Science.gov

Sample records for zn mg ca

  1. Study of sintering on Mg-Zn-Ca alloy system

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  2. Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg-Zn-Ca Alloy

    NASA Astrophysics Data System (ADS)

    Du, Yuzhou; Zheng, Mingyi; Jiang, Bailing; Zhou, Kesong

    2018-05-01

    The microstructure of an Mg-Zn-Ca extrusion was investigated by transmission electron microscopy, and the interaction between dynamic precipitation and dynamic recrystallization was analyzed. The results showed that dynamic precipitation significantly affected the microstructure of the as-extruded Mg-Zn-Ca alloy. The pinning effects of precipitates on dislocations effectively prohibited dynamic recrystallization processes, while the grain boundary precipitate Ca2Mg6Zn3, inhibited the growth of dynamically recrystallized grains. Consequently, a bimodal microstructure with fine dynamically recrystallized (DRXed) grains and elongated deformed regions was obtained for the Mg-Zn-Ca extrusion. High-resolution transmission electron microscopy indicated that the intragranular precipitate MgZn2 had a crystal orientation relationship with α-Mg in the form of (0002)Mg//(10-13)MgZn2 and [1-100]Mg//[1-210]MgZn2, which was beneficial for strength improvement.

  3. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    SciTech Connect

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strengthmore » up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.« less

  4. Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3 System

    NASA Astrophysics Data System (ADS)

    Erryani, A.; Pramuji, F.; Annur, D.; Amal, M. I.; Kartika, I.

    2017-05-01

    Magnesium alloy, a material that has potential to use some applications such as aerospace components, computer parts, and mobile phones. Magnesium alloy can also be a popular candidate as an orthopedic implant material for biodegradability, non-toxicity, and mechanical and physical properties that are excellent. Magnesium, one of the main macro elements required for the proper functioning of the human organism, is used to test the materials for biodegradable implants. The main objective of this study was to find out the microstructure, and mechanical characteristics of the Mg-Ca-Zn-CaCO3 alloy as porous implant materials are biodegradable. The presence of CaCO3 on the alloy functions as a foaming agent expected to produce gas bubbles during manufacturing process taken place that will form pores in the alloy. Mg-Ca-Zn-CaCO3 alloy was made by powder metallurgy method with three variations of composition (96Mg-Ca-3Zn-CaCO3, 91Mg-Ca-3Zn-5CaCO3, and 86Mg-Ca-3Zn-10CaCO3 wt%). Milling process was by using a shaker mill for 2 hours to produce a powder size distribution which was more homogeneous. The mixed powder was uniaxially pressed at a pressure of 100 MPa for 2 minutes and 200 MPa for 3 minutes into green compacts with dimensions of 10 mm in diameter and 10 mm in length. The sintering process was carried out at 650°C with a variation of holding time of 10 and 15 hours, and then the specimens were cooled down at room temperature. Microstructural analysis was performed by using X-Ray diffraction technique and Scanning electron microscopy equipped with an energy disperse spectrometry (EDS). The mechanical characteristics were analyzed by using Universal Testing Machine. The density and porosity of specimen were further measured by using Archimedes method. The results show that the optimum microstructure and mechanical characteristics are the holding time of 10 hours. The value of compression was 208.398 N/mm2, the density was 1.63 g/cc and a porosity was 18% on the

  5. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  6. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  7. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    PubMed

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  8. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    PubMed Central

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  9. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    SciTech Connect

    Zhou Tao, E-mail: tzhou1118@163.com; Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com; Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial tomore » the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.« less

  10. Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique

    NASA Astrophysics Data System (ADS)

    Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.

    2018-04-01

    Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.

  11. Biodegradable CaMgZn bulk metallic glass for potential skeletal application.

    PubMed

    Wang, Y B; Xie, X H; Li, H F; Wang, X L; Zhao, M Z; Zhang, E W; Bai, Y J; Zheng, Y F; Qin, L

    2011-08-01

    A low density and high strength alloy, Ca65Mg15Zn20 bulk metallic glass (CaMgZn BMG), was evaluated by both in vitro tests on ion release and cytotoxicity and in vivo implantation, aimed at exploring the feasibility of this new biodegradable metallic material for potential skeletal applications. MTT assay results showed that the experimental CaMgZn BMG extracts had no detectable cytotoxic effects on L929, VSMC and ECV304 cells over a wide range of concentrations (0-50%), whereas for MG63 cells concentrations in the range ~5-20% promoted cell viability. Meanwhile, alkaline phosphatase (ALP) activity results showed that CaMgZn BMG extracts increased alkaline phosphatase (ALP) production by MG63 cells. However, Annexin V-fluorescein isothiocyanate and propidium iodide staining indicated that higher concentrations (50%) might induce cell apoptosis. The fluorescence observation of F-actin and nuclei in MG63 cells showed that cells incubated with lower concentrations (0-50%) displayed no significant change in morphology compared with a negative control. Tumor necrosis factor-α expression by Raw264.7 cells in the presence of CaMgZn BMG extract was significantly lower than that of the positive and negative controls. Animal tests proved that there was no obvious inflammation reaction at the implantation site and CaMgZn BMG implants did not result in animal death. The cortical thickness around the CaMgZn BMG implant increased gradually from 1 to 4 weeks, as measured by in vivo micro-computer tomography. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    PubMed Central

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-01-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis. PMID:26907515

  13. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  14. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    PubMed

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.

    PubMed

    Xia, Y H; Zhang, B P; Lu, C X; Geng, L

    2013-12-01

    In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.

  17. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    NASA Astrophysics Data System (ADS)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)<10-10>//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  18. Effect of CaO on Hot Workability and Microstructure of Mg-9.5Zn-2Y Alloy

    NASA Astrophysics Data System (ADS)

    Kwak, Tae-yang; Kim, Daeguen; Yang, Jaehack; Yoon, Young-ok; Kim, Shae K.; Lim, Hyunkyu; Kim, Woo Jin

    Mg-Zn-Y system alloys have been a great interest because Mg-Zn-Y alloys with I-phase exhibited high ductility at room and elevated temperatures. According to our preliminary experiments, the addition of CaO improved strength, but the process window became narrow. Therefore, the aim of current work was to find optimum extrusion conditions for CaO added Mg-Zn-Y alloys by processing maps. The 0.3 wt.% of CaO added Mg-9.5Zn-2Y (Mg95.6Zn3.8Y0.6) alloy was prepared by casting into steel mold and homogenizing. Hot compression test were performed in the Gleeble machine at temperature range of 250-400 °C with various strain rates. The alloys were extruded with a reduction ratio of 20:1. To analyze the microstructure and texture, optical micrograph, scanning electron microscope and electron backscattered diffraction were used. Moreover, we investigated the effects of metallic Ca addition in this alloy to compare with the addition of CaO.

  19. In vitro bioaccessibility of β-carotene, Ca, Mg and Zn in landrace carrots (Daucus carota, L.).

    PubMed

    Zaccari, Fernanda; Cabrera, María Cristina; Ramos, Ana; Saadoun, Ali

    2015-01-01

    Four landrace carrots ("Becaria", "CRS", "González" and "Rodríguez") and two marketable cultivars (Kuroda and Brasilia), raw and steamed, were characterised by the total content of β-carotene Ca, Mg and Zn, in vitro bioaccessibility and by colour and were evaluated to determine the effect of particle size in nutrient bioaccessibility. Steaming increased the content of β-carotene extracted from "CRS" and Brasilia (29% and 75%) and decreased the content of β-carotene extracted from "CRS" by 23% in "Rodríguez." In addition, steaming caused a loss of Ca (21%) but did not change the amount of Mg and Zn. The bioaccessibility of β-carotene in raw and pulped carrots was very low (<0.5%). Furthermore, steaming and a smaller particle size increased the bioaccessibility of β-carotene by 3-16 times. Additionally, cooking increased the in vitro bioaccessibility of Ca and Zn but had no effect on Mg. Moreover, homogenisation increased the bioaccessibility by 20% in Ca, 17% in Mg, and 10% in Zn compared to pulping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Analysis of Relations Between the Level of Mg, Zn, Ca, Cu, and Fe and Depressiveness in Postmenopausal Women.

