a factor of 6 over ZnS:Ag/6LiF based neutron detectors are demonstrated.

  7. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    PubMed

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  8. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux

  9. Zn influence on the plasticity of Cdo{0.96}Zn{0.04}Te

    NASA Astrophysics Data System (ADS)

    Imhoff, D.; Zozime, A.; Triboulet, R.

    1991-11-01

    Compression tests were performed on CdTe and Cd{0.96}Zn{0.04}Te to elucidate the mechanism through which Zn inhibits dislocation formation and motion during CdTe crystal growth, thus leading to a decreasing of the dislocation density. Uniaxial deformation experiments performed with CdTe and CdZnTe at constant strain rate within a wide temperature range (0. 14;T_m le T le 0.87;T_m,;T_m = 1 365; K), have revealed a strong hardening effect of Zn within the whole temperature range. They also showed in CdZnTe a Portevin Le Chatelier effect between 770 K and 920 K confirmed by static strain aging experiments. Critical resolved shear stress (C.R.S.S.) values at T = 195; K and static strain aging results with CdZnTe point to size effect as the dominant interaction between Zn and dislocations. Thermal activation parameters were estimated in both materials. La déformation plastique a été utilisée comme approche des mécanismes par lesquels le zinc entrave le mouvement des dislocations au cours du processus de croissance cristalline de CdTe massif, réduisant ainsi la densité de dislocations. Les expériences de compression uniaxiale à vitesse constante, réalisées dans CdTe et CdZnTe entre 0,14 T_f et 0,87 T_f ont montré que le zinc est responsable d'un fort durcissement sur tout le domaine de températures étudié. Les expériences de déformation dans CdZnTe ont mis en évidence un phénomène du type Portevin Le Chatelier entre 770 K et 920 K, confirmé par des expériences de vieillissement statique. Les valeurs de scission critique tau_c à 195 K et les résultats des expériences de vieillissement statique dans CdZnTe sont compatibles avec un effet de taille dominant pour les interactions Zndislocations. Les paramètres d'activation thermique ont été estimés dans les deux matériaux.

  10. Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer.

    PubMed

    Izaki, Masanobu; Chizaki, Ryo; Saito, Takamasa; Murata, Kazufumi; Sasano, Junji; Shinagawa, Tsutomu

    2013-10-09

    We report a hybrid photovoltaic device composed of a 3.3 eV bandgap zinc oxide (ZnO) semiconductor and metal-free phthalocyanine layers and the effects of the insertion of the highly resistive ZnO buffer layer on the electrical characteristics of the rectification feature and photovoltaic performance. The hybrid photovoltaic devices have been constructed by electrodeposition of the 300 nm thick ZnO layer in a simple zinc nitrate aqueous solution followed by vacuum evaporation of 50-400 nm thick-phthalocyanine layers. The ZnO layers with the resistivity of 1.8 × 10(3) and 1 × 10(8) Ω cm were prepared by adjusting the cathodic current density and were installed into the hybrid photovoltaic devices as the n-type and buffer layer, respectively. The phthalocyanine layers with the characteristic monoclinic lattice showed a characteristic optical absorption feature regardless of the thickness, but the preferred orientation changed depending on the thickness. The ZnO buffer-free hybrid 50 nm thick phthalocyanine/n-ZnO photovoltaic device showed a rectification feature but possessed a poor photovoltaic performance with a conversion efficiency of 7.5 × 10(-7) %, open circuit voltage of 0.041 V, and short circuit current density of 8.0 × 10(-5) mA cm(-2). The insertion of the ZnO buffer layer between the n-ZnO and phthalocyanine layers induced improvements in both the rectification feature and photovoltaic performance. The excellent rectification feature with a rectification ratio of 3188 and ideally factor of 1.29 was obtained for the hybrid 200 nm thick phthalocyanine/ZnO buffer/n-ZnO photovoltaic device, and the hybrid photovoltaic device possessed an improved photovoltaic performance with the conversion efficiency of 0.0016%, open circuit voltage of 0.31 V, and short circuit current density of 0.015 mA cm(-2).

  11. Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature

    NASA Astrophysics Data System (ADS)

    Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.

  12. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    SciTech Connect

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  13. Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core-Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array.

    PubMed

    Nie, Kui-Ying; Tu, Xuecou; Li, Jing; Chen, Xuanhu; Ren, Fang-Fang; Zhang, Guo-Gang; Kang, Lin; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2018-06-14

    The ability to manipulate light-matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core-shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core-shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light-matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.

  14. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots

    PubMed Central

    2017-01-01

    In this work, we demonstrate that a preferential Ga-for-Zn cation exchange is responsible for the increase in photoluminescence that is observed when gallium oleate is added to InZnP alloy QDs. By exposing InZnP QDs with varying Zn/In ratios to gallium oleate and monitoring their optical properties, composition, and size, we conclude that Ga3+ preferentially replaces Zn2+, leading to the formation of InZnP/InGaP core/graded-shell QDs. This cation exchange reaction results in a large increase of the QD photoluminescence, but only for InZnP QDs with Zn/In ≥ 0.5. For InP QDs that do not contain zinc, Ga is most likely incorporated only on the quantum dot surface, and a PL enhancement is not observed. After further growth of a GaP shell and a lattice-matched ZnSeS outer shell, the cation-exchanged InZnP/InGaP QDs continue to exhibit superior PL QY (over 70%) and stability under long-term illumination (840 h, 5 weeks) compared to InZnP cores with the same shells. These results provide important mechanistic insights into recent improvements in InP-based QDs for luminescent applications. PMID:28706347

  15. ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun

    2012-08-01

    ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.

  16. Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO.

    PubMed

    Tuomisto, F; Ranki, V; Saarinen, K; Look, D C

    2003-11-14

    We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (E(el)=2 MeV, fluence 6 x 10(17) cm(-2)) ZnO samples. The Zn vacancies are identified at concentrations of [V(Zn)] approximately 2 x 10(15) cm(-3) in the as-grown material and [V(Zn)] approximately 2 x 10(16) cm(-3) in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.

  17. Effects of the ZnO layer on the structure and white light emission properties of a ZnS:Mn/GaN nanocomposite system.

    PubMed

    Wang, Cai-Feng; Hu, Bo

    2017-10-01

    ZnO films were inserted between the ZnS:Mn films and GaN substrates by pulsed laser deposition (PLD). The structure, morphology, and optical properties of the ZnS:Mn/ZnO/GaN nanocomposite systems have been investigated. X-ray diffraction results show that there are three diffraction peaks located at 28.4°, 34.4°, and 34.1°, which correspond to the β-ZnS(111), ZnO(002), and GaN(002) planes, respectively. Due to the insertion of ZnO films, the diffraction peak intensity of ZnS:Mn in ZnS:Mn/ZnO/GaN is stronger than that of ZnS:Mn in ZnS:Mn/GaN, and the full width at half-maximum is smaller. Though the transmittance of ZnS:Mn/ZnO films is slightly lower than that of ZnS:Mn films, the transmittance is still higher than 80%. Compared with ZnS:Mn/GaN, an ultraviolet (UV) emission at 387 nm (originated from the near-band emission of ZnO) and a green light emission at about 520 nm appeared in the photoluminescence (PL) spectra of ZnS:Mn/ZnO/GaN, in addition to the blue emission at 435 nm and the orange-red emission at 580 nm. The emission at 520 nm may be related to the deep-level emission from ZnO and the interface of ZnS:Mn/ZnO. The PL spectrum of ZnS:Mn/ZnO/GaN covers the visible region from the blue light to the red light (400-700 nm), and its color coordinate and color temperature are (0.3103,0.3063) and 6869 K, respectively, presenting strong white light emission.

  18. Homologous compounds of type ARO3(ZnO)m in the system Ga-Sn-Zn-O

    NASA Astrophysics Data System (ADS)

    Eichhorn, Simon; Schmid, Herbert; Assenmacher, Wilfried; Mader, Werner

    2017-02-01

    Several members of hitherto unknown homologous compounds [Sn0.5Zn0.5]GaO3(ZnO)m (m=3-7) of the general formula ARO3(ZnO)m were prepared by solid state methods from the binary oxides in sealed Pt-tubes. UV-vis measurements confirm these compounds to be transparent oxides with an optical band gap in the UV region with Eg≈3 eV. Rietveld refinements on powder samples of [Sn0.5Zn0.5]GaO3(ZnO)m proved the compounds to be isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced statistically by Sn4+ and Zn2+ in equal amounts preserving an average charge of 3+. Additionally, the structure of [Sn0.5Zn0.5]GaO3(ZnO)3 has been determined from flux-grown single crystals by X-ray diffraction (R 3 ̅ m , Z=3, a=3.2387(7) Å, c=41.78(1) Å, 19 parameters, 201 independent reflections, R1=0.047, wR2=0.074). The compound [Sn0.5Zn0.5]GaO3(ZnO)3 is isostructural with InGaO3(ZnO)3. [Sn0.5Zn0.5]GaO3(ZnO)3 was furthermore analyzed by High Angle Annular Dark Field (HAADF) scanning TEM and EELS spectroscopic imaging, supporting the structure model derived from X-ray diffraction data.

  19. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution.

    PubMed

    Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan

    2010-03-10

    A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.

  20. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  1. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  2. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures

    NASA Astrophysics Data System (ADS)

    Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.

    2017-12-01

    The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7  ×  104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

  3. Effect of aging on ZnO and nitrogen doped P-Type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Bhunia, S.

    2012-06-01

    The withholding of p-type conductivity in as-prepared and 3% nitrogen (N) doped zinc oxide (ZnO) even after 2 months of preparation was systematically studied. The films were grown on glass substrates by pulsed laser deposition (PLD) at 350 °C under different conditions, viz. under vacuum and at oxygen (O) ambience using 2000 laser pulses. In O ambience for as-prepared ZnO the carrier concentration reduces and mobility increases with increasing number of laser shots. The resistivity of as-prepared and 3% N-doped ZnO is found to increase with reduction in hole concentration after 60 days of aging while maintaining its p-type conductivity irrespective of growth condition. AFM and electrical properties showed aging effect on the doped and undoped samples. For as-prepared ZnO, with time, O migration makes the film high resistive by reducing free electron concentrations. But for N-doped p-type ZnO, O-migration, metastable N and hydrogen atom present in the source induced instability in structure makes it less conducting p-type.

  4. Direct evidence for As as a Zn-site impurity in ZnO.

    PubMed

    Wahl, U; Rita, E; Correia, J G; Marques, A C; Alves, E; Soares, J C

    2005-11-18

    Arsenic has been reported in the literature as one of the few p-type dopants in the technologically promising II-VI semiconductor ZnO. However, there is an ongoing debate whether the p-type character is due to As simply replacing O atoms or to the formation of more complicated defect complexes, possibly involving As on Zn sites. We have determined the lattice location of implanted As in ZnO by means of conversion-electron emission channeling from radioactive (73)As. In contrast to what one might expect from its nature as a group V element, we find that As does not occupy substitutional O sites but in its large majority substitutional Zn sites. Arsenic in ZnO (and probably also in GaN) is thus an interesting example for an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system.

  5. Zn isotopic heterogeneity in the mantle: A melting control?

    NASA Astrophysics Data System (ADS)

    Doucet, Luc S.; Mattielli, Nadine; Ionov, Dmitri A.; Debouge, Wendy; Golovin, Alexander V.

    2016-10-01

    We present new Zn elemental and isotope data on seventeen fertile and refractory mantle peridotite xenoliths. Eleven fertile peridotites are garnet and spinel lherzolites from Vitim and Tariat (Siberia and Mongolia) and represent some of the most pristine fertile peridotites available. Six refractory peridotites are spinel harzburgites from the Udachnaya kimberlite (Siberian craton) that are nearly pristine residues of high-degree polybaric melting at high pressure (7-4 GPa). Geochemical data suggest that Zn isotopic compositions in the peridotites have not been affected by post-melting processes such as metasomatism, contamination by the host-magmas or alteration. The fertile peridotites have uniform Zn concentrations (59 ± 2 ppm) and Zn isotopic compositions with δ66Zn (relative to JMC-Lyon-03-0749l) = +0.30 ± 0.03‰ consistent with the Bulk Silicate Earth estimates of δ66Zn = +0.28 ± 0.05‰ (Chen et al., 2013). The refractory peridotites have Zn concentrations ranging from 30 to 48 ppm and δ66Zn from + 0.10 ± 0.01 ‰ to + 0.18 ± 0.01 ‰ with an average of + 0.14 ± 0.03 ‰. Our data suggest that the lithospheric mantle has a heterogeneous Zn isotopic composition. Modeling of Zn isotope partitioning during partial melting of fertile mantle suggests that high degrees of melt extraction (>30%) may significantly fractionate Zn isotopes (up to 0.16‰) and that during mantle melting, Zn concentrations and isotopic compositions are mainly controlled by the stability of clinopyroxene and garnet within the melting residue. Because the stability of clinopyroxene and garnet is mainly pressure dependent we suggest that both the depth and the degrees of melt extraction may control Zn isotope fractionation during mantle melting.

  6. Spin noise spectroscopy of ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.

    2013-12-01

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  7. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  8. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  9. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity

    PubMed Central

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-01-01

    Zinc and cadmium are similar metal ions, but though Zn2+ is an essential nutrient, Cd2+ is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn2+ vs. Cd2+ suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn2+ transport, but reject Cd2+, thus constituting the first mammalian metal transporter with a refined selectivity against Cd2+. Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn2+ and Cd2+. A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn2+ transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd2+ by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn2+ and Cd2+, and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd2+ binding. PMID:22529353

  10. Colloidal ZnO and Zn(1-x)Co(x)O tetrapod nanocrystals with tunable arm lengths.

    PubMed

    Hodges, James M; Fenton, Julie L; Gray, Jennifer L; Schaak, Raymond E

    2015-10-28

    Tetrapod-shaped ZnO nanocrystals exhibit exceptional optoelectronic properties, including intense ultraviolet photoluminescence emission, that make them attractive for applications that include lasers, sensors, and photocatalysts. However, synthetic methods that produce ZnO tetrapods typically include high-temperature vapor-deposition approaches that do not readily achieve characteristic dimensions of less than 100 nm or colloidal methods that require added metal dopants, which modify the inherent properties of ZnO. Here, we report a robust, modified solution-phase synthetic protocol for generating colloidal ZnO tetrapods that does not require the use of metal dopants. The ZnO tetrapod arm lengths can be tuned from 10 to 25 nm by adjusting the amount of Zn reagent used in the reaction. Subsequent seeded-growth produced even larger colloidal ZnO tetrapods with 62 nm arms. Photoluminescence (PL) measurements confirm that the tetrapods are of high crystalline quality, and the ultraviolet PL emission wavelengths that are observed fall between those of previously reported metal-doped colloidal ZnO tetrapods, which exhibit dopant-induced red- or blue-shifts. Furthermore, the reaction strategy can be modified to produce cobalt-substituted ZnO, offering a chemical pathway to tetrapod-shaped Zn1-xCoxO nanocrystals.

  11. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  12. Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process

    NASA Astrophysics Data System (ADS)

    Safa, S.; Mokhtari, S.; Khayatian, A.; Azimirad, R.

    2018-04-01

    Encapsulated ZnO nanorods (NRs) with different Cr concentration (0-4.5 at.%) were prepared in two different steps. First, ZnO NRs were grown by hydrothermal method. Then, they were encapsulated by dip coating method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, and ultraviolet (UV)-visible spectrophotometer analyses. XRD analysis proved that Cr incorporated into the ZnO structure successfully. Based on optical analysis, band gap changes in the range of 2.74-3.84 eV. Finally, UV responses of all samples were deeply investigated. It revealed 0.5 at.% Cr doped sample had the most photocurrent (0.75 mA) and photoresponsivity (0.8 A/W) of all which were about three times greater than photocurrent and photoresponsivity of the undoped sample.

  13. Vertical resistivity in nanocrystalline ZnO and amorphous InGaZnO

    NASA Astrophysics Data System (ADS)

    McCandless, Jonathan P.; Leedy, Kevin D.; Schuette, Michael L.

    2018-02-01

    The goal is to gain additional insight into physical mechanisms and the role of microstructure on the formation of ohmic contacts and the reduction of contact resistance. We have measured a decreasing film resistivity in the vertical direction with increasing thickness of pulsed-laser deposited ZnO and IGZO. As the ZnO thickness increases from 122 nm to 441 nm, a reduction in resistivity from 3.29 Ω-cm to 0.364 Ω-cm occurred. The IGZO resistivity changes from 72.4 Ω-cm to 0.642 Ω-cm as the film is increased from 108nm to 219 nm. In the ZnO, the size of nanocolumnar grains increase with thickness resulting in fewer grain boundaries, and in the amorphous IGZO, the thicker region exhibits tunnel-like artifacts which may contribute to the reduced resistivity.

  14. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.

    PubMed

    Andrade, Sara A L; Gratão, Priscila L; Schiavinato, Marlene A; Silveira, Adriana P D; Azevedo, Ricardo A; Mazzafera, Paulo

    2009-06-01

    The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.

  15. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R=Y,Nd,Sm,Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Jia, Shuang; Ni, Ni; Bud'Ko, S. L.; Canfield, P. C.

    2009-09-01

    Magnetization, resistivity, and specific heat measurements were performed on solution-grown single crystals of RFe2Zn20 and RCo2Zn20 (R=Y,Nd,Sm,Gd-Lu) . Whereas LuCo2Zn20 and YCo2Zn20 manifest unremarkable metallic behavior, LuFe2Zn20 and YFe2Zn20 display behaviors such as characteristic of nearly ferromagnetic Fermi liquids. When the well-defined 4f local moments (Gd3+-Tm3+) are embedded into this strongly polarizable host, they manifest enhanced ferromagnetic ordering and the values of TC for RFe2Zn20 (R=Gd-Tm) scale with the de Gennes factor. In addition, data on the RFe2Zn20 compounds indicate a small crystal electric field (CEF) effect compared with the interaction energy scale. On the other hand, the local moment bearing members of RCo2Zn20 (R=Nd,Sm,Gd-Tm) manifest weak magnetic interactions and the magnetic properties for R=Dy-Tm members are strongly influenced by the CEF effect on the R ions. The magnetic anisotropy and specific heat data for the Co series were used to determine the CEF coefficient of R ion with its cubic point symmetry. These CEF coefficients, determined for the Co series, are consistent with the magnetic anisotropy and specific heat data for the Fe series, which indicates similar CEF effects for the Fe and Co series. Such analysis, combined with specific heat and resistivity data, indicates that for R=Tb-Ho , the CEF splitting scale is smaller than their TC values, whereas for ErFe2Zn20 and TmFe2Zn20 the 4f electrons lose part of their full Hund’s rule ground state degeneracy above TC . YbFe2Zn20 and YbCo2Zn20 manifest typical but distinct heavy fermion behaviors associated with different Kondo temperatures.

  16. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  17. Synthesis and characterization of ZnO thin films

    SciTech Connect

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  18. Growth and characterization of BaZnGa

    DOE PAGES

    Jo, Na Hyun; Lin, Qisheng; Nguyen, Manh Cuong; ...

    2017-10-20

    In this paper, we report the growth, structure and characterization of BaZnGa, identifying it as the sole known ternary compound in the Ba–Zn–Ga system. Single crystals of BaZnGa can be grown out of excess Ba–Zn and adopt a tI36 structure type. There are three unique Ba sites and three M = Zn/Ga sites. Using DFT calculations we can argue that whereas one of these three M sites is probably solely occupied by Ga, the other two M sites, most likely, have mixed Zn/Ga occupancy. Finally, temperature-dependent resistivity and magnetization measurements suggest that BaZnGa is a poor metal with no electronicmore » or magnetic phase transitions between 1.8 and 300 K.« less

  19. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  20. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  1. Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner

    2003-01-01

    The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.

  2. Electron Raman scattering in a strained ZnO/MgZnO double quantum well

    NASA Astrophysics Data System (ADS)

    Mojab-abpardeh, M.; Karimi, M. J.

    2018-02-01

    In this work, the electron Raman scattering in a strained ZnO / MgZnO double quantum wells is studied. The energy eigenvalues and the wave functions are obtained using the transfer matrix method. The effects of Mg composition, well width and barrier width on the internal electric field in well and barrier layers are investigated. Then, the influences of these parameters on the differential cross-section of electron Raman scattering are studied. Results indicate that the position, magnitude and the number of the peaks depend on the Mg composition, well width and barrier width.

  3. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  4. Synthesis and humidity sensing analysis of ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Okur, Salih; Üzar, Neslihan; Tekgüzel, Nesli; Erol, Ayşe; Çetin Arıkan, M.

    2012-03-01

    ZnS nanowires synthesized by the vapor-liquid-solid (VLS) method and humidity sensing properties of obtained ZnS nanowires were investigated by quartz crystal microbalance (QCM) method and electrical measurements. The synthesized nanowires were exposed to relative humidity (RH) between 22% and 97% under controlled environment. Our experimental results show that ZnS nanowires have a great potential for humidity sensing applications in room temperature operations.