    PubMed

    Szkup, Małgorzata; Jurczak, Anna; Brodowska, Aleksandra; Brodowska, Agnieszka; Noceń, Iwona; Chlubek, Dariusz; Laszczyńska, Maria; Karakiewicz, Beata; Grochans, Elżbieta

    2017-03-01

    Numerous observations suggest a possible connection between the levels of Mg, Zn, Fe, and Zn and the incidence of depressive symptoms. Depression is two to three times more common in women than in men. The menopausal period is extremely conducive to depressive disorders. The aim of this study was to assess the severity of depressive symptoms in postmenopausal women depending on the levels of Mg, Zn, Ca, Cu, and Fe. The study included 198 healthy postmenopausal women at the average age of 56.26 ± 5.55 years. In the first part of the study, standardized research tools were used, namely the Primary Care Evaluation of Mental Disorders (PRIME-MD) and the Beck Depression Inventory (BDI). The second part involved biochemical analysis of Mg, Zn, Ca, Cu, and Fe levels in blood serum. The lowest Cu levels were observed in women without depressive symptoms (1.07 ± 0.22 mg/l) and the highest in those with severe depressive symptoms (1.19 ± 0.17 mg/l), (p ≤ 0.05). The lowest Mg levels were observed in women with depressive symptoms (14.28 ± 2.13 mg/l), and the highest in women without depressive symptoms (16.30 ± 3.51 mg/l), (p ≤ 0.05). The average serum Mg levels (15.75 ± 3.23 mg/l) decreased compared to the reference values (18.77-24 mg/l). What is striking is a potential relation between the levels of Mg and Cu and depressiveness. Our results indicate to a higher vulnerability to depression in a group of women with lower levels of Mg and higher levels of Cu.

  1. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid.

    PubMed

    Zhang, Yuan; Li, Jianxing; Li, Jingyuan

    2018-04-01

    Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of Ca addition on the damping capacity of Mg-Al-Zn casting alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Moon, Jung-Hyun

    2015-07-01

    The influences of Ca addition on the microstructures and damping capacities of AZ91-(0˜2)%Ca casting alloys were investigated, on the basis of the results of X-ray diffractometry, optical microscopy, scanning electron microscopy and vibration tests in a single cantilever mode. The amount of intermetallic compounds decreased with increasing Ca content up to 0.5%, above which it increased; the average cell size showed the opposite tendency. All alloys exhibited similar damping levels in the strain-amplitude independent region. Considering the very low solubility of Ca in the matrix, and that most of the Ca elements are consumed by the formation of the Al2Ca phase and incorporation into the Mg17Al12 phase, this would be ascribed to the almost identical concentrations of Ca solutes distributed in the matrix. In the strain-amplitude dependent region, however, the AZ91-0.5%Ca alloy possessed the maximum damping capacity. From the viewpoint of microstructural evolution with Ca addition, the number density of compound particles is considered to be the principal factor affecting the damping behavior in the strain-amplitude dependent region.

  3. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    NASA Astrophysics Data System (ADS)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  4. Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys

    PubMed Central

    Li, Jingyuan; Lai, Huiying; Xu, Yuzhao

    2018-01-01

    The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894

  5. In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites.

    PubMed

    Yu, Kun; Chen, Liangjian; Zhao, Jun; Li, Shaojun; Dai, Yilong; Huang, Qiao; Yu, Zhiming

    2012-07-01

    In this study 5, 10 and 15% β-Ca(3)(PO(4))(2)/Mg-Zn composites were prepared through powder metallurgy methods, and their corrosion behavior and mechanical properties were studied in simulated body fluid (SBF) at 37°C. The 10% β-Ca(3)(PO(4))(2)/Mg-Zn composite was selected for cytocompatibility assessment and in vivo biodegradation testing. The results identified the α-Mg, MgZn and β-Ca(3)(PO(4))(2) phases in these sintered composites. The density and elastic modulus of the β-Ca(3)(PO(4))(2)/Mg-6% Zn composite match those of natural bone, and the strength is approximately double that of natural bone. The 10% β-Ca(3)(PO(4))(2)/Mg-6% Zn composites exhibit good corrosion resistance, as determined by a 30 day immersion test and electrochemical measurements in SBF at 37°C. The 10% β-Ca(3)(PO(4))(2)/Mg-6% Zn composite is safe for cellular applications, with a cytotoxicity grade of ∼0-1 against L929 cells in in vitro testing. The β-Ca(3)(PO(4))(2)/Mg-6% Zn composite also exhibits good biocompatibility with the tissue and the important visceral organs the heart, kidney and liver of experimental rabbits. The composite has a suitable degradation rate and improves the concrescence of a pre-broken bone. The corrosion products, such as Mg(OH)(2) and Ca(5)(PO(4))(6)(OH)(2), can improve the biocompatibility of the β-Ca(3)(PO(4))(2)/Mg-Zn composite. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing.

    PubMed

    Menezes, Eveline A; Oliveira, Aline F; França, Celia J; Souza, Gilberto B; Nogueira, Ana Rita A

    2018-02-01

    The bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein was evaluated after submitting beef, pork, and chicken to five different thermal treatments. The bioaccessibility of crude protein and metals were simulated by using in vitro enzymatic digestion with a gastric fluid solution and dialysability approach. Inductively coupled plasma optical spectrometry was used to quantify the dialyzable fraction and the total mineral content after microwave-assisted digestion. Graphite furnace atomic absorption spectrometry quantified Cu in chicken dialyzable fraction. The increase of temperature and heat exposure period decreased the protein bioaccessibility. Considering the total and dialyzable fraction, beef is an important source of Cu, Fe, Mg, and Zn to the human diet. The results of Fourier-transform infrared spectroscopy indicated physical changes in the treated samples related to protein denaturation, which was probably responsible for the decreased bioaccessibility of minerals and protein, mainly at higher temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE PAGES

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; ...

    2016-12-12

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  8. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    SciTech Connect

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  9. Ca:Mg:Zn:CO3 and Ca:Mg:CO3-tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel-microparticle composites for tissue regeneration.

    PubMed

    Douglas, Timothy E L; Sobczyk, Katarzyna; Łapa, Agata; Włodarczyk, Katarzyna; Brackman, Gilles; Vidiasheva, Irina; Reczyńska, Katarzyna; Pietryga, Krzysztof; Schaubroeck, David; Bliznuk, Vitaliy; Voort, Pascal Van Der; Declercq, Heidi A; Bulcke, Jan Van den; Samal, Sangram Keshari; Khalenkow, Dmitry; Parakhonskiy, Bogdan V; Van Acker, Joris; Coenye, Tom; Lewandowska-Szumieł, Małgorzata; Pamuła, Elżbieta; Skirtach, Andre G

    2017-03-24

    Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum (GG), an anionic polysaccharide, to form injectable hydrogel-microparticle composites, containing Zn, Ca and Mg. Zn and Ca were incorporated into microparticle preparations to a greater extent than Mg. Microparticle groups were heterogeneous and contained microparticles of differing shape and elemental composition. Zn-rich microparticles were 'star shaped' and appeared to consist of small crystallites, while Zn-poor, Ca- and Mg-rich microparticles were irregular in shape and appeared to contain lager crystallites. Zn-free microparticle groups exhibited the best cytocompatibility and, unexpectedly, Zn-free composites showed the highest antibacterial activity towards methicilin-resistant Staphylococcus aureus. Composites containing Zn-free microparticles were cytocompatible and therefore appear most suitable for applications as an injectable biomaterial. This study proves the principle of creating bi- and tri-elemental microparticles to induce the gelation of GG to create injectable hydrogel-microparticle composites.

  10. Serum concentration of Na, K, Ca, Mg, P, Zn and Cu in patients with essential arterial hypertension.

    PubMed

    Uza, G; Pavel, O; Kovacs, A; Uza, D; Vlaicu, R

    1984-01-01

    Serum concentration of Na, K, Ca, Mg and inorganic phosphate as well as serum levels of Zn and Cu were determined in control subjects and in patients with essential arterial hypertension (EAH) divided according to the stage of the disease. No significant differences were found between the serum mean levels of Na, K, Ca, Mg, Zn and Cu in controls and in patients with EAH. A significant decrease of the serum Zn was noted in the third stage of EAH. A number of cases with hypomagnesemia and/or hypopotassemia probably caused by a long term uncontrolled therapy was also detected. The concentration of inorganic phosphate was significantly lower in patients with EAH associated with overweight than in hypertensive patients with normal body weight and in controls. It is considered that a sustained study of the complex interrelationship between electrolyte interaction and the functional aspects of the arterial wall could still contribute to a better understanding of pathogenic aspects of EAH and of its complications including those subsequent to modern diuretic therapy.

  11. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity.

    PubMed

    Guan, Ren-Guo; Johnson, Ian; Cui, Tong; Zhao, Tong; Zhao, Zhan-Yong; Li, Xue; Liu, Huinan

    2012-04-01

    A novel biodegradable Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy was successfully produced using a series of metallurgical processes; including melting, casting, rolling, and heat treatment. The hardness and ultimate tensile strength of the alloy sheets increased to 71.2HV and 320 MPa after rolling and then aging for 12 h at 175°C. These mechanical properties were sufficient for load-bearing orthopedic implants. A hydroxyapatite (HA) coating was deposited on the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy using a novel coating process combining alkali heat pretreatment, electrodeposition, and alkali heat posttreatment. The microstructure, composition, and phases of the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy and HA coating were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The degradation, hemolysis, and cytocompatibility of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy were studied in vitro. The corrosion potential (E(corr)) of Mg-4.0Zn-1.0Ca-0.6Zr alloy (-1.72 V) was higher than Mg (-1.95 V), Mg-0.6Ca alloy (-1.91 V) and Mg-1.0Ca alloy (-1.97 V), indicating the Mg-Zn-Ca-Zr alloy would be more corrosion resistant. The initial corrosion potential of the HA-coated Mg alloy sample (-1.51 V) was higher than the uncoated sample (-1.72 V). The hemolysis rates of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples were both <5%, which met the requirements for implant materials. The HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples demonstrated the same cytotoxicity score as the negative control. The HA-coated samples showed a slightly greater relative growth rate (RGR%) of fibroblasts than the uncoated samples. Both the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy provided evidence of acceptable cytocompatibility for medical applications. Copyright © 2012 Wiley Periodicals, Inc.

  12. In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy

    PubMed Central

    Su, Yichang; Su, Yingchao; Zai, Wei

    2018-01-01

    In order to decrease the degradation rate of magnesium (Mg) alloys for the potential orthopedic applications, manganese-calcium phosphate coatings were prepared on an Mg-Ca-Zn alloy in calcium phosphating solutions with different addition of Mn2+. Influence of Mn content on degradation behaviors of phosphate coatings in the simulated body fluid was investigated to obtain the optimum coating. With the increasing Mn addition, the corrosion resistance of the manganese-calcium phosphate coatings was gradually improved. The optimum coating prepared in solution containing 0.05 mol/L Mn2+ had a uniform and compact microstructure and was composed of MnHPO4·3H2O, CaHPO4·2H2O, and Ca3(PO4)2. The electrochemical corrosion test in simulated body fluid revealed that polarization resistance of the optimum coating is 36273 Ωcm2, which is about 11 times higher than that of phosphate coating without Mn addition. The optimum coating also showed the most stable surface structure and lowest hydrogen release in the immersion test in simulated body fluid. PMID:29643970

  13. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    PubMed

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  14. Quantitative in vitro assessment of Mg65 Zn30 Ca5 degradation and its effect on cell viability.

    PubMed

    Cao, Jake D; Martens, Penny; Laws, Kevin J; Boughton, Philip; Ferry, Michael

    2013-01-01

    A bulk metallic glass (BMG) of composition Mg(65) Zn(30) Ca(5) was cast directly from the melt and explored as a potential bioresorbable metallic material. The in vitro degradation behavior of the amorphous alloy and its associated effects on cellular activities were assessed against pure crystalline magnesium. Biocorrosion tests using potentiodynamic polarization showed that the amorphous alloy corroded at a much slower rate than the crystalline Mg. Analysis of the exchanged media using inductively coupled plasma optical emission spectrometry revealed that the dissolution rate of Mg ions in the BMG was 446 μg/cm(2)/day, approximately half the rate of crystalline Mg (859 μg/cm(2)/day). A cytotoxicity study, using L929 murine fibroblasts, revealed that both the BMG and pure Mg are capable of supporting cellular activities. However, direct contact with the samples created regions of minimal cell growth around both amorphous and crystalline samples, and no cell attachment was observed. Copyright © 2012 Wiley Periodicals, Inc.

  15. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  16. [The quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in crystalline lenses under the influence of hypodynamic stress and zinc].

    PubMed

    Kusleika, Saulius

    2002-01-01

    The aim of the study was to investigate and estimate quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in the lenses on the influence of hypodynamic stress and zinc (Zn). Hypodynamic stress of 48 days duration was provoked for Chinchilla rabbits (n = 20) by placing them in metal hutches. Every day (48 days) 10 rabbits, which had intervention received 0.3 mg/kg body wt. doses of Zn (in form of Zn acetate). The rabbits (n = 10) of the control group, which had no intervention were kept in vivarium conditions. Concentration of bioelements in the lenses of rabbits was detected by atomic absorption spectrophotometry 503 "Perkin-Elmer" (USA). The investigation revealed that hypodynamic stress of 48 days duration caused the increase in amount of Ca, Zn, Mn in lenses as compared with that in control rabbits and in rabbits receiving Zn. The concentration of bioelements (Ca, Zn, Mg, Cu, Mn) in lenses of rabbits receiving Zn in case of hypodynamic stress did not change significantly.

  17. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy

    PubMed Central

    Doležal, Pavel; Zapletal, Josef; Fintová, Stanislava; Trojanová, Zuzanka; Greger, Miroslav; Roupcová, Pavla; Podrábský, Tomáš

    2016-01-01

    New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys. PMID:28774000

  18. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material.