  5. Room temperature ferromagnetism in Cu doped ZnO

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  6. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil

    NASA Astrophysics Data System (ADS)

    Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang

    2010-12-01

    Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources

  7. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  8. Modulation of mitochondrial function by endogenous Zn2+ pools

    NASA Astrophysics Data System (ADS)

    Sensi, Stefano L.; Ton-That, Dien; Sullivan, Patrick G.; Jonas, Elizabeth A.; Gee, Kyle R.; Kaczmarek, Leonard K.; Weiss, John H.

    2003-05-01

    Recent evidence suggests that intracellular Zn2+ accumulation contributes to the neuronal injury that occurs in epilepsy or ischemia in certain brain regions, including hippocampus, amygdala, and cortex. Although most attention has been given to the vesicular Zn2+ that is released into the synaptic space and may gain entry to postsynaptic neurons, recent studies have highlighted pools of intracellular Zn2+ that are mobilized in response to stimulation. One such Zn2+ pool is likely bound to cytosolic proteins, like metallothioneins. Applying imaging techniques to cultured cortical neurons, this study provides novel evidence for the presence of a mitochondrial pool distinct from the cytosolic protein or ligand-bound pool. These pools can be pharmacologically mobilized largely independently of each other, with Zn2+ release from one resulting in apparent net Zn2+ transfer to the other. Further studies found evidence for complex and potent effects of Zn2+ on isolated brain mitochondria. Submicromolar levels, comparable to those that might occur on strong mobilization of intracellular compartments, induced membrane depolarization (loss of m), increases in currents across the mitochondrial inner membrane as detected by direct patch clamp recording of mitoplasts, increased O2 consumption and decreased reactive oxygen species (ROS) generation, whereas higher levels decreased O2 consumption and increased ROS generation. Finally, strong mobilization of protein-bound Zn2+ appeared to induce partial loss of Δψm, suggesting that movement of Zn2+ between cytosolic and mitochondrial pools might be of functional significance in intact neurons.

  9. Crystal Growth of Undoped and Doped ZnSe

    NASA Technical Reports Server (NTRS)

    Davis, Swanson L.; Chen, K.-T.; George, M. A.; Shi, D. T.; Collins, W. E.; Burger, Arnold

    1997-01-01

    The surface morphology of freshly cleaved ZnSe single crystal grown by the physical vapor transport (PVT) method was investigated by Atomic Force Microscopy (AFM) and the results were correlated with Differential Scanning Calorimetry (DSC) data. Selenium precipitates have been revealed in undoped doped ZnSe crystals having a size of about 50 nm. A transition temperature around 221 C in the DSC measurements is interpreted as the eutectic temperature of Se-saturated ZnSe. The AFM images of doped ZnSe also show that possible Cr clusters are uniformly distributed and they have an estimated size of about 6 nm.

  10. Preparation, characterization and properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  11. Polarization Induced Doping in p-ZnMgO

    DTIC Science & Technology

    2013-09-06

    Zn +Mg  ratio.   3. Good...conditions  were   investigated   to   obtain  a  high  quality  film:  the  sequence  of   Zn  and  O  sources  for...and   Zn /O   ratio.   Resultant   epitaxial   ZnO   films   demonstrated   a   root-­‐mean-­‐square   surface  

  12. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  13. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    PubMed Central

    Zhang, Zheng-Yong; Xiong, Huan-Ming

    2015-01-01

    During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs) have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV) emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS) and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  14. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  15. Synthesis of nanocrystalline α - Zn 2SiO 4 at ZnO-porous silicon interface: Phase transition study

    NASA Astrophysics Data System (ADS)

    Singh, R. G.; Singh, Fouran; Mehra, R. M.; Kanjilal, D.; Agarwal, V.

    2011-05-01

    Thermal annealing induced formation of nanocrystalline Zinc silicate (α-Zn 2SiO 4) at the interface of ZnO-porous silicon (PSi) nanocomposites is reported. The PSi templates were formed by electrochemical anodization of p-type (100) Si and ZnO crystallites were deposited on the PSi surface by a Sol-gel spin coating process. The formation of α-Zn 2SiO 4 is confirmed by glancing angle X-ray diffraction and Fourier transform infrared spectroscopy studies. The presence of intense yellow-green emission also confirms the formation of α-Zn 2SiO 4. The mechanism of silicate phase formation at the ZnO-PSi interface and the origin of various photoluminescence (PL) bands are discussed in view of its potential applications in advanced optoelectronic devices.

  16. Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer.

    PubMed

    Zhang, Lichun; Li, Qingshan; Shang, Liang; Wang, Feifei; Qu, Chong; Zhao, Fengzhou

    2013-07-15

    n-ZnO/p-GaN heterojunction light emitting diodes with different interfacial layers were fabricated by pulsed laser deposition. The electroluminescence (EL) spectra of the n-ZnO/p-GaN diodes display a broad blue-violet emission centered at 430 nm, whereas the n-ZnO/ZnS/p-GaN and n-ZnO/AlN/p-GaN devices exhibit ultraviolet (UV) emission. Compared with the AlN interlayer, which is blocking both electron and hole at hetero-interface, the utilization of ZnS as intermediate layer can lower the barrier height for holes and keep an effective blocking for electron. Thus, an improved UV EL intensity and a low turn-on voltage (~5V) were obtained. The results were studied by peak-deconvolution with Gaussian functions and were discussed using the band diagram of heterojunctions.

  17. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  18. Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy

    PubMed Central

    2017-01-01

    Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141

  19. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  20. Origin of isotopically light Zn in lunar samples through vaporization and the Zn isotope composition of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, C.; Valdes, M. C.; Dhaliwal, J.; Day, J. M.; Moynier, F.

    2013-12-01

    The origin of the volatile element depletion of the Moon compared to Earth remains a key question in planetary science. It has recently been shown that both high-Ti and low-Ti lunar basalts are enriched in the heavier isotopes of Zn compared to Earth with an effect of ~1.3 permil on the 66Zn/64Zn ratio (Paniello et al., Nature, 2012). In order to obtain a better understanding of Zn behavior in and on the Moon, we present new measurements of lunar basalts, pyroclastic green glass 15426, highland anorthosites, cataclastic dunite 77215, cataclastic norite 72415 and some lunar soils. Samples were analyzed using a Thermo-Fisher Neptune Plus multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at Washington University in St Louis. The data presented below are reported as the permil deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard (δ66Zn). Four new high Ti basalts and three low Ti basalts confirm the observations of Paniello et al. (2012), that there is an enrichment in the heavier isotopes of Zn compared with chondrites and terrestrial samples. Combining these data together with Paniello et al. (2012) and Herzog et al. (GCA, 2009) we calculate a new average for lunar basalts of δ66Zn= 1.4×0.4 (1sd, n = 27). A few exceptions (5 samples out of 32) are isotopically light and probably represent addition of isotopically light Zn condensed onto the lunar surface from Zn isotopic fractionation during meteoritic impact, creating correspondingly isotopically heavy soils. In contrast to the homogeneity of mare basalts, highland samples show large Zn isotopic variability (δ66Zn -11.4 up to +4.24 permil) which encompasses the entire Zn isotopic variability measured so far in the Solar System. These δ66Zn variations are negatively correlated with the Zn abundance, with the isotopically light samples having the highest Zn concentrations. We interpret these results as the consequence of meteoritic bombardment and volatilization/condensation of Zn at

  1. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  2. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l-1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  3. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    PubMed Central

    Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-01-01

    In this study, photocatalytic experiments of 20 mg l−1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed. PMID:29765630

  4. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies.

    PubMed

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l -1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  5. Using Synchrotron-Based Approaches To Examine the Foliar Application of ZnSO4 and ZnO Nanoparticles for Field-Grown Winter Wheat.

    PubMed

    Zhang, Teng; Sun, Hongda; Lv, Zhiyuan; Cui, Lili; Mao, Hui; Kopittke, Peter M

    2018-03-21

    The effects of foliar-applied ZnO nanoparticles (ZnO NPs) and ZnSO 4 on the winter wheat ( Triticum aestivum L.) grain yield and grain quality were studied under field conditions, with the distribution and speciation of Zn within the grain examined using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy. Although neither of the two Zn compounds improved the grain yield or quality, both increased the grain Zn concentration (average increments were 5 and 10 mg/kg for ZnSO 4 and ZnO NP treatments, respectively). Across all treatments, this Zn was mainly located within the aleurone layer and crease of the grain, although the application of ZnO NPs also slightly increased Zn within the endosperm. This Zn within the grain was found to be present as Zn phosphate, regardless of the form in which Zn was applied. These results indicate that the foliar application of ZnO NPs appears to be a promising approach for Zn biofortification, as required to improve human health.

  6. New insight into the ZnO sulfidation reaction: mechanism and kinetics modeling of the ZnS outward growth.

    PubMed

    Neveux, Laure; Chiche, David; Pérez-Pellitero, Javier; Favergeon, Loïc; Gay, Anne-Sophie; Pijolat, Michèle

    2013-02-07

    Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been

  7. Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization.

    PubMed

    Fang, Xuan; Wei, Zhipeng; Yang, Yahui; Chen, Rui; Li, Yongfeng; Tang, Jilong; Fang, Dan; Jia, Huimin; Wang, Dengkui; Fan, Jie; Ma, Xiaohui; Yao, Bin; Wang, Xiaohua

    2016-01-27

    We investigate the electroluminescence (EL) from light emitting diodes (LEDs) of ZnO nanowires/p-GaN structure and ZnS@ZnO core-shell nanowires/p-GaN structure. With the increase of forward bias, the emission peak of ZnO nanowires/p-GaN structure heterojunction shows a blue-shift, while the ZnS@ZnO core-shell nanowires/p-GaN structure demonstrates a changing EL emission; the ultraviolet (UV) emission at 378 nm can be observed. This discrepancy is related to the localized states introduced by ZnS particles, which results in a different carrier recombination process near the interfaces of the heterojunction. The localized states capture the carriers in ZnO nanowires and convert them to localized excitons under high forward bias. A strong UV emission due to localized excitons can be observed. Our results indicated that utilizing localized excitons should be a new route toward ZnO-based ultraviolet LEDs with high efficiency.

  8. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides.

    PubMed

    Irzh, Alexander; Genish, Isaschar; Klein, Lior; Solovyov, Leonid A; Gedanken, Aharon

    2010-04-20

    This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

  9. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery

    NASA Astrophysics Data System (ADS)

    Mattielli, Nadine; Petit, Jérôme C. J.; Deboudt, Karine; Flament, Pascal; Perdrix, Esperanza; Taillez, Aurélien; Rimetz-Planchon, Juliette; Weis, Dominique

    The present paper examines the use of zinc isotopes as tracers of atmospheric sources and focuses on the potential fractionation of Zn isotopes through anthropogenic processes. In order to do so, Zn isotopic ratios are measured in enriched ores and airborne particles associated with pyrometallurgical activities of one of the major Pb-Zn refineries in France. Supporting the isotopic investigation, this paper also compares morphological and chemical characteristics of Zn particles collected on dry deposition plates ("environmental samples") placed within a 5 km radius of the smelter, with those of Zn particles collected inside the plant ("process samples"), i.e. dust collected from the main exhaust system of the plant. To ensure a constant isotopic "supply", the refinery processed a specific set of ores during the sampling campaigns, as agreed with the executive staff of the plant. Enriched ores and dust produced by the successive Zn extraction steps show strong isotope fractionation (from -0.66 to +0.22‰) mainly related to evaporation processes within the blast furnaces. Dust from the main chimney displays a δ 66Zn value of -0.67‰. Application of the Rayleigh equation to evaluate the fractionation factor associated with the Zn vapor produced after a free evaporation gives a range of αore/vapor from 1.0004 to 1.0008. The dry deposits, collected on plates downwind of the refinery, display δ 66Zn variations of up to +0.7‰. However, it is to be noted that between 190 and 1250 m from the main chimney of the refinery, the dry deposits show a high level of large (>10 μm) Zn, S, Fe and O bearing aggregates characterized by positive δ 66Zn values (+0.02 to +0.19‰). These airborne particles probably derive from the re-suspension of slag heaps and local emissions from the working-units. In contrast, from 1720 to 4560 m, the dry deposits are comprised of small (PM10) particles, including spherical Zn-bearing aggregates, showing negative δ 66Zn values (-0.52 to -0

  10. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS

    PubMed Central

    Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming

    2016-01-01

    We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936

  11. In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions.

    PubMed

    Alves, Marta M; Prosek, Tomas; Santos, Catarina F; Montemor, Maria F

    2017-01-01

    Flowered coatings composed by ZnO crystals were successfully electrodeposited on Zn-Mg alloys. The distinct coatings morphologies were found to be dependent upon the solid interfaces distribution, with the smaller number of bigger flowers (ø 46μm) obtained on Zn-Mg alloy containing 1wt.% Mg (Zn-1Mg) contrasting with the higher number of smaller flowers (ø 38μm) achieved on Zn-Mg alloy with 2wt.% Mg (Zn-2Mg). To assess the in vitro behaviour of these novel resorbable materials, a detailed evaluation of the degradation behaviour, in simulated physiological conditions, was performed by electrochemical impedance spectroscopy (EIS). The opposite behaviours observed in the corrosion resistances resulted in the build-up of distinct corrosion layers. The products forming these layers, preferentially detected at the flowers, were identified and their spatial distribution disclosed by EDS and Raman spectroscopy techniques. The presence of smithsonite, simonkolleite, hydrozincite, skorpionite and hydroxyapatite were assigned to both corrosion layers. However the distinct spatial distributions depicted may impact the biocompatibility of these resorbable materials, with the bone analogue compounds (hydroxyapatite and skorpionite) depicted in-between the ZnO crystals and on the top corrosion layer of Zn-1Mg flowers clearly contrasting with the hindered layer formed at the interface of the substrate with the flowers on Zn-2Mg. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.

    PubMed

    Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong

    2015-09-21

    Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .

  13. Preparation of ZnS/ZnO core - Shell nanocomposite and its photocatalytic behaviour for dye degradation

    NASA Astrophysics Data System (ADS)

    Patil, Bharati N.; Acharya, Smita A.

    2018-05-01

    In the present work ZnS-ZnO core-shell-type composite nanostructures was prepared by hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD) for structural confirmation. Microstructural study by scanning electron microscopy (SEM) exhibit nanoscale dimensions of as-synthesized composite. UV/VIS spectra were recorded for evaluation of photophysical properties. The composite was explored as photocatalysts to study dye degradation using methylene blue in aqueous slurry under irradiation of 663 nm wavelength and congo red under irradiation of 493 nm wavelength. Under the same conditions the photocatalytic activity of the individual phases ZnS and ZnO were also examined, just for sake of comparison. The ZnS-ZnO composite is found to be enhancing the rate of photo degradation of toxic dyes in presence of visible light as compared to ZnS and ZnO individual phases. Thus ZnS based metal sulphide/oxide semiconductor nanocomposites are potential material for Photo-degradation of toxic dyes, and act as good photocatalyst.

  14. A study on photoelectrochemical properties of ZnO@ZnS nanostructures synthesized via facile ion-exchange approach

    NASA Astrophysics Data System (ADS)

    Sharma, Akash; Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.

  15. Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating

    NASA Astrophysics Data System (ADS)

    Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.

    2015-02-01

    In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.

  16. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  17. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  18. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating

    NASA Astrophysics Data System (ADS)

    Ruffolo, S. A.; La Russa, M. F.; Malagodi, M.; Oliviero Rossi, C.; Palermo, A. M.; Crisci, G. M.

    2010-09-01

    In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO3, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO3. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties.

  19. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  20. ``Flash'' synthesis of ``giant'' Mn-doped CdS/ZnSe/ZnS nanocrystals with ZnSe layer as hole quantum-well

    NASA Astrophysics Data System (ADS)

    Xu, Ruilin; Zhang, Jiayu

    Usually, exciton-Mn energy transfer in Mn-doped CdS/ZnS nanocrystals (NCs) can readily outcompete the exciton trapping by an order of magnitude. However, with the accumulation of non-radiative defects in the giant shell during the rapid growth of the thick shell (up to ~20 monolayers in no more than 10 minutes), the photoluminescence (PL) quantum yield of this kind of ``giant'' NCs is significantly reduced by the accumulation of non-radiative defects during the rapid growth of thick shell. That is because the exciton-Mn energy transfer in Mn-doped CdS/ZnS NCs is significantly inhibited by the hole trapping as the major competing process, resulting from the insufficient hole-confinement in CdS/ZnS NCs. Accordingly ``flash'' synthesis of giant Mn-doped CdS/ZnSe/ZnS NCs with ZnSe layer as hole quantum-well is developed to suppress the inhibition. Meanwhile Mn2+ PL peak changes profoundly from ~620 nm to ~540 nm after addition of ZnSe layer. Studies are under the way to explore the relevant mechanisms.

  1. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery.

    PubMed

    Zhang, Ning; Cheng, Fangyi; Liu, Yongchang; Zhao, Qing; Lei, Kaixiang; Chen, Chengcheng; Liu, Xiaosong; Chen, Jun

    2016-10-05

    Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn 2 O 4 /carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF 3 SO 3 ) 2 electrolyte. In 3 M Zn(CF 3 SO 3 ) 2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g -1 and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g -1 . The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and promote the use of cation-defective spinel compounds and trifluoromethanesulfonic electrolyte to develop high-performance rechargeable zinc batteries.

  2. Two zeolite-type frameworks in one metal-organic framework with Zn24 @Zn104 cube-in-sodalite architecture.

    PubMed

    Bu, Fei; Lin, Qipu; Zhai, Quanguo; Wang, Le; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui; Feng, Pingyun

    2012-08-20

    Two in one: A metal-organic framework obtained from three different inorganic building blocks (tetrameric Zn(4) O, trimeric Zn(3) OH, and monomeric Zn) posseses a nested cage-in-cage and framework-in-framework architecture. 24 Zn(4) O tetramers and eight Zn monomers form a sodalite cage into which a cubic cage made from eight Zn(3) (OH) trimers is nestled. Eight monomeric Zn(2+) centers interconnect these two cages. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quenching mechanism of Zn(salicylaldimine) by nitroaromatics.

    PubMed

    Germain, Meaghan E; Vargo, Thomas R; McClure, Beth Anne; Rack, Jeffrey J; Van Patten, P Gregory; Odoi, Michael; Knapp, Michael J

    2008-07-21

    Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer: ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.

  4. Transport Properties of ZnSe- ITO Hetero Junction

    NASA Astrophysics Data System (ADS)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  5. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  6. Structural and luminescence properties of self-yellow emitting undoped and (Ca, Ba, Sr)-doped Zn2V2O7 phosphors synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Foka, Kewele E.; Dejene, Birhanu F.; Koao, Lehlohonolo F.; Swart, Hendrik C.

    2018-04-01

    A self-activated yellow emitting Zn2V2O7 was synthesized by combustion method. The influence of the processing parameters such as synthesis temperature and dopants concentration on the structure, morphology and luminescence properties was investigated. The X-ray diffraction (XRD) analysis confirmed that the samples have a tetragonal structure and no significant structural change was observed in varying both the synthesis temperature and the dopants concentration. The estimated average crystallite size was 78 nm for the undoped samples synthesized at different temperatures and 77 nm for the doped samples. Scanning electron microscope (SEM) images showed agglomerated hexagonal-shaped particles with straight edges at low temperatures and the shape of the particles changed to cylindrical structures at moderate temperatures. At higher temperatures, the morphology changed completely. However, the morphologies of the doped samples looked alike. The photoluminescence (PL) of the product exhibited broad emission bands ranging from 400 to 800 nm. The best luminescence intensity was observed for the undoped Zn2V2O7 samples and those synthesized at 600 ℃ . Any further increase in synthesis temperature, type and concentration of dopants led to a decrease in the luminescence intensity. The broad band emission peak of Zn2V2O7 consisted of two broad bands corresponding to emissions from the Em1 (3T2→1A1) and Em2 (3T1→1A1) transitions.

  7. Electrical and photoresponse properties of vacuum deposited Si/Al:ZnSe and Bi:ZnTe/Al:ZnSe photodiodes

    NASA Astrophysics Data System (ADS)

    Rao, Gowrish K.

    2017-04-01

    The paper reports fabrication and characterization of Bi:ZnTe/Al:ZnSe and Si/Al:ZnSe thin film photodiodes. The characteristics of the devices were studied under dark and illuminated conditions. The normalized spectral response, speed of photoresponse and variation of photocurrent with power density were studied in detail. Many vital parameters, such as diode ideality factor, barrier height, the thickness of the depletion region, trap depth, rise and decay times of photocurrent, were determined. Conduction mechanism in the photodiodes is discussed with the help of widely accepted theoretical models.

  8. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    SciTech Connect

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  9. Dynamics of Zn in an urban wetland soil-plant system: Coupling isotopic and EXAFS approaches

    NASA Astrophysics Data System (ADS)

    Aucour, Anne-Marie; Bedell, Jean-Philippe; Queyron, Marine; Magnin, Valérie; Testemale, Denis; Sarret, Géraldine

    2015-07-01

    Plants play a key role in the stabilization of metals in contaminated environments. Studies have been performed on Zn uptake and storage mechanisms, mainly for Zn hyperaccumulating plants, though less is known about Zn stabilization in the rhizosphere of non-accumulating plants. This study was focused on the dynamics of Zn in a whole soil-litter-plant system and the processes controlling Zn mobilization and stabilization. The site studied was an infiltration basin receiving urban stormwater, in which Phalaris arundinacea (reed canary grass) developed spontaneously. A combination of chemical extractions (CaCl2, DTPA), EXAFS spectroscopy and Zn stable isotope measurements was applied for the water inlet, soil, plant organs and decaying biomass. Zn speciation changed from the water inlet to the soil. In the soil, Zn was present as Zn-layered double hydroxide (Zn-LDH), tetrahedral and octahedral sorbed Zn species. The formation of Zn-LDH participates in Zn stabilization. Tetrahedral Zn species, which were partly DTPA exchangeable, were enriched in heavy isotopes, whereas octahedral Zn (Zn-LDH and sorbed species) were enriched in light isotopes. Based on a linear model between δ66Zn and Zn speciation, δ66Zn for pure tetrahedral and octahedral end-members were estimated at ca. 0.33‰ and 0.04‰, respectively. In the plant, a mixture of octahedral Zn (attributed to aqueous Zn-organic acid complexes present in the symplasm), and tetrahedral Zn (attributed to apoplasmic Zn-cell wall complexes) was observed in all organs. Large enrichment in light isotopes from the soil to the plant Δ66Zn (of ca. -0.6‰) was observed. The stem was enriched in light isotopes versus roots and, to a lesser extent, versus leaves. The results suggest that Zn was taken up via a low-affinity transport system and that Zn was sequestrated in the stem symplasm after transit through leaves. Finally, intense Zn exchanges were observed between the decaying biomass and the soil, with the sorption of

  10. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  11. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  12. Cytotoxicity evaluation of ZnO-eugenol (ZOE) using different ZnO structure on human gingival fibroblast

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Masudi, Sam'an Malik; Seeni, Azman; Mohamad, Dasmawati; Ann, Ling Chuo; Sirelkhatim, Amna

    2017-07-01

    Application of ZnO is widely used in many industries, such as in optoelectronic devices, automotive, textile, cosmetics, medical and dentistry. In this study, emphasis was given on ZnO-eugenol (ZOE) that has been used in dental restoration. ZOE contained 80% ZnO and 20% eugenol. ZOE exhibited selective toxicity that could kill bacteria but safe on human cells. The safety of ZOE on humans is critically important. Two types of ZnO with different morphology, namely ZnO-A and ZnO-K were used to make ZOE (ZOE-A and ZOE-K) and the cytotoxicity level on human gingival fibroblast (HGF) cell line were evaluated. Both ZnO were characterized for its morphology and structural using Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD), respectively. The cytotoxicity level was evaluated using CCK-8 assay where the percentage of viable cells after 72 h were observed. The result showed ZnO-A, containing mostly rod-like shape with a crystallite size of 37.5 nm, had a higher percentage of viable cells after 72 h. Sample ZnO-K, containing irregular shape morphology with bigger crystallite size of 42.2 nm, had a lower percentage of viable cells after 72 h. The HGF cell line was treated with extract dilution of ZOE-A and ZOE-K at 5, 10 and 15%, respectively. At 15% of extracts dilution, 97.3% of the HGF cells survived (for ZOE-A) while the survival percentage of ZOE-K was only 88.1%. This fact was probably due to the larger surface-to-volume ratio of ZnO-A that gave better interlocking bond in ZOE-A. This interlocking bond can prevent the ZnO and eugenol elements leaching out from the ZOE matrix thereby decrease in cytotoxicity effects on HGF.

  13. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cr:ZnSe planar waveguide mid-IR laser

    NASA Astrophysics Data System (ADS)

    Willimas, J. E.; Martyshkin, D. V.; Fedorov, V. V.; Moskalev, I. S.; Camata, R. P.; Mirov, S. B.

    2011-02-01

    Middle infrared (mid-IR) chromium-doped zinc selenide (Cr:ZnSe) bulk lasers have attracted a lot of attention due to their unique combination of optical and laser properties facilitating a wide range of potential scientific, industrial, and medical applications. Utilization of thin film waveguide geometry enabling good thermal management and control of beam quality is a viable pathway for compact chip-integrated optical laser design. Cr:ZnSe thin films are also promising as saturable absorbers and mode-lockers of the cavities of solid state lasers operating over 1.3-2.1 μm. We recently reported the first successful demonstration of mid-IR Cr:ZnSe planar waveguide lasing at 2.6 μm under gain-switched short-pulse (5 ns) 1.56 μm excitation as well as the passive Q-switching of the cavity of a fiber-pumped Er:YAG laser operating at 1645 nm using a highly doped Cr:ZnSe thin film. PLD grown Cr:ZnSe waveguide were fabricated on sapphire substrates (Cr:ZnSe/sapphire) with chromium concentration of 1018-1019 cm-3. Further development of mid-IR lasing in the Cr:ZnSe planar waveguide under continuous wave excitation were investigated. In addition, deposition of Cr:ZnSe-based thin film structures on n-type GaAs substrates were also investigated for possible mid-IR electroluminescence.

  15. Synthesis of ZnO Photocatalysts Using Various Surfactants

    NASA Astrophysics Data System (ADS)

    Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin

    2017-12-01

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.

  16. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    ERIC Educational Resources Information Center

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  17. Ligand induced ferromagnetism in ZnO nanostructures.

    PubMed

    Wang, Qian; Sun, Qiang; Jena, P

    2008-10-28

    Complementary to the experimental finding that ZnO nanoparticles become ferromagnetic when coated with N and S containing ligands such as dodecylamine and dodecanethiol [Garcia et al., Nano Lett. 7, 1489 (2007)], we provide the first theoretical understanding of the origin of magnetism in ligated ZnO nanoparticles as well as the structural properties of the ligated systems by using density functional theory and generalized gradient approximation for exchange and correlation, and a cluster model for the nanoparticles. We show that N or S atoms of the ligand bind to the Zn sites. The accompanying changes in the Zn-O bond length, hybridization between Zn 4s orbitals with N 2p or S 3p orbitals, and consequently the redistribution of charges between Zn and O atoms result in a magnetic system where the 2p electrons in O and N, and 3p electrons in S sites are spin polarized. Furthermore, the sites nearest to the Zn atom attached to the ligand carry bulk of the magnetic moment. Studies, as a function of cluster size, also illustrate that magnetism resides only on the surface. Our results confirm that the use of ligands can pave a new way for introducing magnetism in ZnO nanostructures, which can be used to develop magnetic sensors to detect N and S containing molecules.

  18. Enriching rice with Zn and Fe while minimizing Cd risk

    PubMed Central

    Slamet-Loedin, Inez H.; Johnson-Beebout, Sarah E.; Impa, Somayanda; Tsakirpaloglou, Nikolaos

    2015-01-01

    Enriching iron (Fe) and zinc (Zn) content in rice grains, while minimizing cadmium (Cd) levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn enables Zn-biofortification through conventional breeding, but limited natural Fe variation has led to a need for genetic modification approaches, including over-expressing genes responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation is associated with divalent metal cations (including Fe and Zn) transporters, but the details of this process are still unknown in rice. In addition to genetic variation, metal uptake is sometimes limited by its bioavailability in the soil. The availability of Fe, Zn, and Cd for plant uptake varies widely depending on soil redox potential. The typical practice of flooding rice increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or Fe-containing fertilizers complements breeding efforts by providing sufficient metals for plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect metal accumulation in grains. The purpose of this mini-review is to identify knowledge gaps and prioritize strategies for improving the nutritional value and safety of rice. PMID:25814994

  19. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  20. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  1. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  2. Functional behaviour of polypropylene/ZnO soluble starch nanocomposites

    NASA Astrophysics Data System (ADS)

    Chandramouleeswaran, Subramani; Mhaske, S. T.; Kathe, A. A.; Varadarajan, P. V.; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-09-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis—ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence—revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications.

  3. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  4. EPA LABORATORIES IMPLEMENT EMS PROGRAM

    EPA Science Inventory

    This paper highlights the breadth and magnitude of carrying out an effective Environmental Management System (EMS) program at the U.S. EPA's research and development laboratories. Federal research laboratories have unique operating challenges compared to more centralized industr...

  5. HOPG/ZnO/HOPG pressure sensor

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad

    2017-12-01

    Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.

  6. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  7. Noise in CdZnTe detectors

    SciTech Connect

    Luke, P. N.; Amman, M.; Lee J. S.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less

  8. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions.

    PubMed

    Poynton, Helen C; Lazorchak, James M; Impellitteri, Christopher A; Smith, Mark E; Rogers, Kim; Patra, Manomita; Hammer, Katherine A; Allen, H Joel; Vulpe, Chris D

    2011-01-15

    Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.

  9. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    PubMed

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles.

    PubMed

    Karunakaran, C; Jayabharathi, J; Sathishkumar, R; Jayamoorthy, K; Vimal, K

    2013-11-01

    A new fluorophore 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazole has been synthesized and characterized by spectroscopic techniques. Nanoparticulate ZnO enhances the fluorescence of the synthesised fluorophore. The absorption, fluorescence, lifetime, cyclic voltammetry and infrared studies reveal that fluorophore is attached to the surface of ZnO semiconductor. Photo-induced electron transfer (PET) explains the enhancement of fluorescence by nanoparticulate ZnO and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazole derivative on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to the zinc ion on the surface of nanocrystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Positron annihilation studies in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  12. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentionalmore » In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.« less

  13. Chemical Synthesis of ZnS:Cu Nanosheets

    NASA Astrophysics Data System (ADS)

    Bodo, Bhaskarjyoti; Kalita, P. K.

    2010-10-01

    ZnS thin films are synthesized through chemical bath deposition (CBD) technique from aqueous solution of ZnSO4 and thiourea mixing in equal volume and equimolar ratio. A 1% CuSO4 solution is mixed with the ZnSO4 solution for doping before the final chemical reaction. SEM image shows the formation of mainly nanosheets, teeth and comb like structures. Absorption studies show red shift of enhanced band gap on Cu doping. Photoluminescence of ZnS:Cu reveals the enhancement of blue luminescence at 468 nm and low intensity green emission at 493 nm which is attributed to more Cu2+ lying in the interstices. XRD shows that the prepared ZnS nanophosphors possess cubic zinc blende structures.

  14. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions.

    PubMed

    García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores

    2017-07-01

    The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  16. Trioctylphosphine-assisted morphology control of ZnO nanoparticles.

    PubMed

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  17. Lithiation-induced zinc clustering of Zn 3, Zn 12, and Zn 18 units in Zintl-like Ca ~30Li 3+xZn 60-x (x=0.44-1.38)

    SciTech Connect

    Lin, Qisheng

    2014-11-14

    Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca ~30Li 3+xZn 60-x, P6/mmm, Z = 1, which can be directly converted from CaZn 2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca 30Li 3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca 30.45(2)Li 4.38(6)Zn 58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca ~30Li 3+xZn 60-x feature a condensed anionicmore » network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca 14, Ca 20, and Ca 30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca ~30Li 3+xZn 60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.« less

  18. Carboxylate metabolism in sugar beet plants grown with excess Zn.

    PubMed

    Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F

    2011-05-01

    The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Comparative optical studies of ZnO and ZnO-TiO2 - Metal oxide nanoparticle

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, R. Vanathi; Asvini, V.; Kumar, P. Praveen; Ravichandran, K.

    2018-05-01

    A comparative study was carried out to show the enhancement in optical activity of bimetal oxide nanoparticle (ZnO - TiO2) than metal oxide nanoparticle (ZnO), which can preferably be used for optical applications. The samples were prepared by wet chemical method and crystalline structure of the samples as hexagonal - primitive for ZnO and tetragonal - bcc for ZnO-TiO2 was confirmed by XRD measurements. The average grain size of ZnO - 19.89nm and ZnO-TiO2- 49.89 nm was calculated by Debye- Scherrer formula. The structure and particle size of the sample was analyzed by FESEM images. The direct band gap energy of ZnO (3.9eV) and ZnO - TiO2(4.68eV) was calculated by Kubelka-Munk Function, from which it is clear that the band gap energy increases in bimetal oxide to a desired level than in its pure form. The photoluminescence study shows that the emitted wavelength of the samples lies exactly around the visible region.

  20. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    NASA Astrophysics Data System (ADS)

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.; Du, X. L.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/α-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg0.53Zn0.47O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  1. Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Chen, Chi-Heng; Yang, Ya-Yu; Sheu, Jinn-Kong; Lai, Li-Wen

    2011-06-06

    We have demonstrated the electroluminescence (EL) of Ga:ZnO/i-ZnO-SiO2 nanocomposite/p-GaN n-i-p heterostructure light-emitting devices (LEDs). ZnO nano-clusters with sizes distributing from 2 to 7nm were found inside the co-sputtered i-ZnO-SiO2 nanocomposite layer under the observation of high-resolution transparent electron microscope. A clear UV EL at 376 nm from i-ZnO-SiO2 nanocomposite in these p-i-n heterostructure LEDs was observed under the forward current of 9 mA. The EL emission peak at 376 and 427nm of the Ga:ZnO/i-ZnO-SiO2 nanocomposite/p-GaN n-i-p heterostructure LEDs were attributed to the radiative recombination from the ZnO clusters and the Mg acceptor levels in the p-GaN layer, respectively.

  2. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  3. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-01-01

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454

  4. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang

    2016-03-01

    The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

  5. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  6. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.

    PubMed

    Kim, Do Hyeong; Wu, Chaoxing; Park, Dong Hyun; Kim, Woo Kyum; Seo, Hae Woon; Kim, Sang Wook; Kim, Tae Whan

    2018-05-02

    The effects of the ZnS shell layer on the memory performances of flexible memristive devices based on quantum dots (QDs) with an InP/ZnSe/ZnS core-multishell structure embedded in a poly(methylmethacrylate) layer were investigated. The on/off ratios of the devices based on QDs with an InP/ZnSe core-shell structure and with an InP/ZnSe/ZnS core-multishell structure were approximately 4.2 × 10 2 and 8.5 × 10 3 , respectively, indicative of enhanced charge storage capability in the latter. After bending, the memory characteristics of the memristive devices based on QDs with the InP/ZnSe/ZnS structure were similar to those before bending. In addition, those devices maintained the same on/off ratios for retention time of 1 × 10 4 s, and the number of endurance cycles was above 1 × 10 2 . The reset voltages ranged from -2.3 to -3.1 V, and the set voltages ranged from 1.3 to 2.1 V, indicative of reliable electrical characteristics. Furthermore, the possible operating mechanisms of the devices are presented on the basis of the electron trapping and release mode.

  7. Facile in situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability

    NASA Astrophysics Data System (ADS)

    Xiao, Jian-Hua; Huang, Wei-Qing; Hu, Yong-sheng; Zeng, Fan; Huang, Qin-Yi; Zhou, Bing-Xin; Pan, Anlian; Li, Kai; Huang, Gui-Fang

    2018-02-01

    High photocatalytic activity and photostability are the pursuit of the goal for designing promising photocatalysts. Herein, using ZnO to encapsulate ZnS nanoparticles is proposed as an effective strategy to enhance photocatalytic activity and anti-photocorrosion. The ZnS/ZnO core/shell heterostructures are obtained via an annealing treatment of ZnS nanoparticles produced by a facile wet chemical approach. Due to its small size, the nascent cubic sphalerite ZnS (s-ZnS) converts into a hexagonal wurtzite ZnS (w-ZnS)/ZnO core/shell structure after annealing treatment. In situ oxidation leads to increasing ZnO, simultaneously decreasing the w-ZnS content in the resultant w-ZnS/ZnO with thermal annealing time. The w-ZnS/ZnO core/shell heterostructures show high photocatalytic activity, demonstrated by the photodegradation rate of methylene blue being up to ten-fold and seven-fold higher than that of s-ZnS under UV and visible light irradiation, respectively, and the high capability of degrading rhodamine B. The enhanced photocatalytic activity may be attributed to the large specific surface and improved charge carrier separation at the core/shell interface. Moreover, it displays high photostability owing to the protection of the ZnO shell, greatly inhibiting the photocorrosion of ZnS. This facile in situ oxidation is effective and easily scalable, providing opportunities for developing novel core/shell structure photocatalysts with high activity and photostability.

  8. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.

    PubMed

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-07-01

    Toxicity of engineered nanoparticles on organisms is of concern worldwide due to their extensive use and unique properties. The impacts of ZnO nanoparticles (ZnO NPs) on seed germination and root elongation of corn (Zea mays L.) and cucumber (Cucumis sativus L.) were investigated in this study. The role of seed coats of corn in the mitigation toxicity of nanoparticles was also evaluated. ZnO NPs (1,000 mg L(-1)) reduced root length of corn and cucumber by 17 % (p < 0.05) and 51 % (p < 0.05), respectively, but exhibited no effects on germination. In comparison with Zn(2+), toxicity of ZnO NPs on the root elongation of corn could be attributed to the nanoparticulate ZnO, while released Zn ion from ZnO could solely contribute to the inhibition of root elongation of cucumber. Zn uptake in corn exposed to ZnO NPs during germination was much higher than that in corn exposed to Zn(2+), whereas Zn uptake in cucumber was significantly correlated with soluble Zn in suspension. It could be inferred that Zn was taken up by corn and cucumber mainly in the form of ZnO NPs and soluble Zn, respectively. Transmission electron microscope confirmed the uptake of ZnO NPs into root of corn. Although isolation of the seed coats might not be the principal factor that achieved avoidance from toxicity on germination, seed coats of corn were found to mitigate the toxicity of ZnO NPs on root elongation and prevent approximately half of the Zn from entering into root and endosperm.

  9. Mitochondrial and Chromosomal Damage Induced by Oxidative Stress in Zn2+ Ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots

    PubMed Central

    Ahmed, Bilal; Dwivedi, Sourabh; Abdin, Malik Zainul; Azam, Ameer; Al-Shaeri, Majed; Khan, Mohammad Saghir; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2017-01-01

    Large-scale synthesis and release of nanomaterials in environment is a growing concern for human health and ecosystem. Therefore, we have investigated the cytotoxic and genotoxic potential of zinc oxide nanoparticles (ZnO-NPs), zinc oxide bulk (ZnO-Bulk), and zinc ions (Zn2+) in treated roots of Allium cepa, under hydroponic conditions. ZnO-NPs were characterized by UV-visible, XRD, FT-IR spectroscopy and TEM analyses. Bulbs of A. cepa exposed to ZnO-NPs (25.5 nm) for 12 h exhibited significant decrease (23 ± 8.7%) in % mitotic index and increase in chromosomal aberrations (18 ± 7.6%), in a dose-dependent manner. Transmission electron microcopy and FT-IR data suggested surface attachment, internalization and biomolecular intervention of ZnO-NPs in root cells, respectively. The levels of TBARS and antioxidant enzymes were found to be significantly greater in treated root cells vis-à-vis untreated control. Furthermore, dose-dependent increase in ROS production and alterations in ΔΨm were observed in treated roots. FT-IR analysis of root tissues demonstrated symmetric and asymmetric P=O stretching of >PO2− at 1240 cm−1 and stretching of C-O ribose at 1060 cm−1, suggestive of nuclear damage. Overall, the results elucidated A. cepa, as a good model for assessment of cytotoxicity and oxidative DNA damage with ZnO-NPs and Zn2+ in plants. PMID:28120857

  10. Intersubband spectroscopy of ZnO/ZnMgO quantum wells grown on m-plane ZnO substrates for quantum cascade device applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quach, Patrick; Jollivet, Arnaud; Isac, Nathalie; Bousseksou, Adel; Ariel, Frédéric; Tchernycheva, Maria; Julien, François H.; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hierro, Adrián.; Le Biavan, Nolwenn; Hugues, Maxime; Chauveau, Jean-Michel

    2017-03-01

    Quantum cascade (QC) lasers opens new prospects for powerful sources operating at THz frequencies. Up to now the best THz QC lasers are based on intersubband emission in GaAs/AlGaAs quantum well (QW) heterostructures. The maximum operating temperature is 200 K, which is too low for wide-spread applications. This is due to the rather low LO-phonon energy (36 meV) of GaAs-based materials. Indeed, thermal activation allows non-radiative path through electron-phonon interaction which destroys the population inversion. Wide band gap materials such as ZnO have been predicted to provide much higher operating temperatures because of the high value of their LO-phonon energy. However, despite some observations of intersubband absorption in c-plane ZnO/ZnMgO quantum wells, little is known on the fundamental parameters such as the conduction band offset in such heterostructures. In addition the internal field inherent to c-plane grown heterostuctures is an handicap for the design of QC lasers and detectors. In this talk, we will review a systematic investigation of ZnO/ZnMgO QW heterostructures with various Mg content and QW thicknesses grown by plasma molecular beam epitaxy on low-defect m-plane ZnO substrates. We will show that most samples exhibit TM-polarized intersubband absorption at room temperature linked either to bound-to-quasi bound inter-miniband absorption or to bound-to bound intersubband absorption depending on the Mg content of the barrier material. This systematic study allows for the first time to estimate the conduction band offset of ZnO/ZnMgO heterostructures, opening prospects for the design of QC devices operating at THz frequencies. This was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement #665107.