    PubMed

    Ibrahim, Hamdy; Klarner, Andrew D; Poorganji, Behrang; Dean, David; Luo, Alan A; Elahinia, Mohammad

    2017-05-01

    Mg-Zn-Ca alloys have grabbed most of the recent attention in research attempting to develop an Mg alloy for bone fixation devices due to their superior biocompatibility. However, early resorption and insufficient strength remain the main problems that hinder their use. Heat treatment has previously been thoroughly studied as a post-shaping process, especially after the fabrication of complex parts (e.g. porous structures) by 3D-printing or powder metallurgy. In this work, the effect of heat treatment on Mg-1.2Zn-0.5Ca (wt%) alloy's microstructural, mechanical and corrosion properties was studied. The surface morphology of samples was characterized by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Hardness, compression and tensile tests were conducted, while the in vitro corrosion characteristics of the prepared samples were determined using potentiodynamic polarization (PDP) and immersion tests. It was found that increasing the age hardening duration up to 2-5h increased the heat-treated Mg-1.2Zn-0.5Ca alloy's mechanical properties. Further increase in the age hardening duration did not result in further enhancement in mechanical properties. Similarly, heat treatment significantly altered the Mg-1.2Zn-0.5Ca alloy's in vitro corrosion properties. The corrosion rate of the Mg-1.2Zn-0.5Ca alloy after the heat treatment process was reduced to half of that for the as-cast alloy. XRD results showed the formation of biocompatible agglomerations of hydroxyapatite (HA) and magnesium hydroxide (Mg(OH) 2 ) on the corroded surface of the heat-treated Mg-1.2Zn-0.5Ca alloy samples. The performed heat treatment process had a significant effect on both mechanical and corrosion properties of the prepared Mg-1.2Zn-0.5Ca alloy. The age hardening duration which caused the greatest increase in mechanical and the most slowed corrosion rate for Mg-1.2Zn-0.5Ca alloy material was between 2 and 5h. Copyright © 2017

  20. Effect of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans.

    PubMed

    Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy

    2015-01-01

    The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.

  1. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite.

    PubMed

    Huang, Yan; Liu, Debao; Anguilano, Lorna; You, Chen; Chen, Minfang

    2015-09-01

    A biodegradable magnesium matrix and beta-tricalcium phosphate (β-TCP) particles reinforced composite Mg-2Zn-0.5Ca/1beta-TCP (wt.%) was fabricated for biomedical applications by the novel route of combined high shear solidification (HSS) and equal channel angular extrusion (ECAE). The as-cast composite obtained by HSS showed a fine and equiaxed grain structure with globally uniformly distributed β-TCP particles in aggregates of 2-25 μm in size. The ECAE processing at 300 °C resulted in further microstructural refinement and the improvement of β-TCP particle distribution. During ECAE, the β-TCP aggregates were broken into smaller ones or individual particles, forming a dispersion in the matrix. Such fabricated composite exhibited enhanced hardness and in vitro corrosion resistance. The enhanced hardness was attributed to both the addition of β-TCP particles and grain refinement while the development of a Ca-P rich surface layer from β-TCP during corrosion was responsible for the improvement in corrosion resistance. The composite was characterized in terms of microstructural evolution during fabrication, mechanical properties and electrochemical performance during polarization and immersion tests in a simulated body fluid. Discussions are made on the benefits of both HSS and ECAE and the mechanisms responsible for the enhanced corrosion resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  3. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  4. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    PubMed

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics

    NASA Astrophysics Data System (ADS)

    John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam

    2017-08-01

    Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.

  6. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  7. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating.

    PubMed

    Chan, W Y; Chian, K S; Tan, M J

    2013-12-01

    Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. © 2013 Elsevier B.V. All rights reserved.

  8. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  9. Ultrafiltration of skimmed goat milk increases its nutritional value by concentrating nonfat solids such as proteins, Ca, P, Mg, and Zn.

    PubMed

    Moreno-Montoro, Miriam; Olalla, Manuel; Giménez-Martínez, Rafael; Bergillos-Meca, Triana; Ruiz-López, María Dolores; Cabrera-Vique, Carmen; Artacho, Reyes; Navarro-Alarcón, Miguel

    2015-11-01

    Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg).

    PubMed

    Hasegawa, Takuya; Abe, Yusuke; Koizumi, Atsuya; Ueda, Tadaharu; Toda, Kenji; Sato, Mineo

    2018-01-16

    Extensive attention has been focused toward studies on inexpensive and rare-earth-free garnet-structure vanadate phosphors, which do not have a low optical absorption due to the luminescence color being easily controlled by its high composition flexibility. However, bluish emission phosphors with a high quantum efficiency have not been found until now. In this study, we successfully discovered bluish-white emitting, garnet structure-based LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors with a high quantum efficiency, and the detailed crystal structure was refined by the Rietveld analysis technique. These phosphors exhibit a broad-band emission spectra peak at 481 nm under near UV-light excitation at 341 nm, indicating no clear difference in the emission and excitation spectra. A very compact tetrahedral [VO 4 ] unit is observed in the LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors, which is not seen in other conventional garnet compounds, and generates a bluish-white emission. In addition, these phosphors exhibit high quantum efficiencies of 40.1% (M = Zn) and 44.0% (M = Mg), respectively. Therefore, these vanadate garnet phosphors can provide a new blue color source for LED devices.

  11. Polymorphism of the bivalent metal vanadates MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Mocała, Krzysztof; Ziółkowski, Jacek

    1987-08-01

    Based on the literature data, our former findings and additional DTA and high-temperature X-ray studies performed for CdV 2O 6, MgV 2O 6, and MnV 2O 6, a consistent scheme of the phase transformations of the MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) metavanadates is constructed at normal pressure between room temperature and melting points. Three types of structures exist for the considered compounds: brannerite type (B), pseudobrannerite type (P), and NiV 2O 6 type (N). The following phase transformations have been observed: Me = Mg, B → P at 535°C; Me = Mn, B → P at 540°C; Me = Co, N → B at 660°C; Me = Cu, B (with triclinic distortion) → B at 625°C (secondary order); and Me = Cd, B → P at 170°. CaV 2O 6P, NiV 2O 6N, and ZnV 2O 6B exist in unique form in the entire temperature range. P-form seems to be favored by Me of larger ionic radii. N-form seems to appear at a peculiar d-shell structure and small Me size. Preliminary explanation of the dependence of the structure type on Me size is offered. New X-ray data are given for CdV 2O 6B, CdV 2O 6P, MgV 2O 6B, MgV 2O 6P, and MnV 2O 6P.

  12. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting.

    PubMed

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-04-29

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.

  13. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting

    PubMed Central

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-01-01

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing. PMID:29710818

  14. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  15. Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)

    NASA Astrophysics Data System (ADS)

    Petralanda, U.; Etxebarria, I.

    2014-02-01

    We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.

  16. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca3(PO4)2/Mg-Zn composites prepared by powder metallurgy: the adding β-Ca3(PO4)2, hot extrusion and aging treatment.

    PubMed

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Deng, Youwen; Dai, Han; Dai, Yilong; Xiong, Hanqing; Fang, Hongjie

    2017-05-01

    In this study, 10%β-Ca 3 (PO 4 ) 2 /Mg-6%Zn (wt.%) composites with Mg-6%Zn alloy as control were prepared by powder metallurgy. After hot extrusion, the as-extruded composites were aged for 72h at 150°C. The effects of the adding β-Ca 3 (PO 4 ) 2 , hot extrusion and aging treatment on their microstructure, mechanical properties and corrosion resistance were investigated. The XRD results identified α-Mg, MgZn phase and β-Ca 3 (PO 4 ) 2 phase in these composites. After hot extrusion, grains were significantly refined, and the larger-sized β-Ca 3 (PO 4 ) 2 particles and coarse MgZn phases were broken into linear-distributed β-Ca 3 (PO 4 ) 2 and MgZn phases along the extrusion direction. After aging treatment, the elements of Zn, Ca, P and O presented a more homogeneous distribution. The compressive strengths of the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites were approximately double those of natural bone, and their densities and elastic moduli matched those of natural bone. The immersion tests and electrochemical tests revealed that the adding β-Ca 3 (PO 4 ) 2 , hot extrusion and aging treatment could promote the formation of protective corrosion product layer on the sample surface in Ringer's solution, which improved corrosion resistance of the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites. The XRD results indicated that the corrosion product layer contained Mg(OH) 2 , β-Ca 3 (PO 4 ) 2 and hydroxyapatite (HA). The cytotoxicity assessments showed the as-extruded β-Ca 3 (PO 4 ) 2 /Mg-Zn composite aged for 72h was harmless to L-929 cells. These results suggested that the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites prepared by powder metallurgy were promising to be used for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.