  11. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation

    PubMed Central

    Sadjadpour, Susan; Safarian, Shahrokh; Zargar, Seyed Jalal; Sheibani, Nader

    2016-01-01

    In photodynamic therapy (PDT) of cancer both the light and the photosensitizing agent are normally harmless, but in combination they could result in selective tumor killing. Zinc oxide nanoparticles were synthesized and coated with the amino acid cysteine to provide an adequate arm for conjugation with porphyrin photosensitizers (meso-tetra (4-carboxyphenyl) porphyrin [MTCP] and CuMTCP). Porphyrin-conjugated nanoparticles were characterized by TEM, FTIR, and UV–vis, and fluorescence spectrophotometry. The 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability in the presence or absence of porphyrin conjugates following UV and X-ray irradiation. The uptake of the porphyrin-conjugated ZnO nanoparticles by cells was detected using fluorescence microscopy. Our results indicated that the survival of T-47D cells was significantly compromised in the presence of ZnO-MTCP-conjugated nanostructures with UV light exposure. Exhibition of cytotoxic activity of ZnO-MTCP for human prostate cancer (Du145) cells occurred at a higher concentration, indicating the more resistant nature of these tumor cells. ZnO-CuMTCP showed milder cytotoxic effects in human breast cancer (T-47D) and no cytotoxic effects in Du145 with UV light exposure, consistent with its lower cytotoxic potency as well as cellular uptake. Surprisingly, none of the ZnO-porphyrin conjugates exhibited cytotoxic effects with X-ray irradiation, whereas ZnO alone exerted cytotoxicity. Thus, ZnO and ZnO-porphyrin nanoparticles with UV or X-ray irradiation may provide a suitable treatment option for various cancers. PMID:25581219

  12. Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core-shell quantum dots and their differential bioanalyte sensing potential

    NASA Astrophysics Data System (ADS)

    Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.

    2016-10-01

    Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol < glucose < ascorbic acid < oxalic acid < citric acid for ZnSe, and cholesterol < glucose < oxalic acid < ascorbic acid < citric acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.

  13. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    SciTech Connect

    Jarosz, D.; Suchocki, A.; Kozanecki, A.

    2016-03-15

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  14. Preparation and characterization of double layer thin films ZnO/ZnO:Ag for methylene blue photodegradation

    SciTech Connect

    Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id

    2016-02-08

    Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.

  15. Effect of ZnSe/GaAs interface treatment in ZnSe quality control for optoelectronic device applications

    DOE PAGES

    Park, Kwangwook; Beaton, Daniel; Steirer, Kenneth X.; ...

    2017-01-27

    Here, we investigate the role of interface initiation conditions on the growth of ZnSe/GaAs heterovalent heterostructures. ZnSe epilayers were grown on a GaAs surface with various degrees of As-termination and the application of either a Zn or Se pre-treatment. Structural analysis revealed that Zn pre-treatment of an As-rich GaAs surface suppresses Ga 2Se 3 formation at the interface and promotes the growth of high crystal quality ZnSe. This is confirmed with low-temperature photoluminescence. However, moderation of Ga-Se bonding through a Se pre-treatment of an As-rich GaAs surface can prevent excessive intermixing at the interface and promote excitonic emission in themore » underlying GaAs layer. These results provide guidance on how best to prepare heterovalent interfaces for various applications.« less

  16. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less

  17. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  18. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  19. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.

    PubMed

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2016-05-01

    Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Busca de estruturas em grandes escalas em altos redshifts

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodré, L., Jr.; Cypriano, E.

    2003-08-01

    A busca por estruturas em grandes escalas (aglomerados de galáxias, por exemplo) é um ativo tópico de pesquisas hoje em dia, pois a detecção de um único aglomerado em altos redshifts pode por vínculos fortes sobre os modelos cosmológicos. Neste projeto estamos fazendo uma busca de estruturas distantes em campos contendo pares de quasares próximos entre si em z Â3 0.9. Os pares de quasares foram extraídos do catálogo de Véron-Cetty & Véron (2001) e estão sendo observados com os telescópios: 2,2m da University of Hawaii (UH), 2,5m do Observatório de Las Campanas e com o GEMINI. Apresentamos aqui a análise preliminar de um par de quasares observado nos filtros i'(7800 Å) e z'(9500 Å) com o GEMINI. A cor (i'-z') mostrou-se útil para detectar objetos "early-type" em redshifts menores que 1.1. No estudo do par 131046+0006/J131055+0008, com redshift ~ 0.9, o uso deste método possibilitou a detecção de sete objetos candidatos a galáxias "early-type". Num mapa da distribuição projetada dos objetos para 22 < i' < 25 observou-se que estas galáxias estão localizadas próximas a um dos quasares e há indícios de que estejam aglomeradas dentro de um área de ~ 6 arcmin2. Se esse for o caso, estes objetos seriam membros de uma estrutura em grande escala. Um outro argumento em favor dessa hipótese é que eles obedecem uma relação do tipo Kormendy (raio equivalente X brilho superficial dentro desse raio), como a apresentada pelas galáxias elípticas em z = 0.

  1. A Zn isotope perspective on the rise of continents.

    PubMed

    Pons, M-L; Fujii, T; Rosing, M; Quitté, G; Télouk, P; Albarède, F

    2013-05-01

    Zinc isotope abundances are fairly constant in igneous rocks and shales and are left unfractionated by hydrothermal processes at pH < 5.5. For that reason, Zn isotopes in sediments can be used to trace the changing chemistry of the hydrosphere. Here, we report Zn isotope compositions in Fe oxides from banded iron formations (BIFs) and iron formations of different ages. Zinc from early Archean samples is isotopically indistinguishable from the igneous average (δ(66) Zn ~0.3‰). At 2.9-2.7 Ga, δ(66) Zn becomes isotopically light (δ(66) Zn < 0‰) and then bounces back to values >1‰ during the ~2.35 Ga Great Oxygenation Event. By 1.8 Ga, BIF δ(66) Zn has settled to the modern value of FeMn nodules and encrustations (~0.9‰). The Zn cycle is largely controlled by two different mechanisms: Zn makes strong complexes with phosphates, and phosphates in turn are strongly adsorbed by Fe hydroxides. We therefore review the evidence that the surface geochemical cycles of Zn and P are closely related. The Zn isotope record echoes Sr isotope evidence, suggesting that erosion starts with the very large continental masses appearing at ~2.7 Ga. The lack of Zn fractionation in pre-2.9 Ga BIFs is argued to reflect the paucity of permanent subaerial continental exposure and consequently the insignificant phosphate input to the oceans and the small output of biochemical sediments. We link the early decline of δ(66) Zn between 3.0 and 2.7 Ga with the low solubility of phosphate in alkaline groundwater. The development of photosynthetic activity at the surface of the newly exposed continents increased the oxygen level in the atmosphere, which in turn triggered acid drainage and stepped up P dissolution and liberation of heavy Zn into the runoff. Zinc isotopes provide a new perspective on the rise of continents, the volume of carbonates on continents, changing weathering conditions, and compositions of the ocean through time. © 2013 Blackwell Publishing Ltd.

  2. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  3. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    NASA Astrophysics Data System (ADS)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  4. Phenomenal enhancement of optical nonlinearity in PTZ-I based ZnS/ZnSe nanocomposites

    NASA Astrophysics Data System (ADS)

    Divyasree, M. C.; Shiju, E.; Vijisha, M. V.; Ramesan, M. T.; Chandrasekharan, K.

    2018-05-01

    The enhanced nonlinear optical properties of phenothiazine-iodine (PTZ-I) charge transfer complex (CTC) on composite formation with ZnS/ZnSe nanostructures are reported. The interaction between the components was confirmed by the FTIR spectra. Structural and morphological changes on nanocomposite formation were analyzed by scanning electron microscopy and X-ray diffraction spectra. The absorption and emission features of both the nanocomposites and their constituent components were studied. Nonlinear optical properties of all the samples in nanosecond regime were investigated by the Z-scan technique using Nd: YAG laser with 532 nm wavelength and 7 ns pulse width. The optical nonlinearity of PTZ-I CTC was found to be improved considerably on composite formation and the new systems can be proposed as excellent candidates for photonic devices. Enhanced optical nonlinearity of the composites could be attributed to charge/energy transfer mechanism between PTZ-I CTC and the nanostructures.

  5. Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO-ZnS complex structure.

    PubMed

    Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong

    2014-03-14

    Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.

  6. Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy.

    PubMed

    Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D

    2013-07-05

    Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.

  7. Effect of substituting increasing levels of organic Zn for inorganic Zn on performance, hematological and serum biochemical constituents, antioxidant status and immune response in rat.

    PubMed

    Nagalakshmi, D; Sridhar, K; Swain, P S; Reddy, A G

    2016-01-01

    The effect of replacing dietary Zn supplemented from inorganic (ZnCO 3 ) source with organic Zn (Zn methionine; Zn-met) was investigated in 72 rats (98.42 ± 1.483 g) by randomly allotting to 4 diets (6 replicates/diet, 3 rats/replicate). Basal diet was prepared with purified ingredients without Zn. The control diet (AIN-76A) contained 12 ppm of Zn from ZnCO 3 (100-I). In the other diets ZnCO 3 was replaced with Zn-met at the rates of 50 (50I:50O), 75 (25I:75O) or 100% (100-O). Weekly body weight and daily feed intake were recorded for 14 weeks. Blood was collected by retro-orbital puncture on the 70th and 80th day to determine haematological and various serum biochemical constituents, and antioxidant enzyme activities in haemolysate, respectively. Rats were antigenically challenged with sheep RBC on day 73 to assess humoral immune response (HIR), and on day 95 for cell mediated immune response (CMIR) and rats were sacrificed at the end of rearing period to collect liver, muscle, pancreas and kidneys for Zn estimation and oxidative stress markers in liver. The data were analysed using completely randomized design. Weight gain and feed intake, hematological and serum biochemical constituents, Zn content in organs (except liver) were not influenced by replacing ZnCO 3 with Zn-met. Zinc concentrations in the serum and liver were higher (P<0.05) with 50% replacement of ZnCO 3 with Zn-met compared to 0 or 100% replacement. Lower (P<0.05) lipid peroxidation and higher (P<0.05) glutathione peroxidase and glutathione reductase activities were observed with 50 and 75% replacement of ZnCO 3 with Zn-met compared to 0 or 100% replacement. Protein carbonyls and reduced glutathione in liver were not affected, while TBARS decreased (P<0.05) with substituting Zn-met (50-100%) for ZnCO 3 . The HIR and CMIR increased with increasing Zn-met supplementation and the highest response was observed with 75-100% replacement of ZnCO 3 with Zn-met. It is concluded that replacement of 50 or

  8. Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype*

    PubMed Central

    Wu, Chun-yong; Feng, Ying; Shohag, Md. Jahidul Islam; Lu, Ling-li; Wei, Yan-yan; Gao, Chong; Yang, Xiao-e

    2011-01-01

    Zinc (Zn) is an essential micronutrient for humans, but Zn deficiency has become serious as equally as iron (Fe) and vitamin A deficiencies nowadays. Selection and breeding of high Zn-density crops is a suitable, cost-effective, and sustainable way to improve human health. However, the mechanism of high Zn density in rice grain is not fully understood, especially how Zn transports from soil to grains. Hydroponics experiments were carried out to compare Zn uptake and distribution in two different Zn-density rice genotypes using stable isotope technique. At seedling stage, IR68144 showed higher 68Zn uptake and transport rate to the shoot for the short-term, but no significant difference was observed in both genotypes for the long-term. Zn in xylem sap of IR68144 was consistently higher, and IR68144 exhibited higher Zn absorption ratio than IR64 at sufficient (2.0 µmol/L) or surplus (8.0 µmol/L) Zn supply level. IR64 and IR68144 showed similar patterns of 68Zn accumulation in new leaves at seedling stage and in developing grains at ripening stage, whereas 68Zn in new leaves and grains of IR68144 was consistently higher. These results suggested that a rapid root-to-shoot translocation and enhanced xylem loading capacity may be the crucial processes for high Zn density in rice grains. PMID:21528496

  9. The Critical Role of Thioacetamide Concentration in the Formation of ZnO/ZnS Heterostructures by Sol-Gel Process

    PubMed Central

    Kiatkoski Kaminski, Renata Cristina; Caetano, Bruno Leonardo; Magnani, Marina; Meneau, Florian; Rochet, Amélie; Santilli, Celso Valentim; Briois, Valérie; Bourgaux, Claudie

    2018-01-01

    ZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures. ZnO colloidal suspensions, prepared by hydrolysis and condensation of a Zn acetate precursor solution, were allowed to react with an ethanolic thioacetamide solution (TAA) as sulfur source. The reactions were monitored in situ by Small Angle X-ray Scattering (SAXS) and UV-vis spectroscopy, and the final colloidal suspensions were characterized by High Resolution Transmission Electron Microscopy (HRTEM). The powders extracted at the end of the reactions were analyzed by X-ray Absorption spectroscopy (XAS) and X-ray diffraction (XRD). Depending on TAA concentration, different nanostructures were revealed. ZnO and ZnS phases were mainly obtained at low and high TAA concentrations, respectively. At intermediate TAA concentrations, we evidenced the formation of ZnO/ZnS heterostructures. ZnS formation could take place via direct crystal growth involving Zn ions remaining in solution and S ions provided by TAA and/or chemical conversion of ZnO to ZnS. The combination of all the characterization techniques was crucial to elucidate the reaction steps and the nature of the final products. PMID:29360735

  10. Homogeneity of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.

    1998-02-01

    We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.

  11. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  12. Selective antibacterial effects of mixed ZnMgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-05-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive ( B. subtilis) and Gram-negative ( E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size 50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  13. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    SciTech Connect

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  14. Methotrexate intercalated ZnAl-layered double hydroxide

    SciTech Connect

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram

    2011-09-15

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug moleculemore » in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.« less

  15. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  16. In vitro selection of high temperature Zn(2+)-dependent DNAzymes.

    PubMed

    Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi

    2005-08-01

    In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.

  17. Zn-metalloprotease sequences in extremophiles

    NASA Astrophysics Data System (ADS)

    Holden, T.; Dehipawala, S.; Golebiewska, U.; Cheung, E.; Tremberger, G., Jr.; Williams, E.; Schneider, P.; Gadura, N.; Lieberman, D.; Cheung, T.

    2010-09-01

    The Zn-metalloprotease family contains conserved amino acid structures such that the nucleotide fluctuation at the DNA level would exhibit correlated randomness as described by fractal dimension. A nucleotide sequence fractal dimension can be calculated from a numerical series consisting of the atomic numbers of each nucleotide. The structure's vibration modes can also be studied using a Gaussian Network Model. The vibration measure and fractal dimension values form a two-dimensional plot with a standard vector metric that can be used for comparison of structures. The preference for amino acid usage in extremophiles may suppress nucleotide fluctuations that could be analyzed in terms of fractal dimension and Shannon entropy. A protein level cold adaptation study of the thermolysin Zn-metalloprotease family using molecular dynamics simulation was reported recently and our results show that the associated nucleotide fluctuation suppression is consistent with a regression pattern generated from the sequences's fractal dimension and entropy values (R-square { 0.98, N =5). It was observed that cold adaptation selected for high entropy and low fractal dimension values. Extension to the Archaemetzincin M54 family in extremophiles reveals a similar regression pattern (R-square = 0.98, N = 6). It was observed that the metalloprotease sequences of extremely halophilic organisms possess high fractal dimension and low entropy values as compared with non-halophiles. The zinc atom is usually bonded to the histidine residue, which shows limited levels of vibration in the Gaussian Network Model. The variability of the fractal dimension and entropy for a given protein structure suggests that extremophiles would have evolved after mesophiles, consistent with the bias usage of non-prebiotic amino acids by extremophiles. It may be argued that extremophiles have the capacity to offer extinction protection during drastic changes in astrobiological environments.

  18. Nicotianamine forms complexes with Zn(II) in vivo.

    PubMed

    Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan

    2010-01-01

    The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.

  19. Electrical conduction in PVDF/ZnO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Utpal; Jha, Anal K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    A hybrid combination of Ag and ZnO nanoparticles were utilized to fabricate PVDF/ZnO(90/10)-Ag nanocomposites (with Ag as filler: 0.5, 1 and 1.5%) utilizing melt-mixing technique. X-ray diffraction study confirmed the formations of nanocomposites. Electric modulus analysis indicated the dielectric relaxation in this system to be of non- Debye type. Correlated barrier hopping model successfully explained the charge conduction in PVDF/ZnO-Ag nanocomposites and ac conductivity data followed Jonscher's power law.

  20. Surface tension modelling of liquid Cd-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  1. Growth of HgZnTe Layers by LPE Technique

    DTIC Science & Technology

    1988-03-01

    1 F IL E C O PY I . C, L . 0 l GROWTH OF UgZn’re LAYER." BY LPE TECHNIQUE Final Report 00by U A. Sher, A. Tsigelman and D. Eger March 1988 United...experimental research into the narrw bnd ap range ofthis solid solution. In the present work, the LPE of lgfZn~Te was studied. focusing on the...growth process and the characterisation of the epilayers. B. The effect of the substrate lattice mismatch on the LPE process of the llgZnTe and the

  2. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  3. Molecular control of pentacene/ZnO photoinduced charge transfer

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.

    2011-03-01

    Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.

  4. Luminescence parameters of InP/ZnS@AAO nanostructures

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-03-01

    Nanostructured membranes of anodic aluminum oxide (AAO) with InP/ZnS semiconductor nanocrystals deposited in pores were synthesized by electrochemical technique, physical deposition and post processing in an ultrasonic bath. Photoluminescence spectra of the samples were studied. Fluorescent properties of the quantum dots are found to be retained after the deposition. The color range is illustrated that can be covered using membranes annealed at temperatures < 900°C and by varying the concentration of the deposited InP/ZnS nanocrystals. Chromaticity coordinates and correlated color temperature for the fabricated white InP/ZnS@AAO phosphor are (0.21, 0.26) and 4115 K, respectively.

  5. Nature of native defects in ZnO.

    PubMed

    Selim, F A; Weber, M H; Solodovnikov, D; Lynn, K G

    2007-08-24

    This study revealed the nature of native defects and their roles in ZnO through positron annihilation and optical transmission measurements. It showed oxygen vacancies are the origin for the shift in the optical absorption band that causes the red or orange coloration. It also revealed experimental evidence that the donor nature of oxygen vacancy is approximately 0.7 eV. In addition, this work showed the Zn interstitial was not the donor in the as-grown ZnO and supported recent calculations that predicted hydrogen in an oxygen vacancy forms multicenter bonds and acts as a shallow donor.

  6. Mechanisms of electrical isolation in O+ -irradiated ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Coleman, V. A.; Tan, H. H.; Jagadish, C.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2008-07-01

    We have applied positron annihilation spectroscopy combined with sheet resistance measurements to study the electrical isolation of thin ZnO layers irradiated with 2 MeV O+ ions at various fluences. Our results indicate that Zn vacancies, the dominant defects detected by positrons, are produced in the irradiation at a relatively low rate of about 2000cm-1 when the ion fluence is at most 1015cm-2 and that vacancy clusters are created at higher fluences. The Zn vacancies introduced in the irradiation act as dominant compensating centers and cause the electrical isolation, while the results suggest that the vacancy clusters are electrically inactive.

  7. The growth of ZnO nanostructures using Arginine

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    The growth mechanism of Zinc oxide (ZnO) nanomaterial with amino acid (Arginine) is explained at different shapes. The present study of ZnO nanostructures (NSs) in the presence of Arginine has enabled us to not only determine the growth mechanism of ZnO NSs but also to determine the effect of Arginine at different temperature of reactants. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that Arginine is responsible for formation of NSs. Based on these results, a plausible mechanism is explained.

  8. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    USDA-ARS?s Scientific Manuscript database

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  9. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang

    2016-04-01

    In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a

  10. Template-free synthesis of ordered ZnO@ZnS core-shell arrays for high performance supercapacitors.

    PubMed

    Yan, Hailong; Li, Tong; Lu, Yang; Cheng, Jinbing; Peng, Tao; Xu, Jinyou; Yang, Linying; Hua, Xiangqiang; Liu, Yunxin; Luo, Yongsong

    2016-11-28

    In this article, ordered ZnO@ZnS core-shell structures have been produced on a stainless mesh by a two-step approach without using a template. ZnO nanorods fabricated by a chemical vapor method are transferred into a 50 ml autoclave for a second stage ion-exchange reaction followed by heating at 120 °C for 4-16 h. The ZnO core is prepared as the conducting channel and ZnS as the active material. Such unique architecture exhibits remarkable electrochemical performance with high capacitance and desirable cycle life. When evaluating as the electrode for supercapacitors, the ZnO@ZnS core-shell structure delivers a high specific capacitance of 603.8 F g -1 at a current density of 2 A g -1 , with 9.4% capacitance loss after cycling 3000 times. The fabrication strategy presented here is simple and cost-effective, which can open new avenues for large-scale applications of the novel materials in energy storage.