    PubMed

    Jafari, Sajjad; Raman, R K Singh; Davies, Chris H J; Hofstetter, Joelle; Uggowitzer, Peter J; Löffler, Jörg F

    2017-01-01

    Magnesium (Mg) alloys have attracted great attention as potential materials for biodegradable implants. It is essential that an implant material possesses adequate resistance to cracking/fracture under the simultaneous actions of corrosion and mechanical stresses, i.e., stress corrosion cracking (SCC) and/or corrosion fatigue (CF). This study investigates the deformation behaviour of a newly developed high-strength low-alloy Mg alloy, MgZn1Ca0.3 (ZX10), processed at two different extrusion temperatures of 325 and 400°C (named E325 and E400, respectively), under slow strain tensile and cyclic tension-compression loadings in air and modified simulated body fluid (m-SBF). Extrusion resulted in a bimodal grain size distribution with recrystallised grain sizes of 1.2 μm ± 0.8 μm and 7 ± 5 μm for E325 and E400, respectively. E325 possessed superior tensile and fatigue properties to E400 when tested in air. This is mainly attributed to a grain-boundary strengthening mechanism. However, both E325 and E400 were found to be susceptible to SCC at a strain rate of 3.1×10 -7 s -1 in m-SBF. Moreover, both E325 and E400 showed similar fatigue strength when tested in m-SBF. This is explained on the basis of crack initiation from localised corrosion following tests in m-SBF. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  19. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.

    PubMed

    Gaur, Swati; Singh Raman, R K; Khanna, A S

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Enhancement of Mechanical Properties of Extruded Mg-9Al-1Zn-1MM-0.7CaO-0.3Mn Alloy Through Pre-aging Treatment

    NASA Astrophysics Data System (ADS)

    Jeong, Seok Hoan; Kim, Yong Joo; Kong, Kyung Ho; Cho, Tae Hee; Kim, Young Kyun; Lim, Hyun Kyu; Kim, Won Tae; Kim, Do Hyang

    2018-03-01

    The effect of pre-aging treatment before extrusion has been investigated in Mg-9.0Al-1.0Zn-1MM-0.7CaO-0.3Mn alloy. The as-cast microstructure consists of α-Mg dendrite with secondary solidification phase particles, (Mg, Al)2Ca, β-Mg17Al12 and Al11RE3 at the inter-dendritic region. After extrusion, β-Mg17Al12 precipitates are present, but higher density and more homogeneous distribution in pre-aged alloy. In addition, μm-scale banded bulk β-Mg17Al12 particles are generated during extrusion. Al11RE3 particles are broken into small particles, and are aligned along the extrusion direction. (Mg, Al)2Ca particles are only slightly elongated along the extrusion direction, providing stronger particle stimulated nucleation (PSN) effect by severe deformation during extrusion. The mechanical properties can be significantly enhanced by introducing pre-aging treatment, i.e. β-Mg17Al12 precipitates provide grain refining and strengthening effects and (Mg, Al)2Ca particles provide PSN effect.

  1. Synthesis and coordination chemistry of TpC*MI complexes where M=Mg, Ca, Sr, Ba and Zn and TpC*=tris[3-(2-methoxy-1,1-dimethyl)pyrazolyl]hydroborate.

    PubMed

    Chisholm, Malcolm H; Gallucci, Judith C; Yaman, Gulsah

    2009-01-14

    Reactions involving MI2 where M=Mg, Ca, Sr, Ba or Zn and M'TpC* where M'=Na or Tl and TpC*=tris[3-methoxy-1,1-dimethyl)pyrazolyl]hydroborate in tetrahydrofuran are described leading to the isolation and characterization of the complexes TpC*MgI, , TpC*CaI, , TpC*SrI, , TpC*SrI(THF), , TpC*BaI, , TpC*BaI(pz*H), , where pz*H=3-(2-methoxyl-1,1-dimethyl)pyrazole, TpC*BaI.1/2toluene, and TpC*ZnI, . The compounds , , , , and have been characterized by single-crystal X-ray crystallography. Compounds and are isostructural and are salt-like containing kappa6-TpM+ cations and I- anions. In all other structures, the iodide is bound to the metal and TpC* is kappa6 bonded to the group 2 M(2+) ions. Reactions involving TpC*CaI, , and sodium or lithium alkoxides or amides failed to yield the amide or alkoxide calcium TpC* derivative, though related reactions involving TpC*ZnI, , and KOSiMe3 proceeded quantitatively to yield kappa3TpC*ZnOSiMe3, , which was also structurally characterized and shown to have the kappa3-TpC* bound ligand.

  2. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal

    2018-04-01

    This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.

  3. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  5. EPR investigation of local structure for [Mn(H 2O) 6] 2+ cluster in [M(H 2O) 6]XCl 6:Mn 2+ (M = Zn, Mg, Cd, Ca; X = Pt, Sn) systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Yan; Kuang, Xiao-Yu; Li, Hui-Fang; Li, Yan-Fang; Ying-Li

    2009-01-01

    A theoretical method for studying the inter-relation between the local structure and EPR spectra is established by diagonalizing the complete energy matrices. For [M(H 2O) 6]XCl 6:Mn 2+ (M = Zn, Mg, Cd, Ca; X = Pt, Sn) systems, the calculated results demonstrate that the local structures around the octahedral Mn 2+ centers in the doped systems are very similar despite of the host crystals being different. Furthermore, it is shown that the EPR zero-field parameter D depends simultaneously on the local structure parameters R and θ while ( a - F) depends mainly on R, whether the doped systems are at liquid-nitrogen temperature or room temperature.

  6. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  7. Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bae, KiTae; La, JoungHyun; Lee, InGyu; Lee, SangYul; Nam, KyungHoon

    2017-05-01

    Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

  8. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    NASA Astrophysics Data System (ADS)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2017-04-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  9. Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip

    NASA Astrophysics Data System (ADS)

    Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.

    2016-09-01

    The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.

  10. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Quaternary BeMgZnO by plasma-enhanced molecular beam epitaxy for BeMgZnO/ZnO heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ullah, M. B.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Smith, D. J.; Morkoç, H.

    2017-02-01

    We investigated the crystal structure, growth kinetics and electrical properties of BeMgZnO/ZnO heterostructures grown by Molecular Beam Epitaxy (MBE). Transmission Electron Microscopy (TEM) studies revealed that incorporation of Mg into the BeZnO solid solution eliminates the high angle grain boundaries that are the major structural defects in ternary BeZnO. The significant improvement of x-ray diffraction intensity from quaternary BeMgZnO alloy compared to ternary BeZnO was attributed to the reduction of lattice strain, which is present in the latter due to the large difference of covalent radii between Be and Zn (1.22 Å for Zn, 0.96 Å for Be). Incorporation of Mg, which has a larger covalent radius of 1.41Å, reduced the strain in BeMgZnO thin films and also enhanced Be incorporation on lattice sites in the wurtzite lattice. The Zn/(Be + Mg) ratio necessary to obtain single-crystal O-polar BeMgZnO on (0001) GaN/sapphire templates was found to increase with increasing substrate temperature:3.9, 6.2, and 8.3 at substrate temperatures of 450°C, 475°C, and 500°C, respectively. Based on analysis of photoluminescence spectra from Be0.03MgyZn0.97-yO and evolution of reflection high-energy electron diffraction patterns observed in situ during the MBE growth, it has been deduced that more negative formation enthalpy of MgO compared to ZnO and the increased surface mobility of Mg adatoms at elevated substrate temperatures give rise to the nucleation of a MgO-rich wurtzite phase at relatively low Zn/(Be + Mg) ratios. We have demonstrated both theoretically and experimentally that the incorporation of Be into the barrier in Zn-polar BeMgZnO/ZnO and O-polar ZnO/BeMgZnO polarization doped heterostructures allows the alignment of piezoelectric polarization vector with that of spontaneous polarization due to the change of strain sign, thus increasing the amount of net polarization. This made it possible to achieve Zn-polar BeMgZnO/ZnO heterostructures grown on Ga

  12. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  13. Selective antibacterial effects of mixed ZnMgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-05-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive ( B. subtilis) and Gram-negative ( E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size 50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  14. Codoping characteristics of Zn with Mg in GaN

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Han, M. S.; Yang, G. M.; Youn, C. J.; Lee, H. J.; Cho, H. K.; Lee, J. Y.

    2000-08-01

    The doping characteristics of Mg-Zn codoped GaN films grown by metalorganic chemical vapor deposition are investigated. By means of the concept of Mg-Zn codoping technique, we have grown p-GaN showing a low electrical resistivity (0.72 Ω cm) and a high hole concentration (8.5×1017cm-3) without structural degradation of the film. It is thought that the codoping of Zn atoms with Mg raises the Mg activation ratio by reducing the hydrogen solubility in p-GaN. In addition, the measured specific contact resistance of Mg-Zn codoped GaN film is 5.0×10-4 Ω cm2, which is one order of magnitude lower than that of Mg doped only GaN film (1.9×10-3 Ω cm2).

  15. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    PubMed

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  16. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply.

    PubMed

    Rios, Juan Jose; Lochlainn, Seosamh O; Devonshire, Jean; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Kurup, Smita; Broadley, Martin R

    2012-05-01

    Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Brassica rapa ssp. trilocularis 'R-o-18' was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

  17. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior.

    PubMed

    Song, Yang; Zhang, Shaoxiang; Li, Jianan; Zhao, Changli; Zhang, Xiaonong

    2010-05-01

    Preparing stabilized apatite on biodegradable Mg alloy may improve biocompatibility and promote osteointegration. In the present work, three kinds of Ca-P coatings, brushite (DCPD, CaHPO(4).2H(2)O), hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) and fluoridated hydroxyapatite (FHA, Ca(5)(PO(4))(3)(OH)(1-)(x)F(x)) are fabricated by electrodeposition on a biodegradable Mg-Zn alloy. The crystalline structures, morphologies and compositions of these Ca-P coatings have been characterized by X-ray diffrection, scanning electron microscopy and energy-dispersive spectoscopy. The effects of these coatings on the degradation behavior and mineralization activity of the Mg-Zn alloy have also been investigated. The experimental results showed that these coatings decreased the degradation rate of Mg-Zn alloy, while the precipitates on the uncoated and DCPD-coated Mg-Zn alloy in modified simulated biological fluid had low Ca/P molar ratios, which delayed bone-like apatite formation. Both the HA and FHA coating could promote the nucleation of osteoconductive minerals (bone-like apatite or beta-TCP) for 1month. However, the HA coating transformed from DCPD through alkali heat treatment was fragile and less stable, and therefore its long-term corrosion resistance was not satisfactory. Instead, the FHA was more stable and had better corrosion resistance, and thus it should be better suited as a coating of Mg implants for orthopedic applications. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Polarization Induced Doping in p-ZnMgO

    DTIC Science & Technology

    2013-09-06

    Zn +Mg  ratio.   3. Good...conditions  were   investigated   to   obtain  a  high  quality  film:  the  sequence  of   Zn  and  O  sources  for...and   Zn /O   ratio.   Resultant   epitaxial   ZnO   films   demonstrated   a   root-­‐mean-­‐square   surface  

  19. Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy

    NASA Astrophysics Data System (ADS)

    Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.

    2017-06-01

    An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.

  20. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGES

    Huso, Jesse; Morrison, John L.; Che, Hui; ...

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  1. Structures and unimolecular chemistry of M(Pro2-H)(+) (M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn) by IRMPD spectroscopy, SORI-CID, and theoretical studies.

    PubMed

    Jami-Alahmadi, Yasaman; Fridgen, Travis D

    2016-01-21

    M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.

  2. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating.

    PubMed

    Niu, Jialin; Yuan, Guangyin; Liao, Yi; Mao, Lin; Zhang, Jian; Wang, Yongping; Huang, Feng; Jiang, Yao; He, Yaohua; Ding, Wenjiang

    2013-12-01

    To further improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca-P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca-P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10-30 μm. The in vitro corrosion tests indicated that the Ca-P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca-P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca-P treatment and less gas was produced from Ca-P treated JDBM bone plates and screws in early stage of the implantation, and at least 10weeks degradation time can be prolonged by the present coating techniques. Both Ca-P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca-P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications. © 2013.

  3. Synthesis and characterization of Zn-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Singh, Shailndra; Barbar, S. K.; Ram, Sahi

    2018-05-01

    The Zn-Mg ferrite sample of general formula Zn0.5Mg0.5Fe2O4 have been prepared by standard solid state reaction technique using high purity oxides. X-ray diffraction analysis shows the formation of a zinc-magnesium ferrite cubic phase at room temperature with space group Fd3m. FTIR spectra show two significant absorption bands first at 665.15 cm-1 corresponding to tetrahedral (A) and second band at 434 cm-1 corresponding to octahedral (B) sites of the spinel. Morphology of the sample determined by the SEM measurement and EDS analysis has confirmed the composition of atoms in the sample.

  4. Electron confinement at diffuse ZnMgO/ZnO interfaces

    NASA Astrophysics Data System (ADS)

    Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.

    2017-01-01

    Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.

  5. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2013-12-01

    A fast and straightforward method of the analysis of coffee infusions was developed for measurements of total concentrations of Ca, Cu, Fe, Mg, Mn and Zn by flame atomic absorption spectrometry. Its validity was proved by the analysis of spiked samples; recoveries of added metals were found to be within 98-104% while the precision was better than 4%. The method devised was used for the analysis of re-distilled water infusions of six popular ground coffees available in the Polish market. Using the mud coffee preparation it was established that percentages of metals leached in these conditions varied a lot among analysed coffees, especially for Ca (14-42%), Mg (6-25%) and Zn (1-24%). For remaining metals, the highest extractabilities were assessed for Mn (30-52%) while the lowest for Fe (4-16%) and Cu (2-12%). In addition, it was found that the water type and the coffee brewing preparation method influence the concentration of studied metals in coffee infusions the most. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2017-12-01

    A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electron Raman scattering in a strained ZnO/MgZnO double quantum well

    NASA Astrophysics Data System (ADS)

    Mojab-abpardeh, M.; Karimi, M. J.

    2018-02-01

    In this work, the electron Raman scattering in a strained ZnO / MgZnO double quantum wells is studied. The energy eigenvalues and the wave functions are obtained using the transfer matrix method. The effects of Mg composition, well width and barrier width on the internal electric field in well and barrier layers are investigated. Then, the influences of these parameters on the differential cross-section of electron Raman scattering are studied. Results indicate that the position, magnitude and the number of the peaks depend on the Mg composition, well width and barrier width.