  11. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  12. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  13. Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brauer, G.; Anwand, W.; Grambole, D.; Grenzer, J.; Skorupa, W.; Čížek, J.; Kuriplach, J.; Procházka, I.; Ling, C. C.; So, C. K.; Schulz, D.; Klimm, D.

    2009-03-01

    A systematic study of various, nominally undoped ZnO single crystals, either hydrothermally grown (HTG) or melt grown (MG), has been performed. The crystal quality has been assessed by x-ray diffraction, and a comprehensive estimation of the detailed impurity and hydrogen contents by inductively coupled plasma mass spectrometry and nuclear reaction analysis, respectively, has been made also. High precision positron lifetime experiments show that a single positron lifetime is observed in all crystals investigated, which clusters at 180-182 ps and 165-167 ps for HTG and MG crystals, respectively. Furthermore, hydrogen is detected in all crystals in a bound state with a high concentration (at least 0.3at.% ), whereas the concentrations of other impurities are very small. From ab initio calculations it is suggested that the existence of Zn-vacancy-hydrogen complexes is the most natural explanation for the given experimental facts at present. Furthermore, the distribution of H at a metal/ZnO interface of a MG crystal, and the H content of a HTG crystal upon annealing and time afterward has been monitored, as this is most probably related to the properties of electrical contacts made at ZnO and the instability in p -type conductivity observed at ZnO nanorods in literature. All experimental findings and presented theoretical considerations support the conclusion that various types of Zn-vacancy-hydrogen complexes exist in ZnO and need to be taken into account in future studies, especially for HTG materials.

  14. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  15. Differential effects of β-mercaptoethanol on CdSe/ZnS and InP/ZnS quantum dots.

    PubMed

    Georgin, Marcel; Carlini, Lina; Cooper, Daniel; Bradforth, Stephen E; Nadeau, Jay L

    2013-07-07

    The small thiol β-mercaptoethanol (BME) has been used as an anti-blinking reagent for CdSe/ZnS quantum dots (QDs), although its effects on QD photoluminescence are complex. It acts as an antioxidant as well as a hole scavenger on both CdSe and CdTe, which leads to changes in emission intensity and lifetime that vary qualitatively according to BME concentration, time of incubation, and pH of the solution. Because the band edge energies of InP/ZnS are shifted from those of CdTe and CdSe, it may be expected that thiols including BME might be unable to trap holes from these QDs. In this study, we use steady-state and time-resolved emission spectroscopy with physical fitting models combined with blinking analysis to compare the effects of different concentrations of BME on CdSe/ZnS vs. InP/ZnS QDs over time. We also find excellent correspondence between simple physical model parameters and blinking off times, a finding that will be useful for all blinking studies involving semiconductor nanoparticles. BME alters blinking in InP/ZnS QDs with a single ZnS shell, but not those with double thickness shells. The effects are similar to those seen with CdSe/ZnS, despite very different effects of BME on steady-state spectra, and highly pH-dependent.

  16. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Li, Min; Wang, Jian-Zhong; Shi, Li-Qun

    2013-02-01

    We prepare p-type ZnO:N films by annealing Zn3N2 films in oxygen over a range of temperatures. The prepared films are characterized by various techniques, such as Rutherford backscattering spectroscopy, x-ray diffraction, x-ray photoemission spectroscopy, the Hall effect and photoluminescence spectra. The results show that the Zn3N2 films start to transform to ZnO at 300°C and the N content decreases with an increase in annealing temperature. N has two local chemical states: zinc oxynitride (ZnO1-xNx) and substitutional NO in O-rich local environments (α -NO). The conduction type changes from n-type to p-type upon oxidation at 400-600°C, indicating that N is an effective acceptor in the ZnO film. The photoluminescence spectra show the UV emission and defect-related emissions of ZnO:N films. The mechanism and efficiency of p-type doping are briefly discussed.

  17. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  18. Structural and optical properties of ZnSe:Eu/ZnS quantum dots depending on interfacial residual europium

    NASA Astrophysics Data System (ADS)

    Park, Ji Young; Lee, Chan Gi; Seo, Han Wook; Jeong, Da-Woon; Kim, Min Young; Kim, Woo-Byoung; Kim, Bum Sung

    2018-01-01

    A multimodal emitter comprising of ZnSe:Eu/ZnS (core/shell) quantum dots (QDs) by adding a ZnS precursor in situ during synthesis. ZnSe/Eu2+/Eu3+/ZnS actives both core and core/shell. QDs prepared with the ZnS precursor displayed a luminescence intensity three times that of ZnSe QDs due to the passivation effect of the Shell. While the core QDs display the 450-550 nm emission of Eu2+ (4F65D1 → 4F7), the core/shell system showed no Eu2+ emission but only the sharp peaks in the red at 579, 592, 615, 651, and 700 nm due to the electronic transitions of 5D0 → 7Fn (n = 0-4) depending on leisurely decreased with increased reaction time. These results are in agreement with Eu 3d spectra of XPS analysis results. Microscopic analyses show that the core and core/shell QDs both have a zinc blende structure, and their respective sizes were about 3.19 and 3.44 nm. The lattice constant in the central portion of the core/shell QDs are around d111 = 3.13 Å, which is between the outside and inside ring patterns (d111 = 3.27 and 3.07 Å, respectively). This shows the effective over-capping of shell onto the core QDs. The core/shell structure may contain Eu2O3 bonding the over-coated ZnS surface on the Eu3+-doped ZnSe core.

  19. First-principles study of ZnSnAs2-based dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Kizaki, Hidetoshi; Morikawa, Yoshitada

    2018-02-01

    The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.

  20. Relationships between plasma and erythrocyte Zn and maturation in adolescent males

    SciTech Connect

    Arquitt, A.B.; Hermann, J.R.; Stoecker, B.J.

    Sixty-three male volunteers between the ages of 10.6 and 14.3 yr were assessed for maturation and zinc status. The adrenal androgen dehydroepiandrosterone sulfate (DHEAS), used as a maturation indicator, was significantly correlated with height, weight, hemoglobin, and mid-arm muscle area (MAMA) as previously reported. Erythrocyte Zn (RBC-Zn) and plasma Zn were significantly correlated. When grouped by plasma Zn tertiles, significant differences were found for RBC-Zn and cholesterol between the highest and lowest groups. When subjects were grouped by RBC-Zn concentration, the lowest 10% of subjects had higher concentrations of DHEAS, lower plasma Zn , and were taller, heavier and hadmore » larger MAMA than the other group. In these subjects plasma and RBC-Zn concentrations were within normal limits. In this study RBC-Zn and plasma Zn were related to indicators of maturation.« less

  1. A radiopharmaceutical for pancreatic exocrine functional diagnosis: 62Zn-EDDA metabolism in pancreas.

    PubMed

    Fujibayashi, Y; Saji, H; Kawai, K; Unuma, Y; Miyata, S; Okuno, T; Hosotani, R; Inoue, K; Adachi, H; Horiuchi, K

    1986-01-01

    The metabolic pathway of radioactive 62Zn-EDDA (ethylenediamine-N,N'-diacetic acid), in the exocrine pancreas was studied with respect to that of endogenous Zn. In pancreatic duct cannulated dog, the secretion of intravenously injected exogenous 62Zn into pancreatic juice increased under the stimulation of CCK-PZ (pancreatic protein secretion stimulating hormone), which closely correlated to endogenous Zn. Moreover, in pancreatic juice, 62Zn as well as endogenous Zn was selectively bound to Zn-metalloenzymes, carboxypeptidase A and B. These results demonstrated the close correlation between the endogenous and the exogenously-administered Zn (62Zn-EDDA), as well as the high availability of 62Zn-EDDA as a marker of pancreatic function for the follow up of carboxypeptidase metabolism.

  2. Nanoparticle Self-Assembled Grain Like Curcumin Conjugated ZnO: Curcumin Conjugation Enhances Removal of Perylene, Fluoranthene, and Chrysene by ZnO

    PubMed Central

    Moussawi, Rasha N.; Patra, Digambara

    2016-01-01

    Curcumin conjugated ZnO, referred as Zn(cur)O, nanostructures have been successfully synthesized, these sub-micro grain-like structures are actually self-assemblies of individual needle-shaped nanoparticles. The nanostructures as synthesized possess the wurtzite hexagonal crystal structure of ZnO and exhibit very good crystalline quality. FT-Raman and TGA analysis establish that Zn(cur)O is different from curcumin anchored ZnO (ZnO@cur), which is prepared by physically adsorbing curcumin on ZnO surfaces. Chemically Zn(cur)O is more stable than ZnO@cur. Diffuse reflectance spectroscopy indicates Zn(cur)O have more impurities compared to ZnO@cur. The solid-state photoluminescence of Zn(cur)O has been investigated, which demonstrates that increase of curcumin concentration in Zn(cur)O suppresses visible emission of ZnO prepared through the same method, this implies filling ZnO defects by curcumin. However, at excitation wavelength 425 nm the emission is dominated by fluorescence from curcumin. The study reveals that Zn(cur)O can remove to a far extent high concentrations of perylene, fluoranthene, and chrysene faster than ZnO. The removal depends on the extent of curcumin conjugation and is found to be faster for PAHs having smaller number of aromatic rings, particularly, it is exceptional for fluoranthene with 93% removal after 10 minutes in the present conditions. The high rate of removal is related to photo-degradation and a mechanism has been proposed. PMID:27080002

  3. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests.

    PubMed

    Gonçalves, Renata Amanda; de Oliveira Franco Rossetto, Ana Letícia; Nogueira, Diego José; Vicentini, Denice Schulz; Matias, William Gerson

    2018-04-01

    Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50 (48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy.

    PubMed

    Song, Wenshuang; Tang, Xiaoling; Li, Yong; Sun, Yang; Kong, Jilie; Qingguang, Ren

    2016-08-01

    The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.

  5. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    NASA Astrophysics Data System (ADS)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  6. Effect of Zn Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloys Processed by Gravity Die Casting

    NASA Astrophysics Data System (ADS)

    Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin

    2018-06-01

    The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.

  7. High-Performance Dye-Sensitized Solar Cells Based on Morphology-Controllable Synthesis of ZnO–ZnS Heterostructure Nanocone Photoanodes

    PubMed Central

    Rouhi, Jalal; Mamat, Mohamad Hafiz; Ooi, C. H. Raymond; Mahmud, Shahrom; Mahmood, Mohamad Rusop

    2015-01-01

    High-density and well-aligned ZnO–ZnS core–shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO–ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer. PMID:25875377

  8. Trombo flutuante em veia femoral

    PubMed Central

    Bertanha, Matheus; Pimenta, Rafael Elias Farres; Brandão, Gustavo Muçouçah Sampaio; Sobreira, Marcone Lima; Moura, Regina; Jaldin, Rodrigo Gibin; de Camargo, Paula Angeleli Bueno; Yoshida, Winston Bonetti

    2017-01-01

    Resumo O trombo venoso flutuante em veia femoral é um tipo de trombo com alto potencial de embolização pulmonar. Entretanto, ainda é controversa a conduta mais apropriada nesses casos. Tratamentos clínicos com anticoagulantes ou fibrinolíticos e trombectomias abertas ou por meio de dispositivos endovasculares vêm sendo empregados ainda sem um critério de indicação bem definido. Apresentamos três casos clínicos de trombos flutuantes em veia femoral, de etiologias distintas, cujos tratamentos e respectivas evoluções serão discutidos. PMID:29930666

  9. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.

    2018-01-01

    Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode

  10. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less

  11. Ultraviolet Electrically Injected Light Sources With Epitaxial ZnO-Based Heterojunctions

    DTIC Science & Technology

    2007-08-01

    ohmic contacts to ZnO , UV photoconductors, and thin film transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated... transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated, as a potential means of locally inverting ZnO to p-type, and to...low contact resistivity ......................... 8 ZnO Thin Film Transistors

  12. Vacancy defect and defect cluster energetics in ion-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.

    2010-02-01

    We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.

  13. Dual-Color Emission in Hybrid III-Nitride/ZnO Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Cheung, Maurice C.; Doolittle, W. Alan; Cartwright, Alexander N.; Ferguson, Ian; Seong, Tae-Yeon; Nause, Jeff

    2010-02-01

    We report dual-color production of the blue and green regions using hybrid nitride/ZnO light emitting diode (LED) structures grown on ZnO substrates. The blue emission is ascribed to the near-band edge transition in InGaN while green emission is related to Zn-related defect levels formed by the unintentional interdiffusion of Zn into the InGaN active layer from the ZnO substrates.

  14. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  15. Codoping characteristics of Zn with Mg in GaN

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Han, M. S.; Yang, G. M.; Youn, C. J.; Lee, H. J.; Cho, H. K.; Lee, J. Y.

    2000-08-01

    The doping characteristics of Mg-Zn codoped GaN films grown by metalorganic chemical vapor deposition are investigated. By means of the concept of Mg-Zn codoping technique, we have grown p-GaN showing a low electrical resistivity (0.72 Ω cm) and a high hole concentration (8.5×1017cm-3) without structural degradation of the film. It is thought that the codoping of Zn atoms with Mg raises the Mg activation ratio by reducing the hydrogen solubility in p-GaN. In addition, the measured specific contact resistance of Mg-Zn codoped GaN film is 5.0×10-4 Ω cm2, which is one order of magnitude lower than that of Mg doped only GaN film (1.9×10-3 Ω cm2).

  16. ZnO:Gd nanocrystals for fluorescent applications

    SciTech Connect

    Divya, N. K., E-mail: divyank90@gmail.com; Pradyumnan, P. P.

    2016-05-23

    Gadolinium doped ZnO crystals within the solubility limit of gadolinium in ZnO matrix were prepared by solid state reaction technique. The method is relatively less expense and enables the production in large scale. The samples were characterised by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), UV/Vis diffuse reflectance spectroscopy and photoluminescence techniques. Fluorescent property studies of gadolinium doped ZnO at room temperature show enhanced visible light emission due to the defects and oxygen vacancies produced via doping. This work reports the impact of gadolinium doping in the structural, optical and luminescent properties of ZnO inmore » detail.« less

  17. Inverter Circuits using Pentacene and ZnO Transistors

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2007-04-01

    We report two types of integrated circuits based on a pentacene static-induction transistor (SIT), a pentacene thin-film transistor (TFT) and a zinc oxide (ZnO) TFT. The operating characteristics of a p-p inverter using pentacene SITs and a complementary inverter using a p-channel pentacene TFT and an n-channel ZnO TFT are described. The basic operation of logic circuits at a low voltage was achieved for the first time using the pentacene SIT inverter and complementary circuits with hybrid inorganic and organic materials. Furthermore, we describe the electrical properties of the ZnO films depending on sputtering conditions, and the complementary circuits using ZnO and pentacene TFTs.

  18. Interpretation of transport measurements in ZnO-thin films

    NASA Astrophysics Data System (ADS)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas

    2011-01-01

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.

  19. Glassy behavior of diluted Cu-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Akhter, Shahida; Hakim, M. A.; Hoque, S. M.; Mathieu, R.; Nordblad, P.

    2018-04-01

    The magnetic behavior of Zn substituted Cu-Zn spinel ferrites having chemical formula Cu1-xZnxFe2O4 (x = 0.7, 0.8, 0.9 and 1.0) has been studied by SQUID magnetometry, by means of magnetic hysteresis, field-cooled (FC) and zero-field-cooled (ZFC) magnetization, memory effect and low field ac susceptibility measurements. These measurements suggest that the ferrimagnetic phase of the x ≤ 0.8 samples is gradually turned into a spin glass (x ≥ 0.9). The compound with x = 0.9 exhibits the typical dynamical behavior of spin glasses, with indication of aging, rejuvenation and memory effects. The evolution of the magnetic properties of Cu-Zn spinel ferrites with substitution of Zn for Cu is discussed.

  20. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  1. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  2. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  3. Electron scattering times in ZnO based polar heterostructures

    SciTech Connect

    Falson, J., E-mail: j.falson@fkf.mpg.de; Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561; Max Planck Institute for Solid State Research, D-70569 Stuttgart

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  4. Lasing from colloidal InP/ZnS quantum dots.

    PubMed

    Gao, Shuai; Zhang, Chunfeng; Liu, Yanjun; Su, Huaipeng; Wei, Lai; Huang, Tony; Dellas, Nicholas; Shang, Shuzhen; Mohney, Suzanne E; Wang, Jingkang; Xu, Jian

    2011-03-14

    High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size over a broad range of the spectrum. Moreover, the optical gain profile of InP/ZnS NQDs was matched to the second order feedback of holographic polymer-dispersed liquid crystal gratings, leading to the very first demonstration of an optically-pumped, nanocrystal laser based on InP/ZnS core-shell NQDs.

  5. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  6. ZnO nanodisk based UV detectors with printed electrodes.

    PubMed

    Alenezi, Mohammad R; Alshammari, Abdullah S; Alzanki, Talal H; Jarowski, Peter; Henley, Simon John; Silva, S Ravi P

    2014-04-08

    The fabrication of highly functional materials for practical devices requires a deep understanding of the association between morphological and structural properties and applications. A controlled hydrothermal method to produce single crystal ZnO hexagonal nanodisks, nanorings, and nanoroses using a mixed solution of zinc sulfate (ZnSO4) and hexamethylenetetramine (HMTA) without the need of catalysts, substrates, or templates at low temperature (75 °C) is introduced. Metal-semiconductor-metal (MSM) ultraviolet (UV) detectors were fabricated based on individual and multiple single-crystal zinc oxide (ZnO) hexagonal nanodisks. High quality single crystal individual nanodisk devices were fabricated with inkjet-printed silver electrodes. The detectors fabricated show record photoresponsivity (3300 A/W) and external quantum efficiency (1.2 × 10(4)), which we attribute to the absence of grain boundaries in the single crystal ZnO nanodisk and the polarity of its exposed surface.

  7. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  8. Autonomous Microstructure EM-APEX Floats

    DTIC Science & Technology

    2016-01-01

    Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats

  9. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna.

    PubMed

    Muyssen, Brita T A; De Schamphelaere, Karel A C; Janssen, Colin R

    2006-05-25

    In order to gain better insights in the integrated response of Daphnia magna following chronic zinc exposure, several physiological parameters were measured in a time-dependent manner. D. magna juveniles were exposed for 21 days to dissolved Zn concentrations up to 340 microg/L. Next to standard endpoints such as mortality, growth and reproduction the following sub-lethal endpoints were measured: filtration and ingestion rate, respiration rate, energy reserves, internal Zn and total Ca concentrations in the organisms. Organisms exposed to 80 microg/L generally performed better than the Zn deprived control organisms. The former were used to elucidate the effects of higher Zn concentrations on the endpoints mentioned above. After 1 week, only 7% of the organisms exposed to 340 microg/L survived. Body Zn contents of these organisms were 281 +/- 76 microg g dry weight and a 37% decrease of the Ca contents was observed. This suggests a competitive effect of Zn on Ca uptake. Filtration rate (-51%), individual weight (-58%) and energy reserves (-35%) also exhibited a decreasing trend as a function of increasing Zn exposure concentrations. During the second and third exposure week an overall repair process was observed. In the surviving organisms mortality and reproduction were only slightly affected. This can be explained by (over)compensation reactions at lower levels of biological organisation: Ca contents (+24%) and filtration rate (+90%) increased as a function of the exposure concentration while respiration rate decreased (-29%) resulting in energy reserves remaining constant as a function of Zn exposure. It is hypothesized that a disturbed Ca balance is probably the first cause for zinc toxicity effects in D. magna.

  10. Transfer of /sup 65/Zn at mating in Heliothis virescens

    SciTech Connect

    Engebretson, J.A.; Mason, W.H.

    1980-02-01

    Male Heliothis virescens (Lepidoptera: Noctuidae) were shown to transfer 36% of a whole body /sup 65/Zn burden to the females at the time of mating. Approximately 5% of the male's and 11% of the female's total /sup 65/Zn burdens were found in eggs oviposited during a 10-day period following mating. Transfer of zinc at mating by Heliothis males may represent the conservation of an essential trace element that must be retained throughout the life cycle.