  8. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  9. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-07-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  10. Effect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy

    PubMed Central

    Chiu, Chun; Lu, Chih-Te; Chen, Shih-Hsun; Ou, Keng-Liang

    2017-01-01

    Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase are potential candidates for biodegradable implants; however, an unfavorable degradation rate has limited their applications. Hydroxyapatite (HA) has been shown to enhance the corrosion resistance of Mg alloys. In this study, Mg97Zn1Y2-0.5 wt% HA composite was synthesized and solution treated at 500 °C for 10 h. The corrosion behavior of the composite was studied by electrochemical and immersion tests, while the mechanical properties were investigated by a tensile test. Addition of HA particles improves the corrosion resistance of Mg97Zn1Y2 alloy without sacrificing tensile strength. The improved corrosion resistance is due to the formation of a compact Ca-P surface layer and a decrease of the volume fraction of the LPSO phase, both resulting from the addition of HA. After solution-treatment, the corrosion resistance of the composite decreases. This is due to the formation of a more extended LPSO phase, which weakens its role as a corrosion barrier in protecting the Mg matrix. PMID:28773216

  11. Synthesis and Characterization of Mg-doped ZnO Nanorods for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Gemar, H.; Das, N. C.; Wanekaya, A.; Delong, R.; Ghosh, K.

    2013-03-01

    Nanomaterials research has become a major attraction in the field of advanced materials research in the area of Physics, Chemistry, and Materials Science. Bio-compatible and chemically stable metal nanoparticles have biomedical applications that includes drug delivery, cell and DNA separation, gene cloning, magnetic resonance imaging (MRI). This research is aimed at the fabrication and characterization of Mg-doped ZnO nanorods. Hydrothermal synthesis of undoped ZnO and Mg-doped ZnO nanorods is carried out using aqueous solutions of Zn(NO3)2 .6H2O, MgSO4, and using NH4OH as hydrolytic catalyst. Nanomaterials of different sizes and shapes were synthesized by varying the process parameters such as molarity (0.15M, 0.3M, 0.5M) and pH (8-11) of the precursors, growth temperature (130°C), and annealing time during the hydrothermal Process. Structural, morphological, and optical properties are studied using various techniques such as XRD, SEM, UV-vis and PL spectroscopy. Detailed structural, and optical properties will be discussed in this presentation. This work is partially supported by National Cancer Institute (1 R15 CA139390-01).

  12. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  13. Effect of ZnO nanoparticles to mechanical properties of thixoformed Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Kusharjanto; Soepriyanto, Syoni; Ardian Korda, Akhmad; Adi Dwiwanto, Supono

    2018-03-01

    Magnesium alloys are lightweight metallic materials with low mechanical properties. Therefore, in order to meet the requirements in various industrial sector applications such as automotive, aerospace and electronic frame, improvement strength and ductility is required. The purpose of this research is to investigate the effect of adding ZnO nanoparticles to changes in microstructure, hardness, mechanical properties regarding with yield and ultimate strength. In this research, the molten Mg-Al-Zn alloy is added ZnO nanoparticles with a various range of 0, 1; 3 and 5 wt% and then cooling in the room temperature. Futhermore, Mg-Al-Zn-ZnO is heated at a temperature of 530 °C (in the semi-solid temperature range 470 °C–595 °C or 53% solid fraction) and then thixoforming process is performed. The characterization results of the thixoforming product show that, the microstructure is globular in shape with maximum hardness value of 107.14 VHN, the yield strength of 214.87 MPa, and the ultimate tensile strength of 311.25 MPa in 5 wt% ZnO nanoparticles.

  14. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures

    NASA Astrophysics Data System (ADS)

    Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.

    2017-12-01

    The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7  ×  104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

  15. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    NASA Astrophysics Data System (ADS)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  16. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg-0.5Al-0.3Mg-0.5Al-0.1Mg-0.5Al. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Critical Slowing Down in Zn-Mg-Ho Quasicrystal

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Ansaldo, Eduardo J.; Morris, Gerald D.; Brewer, Jess H.; Sato, Taku J.

    By means of longitudinal field muon-spin spectroscopy, we have found a clear critical slowing down caused by spin fluctuation of Ho moments in the icosahedral quasicrystal (QC), i-ZnMgHo, with freezing temperature (Tf =1.95 K), for which the susceptibility showed an anomaly at5K. The difference is attributed to crystalline elec-tric field (CEF) effects. The muons experience a broad, fluctuating, field distribution, of width Δ ∼6.3Taround Tf . The effect of the CEF is also apparent in zero field and weak applied transverse field measurements, with an onset around 60 K. For the Cd-based QCs (CdMgHo and CdMgGd), which exhibited two freezing temperatures in the susceptibility, the change in fluctuation rate, i.e. freezing, occurs at the lower Tf .

  18. Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire

    NASA Astrophysics Data System (ADS)

    Petukhov, Vladimir; Bakin, Andrey; Tsiaoussis, Ioannis; Rothman, Johan; Ivanov, Sergey; Stoemenos, John; Waag, Andreas

    2011-05-01

    The main challenge in fabrication of ZnO-based devices is the absence of reliable p-type material. This is mostly caused by insufficient crystalline quality of the material and not well-enough-developed native point defect control of ZnO. At present high-quality ZnO wafers are still expensive and ZnO heteroepitaxial layers on sapphire are the most reasonable alternative to homoepitaxial layers. But it is still necessary to improve the crystalline quality of the heteroepitaxial layers. One of the approaches to reduce defect density in heteroepitaxial layers is to introduce a strained-layer superlattice (SL) that could stop dislocation propagation from the substrate-layer interface. In the present paper we have employed fifteen periods of a highly strained SL structure. The structure was grown on a conventional double buffer layer comprising of high-temperature MgO/low-temperature ZnO on sapphire. The influence of the SLs on the properties of the heteroepitaxial ZnO layers is investigated. Electrical measurements of the structure with SL revealed very high values of the carrier mobility up to 210 cm2/Vs at room temperature. Structural characterization of the obtained samples showed that the dislocation density in the following ZnO layer was not reduced. The high mobility signal appears to come from the SL structure or the SL/ZnO interface.

  19. The Effect of Ca Content on the Microstructure, Hardness and Tensile Properties of AZ81 Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Allameh, S. H.; Emamy, M.

    2017-05-01

    The effects of various Ca contents (0.1-4 wt.%) on the microstructure and tensile properties of AZ81 magnesium alloy were investigated with the contribution of an analytical method. Ca addition (up to 1.0 wt.%) refined the alloy microstructure but further addition of Ca resulted in a coarse structure and introduced large dendrites within the grains. The changes in the microstructures revealed that Al4Ca, Al2Ca, τ-Mg32(A1,Zn)49 and ɛ-MgZn intermetallics are formed in the alloy as a result of Ca addition and Al consumption. The assessment of tensile properties of AZ81-1.0 wt.%Ca alloy showed the optimum values of yield strength and ultimate tensile strength, while AZ81-0.7 wt.%Ca alloy showed maximum elongation. The reduction in tensile properties of the cast alloy by the addition of more Ca was attributed to grain coarsening and evolution of a network of intermetallic compounds. FF study of tensile fractured surfaces indicated that Ca addition encourages brittle mode of fracture propagating through precipitated intermetallics in the structure.

  20. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  1. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies.