  11. Photosynthetic and ultrastructural responses of Ulva australis to Zn stress.

    PubMed

    Farias, D R; Schmidt, E; Simioni, C; Bouzon, Z L; Hurd, C L; Eriksen, R S; Macleod, C K

    2017-12-01

    This research evaluated the effect of zinc (Zn) on the ultrastructure and the photosynthetic efficiency of a common green alga. Ulva australis was grown in the laboratory for 7days under a range of different Zn concentrations (0, 25, 50 and 100μgL -1 ). Growth rate (Gr), photosynthetic efficiency (Fv/Fm and ETRmax), photosynthetic pigments, and metal accumulation were measured. Samples of 1mm length were taken to analyse the effect of Zn on the ultrastructure using transmission electron microscopy (TEM) and cytochemical responses (TB-O and PAS) were evaluated by light microscopy (LM). There were no significant differences in the growth rate, Fv/Fm, ETRmax and the photosynthetic pigments chlorophyll a, chlorophyll b and carotenoids (p>0.05) after 7days of Zn exposure. However, TEM revealed cytoplasm retraction, compression of cellulose fibrils, dissembled thylakoids and electron-dense bodies suggesting ultrastructural impacts from metal exposure and accumulation. Cytological analysis demonstrated that Zn affected U. australis cells at the three concentrations tested. The main effect was cytoplasm retraction and a decrease on the amount of starch granules, following exposure at 25μgL -1 and 50μgL -1 of Zn. We conclude that concentrations of Zn assessed in U. australis in this research has a short-term cellular effect as revealed by TEM and cytological analysis, demonstrating the importance of measuring a broad suite of endpoints to better understand species responses to environmentally relevant concentrations of Zn. However, U. australis was able to physiologically tolerate adverse conditions, since there was no effect on the photosynthetic performance and growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. HgZnTe-based detectors for LWIR NASA applications

    NASA Technical Reports Server (NTRS)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  13. Characterization of ZnAl cast alloys with Na addition

    SciTech Connect

    Gancarz, Tomasz, E-mail: t.gancarz@imim.pl; Cempura, Grzegorz; Skuza, Wojciech

    2016-01-15

    This study was aimed at evaluating the microstructural change and thermal, electrical and mechanical properties with the addition of Na to eutectic ZnAl alloys. Solders based on eutectic ZnAl containing 0.2 to 3.0 (wt.%) of Na were developed for high temperature solder. Differential scanning calorimetry (DSC) measurements were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed over − 50 °C to 300 °C and 30 °C to 300 °C temperature ranges, respectively. The microstructure of the specimens was analyzed using scanning (SEM) and transmission electron microscopy (TEM) techniques. Chemical microanalysismore » was performed by energy-dispersive X-ray spectroscopy (EDS) on SEM and TEM. The precipitates of NaZn{sub 13} were confirmed by X-ray diffraction (XRD) measurements and selected area electron diffraction (SAED) techniques. The addition of Na to eutectic ZnAl alloy increased the electrical resistivity and reduced the coefficient of thermal expansion; however, the melting point did not change. The mechanical properties, strain and microhardness increased with Na content in alloys. - Highlights: • High temperature soldering materials of ZnAl with Na were designed and characterized. • Precipitates of NaZn{sub 13}were observed and confirmed using TEM and XRD. • Addition of Na to eutectic ZnAl cussed increased mechanical properties. • NaZn{sub 13} caused increased electrical resistivity and microhardness, and reduced the CTE.« less

  14. Evaluation of ZnO:Al as a contact material to CdZnTe for radiation detector applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh

    2016-09-01

    Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.

  15. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  16. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    PubMed

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band

  17. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials

    NASA Astrophysics Data System (ADS)

    Pham, Chuyen V.; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-01

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL

  18. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  19. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  20. Electron transfer between colloidal ZnO nanocrystals.

    PubMed

    Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M

    2011-03-30

    Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.

  1. ZnO based potentiometric and amperometric nanosensors.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field.

  2. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  3. Gas-sensing behaviour of ZnO/diamond nanostructures.

    PubMed

    Davydova, Marina; Laposa, Alexandr; Smarhak, Jiri; Kromka, Alexander; Neykova, Neda; Nahlik, Josef; Kroutil, Jiri; Drahokoupil, Jan; Voves, Jan

    2018-01-01

    Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO 2 , CO 2 ) and reducing (i.e., NH 3 ) gases at 150 °C. The hybrid ZnO NRs/NCD sensor showed a remarkably enhanced NO 2 response compared to the ZnO NRs sensor. Further, inspired by this special hybrid structure, the simulation of interaction between the gas molecules (NO 2 and CO 2 ) and hybrid ZnO NRs/NCD sensor was studied using DFT calculations.

  4. Reduced graphene Oxide/ZnO nanostructures based rectifier diode

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Sameeksha; Kumar, Ravi; Sharma, Monika; Kuanr, Bijoy K.

    2017-05-01

    We report on the fabrication and characterization of graphene oxide and reduced graphene oxide/ZnO nanostructures on ITO-coated glass substrates for the rectification properties of a heterojunction device. The composites of GO/ZnO and rGO/ZnO were synthesized by the modified Hummers method followed by annealing process in N2 and H2 ambient atmosphere at various temperatures. The structural and compositional analysis of the composite material have been investigated using X-ray diffraction spectroscopy and Raman spectroscopy. The optical properties of the composite films were studied by UV-visible spectroscopy and the band-gap was obtained by Tauc's plot. The band-gap reduces to 2.4 eV for the composite film as compared to ZnO film 3.26 eV. The I-V characteristics of ZnO thin films and rGO/ZnO films were done for different light conditions viz dark, ambient light and UV-illumination. It has been observed that the threshold voltage decreases when the sample was placed in UV-illumination. A direct variation in photo-response is revealed with the bias voltage as well as UV illumination. The fabricated device could be used as an Ultraviolet Photo-detector.

  5. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  6. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  7. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    SciTech Connect

    Mathavan, T., E-mail: tjmathavan@gmail.com; Divya, A.; Benial, A. Milton Franklin

    2016-05-23

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  8. Zener behaviour of p-SnS/ZnO and p-SnS/ZnS heterojunctions

    NASA Astrophysics Data System (ADS)

    Gupta, Yashika; Arun, P.

    2018-03-01

    p-SnS absorbing layers were grown by thermal evaporation on layers of various Zinc compounds, like ZnO and ZnS. This present work reports the J-V characteristics of thus obtained p-SnS/ZnO and p-SnS/ZnS heterojunctions. The pn junctions of these structures did not show any photovoltaic activity, however a zener like behaviour was observed in the 3rd quadrant of the J-V characteristics. Our analysis of the diodes suggest that the reverse breakdown or zener voltage obtained from the dark J-V characteristics can be used to estimate the energy band diagram of the junction and in turn the band-alignment at the junction. This makes it an easy alternative to x-ray Photoelectron Spectroscopy method usually used.

  9. Effects of ageing on the electrical characteristics of Zn/ZnS/n-GaAs/In structure

    NASA Astrophysics Data System (ADS)

    Güzeldir, B.; Sağlam, M.

    2016-04-01

    Zn/ZnS/n-GaAs/In structure has been fabricated by the Successive Ionic Layer Adsorption and Reaction (SILAR) method and the influence of the time dependent or ageing on the characteristic parameters are examined. The current-voltage (I-V) of the structure have been measured immediately, 1, 3, 5, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 165 days after fabrication of this structure. The characteristics parameters of this structure such as barrier height, ideality factor, series resistance are calculated from the I-V measurements. It has been seen that the changes of characteristic parameters such as barrier height, ideality factor and series resistance of Zn/ZnS/n-GaAs/In structure have lightly changed with increasing ageing time.

  10. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  11. Contactless electroreflectance study of strained Zn0.79Cd0.21Se/ZnSe double quantum wells

    NASA Astrophysics Data System (ADS)

    Tu, R. C.; Su, Y. K.; Lin, D. Y.; Li, C. F.; Huang, Y. S.; Lan, W. H.; Tu, S. L.; Chang, S. J.; Chou, S. C.; Chou, W. C.

    1998-01-01

    We have studied various excitonic transitions of strained Zn0.79Cd0.21Se/ZnSe double quantum wells, grown by molecular beam epitaxy on (100) GaAs substrates, using contactless electroreflectance (CER) at 15 and 300 K. A number of intersub-band transitions in the CER spectra from the sample have been observed. An analysis of the CER spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The conduction-band offset Qc is used as an adjustable parameter to study the band offset in the strained Zn0.79Cd0.21Se/ZnSe system. The value of Qc is determined to be 0.67±0.03.

  12. (Zn,H)-codoped copper oxide nanoparticles via pulsed laser ablation on Cu-Zn alloy in water

    PubMed Central

    2012-01-01

    Nanosized (5 to 10 nm) amorphous and crystalline nanocondensates, i.e., metallic α-phase of Zn-Cu alloy in face-centered cubic structure and (Zn,H)-codoped cuprite (Cu2O) with high-pressure-favored close-packed sublattice, were formed by pulsed laser ablation on bulk Cu65Zn35 in water and characterized by X-ray/electron diffractions and optical spectroscopy. The as-fabricated hybrid nanocondensates are darkish and showed photoluminescence in the whole visible region. Further dwelling of such nanocondensates in water caused progressive formation of a rice-like assembly of (Zn,H)-codoped tenorite (CuO) nanoparticles with (001), (100), and {111} preferred orientations, (111) tilt boundary, yellowish color, and minimum bandgap narrowing down to ca. 2.7 eV for potential photocatalytic applications. PMID:22647312

  13. Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.

    PubMed

    Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz

    2012-07-11

    An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.

  14. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    NASA Astrophysics Data System (ADS)

    Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.

    2016-05-01

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  15. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  16. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    PubMed

    Wang, Shaoxia; Li, Meng; Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  17. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality

    PubMed Central

    Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (–3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  18. Mild degradation processes in ZnO-based varistors: the role of Zn vacancies

    NASA Astrophysics Data System (ADS)

    Ponce, M. A.; Macchi, C.; Schipani, F.; Aldao, C. M.; Somoza, A.

    2015-03-01

    The effects of a degradation process on the structural and electrical properties of ZnO-based varistors induced by the application of dc bias voltage were analysed. Capacitance and resistance measurements were carried out to electrically characterize the polycrystalline semiconductor before and after different degrees of mild degradation. Vacancies' changes in the varistors were studied with positron annihilation lifetime spectroscopy. Variations on the potential barrier height and effective doping concentration were determined by fitting the experimental data from impedance spectroscopy measurements. These results indicate two different stages in the degradation process consistent with vacancy-like concentration changes.

  19. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials.

    PubMed

    Pham, Chuyen V; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-05

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn(-)) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively "heal" the oxygen vacancy (VO(+)) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.

  20. Improved photovoltaic properties of ZnTeO-based intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Saito, Katsuhiko; Guo, Qixin; Yu, Kin Man; Walukiewicz, Wladek

    2018-02-01

    Highly mismatched ZnTe1-xOx (ZnTeO) alloy is one of the potential candidates for an absorber material in a bulk intermediate band solar cell (IBSC) because a narrow, O-derived intermediate band IB (E-) is formed well below the conduction band CB (E+) edge of the ZnTe. We have previously demonstrated the generation of photocurrent induced by two-step photon absorption (TSPA) in ZnTeO IBSCs using n-ZnO window layer. However, because of the large conduction band offset (CBO) between ZnTe and ZnO, only a small open circuit voltage (Voc) was observed in this structure. Here, we report our recent progress on the development of ZnTeO IBSCs with n-ZnS window layer. ZnS has a large direct band gap of 3.7 eV with an electron affinity of 3.9 eV that can realize a smaller CBO with ZnTe. We have grown n-type ZnS thin films on ZnTe substrates by molecular beam epitaxy (MBE), and demonstrated ZnTe solar cells and ZnTeO IBSCs using n-ZnS window layer with an improved VOC. Especially, a n-ZnS/i-ZnTe/p-ZnTe solar cell showed an improved Voc of 0.77 V, a large short-circuit current density of 6.7 mA/cm2 with a fill factor of 0.60, yielding the power conversion efficiency of 3.1 %, under 1 sun illumination.

  1. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  2. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  3. Room temperature electroluminescence from n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction device grown by PLD

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Li, Qingshan; Wang, Feifei; Qu, Chong; Zhao, Fengzhou

    2014-05-01

    The n-ZnO:Ga/ p-GaN:Mg and n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated by the pulsed laser deposition (PLD) technique. The blue electroluminescence (EL) of the n-ZnO:Ga/ p-GaN:Mg heterojunction LEDs is emitted mainly from the p-GaN layer instead of the n-ZnO:Ga layer, for the reason that the electron injection from n-ZnO:Ga prevailed over the hole injection from p-GaN:Mg due to the higher carrier concentration and carrier mobility in n-ZnO:Ga. On the other hand, the n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction LEDs exhibited dominant ultraviolet-blue emission. The reason for this difference is attributed to the inserted undoped i-ZnO layer between n-ZnO:Ga and p-GaN:Mg, in which the holes from p-GaN:Mg and the electrons from n-ZnO:Ga are recombined.

  4. ZnO nanorods/ZnS·(1,6-hexanediamine)(0.5) hybrid nanoplates hierarchical heteroarchitecture with improved electrochemical catalytic properties for hydrazine.

    PubMed

    Wu, Zhengcui; Wu, Yaqin; Pei, Tonghui; Wang, Huan; Geng, Baoyou

    2014-03-07

    Novel hierarchical heteronanostructures of ZnO nanorods/ZnS·(HDA)0.5 (HDA = 1,6-hexanediamine) hybrid nanoplates on a zinc substrate are successfully synthesized on a large scale by combining hydrothermal growth (for ZnO nanorods) and liquid chemical conversion (for ZnS·(HDA)0.5 nanoplates) techniques. The formation of ZnS·(HDA)0.5 hybrid nanoplates branches takes advantage of the preferential binding of 1,6-hexanediamine on specific facets of ZnS, which makes the thickening rate much lower than the lateral growth rate. The ZnS·(HDA)0.5 hybrid nanoplates have a layered structure with 1,6-hexanediamine inserted into interlayers of wurtzite ZnS through the bonding of nitrogen. The number density and thickness of the secondary ZnS·(HDA)0.5 nanoplates can be conveniently engineered by variation of the sulfur source and straightforward adjustment of reactant concentrations such as 1,6-hexanediamine and the sulfur source. The fabricated ZnO/ZnS·(HDA)0.5 heteronanostructures show improved electrochemical catalytic properties for hydrazine compared with the primary ZnO nanorods. Due to its simplicity and efficiency, this approach could be similarly used to fabricate varieties of hybrid heterostructures made of materials with an intrinsic large lattice mismatch.

  5. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions

    EPA Science Inventory

    Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment and chemotherapy, providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolut...

  6. Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs

    NASA Astrophysics Data System (ADS)

    Benson, Daryn; Sankey, Otto F.; Häussermann, Ulrich

    2011-09-01

    The binary compounds ZnSb and ZnAs with the CdSb structure are semiconductors (II-V), although the average electron concentration (3.5 per atom) is lower than that of the tetrahedrally bonded III-V and II-VI archetype systems (four per atom). We report a detailed electronic structure and chemical bonding analysis for ZnSb and ZnAs based on first-principles calculations. ZnSb and ZnAs are compared to the zinc blende-type semiconductors GaSb, ZnTe, GaAs, and ZnSe, as well as the more ionic, hypothetical, II-V systems MgSb and MgAs. We establish a clearly covalent bonding scenario for ZnSb and ZnAs where multicenter bonded structural entities (rhomboid rings Zn2Sb2 and Zn2As2) are connected to each other by classical two-center, two-electron bonds. This bonding scenario is only compatible with a weak ionicity in II-V semiconductor systems, and weak ionicity appears as a necessary condition for the stability of the CdSb structure type. It is argued that a chemical bonding scenario with mixed multicenter and two-center bonding resembles that of boron and boron-rich compounds and is typical of electron-poor sp-bonded semiconductors with average valence electron concentrations below four per atom.

  7. Properties of a CdZnO/ZnO multiple quantum-well light-emitting diode

    NASA Astrophysics Data System (ADS)

    Liu, Zhan-Hui; Zhang, Li-Li; Li, Qing-Fang; Zhang, Rong; Xie, Zi-Li; Xiu, Xiang-Qian; Liu, Bin

    2016-10-01

    A CdZnO/ZnO multiple quantum-well light-emitting diode (LED) structure was successfully grown by using plasma-assisted molecular beam epitaxy on a p-GaN template that had been grown by using metal-organic chemical-vapor deposition on a c-sapphire substrate. The properties of the sample were characterized by using high-resolution X-ray diffraction, transmission electron microscopy, and temperature-dependent photoluminescence measurements. The light output performance of the CdZnO/ZnO QW LED device was also investigated in detail by using I-V and electroluminescence spectral measurements. The characterization showed that our CdZnO/ZnO QW LED structure had good crystalline quality and weaker carrier localization. Owing to the heterojunction structure, the I-V curve indicated that the LED device had a higher turn-on voltage and series resistance. The EL measurement demonstrated that for our LED device's optoelectronic characteristic, the carrier-screening effect played the dominant role in the emission-energy blue-shift mechanism, and the broadening of the emission energy width was mainly ascribed to the band-filling effect. Without a special heat sinking, the L-I curve exhibited slight efficiency droop after 30 mA.

  8. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    NASA Astrophysics Data System (ADS)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  9. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  10. Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework.

    PubMed

    Larsen, Randy W; Wojtas, Lukasz

    2015-02-21

    An attractive strategy for the development of photocatalytic metal organic framework (MOF) materials is to co-encapsulate a photoactive electron donor with a catalytic electron acceptor within the MOF. Here we report the co-encapsulation of both Zn(ii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Zn4SP) and Fe(iii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Fe4SP) into an HKUST-1 (Zn) MOF and demonstrate photoinduced electron transfer (ET) between the co-encapsulated guest. Photo-excitation of the Zn4SP results in fixed-distance inter-molecular ET between the encapsulated (3)Zn4SP and the Fe(iii)4SP as evident by the reduction in the encapsulated (3)Zn4SP lifetime from 890 μs (kobs = 1.1 × 10(3) s(-1)) to 83 μs (kobs = 1.2 × 10(4) s(-1)) in the presence of Fe4SP giving a kET ∼ 1.1 × 10(4) s(-1). The data are consistent with ET taking place between encapsulated porphyrins that are two cages apart in distance with a reorganizational energy of ∼1.65 eV, β = 1.25 and ΔG° = -0.97 eV (within a semi-classical Marcus theory framework).

  11. First-principles calculation of electronic and optical properties of graphene like ZnO (G-ZnO)

    NASA Astrophysics Data System (ADS)

    Farooq, Rabia; Mahmood, Tariq; Anwar, Abdul Waheed; Abbasi, Ghadah Niaz

    2016-02-01

    Semiconductor metal oxides are favorable for their exotic properties like wide band gap, transparency, enhanced charge mobility, and strong luminescence at room temperature. These properties have put metal oxides under limelight, especially ZnO has earned a renowned position in emanate industry for transparent electrodes, electronics, super-capacitors, photo-voltaic cells, gas-sensors, and many more. ZnO is not only environmental friendly but also a highly stable and cheap photo catalytic source naturally available in high abundance. First principles calculation is performed to study optoelectronic properties of ZnO. Geometry optimization of graphene like ZnO (G-ZnO) is preformed using generalized gradient approximation along with hybrid functional (GGA-PBE and GGA-PBE + U) to calculate various structural and electronic parameters of G-ZnO. Employing Hubbard (U) parameter improved band gap and c/a ratio calculation as 1.245 eV and 1.613 respectively; also dielectric constant is calculated as 4.58 (U = 15 eV) which is in accordance with the available experimental data.

  12. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    PubMed

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  13. The mitochondrial toxin, 3-nitropropionic acid, induces extracellular Zn2+ accumulation in rat hippocampus slices.

    PubMed

    Wei, Guo; Hough, Christopher J; Sarvey, John M

    2004-11-11

    3-nitropropionic acid (3-NPA), a suicide inhibitor of succinate dehydrogenase (SDH; complex II), has been used to provide useful experimental models of Huntington's disease (HD) and "chemical hypoxia" in rodents. The trace ion Zn2+ has been shown to cause neurodegeneration. Employing real-time Newport Green fluorescence imaging of extracellular Zn2+, we found that 3-NPA (10-100 microM) caused a concentration-dependent increase in the concentration of extracellular Zn2+ ([Zn2+]o) in acute rat hippocampus slices. This increase in [Zn2+]o was abolished by 10 mM CaEDTA. The increase of [Zn2+]o was also accompanied by a rapid increase of cytoplasmic-free Zn2+ concentration ([Zn2+]i). The induction of Zn2+ release by 3-MPA in hippocampus slices points to a potential mechanism by which 3-NPA might induce neurodegeneration.

  14. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  15. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    PubMed

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  16. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.

    PubMed

    Lin, Wenjie; Xiao, Tangfu; Wu, Yunying; Ao, Ziqiang; Ning, Zengping

    2012-02-01

    A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China's Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g(-)(1), respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g(-1), respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g(-1) that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf>stem>root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg(-1)yr(-1) by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Two Stages of Impact Fracture of Polycrystalline ZnS and ZnSe Compounds

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel', A. E.

    2018-04-01

    Mechanoluminescence (ML) in ductile solids is caused by the motion of charged dislocations in the deformable material. Interatomic bond ruptures followed by electronic structure reconfiguration are the main source of ML in brittle bodies. We studied ML in ceramics composed of mixed ionic/covalent ZnS and ZnSe compounds, which are generated during impact loading higher than the limit deformation. Depending on synthesis method and thermal treatment, the resulting ceramics had different size and geometry of grains and intergrain boundary structure, which presumably may have a significant effect on the dislocation glide. In both materials, the time sweeps of ML pulses have two well-resolved peaks. The position of the peaks along the time axis is substantially dependent on the size of ceramic-forming grains and, to a smaller extent, on the barrier properties of intergrain boundaries. The first peak is associated with plastic deformation preceding disintegration of the crystal structure. The second peak emerges upon crack nucleation as interatomic bonds are ruptured and the material is undergoing local deformation in tips of propagating cracks. The distributions of ML pulse amplitudes (the dependences between the number of pulses and their amplitude) calculated for both peaks individually follow the power law, which demonstrates that the electronic processes having different excitation mechanisms (dislocation motion vs bond rupture) are correlated.

  18. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  19. Intersubband transitions and many body effects in ZnMgO/ZnO quantum wells

    NASA Astrophysics Data System (ADS)

    Hierro, Adrian; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hugues, Maxime; Ulloa, J. M.; Le Biavan, N.; Peretti, Romain; Julien, François; Faist, Jerome; Chauveau, Jean-Michel

    2018-02-01

    In this work we show the potential of the ZnO/ZnMgO material system for intersubband (ISB)-based devices. This family of alloys presents a unique set of properties that makes it highly attractive for THz emission as well as strong coupling regimes: it has a very large longitudinal optical phonon energy of 72 meV, it can be doped up to 1021 cm-3, it is very ionic with a large difference between the static and high frequency dielectric constants, and it can be grown homoepitaxially on native substrates with low defect densities. The films analyzed here are grown by molecular beam epitaxy (MBE) on a non-polar orientation, the m-plane, with varying QW thicknesses and 30% Mg concentrations in the barrier, and are examined with polarization-dependent IR absorption spectroscopy. The QW band structure and the intersubband transitions energies are modeled considering many body effects, which are key to predict correctly the measured values.

  20. Effect of ZnO#ZnS QDs heterojunctures on the stilbenes-plasma proteins interactions.

    PubMed

    Xiao, Jianbo; Wang, Feijiu; Liu, Jie; Wang, Litong; Kai, Guoyin; Yu, Xibin

    2011-08-01

    Zero-dimensional nanostructures such as ZnO#ZnS QDs heterojunctures (QDHJs) are green nanoparticles and have gained a tremendous amount of attention. However, very little information is available on the effects of these heterojunctures on the transportation of drugs in blood. Herein, stilbenes were studied for their affinities for common bovine plasma proteins (CBPP) in the presence and absence of QDHJs with different diameters. The affinities of QDHJs for CBPP improved with increasing QDHJs size. QDHJs improved the affinities of resveratrol and polydatin for CBPP by 14.74% to 22.36% and 12.56% to 21.34% depending on the size of QDHJs. The number of binding sites (n) between resveratrol and polydatin for CBPP in the presence of QDHJs were 1.04 ± 0.03 and 1.06 ± 0.04, which were obviously higher than those in the absence of QDHJs (n = 0.89 and 0.92). QDHJs in blood will decrease the free concentration of stilbenes and weaken their pharmacological effects.

  1. Cosmic muon induced EM showers in NO$$\

    SciTech Connect

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  2. Cosmic muon induced EM showers in NO$$\

    DOE PAGES

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter; ...

    2016-11-15

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  3. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    PubMed

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  4. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    PubMed

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  5. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    PubMed Central

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus

    2013-01-01

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336

  6. Investigation and characterization of ZnO single crystal microtubes

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  7. Research on ZnO/Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Li; Chen, Xinliang; Liu, Yiming; Zhao, Ying; Zhang, Xiaodan

    2017-06-01

    We put forward an n-ZnO/p-Si heterojunction solar cell model based on AFORS-HET simulations and provide experimental support in this article. ZnO:B (B-doped ZnO) thin films deposited by metal-organic chemical vapor deposition (MOCVD) are planned to act as electrical emitter layer on p-type c-Si substrate for photovoltaic applications. We investigate the effects of thickness, buffer layer, ZnO:B affinity and work function of electrodes on performances of solar cells through computer simulations using AFORS-HET software package. The energy conversion efficiency of the ZnO:B(n)/ZnO/c-Si(p) solar cell can achieve 17.16% ({V}{oc}: 675.8 mV, {J}{sc}: 30.24 mA/cm2, FF: 83.96%) via simulation. On a basis of optimized conditions in simulation, we carry out some experiments, which testify that the ZnO buffer layer of 20 nm contributes to improving performances of solar cells. The influences of growth temperature, thickness and diborane (B2H6) flow rates are also discussed. We achieve an appropriate condition for the fabrication of the solar cells using the MOCVD technique. The obtained conversion efficiency reaches 2.82% ({V}{oc}: 294.4 mV, {J}{sc}: 26.108 mA/cm2, FF: 36.66%). Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341).

  8. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe and ZnSe (sub 1-x) Te (sub x) (0 less than x less than 0.4) grown by physical vapor transport technique. The energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. The best fit to the band gap vs. composition, x, data gives a bowing parameter of 1.336 which is between the value of 1.23 determined previously on ZnSeTe bulk crystals by reflectivity and the value of 1.621 reported on epilayers by photoconductivity. Low-temperature photoluminescence (PL) spectra were measured on 6 samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe (sub 1-x) Te (sub x) samples, 0.09 less than x less than 0.39. For x = 0.09, this emission energy is about 0.2eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x = 0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted to be associated with the exciton bound to Te clusters because of the high Te content in these samples.

  9. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg<Zn-0.5Al-0.3Mg<Zn-0.5Al-0.1Mg<Zn-0.5Al. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    PubMed

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  11. Rhombohedrally Distorted γ-Au 5–x Zn 8+y Phases in the Au–Zn System

    SciTech Connect

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2013-02-04

    The region of the Au–Zn phase diagram encompassing γ-brass-type phases has been studied experimentally from 45 to 85 atom % Zn. The γ phases were obtained directly from the pure elements by heating to 680 °C in evacuated silica tubes, followed by annealing at 300 °C. Powder X-ray and single-crystal diffraction studies show that γ-“Au5Zn8” phases adopt a rhombohedrally distorted Cr5Al8 structure type rather than the cubic Cu5Zn8 type. The refined compositions from two single crystals extracted from the Zn- and Au-rich loadings are Au4.27(3)Zn8.26(3)γ0.47 (I) and Au4.58(3)Zn8.12(3)γ0.3 (II), respectively (γ = vacancy). These (I and II) refinements indicated bothmore » nonstatistical mixing of Au and Zn atoms as well as partially ordered vacancy distributions. The structures of these γ phases were solved in the acentric space group R3m (No. 160, Z = 6), and the observed lattice parameters from powder patterns were found to be a = 13.1029(6) and 13.1345(8) Å and c = 8.0410(4) and 8.1103(6) Å for crystals I and II, respectively. According to single-crystal refinements, the vacancies were found on the outer tetrahedron (OT) and octahedron (OH) of the 26-atom cluster. Single-crystal structural refinement clearly showed that the vacancy content per unit cell increases with increasing Zn, or valence-electron concentration. Electronic structure calculations, using the tight-binding linear muffin-tin orbital method with the atomic-sphere approximation (TB-LMTO-ASA) method, indicated the presence of a well-pronounced pseudogap at the Fermi level for “Au5Zn8” as the representative composition, an outcome that is consistent with the Hume–Rothery interpretation of γ brass.« less

  12. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    PubMed

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  13. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple

    PubMed Central

    Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan

    2017-01-01

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce. PMID:28758980

  14. Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films

    NASA Astrophysics Data System (ADS)

    Ilegbusi, Olusegun J.; Trakhtenberg, Leonid

    2013-03-01

    ZnO nanoparticles immobilized in polyvinylpyrrolidone (PVP) were prepared using sol-gel dip-coating technique with varying Zn2+/PVP ratios. The films were characterized using atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy for chemical analysis. The size and concentration of ZnO particles decreased as the Zn/PVP ratio decreased. Under low Zn2+/PVP molar ratios, ZnO particles were clearly well separated and capped in the PVP polymer matrix. Electrical resistivity of 108 Ω cm was achieved under these deposition conditions.

  15. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.)

    PubMed Central

    Wang, Yi; Wang, Xiaolu; Wang, Chao; Wang, Ruijiao; Peng, Fan; Xiao, Xue; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms. PMID:27683584

  16. Correlation of the NBME advanced clinical examination in EM and the national EM M4 exams.

    PubMed

    Hiller, Katherine; Miller, Emily S; Lawson, Luan; Wald, David; Beeson, Michael; Heitz, Corey; Morrissey, Thomas; House, Joseph; Poznanski, Stacey

    2015-01-01

    Since 2011 two online, validated exams for fourth-year emergency medicine (EM) students have been available (National EM M4 Exams). In 2013 the National Board of Medical Examiners offered the Advanced Clinical Examination in Emergency Medicine (EM-ACE). All of these exams are now in widespread use; however, there are no data on how they correlate. This study evaluated the correlation between the EM-ACE exam and the National EM M4 Exams. From May 2013 to April 2014 the EM-ACE and one version of the EM M4 exam were administered sequentially to fourth-year EM students at five U.S. medical schools. Data collected included institution, gross and scaled scores and version of the EM M4 exam. We performed Pearson's correlation and random effects linear regression. 305 students took the EM-ACE and versions 1 (V1) or 2 (V2) of the EM M4 exams (281 and 24, respectively) [corrected].The mean percent correct for the exams were as follows: EM-ACE 74.9 (SD-9.82), V1 83.0 (SD-6.39), V2 78.5 (SD-7.70) [corrected]. Pearson's correlation coefficient for the V1/EM-ACE was 0.53 (0.43 scaled) and for the V2/EM-ACE was 0.58 (0.41 scaled) [corrected]. The coefficient of determination for V1/ EM-ACE was 0.73 and for V2/EM-ACE 0.71 (0.65 and .49 for scaled scores) [ERRATUM]. The R-squared values were 0.28 and 0.30 (0.18 and 0.13 scaled), respectively [corrected]. There was significant cluster effect by institution. There was moderate positive correlation of student scores on the EM-ACE exam and the National EM M4 Exams.

  17. Room-Temperature Quantum Cascade Laser: ZnO/Zn1- x Mg x O Versus GaN/Al x Ga1- x N

    NASA Astrophysics Data System (ADS)

    Chou, Hung Chi; Mazady, Anas; Zeller, John; Manzur, Tariq; Anwar, Mehdi

    2013-05-01

    A ZnO/Zn1- x Mg x O-based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/Al x Ga1- x N QCLs of similar geometry. Higher calculated optical output powers [ {P}_{{ZnMgO}} = 2.89 mW (nonpolar) at 5.27 THz and 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared with GaN/Al0.05Ga0.95N QCLs [ {P}_{{AlGaN}} = 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher wall-plug efficiency (WPE) is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared with GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.

  18. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    PubMed

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  19. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  20. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  1. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  2. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  3. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation

    NASA Astrophysics Data System (ADS)

    Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner

    2018-02-01

    The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.

  4. Optical properties of anodically degraded ZnO

    SciTech Connect

    Messerschmidt, Daniel, E-mail: daniel.messerschmidt@bosch.com; Gnehr, Wolf-Michael; Eberhardt, Jens

    2014-03-07

    We discuss the optical properties of non-degraded and anodically degraded boron-doped zinc oxide (ZnO:B) deposited by low-pressure chemical vapour deposition on soda-lime glass. The optical model used to simulate the infrared reflectance in the wavelength range between 1.2 and 25 μm is based on the Maxwell-Garnett effective-medium theory. The model is sensitive to the conditions at the grain boundaries of the investigated polycrystalline ZnO:B films. We confirm that the presence of defect-rich grain boundaries, especially after degradation, causes a highly resistive ZnO:B film. Furthermore, indications of a degraded zinc oxide layer next to the ZnO:B/glass interface with different refractive index aremore » found. We present evidence for the creation of oxygen vacancies, based on Raman investigations, which correlate with a shift of the optical absorption edge of the ZnO:B. Investigations with scanning and transmission electron microscopy show microvoids at the grain boundaries after anodic degradation. This indicates that the grain/grain interfaces are the principle location of defects after degradation.« less

  5. Synthesis and characterization of (Sn,Zn)O alloys

    DOE PAGES

    Bikowski, Andre; Holder, Aaron; Peng, Haowei; ...

    2016-09-29

    SnO exhibits electrical properties that render it promising for solar energy conversion applications, but it also has a strongly indirect band gap. Recent theoretical calculations predict that this disadvantage can be mitigated by isovalent alloying with other group-II oxides such as ZnO. Here, we synthesized new metastable isovalent (Sn,Zn)O alloy thin films by combinatorial reactive co-sputtering and characterized their structural, optical and electrical properties. The alloying of ZnO into SnO leads to a change of the valence state of the tin from Sn 0 via Sn 2+ to Sn 4+, which can be counteracted by reducing the oxygen partial pressuremore » during the deposition. The optical characterization of the smooth <10 at. % Sn 1-xZn xO thin films showed an increase in the absorption coefficient in the range from 1 to 2 eV, which is consistent with the theoretical predictions for the isovalent alloying. However, the experimentally observed alloying effect may be convoluted with the effect of local variations of the Sn oxidation state. As a result, this effect would have to be minimized to improve the (Sn,Zn)O optical and electrical properties for their use as absorbers in solar energy conversion applications.« less

  6. Are the triple surface plasmon resonances in Zn nanoparticles true?

    PubMed

    Amekura, H; Shinotsuka, H; Yoshikawa, H

    2017-12-08

    It has been experimentally and numerically confirmed that zinc (Zn) nanoparticles (NPs) dispersed in silica exhibit two optical extinction peaks around ∼250 nm (1st peak) and ∼1050 nm (2nd peak), both of which were ascribed to surface plasmon resonances (SPRs) in the broad sense, i.e., the dual SPRs. Recently, Kuiri and Majhi (KM) observed the 3rd peak around ∼900 nm by calculations, and proposed the triple SPRs for Zn NPs without any experimental confirmation. This paper claims that the 3rd peak has never been observed in any experiments nor in any calculations except given by KM. They justified the triple resonances from an approximated SPR criterion, ε 1 Zn (ω) + 2ε 1 SiO 2 (ω) = 0, which is not valid for non-idealized metals like Zn, because the imaginary part of the dielectric function ε 2 Zn (ω) is not negligible. Instead, a rigorous SPR criterion predicts the dual resonances only. From comparisons with ab initio band calculations, the 1st and 2nd extinction peak are ascribed to resonantly enhanced inter-band transitions (so-called electronic resonance) and intra-band transitions (SPR in the narrow sense), respectively. Since either of the peaks arises from the resonant enhancement due to the dielectric function, both the peaks are regarded as SPRs in the broad sense, i.e. the dual SPRs.

  7. Magnetocaloric effect in Gd1-x Ndx Zn2

    NASA Astrophysics Data System (ADS)

    Matsumoto, Keisuke T.; Hiraoka, Koichi

    2017-09-01

    The magnetization of Gd1-xNdxZn2 (0 < x ⩽ 1) was measured to study the effect of Nd substitution in GdZn2 with a Curie temperature of 85 K and a spin-reorientation transition temperature of 58 K on the magnetocaloric effect. The Nd counterpart NdZn2 shows antiferromagnetic order at 23 K. Samples of Gd1-xNdxZn2 (0 < x ⩽ 1) were prepared by the melt-growth method. In Nd-substituted systems, the anomaly due to spin-reorientation disappeared. For x ⩾ 0.6 , field-induced metamagnetic transitions were observed, indicating an antiferromagnetic ground state. This complex magnetism may originate from competition between ferromagnetic and antiferromagnetic interactions. Magnetic entropy change ΔSm was calculated based on the magnetization measurements. ΔSm was suppressed by Nd substitution for x values up to 0.6. For x = 1 (NdZn2), the maximum value of ΔSm was -9 J/K kg, which is almost the same as those of other Nd-based magnetocaloric materials.

  8. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  9. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  10. Field emission and photoluminescence of ZnO nanocombs

    NASA Astrophysics Data System (ADS)

    Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H.

    2013-11-01

    Three kinds of new comb-shape nanostructures of ZnO have been grown on single silicon substrates without catalyst-assisted thermal evaporation of Zn and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The growth mechanism of the ZnO nanocombs can be explained on the basis of the vapor-solid (VS) processes. In nanocombs 1 and nanocombs 2, the comb teeth grow along [0001] and the comb stem grows along [], while in nanocombs 3, nanoteeth grow along [] and stem grows along [0001]. The photoluminescence and field-emission properties of ZnO nanocombs 1-3 have been investigated. The turn-on electric field of ZnO nanocombs 1-3, which is defined as the field required to producing a current density of 10 μA/cm2, is 9, 7.7 and 7.1 V/μm, respectively. The field-emission performance relies not only on the tip’s radius of curvature and field enhancement factor, but also on the factor evaluating the degree of the screening effect.

  11. Confocal Raman microscopy of one dimensional ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Gupta, Maneesh; Yang, Rusen; Wang, Zhong; Tsukruk, Vladimir

    2009-03-01

    ZnO nanostructures with various shapes (vertically aligned nanorods, nanobelts, nanohelixes, nanorings) have been synthesized using both vapor phase and solution growth methods. In the simplest example of a nanobelt, the fast growth direction can be either (21 1 0) or (011 0) or (0001). Here, we show that confocal Raman microscopy can be employed as a fast and nondestructive analytical technique to identify the crystal planes and reveal the relative orientation of the ZnO nanostructure. Various features of the Raman spectrum of ZnO nanostructures (presence of the A1(TO) mode, width of the E2 mode) were found to be sensitive to relative orientation of the incident source laser and the crystal plane. Furthermore, owing to the optical anisotropy of ZnO, Raman scattering from the substrate is modulated (either enhanced or suppressed with respect to the background) depending on the polarization of the incident light with respect to orientation of the nanobelt. The results presented here describe a novel method to nondestructively identify the growth, relative orientation, and the waveguiding properties of the ZnO nanostructures.

  12. ROLE OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN THE ACTIVATION OF MEK INDUCED BY ZN EXPOSURE

    EPA Science Inventory

    Zn is a ubiquitous ambient air pollutant typically found associated with particulate matter. Divalent Zn inhibits tyrosine phosphatases and induces EGFR- and MAPK- dependent signaling in human airway epithelial cells. To further characterize Zn-induced intracellular signaling, ...

  13. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    SciTech Connect

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al contentmore » in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.« less

  14. Thermal effect of Zn quantum dots grown on Si(111): competition between relaxation and reconstraint

    NASA Astrophysics Data System (ADS)

    Kao, Li-Chi; Huang, Bo-Jia; Zheng, Yu-En; Tu, Kai-Teng; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang Yao

    2018-01-01

    Zn dots are potential solutions for metal contacts in future nanodevices. The metastable states that exist at the interface between Zn quantum dots and oxide-free Si(111) surfaces can suppress the development of the complete relaxation and increase the size of Zn dots. In this work, the actual heat consumption of the structural evolution of Zn dots resulting from extrinsic thermal effect was analyzed. Zn dots were coherently grown on oxide-free Si(111) through magnetron RF sputtering. A compensative optical method combined with reflective second harmonic generation and synchrotron x-ray diffraction (XRD) was developed to statistically analyze the thermal effect on the Zn dot system. Pattern matching (3 m) between the Zn and oxide-free Si(111) surface enabled Si(111) to constrain Zn dots from a liquid to solid phase. Annealing under vacuum induced smaller, loose Zn dots to be reconstrained by Si(111). When the size of the Zn dots was in the margin of complete relaxation, the Zn dot was partially constrained by potential barriers (metastable states) between Zn(111) and one of the six in-planes of Si〈110〉. The thermal disturbance exerted by annealing would enable partially constrained ZnO/Zn dots to overcome the potential barrier and be completely relaxed, which is obvious on the transition between Zn(111) and Zn(002) peak in synchrotron XRD. Considering the actual irradiated surface area of dots array in a wide-size distribution, the competition between reconstrained and relaxed Zn dots on Si(111) during annealing was statistically analyzed.

  15. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties.

    PubMed

    Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva

    2016-07-01

    This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  16. Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning.

    PubMed

    Nasi, Lucia; Calestani, Davide; Fabbri, Filippo; Ferro, Patrizia; Besagni, Tullo; Fedeli, Paolo; Licci, Francesca; Mosca, Roberto

    2013-02-07

    We demonstrate that highly porous ZnO nanobelts can be prepared by thermally decomposing ZnS(en)(0.5) hybrid nanobelts (NBs) synthesized through a solvothermal route using Zn layers deposited on alumina substrates as both the Zn substrate and source. Hybrid decomposition by thermal annealing at 400 °C gives porous ZnS NBs that are transformed by further annealing at 600 °C into wurtzite single crystal ZnO nanobelts with an axial direction of [0001]. The evolution of the morphological and structural transformation ZnS(en)(0.5)→ ZnS → ZnO is investigated at the nanoscale by transmission and scanning electron microscopy analyses. Control of the ZnO NB distributions by patterning the Zn metallization on alumina is achieved as a consequence of the parent hybrid NB patterned growth. The presence of NBs on alumina in a ∼100 μm wide region between Zn stripes allows us to fabricate two contact devices where contact pads are electrically connected through a porous ZnO NB entanglement. Such devices are suitable for employment in photodetectors as well as in gas and humidity sensors.