    PubMed

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

  2. Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In- Vitro Studies

    PubMed Central

    Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys. PMID:24058329

  3. High Strength, Nano-Structured Mg-Al-Zn Alloy

    DTIC Science & Technology

    2011-01-01

    ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211...University of California, Davis, One Shields Avenue, Davis, CA 95616, USA b Weapons and Materials Research Directorate, U.S. Army Research Laboratory...being researched and implemented. To that effect,muchprogress has been achieved in thedevelopment of high strengthMg alloys through solid solution

  4. In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions.

    PubMed

    Alves, Marta M; Prosek, Tomas; Santos, Catarina F; Montemor, Maria F

    2017-01-01

    Flowered coatings composed by ZnO crystals were successfully electrodeposited on Zn-Mg alloys. The distinct coatings morphologies were found to be dependent upon the solid interfaces distribution, with the smaller number of bigger flowers (ø 46μm) obtained on Zn-Mg alloy containing 1wt.% Mg (Zn-1Mg) contrasting with the higher number of smaller flowers (ø 38μm) achieved on Zn-Mg alloy with 2wt.% Mg (Zn-2Mg). To assess the in vitro behaviour of these novel resorbable materials, a detailed evaluation of the degradation behaviour, in simulated physiological conditions, was performed by electrochemical impedance spectroscopy (EIS). The opposite behaviours observed in the corrosion resistances resulted in the build-up of distinct corrosion layers. The products forming these layers, preferentially detected at the flowers, were identified and their spatial distribution disclosed by EDS and Raman spectroscopy techniques. The presence of smithsonite, simonkolleite, hydrozincite, skorpionite and hydroxyapatite were assigned to both corrosion layers. However the distinct spatial distributions depicted may impact the biocompatibility of these resorbable materials, with the bone analogue compounds (hydroxyapatite and skorpionite) depicted in-between the ZnO crystals and on the top corrosion layer of Zn-1Mg flowers clearly contrasting with the hindered layer formed at the interface of the substrate with the flowers on Zn-2Mg. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Deep-Ultraviolet Luminescence of Rocksalt-Structured Mg x Zn1-x O (x > 0.5) Films on MgO Substrates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Tsumura, Keiichi; Ishii, Kyohei; Onuma, Takayoshi; Honda, Tohru; Fujita, Shizuo

    2018-04-01

    Rocksalt-structured Mg x Zn1-x O films with Mg composition x of 0.47, 0.57, and 0.64 were grown on (100)-oriented MgO substrates using mist chemical vapor deposition. Cathodoluminescence measurements showed deep ultraviolet (DUV) emission peaking at 4.88 eV (254 nm), 5.15 eV (241 nm), and 5.21 eV (238 nm), respectively, at 12 K. The peak energies were lower than the band gap energies by ca. 1 eV, suggesting that the deep ultraviolet (DUV) emission may be recognized as near band edge luminescence but is associated with impurities, defects, or band fluctuations. The use of carbon-free precursors in the growth is suggested to eliminate carbon impurities and to improve the optical properties of Mg x Zn1-x O.

  6. Neuronal-specific endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration in mixed primary hippocampal culture homogenates.

    PubMed

    Parsons, J Travis; Sun, David A; DeLorenzo, Robert J; Churn, Severn B

    2004-07-01

    Endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration is crucial for maintenance of neuronal Ca(2+) homeostasis. The use of cell culture in conjunction with modern Ca(2+) imaging techniques has been invaluable in elucidating these mechanisms. While imaging protocols evaluate endoplasmic reticulum Ca(2+) loads, measurement of Mg(2+)/Ca(2+) ATPase activity is indirect, comparing cytosolic Ca(2+) levels in the presence or absence of the Mg(2+)/Ca(2+) ATPase inhibitor thapsigargin. Direct measurement of Mg(2+)/Ca(2+) ATPase by isolation of microsomes is impossible due to the minuscule amounts of protein yielded from cultures used for imaging. In the current study, endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration was measured in mixed homogenates of neurons and glia from primary hippocampal cultures. It was demonstrated that Ca(2+) uptake was mediated by the endoplasmic reticulum Mg(2+)/Ca(2+) ATPase due to its dependence on ATP and Mg(2+), enhancement by oxalate, and inhibition by thapsigargin. It was also shown that neuronal Ca(2+) uptake, mediated by the type 2 sarco(endo)plasmic reticulum Ca(2+) ATPase isoform, could be distinguished from glial Ca(2+) uptake in homogenates composed of neurons and glia. Finally, it was revealed that Ca(2+) uptake was sensitive to incubation on ice, extremely labile in the absence of protease inhibitors, and significantly more stable under storage conditions at -80 degrees C.

  7. A Bayesian, multivariate calibration for Globigerinoides ruberMg/Ca

    SciTech Connect

    Khider, D.; Huerta, G.; Jackson, C.

    The use of Mg/Ca in marine carbonates as a paleothermometer has been challenged by observations that implicate salinity as a contributing influence on Mg incorporation into biotic calcite and that dissolution at the sea-floor alters the original Mg/Ca. Yet, these factors have not yet been incorporated into a single calibration model. In this paper, we introduce a new Bayesian calibration for Globigerinoides ruber Mg/Ca based on 186 globally distributed core top samples, which explicitly takes into account the effect of temperature, salinity, and dissolution on this proxy. Our reported temperature, salinity, and dissolution (here expressed as deep-water ΔCO 2- 3)more » sensitivities are (±2σ) 8.7±0.9%/°C, 3.9±1.2%/psu, and 3.3±1.3%/μmol.kg -1 below a critical threshold of 21 μmol/kg in good agreement with previous culturing and core-top studies. We then perform a sensitivity experiment on a published record from the western tropical Pacific to investigate the bias introduced by these secondary influences on the interpretation of past temperature variability. This experiment highlights the potential for misinterpretations of past oceanographic changes when the secondary influences of salinity and dissolution are not accounted for. Finally, multiproxy approaches could potentially help deconvolve the contributing influences but this awaits better characterization of the spatio-temporal relationship between salinity and δ 18O sw over millennial and orbital timescales.« less

  8. Zn2+, not Ca2+, is the most effective cation for activation of dolichol kinase of mammalian brain.

    PubMed

    Sakakihara, Y; Volpe, J J

    1985-12-15

    The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.

  9. Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.

    2011-05-01

    ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.

  10. Influence of valence electron concentration on Laves phases: Structures and phase stability of pseudo-binary MgZn 2-xPd x

    DOE PAGES

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2015-06-03

    A series of pseudo-binary compounds MgZn 2-xPd x (0.15 ≤ x ≤ 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn 2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ≤ x ≤ 0.3 (MgNi 2-type, hP24; MgZn 1.80Pd 0.20(2)), 0.4 ≤ x ≤ 0.6 (MgCu 2-type, cF24; MgZn 1.59Pd 0.41(2)), and 0.62 ≤ x ≤ 0.8 (MgZn 2-type, hP12: MgZn 1.37Pd 0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Znmore » atoms among the majority atom sites in these structures. Interestingly, the MgZn 2-type structure re-emerges in MgZn 2–xPd x at x ≈ 0.7 with the refined composition MgZn 1.37(2)Pd 0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn 2. Electronic structure calculations on a model “MgZn 1.25Pd 0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn 2 to the ternary “MgZn 1.25Pd 0.75”. Multi-centered bonding is evident from electron localization function plots for “MgZn 1.25Pd 0.75”, an outcome which is in accordance with analysis of other Laves phases.« less

  11. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    PubMed Central

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-01-01

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products. PMID:28829393

  12. Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Creech, John B.; Baker, Joel A.; Hollis, Christopher J.; Morgans, Hugh E. G.; Smith, Euan G. C.

    2010-11-01

    We have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, and Ba/Ca) ratios of 13 species of variably preserved early to middle Eocene planktonic and benthic foraminifera from New Zealand. The foraminifera were obtained from Ashley Mudstone, mid-Waipara River, South Island, which was deposited at bathyal depth ( ca. 1000 m) on the northern margin of the east-facing Canterbury Basin at a paleo-latitude of ca. 55°S. LA-ICP-MS data yield trace element depth profiles through foraminifera test walls that can be used to identify and exclude zones of surficial contamination and infilling material resulting from diagenetic coatings, mineralisation and detrital sediment. Screened Mg/Ca ratios from 5 species of foraminifera are used to calculate sea temperatures from late Early to early Middle Eocene