  17. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation

    PubMed Central

    Carter, Russell E; Aiba, Isamu; Dietz, Robert M; Sheline, Christian T; Shuttleworth, C William

    2011-01-01

    Spreading depression (SD) involves coordinated depolarizations of neurons and glia that propagate through the brain tissue. Repetitive SD-like events are common following human ischemic strokes, and are believed to contribute to the enlargement of infarct volume. Accumulation of Zn2+ is also implicated in ischemic neuronal injury. Synaptic glutamate release contributes to SD propagation, and because Zn2+ is costored with glutamate in some synaptic vesicles, we examined whether Zn2+ is released by SD and may therefore provide a significant source of Zn2+ in the postischemic period. Spreading depression-like events were generated in acutely prepared murine hippocampal slices by deprivation of oxygen and glucose (OGD), and Zn2+ release was detected extracellularly by a Zn2+-selective indicator FluoZin-3. Deprivation of oxygen and glucose-SD produced large FluoZin-3 increases that propagated with the event, and signals were abolished in tissues from ZnT3 knockout animals lacking synaptic Zn2+. Synaptic Zn2+ release was also maintained with repetitive SDs generated by microinjections of KCl under normoxic conditions. Intracellular Zn2+ accumulation in CA1 neurons, assessed using microinjection of FluoZin-3, showed significant increases following SD that was attributed to synaptic Zn2+ release. These results suggest that Zn2+ is released during SDs and could provide a significant source of Zn2+ that contributes to neurodegeneration in the postischemic period. PMID:20978516

  18. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Liu, Huarong; Fan, Ximei

    2017-09-01

    Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4 \\cdot H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electrons from the interface and enhanced the photocatalytic property of T-ZnOw.

  19. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    SciTech Connect

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  20. Effect of synthesized ZnO nanoparticles on thermal conductivity and mechanical properties of natural rubber

    NASA Astrophysics Data System (ADS)

    Suntako, R.

    2018-01-01

    Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.

  1. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.

    PubMed

    V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan

    2017-08-01

    Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Zn-site Substitution Effect in YbCo2Zn20

    NASA Astrophysics Data System (ADS)

    Kobayashi, Riki; Takamura, Haruki; Higa, Yasuyuki; Ikeda, Yoichi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yoshizawa, Hideki; Aso, Naofumi

    2017-04-01

    We have investigated the substitution effect of YbCo2(Zn1-xTx)20 (T = Cu, Ga, and Cd) systems by using the experiments of X-ray powder diffraction (XRPD), specific heat, magnetic susceptibility, magnetization, and electrical resistivity in order to find out a material that approaches a quantum critical point by chemical pressure. The XRPD and electrical resistivity measurements clarify that the Cu-substitution makes the lattice constants shrink and keeps the magnetic electrical resistivity high, while the Ga- and the Cd-substitution show opposite relation of the Cu-substitution. However, we could not detect clear substitution effect in the specific heat, magnetic susceptibility, and magnetization measurements of Cu-substitution system within our experiments. It is necessary that to study the Cu-substitution samples that have higher x value at lower temperature.

  3. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  4. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE PAGES

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo; ...

    2017-05-08

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn 2+ ion chemistry. There are several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. Our study utilizes a combination of analytical tools to probe the chemistry of a nanostructured δ-MnO 2 cathode in association withmore » a nonaqueous acetonitrile–Zn(TFSI) 2 electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte–electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. There are numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/δ-MnO 2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  5. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    SciTech Connect

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo

    2017-05-19

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolytemore » and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  6. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    NASA Astrophysics Data System (ADS)

    Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.

    2016-09-01

    Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  7. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure.

    PubMed

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J K; Deen, M Jamal; Qi, Bensheng

    2015-03-16

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 10(17) cm(-3). A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm(2), the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure.

  8. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  9. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  10. Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach

    PubMed Central

    Zhang, Aidi; Dong, Chaoqing; Li, Liang; Yin, Jinjin; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2015-01-01

    Semiconductor quantum dots (QDs) are very important optical nanomaterials with a wide range of potential applications. However, blinking behavior of single QD is an intrinsic drawback for some biological and photoelectric applications based on single-particle emission. Herein we present a rational strategy for fabrication of non-blinking (Zn)CuInS/ZnS QDs in organic phase through in situ interfacial alloying approach. This new strategy includes three steps: synthesis of CuInS QDs, eliminating the interior traps of QDs by forming graded (Zn)CuInS alloyed QDs, modifying the surface traps of QDs by introducing ZnS shells onto (Zn)CuInS QDs using alkylthiols as sulfur source and surface ligands. The suppressed blinking mechanism was mainly attributed to modifying QDs traps from interior to exterior via a step-by-step modification. Non-blinking QDs show high quantum yield, symmetric emission spectra and excellent crystallinity, and will enable applications from biology to optoelectronics that were previously hindered by blinking behavior of traditional QDs. PMID:26458511

  11. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution.

    PubMed

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-09

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy "controlling competitive reaction" strategy by selecting the thiourea as S(2-) source and Zn(Ac)₂·2H₂O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m(2)g(-1), microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h(-1) under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  12. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-01

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy ``controlling competitive reaction'' strategy by selecting the thiourea as S2- source and Zn(Ac)2.2H2O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m2g-1, microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h-1 under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  13. Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.

  14. Photorefractivity in a Titanium Doped ZnCdTe Crystal

    NASA Technical Reports Server (NTRS)

    Davis, M.; Collins, L.; Dyer, K.; Tong, J.; Ueda, A.; Chen, H.; Chen, K.-T.; Burger, A.; Pan, Z.; Morgan, S. H.

    1997-01-01

    Single crystals of Zn(.04)Cd(.96)Te was grown by horizontal physical vapor transport (PVT) method and doped by annealing with TiTe2 powder at 600 C for six days. Photorefractive two-beam coupling, along with photoluminescence and absorption spectroscopy, were used to characterize the ZnCdTe:Ti crystal. At 1.32 micrometers, the photorefractive gain has been measured as a function of the grating period. A gain of about 0.16/cm was obtained at an intensity of about 0.1 W/sq cm. The results of this titanium doped ZnCdTe crystal are compared to that of vanadium-doped CdTe crystals reported previously.

  15. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, R.J.

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  16. Effect of Water on Ethanol Conversion over ZnO

    SciTech Connect

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidationmore » of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).« less

  17. Magnetic properties of Zn1-xNixO

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Giri, N.; Sarkar, S.; Ray, Ruma

    2018-05-01

    Ni doped ZnO (Zn1-xNixO for 0.01 ≤ x ≤ 0.11) have been prepared by chemical precipitation method. X-ray diffraction corroborates a hexagonal wurzite structure without any impurity phases upto 11% Ni doping. Morphology of the particles is investigated by FE-SEM which exhibits either rod or tube like structure depending on the dopant concentration. Magnetization of Zn1-xNixO for 0.03 ≤ x ≤ 0.11 measured at room temperature infers the paramagnetic behavior. Zero field cooled and field cooled magnetization for x = 0.11 follows Curie-Weiss behavior above 122 K with effective paramagnetic moment 3.9μB. The non-linear magnetic hysteresis loop at 2 K with a small coercivity (300 Oe) indicates signature of ferromagnetic ordering.

  18. Erbium induced magnetic properties of Er/ZnO nanoparticles

    SciTech Connect

    Jayachandraiah, C.; Divya, A.; Sivakumar, K.

    Pure and Er (2, 3 and 4 at. %) doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. EDS spectrum confirmed the presence of Zn, O and Er in the synthesized samples. The XRD measurements confirmed the hexagonal wurtzite structure of ZnO for all samples. The crystallite size of the samples decreases with increase in concentration and are compatible with the results that obtained from TEM analysis.EPR spectra exhibitedferromagnetic signals the substitution Er The possible ferromagnetic zinc interstials signal is appeared for 2 at. % of Er dopant. The room temperature ferromagnetic is observed only for 2 at. %more » of Er while all other samples exhibiting weak ferromagnetic nature.« less

  19. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  20. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  1. Efficient Auger Charge-Transfer Processes in ZnO

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Chen, S. L.; Svensson, B. G.; Buyanova, I. A.; Chen, W. M.

    2018-05-01

    Photoluminescence and magneto-optical measurements are performed on a line peaking at 3.354 eV (labeled as NBX) in electron-irradiated ZnO. Even though the energy position of the NBX line is close to that for bound excitons in ZnO, it has distinctively different magneto-optical properties. Photoelectron paramagnetic resonance measurements reveal a connection and a charge-transfer process involving NBX and Fe and Al centers. The experimental results are explained within a model which assumes that the NBX is a neutral donor bound exciton at a defect center located near a Fe impurity and an Auger-type charge-transfer process occurs between NBX and Fe3 + . While the NBX dissociates, its hole is captured by an excited state of Fe3 + and the released energy is transferred to the NBX electron, which is excited to the conduction band and subsequently trapped by a substitutional AlZn shallow donor.

  2. Zn-based porous coordination solid as diclofenac sodium carrier

    NASA Astrophysics Data System (ADS)

    Lucena, Guilherme Nunes; Alves, Renata Carolina; Abuçafy, Marina Paiva; Chiavacci, Leila Aparecida; da Silva, Isabel Cristiane; Pavan, Fernando Rogério; Frem, Regina Célia Galvão

    2018-04-01

    Drug delivery systems produced with biocompatible components can be used to reduce adverse effects and improve therapy efficacy. Most of the carrier materials reported in the literature show poor drug loading and rapid release. However, porous hybrid solids, such as metal-organic frameworks, are well suited to serve as carriers for delivery and imaging applications. In this work, a luminescent and nontoxic porous Zn(II) coordination polymer with 4,4‧-biphenyl-dicarboxylic acid (BPDC) and adenine linkers (BioMOF-Zn) was synthesized by a solvothermal process and characterized by PXRD, TGA, SEM-FEG, and FTIR. Nitrogen adsorption measurements revealed the presence of micropores as well as mesopores in the framework after activation of the material. The blue-emitting BioMOF-Zn exhibited an outstanding loading capacity (1.72 g g-1) and satisfactory release capability (56% after two days) for diclofenac sodium.

  3. Surface modification of ZnO nanorods with Hamilton receptors.

    PubMed

    Zeininger, Lukas; Klaumünzer, Martin; Peukert, Wolfgang; Hirsch, Andreas

    2015-04-13

    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles.

  4. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  5. Process for fabricating ZnO-based varistors

    DOEpatents

    Lauf, Robert J.

    1985-01-01

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  6. Surface Morphology of Undoped and Doped ZnSe Films

    NASA Technical Reports Server (NTRS)

    George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.

    1998-01-01

    Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.

  7. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  8. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.

    PubMed

    Alzahrani, Khalid E; Niazy, Abdurahman A; Alswieleh, Abdullah M; Wahab, Rizwan; El-Toni, Ahmed M; Alghamdi, Hamdan S

    2018-01-01

    The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E . coli than against E . faecalis . Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. The combination of three metal oxide NPs (ZnO, CuO, and Fe 2 O 3 ) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.

  9. Graphene doped ZnO films for photoelectrowetting on microchannels

    NASA Astrophysics Data System (ADS)

    Al-Aribe, Khaled; Knopf, George K.

    2017-02-01

    Photoelectrowetting on dielectric surfaces can be used to drive droplets of liquid along reconfigurable paths on a microfluidic chip using controlled optical signals. These electrostatically activated surfaces along the desired path eliminate the need for precision molded channels and discrete functional components such as microvalves and micropumps. The photoelectrowetting effect exploits the surface tension of the droplet to maintain its volume during the transportation pathway and the photoelectric properties of the substrate surface are used to induce reversible fluidic flow. The active light-driven substrate is structured from graphene doped zinc-oxide (ZnO-G) films deposited on ITO coated glass. This substrate is coated from the ZnO-G side with Ruthenium-based dye (N719) to maximize its absorbability. The light triggers two forces that enable the droplet to be transported along the substrate. The first arises from the induced hydrophobicity gradient formed across the droplet contact area with the substrate surface. Exposing the ZnO-G film to a broad spectrum white light source alters the surface's electric potential which induces a change in the droplet's contact angle and the associated hydrophobicity. Once the hydrophobicity gradient is generated the droplet will start to move in the direction of the wetting zone. The second force is also created by the optical input when the absorbed light generates a photoelectric potential that produces a piezo-electrical effect on the ZnO-G film. The light triggered piezo-electrical behavior of the ZnO-G film can be used to generate the erasable microchannels that can guide droplet movement through a microfluidic chip. Preliminary experiments are performed to investigate the photoelectric potential of light activated ZnO-G films.

  10. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  11. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  12. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    SciTech Connect

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  13. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  14. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres

    PubMed Central

    2014-01-01

    We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595

  15. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  16. Defect evolution in ZnO and its effect on radiation tolerance.

    PubMed

    Lv, Jinpeng; Li, Xingji

    2018-05-03

    The origin of ZnO radiation resistance is fascinating but still unclear. Herein, we found that radiation tolerance of ZnO can be tuned by engineering intrinsic defects into the ZnO. The role played by native defects in the radiation tolerance of ZnO was systematically explored by carrying out N+ implantation on a set of home-grown ZnO nanocrystals with various lattice defect types and concentrations. Interestingly, decreasing the VO and Zni concentration significantly aggravated N+ radiation damage, indicating the presence of O-deficient defects to be the potential cause of the radiation hardness of ZnO. A similar phenomenon was also observed for H+-implanted ZnO. This work offers a new way to manipulate ZnO and endow it with desired physicochemical properties, and is expected to pave the way for its application in radiative environments.

  17. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  18. Investigation of Excitonic Polaritons in ZnO Microcavities

    DTIC Science & Technology

    2006-07-28

    defects on the nonradiative processes in L-MBE ZnO were studied using time-resolved PL making a connection with the results of positron annihilation...IMPLANTATION DEPTH (nm) S PA R A M E T E R POSITRON ENERGY (keV) 150010005003001000 0 5 10 15 20 25 30 0.42 0.44 0.46 0.48 0.50 ZnO single crystal 0.42...photoluminescence (TRPL) and monoenergetic positron annihilation methods, and elimination of point defects as a fundamental pathway in improving

  19. Synthesis and characterization of Zn-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Singh, Shailndra; Barbar, S. K.; Ram, Sahi

    2018-05-01

    The Zn-Mg ferrite sample of general formula Zn0.5Mg0.5Fe2O4 have been prepared by standard solid state reaction technique using high purity oxides. X-ray diffraction analysis shows the formation of a zinc-magnesium ferrite cubic phase at room temperature with space group Fd3m. FTIR spectra show two significant absorption bands first at 665.15 cm-1 corresponding to tetrahedral (A) and second band at 434 cm-1 corresponding to octahedral (B) sites of the spinel. Morphology of the sample determined by the SEM measurement and EDS analysis has confirmed the composition of atoms in the sample.

  20. ZnO nanoparticles applied to bioimaging and drug delivery.

    PubMed

    Xiong, Huan-Ming

    2013-10-04

    The last decade has seen significant achievements in biomedical diagnosis and therapy at the levels of cells and molecules. Nanoparticles with luminescent or magnetic properties are used as detection probes and drug carriers, both in vitro and in vivo. ZnO nanoparticles, due to their good biocompatibility and low cost, have shown promising potential in bioimaging and drug delivery. The recent exciting progress on the biomedical applications of ZnO-based nanomaterials is reviewed here, along with discussions on the advantages and limitations of these advanced materials and suggestions for improving methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of highly efficient ZnO nanoscintillators

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin

    2015-09-01

    Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.

  2. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  3. Zn-71 levels populated in neutron-capture-gamma reactions

    NASA Astrophysics Data System (ADS)

    Huchison, Andrew; Harker, Jessica; Walters, William B.; Waite, Mark; Paul, Rick

    2015-04-01

    The level structure of 71 Zn was studied via the capture-gamma reaction on a highly-enriched 70 Zn target at the NIST Center for Neutron Research NG-7 beam line. The neutron separation energy was determined to be 5832.5(5) keV. Low-spin levels populated in this reaction will be presented, compared with data from other measurements, and discussed. This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under Grant No. DE-FG02-94ER40834.

  4. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  5. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  6. The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites

    NASA Astrophysics Data System (ADS)

    Yousefi, Ramin; Azimi, H. R.; Mahmoudian, M. R.; Basirun, Wan Jeffrey

    2018-03-01

    A systematic study about the origin of defects emission of ZnSe structure was conducted by photoluminescence (PL) spectrometer at room temperature. It was observed that different intermediate energy levels in band-gap space of ZnSe structure were generated by different defects such as Se-, Zn-vacancies, Se-, Zn-interstitials, and surface states. Effects of these defects on the photocatalytic performance of ZnSe quantum dots (QDs) and ZnSe/graphene nanocomposites were investigated. The pristine ZnSe QDs and ZnSe/graphene nanocomposites were synthesized by a co-precipitation method. The PL spectra of the samples showed four emissions from four regions of the visible spectrum such as violet, green, orange, and red emissions. The violet emission was associated with the near-band-edge (NBE) of the ZnSe nanostructures, while, the other emissions were related to different defects of ZnSe structures. Annealing the samples in the H2 atmosphere caused to increase orange emission intensity and indicated that origin of orange emission was a donor-acceptor pair (DAPs) related to singly positively charged Se-vacancies (VSe) to singly negatively charged zinc vacancy (VZn-). Photocatalytic study of the samples to remove the methylene blue (MB) dye showed that the photocatalytic performance of the samples improved by graphene as an additive and increasing the orange emission intensity.

  7. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  8. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    PubMed

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  9. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  10. Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS:Mn/ZnS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaparde, Rohini A.; Acharya, Smita A.

    2018-05-01

    ZnS:Mn/ ZnS core/shell nanoparticles was prepared by two step synthesis method. In first step, oleic acid - coated Mn doped ZnS core nanoparticles were prepared which were charged through ligand exchange. Shell of ZnS NPs was finally deposited upon the surface of charged Mn doped ZnS core. Scanning electron microscopy (SEM) image exhibit morphological confirmation of ZnS:Mn/ZnS core/shell. As Nano ZnS are the most suitable candidates for photocatalyst that extensively involved in degradation and complete mineralization of various toxic organic pollutants owing to its high efficiency, strong oxidizing power, non-toxicity, high photochemical and biological stability, corrosive resistance and low cost. Photodegradation of malachite green is systematically investigated by adding different molar proportional of ZnS:Mn/ZnS core/shell in the dye. The rate of de-coloration of dye is detected by UV-VIS absorption spectroscopy. Efficient detoriation in the colour of dye is attributed to the core /shell morphology of the particles.

  11. Abundant defects and defect clusters in kesterite Cu2ZnSnS4 and Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Chen, Shiyou; Wang, Lin-Wang; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai

    2013-03-01

    Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing intensive attention as the light-absorber materials in thin-film solar cells. A large variety of intrinsic defects can be formed in these quaternary semiconductors, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. We will present our first-principles calculation study on a series of intrinsic defects and defect clusters in Cu2ZnSnS4 and Cu2ZnSnSe4, and discuss: (i) strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the dominant CuZn antisites and Cu vacancies which determine the intrinsic p-type conductivity, and their dependence on the elemental ratios; (iii) the high population of charge-compensated defect clusters (like VCu + ZnCu and 2CuZn + SnZn) and their contribution to non-stoichiometry ; (iv) the deep-level defects which act as recombination centers. Based on the calculation, we will explain the experimental observation that Cu poor and Zn rich conditions give the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells with high S composition. Supported by NSF of China, JCAP: a U.S. DOE Energy Innovation Hub, Royal Society of U.K. and EPSRC, and U.S. DOE.

  12. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  13. Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles.

    PubMed

    Hsu, Cheng-Liang; Lin, Yu-Hong; Wang, Liang-Kai; Hsueh, Ting-Jen; Chang, Sheng-Po; Chang, Shoou-Jinn

    2017-05-03

    UV- and visible-light photoresponse was achieved via p-type K-doped ZnO nanowires and nanosheets that were hydrothermally synthesized on an n-ZnO/glass substrate and peppered with Au nanoparticles. The K content of the p-ZnO nanostructures was 0.36 atom %. The UV- and visible-light photoresponse of the p-ZnO nanostructures/n-ZnO sample was roughly 2 times higher than that of the ZnO nanowires. The Au nanoparticles of various densities and diameter sizes were deposited on the p-ZnO nanostructures/n-ZnO samples by a simple UV photochemical reaction method yielding a tunable and enhanced UV- and visible-light photoresponse. The maximum UV and visible photoresponse of the Au nanoparticle sample was obtained when the diameter size of the Au nanoparticle was approximately 5-35 nm. On the basis of the localized surface plasmon resonance effect, the UV, blue, and green photocurrent/dark current ratios of Au nanoparticle/p-ZnO nanostructures/n-ZnO are ∼1165, ∼94.6, and ∼9.7, respectively.

  14. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity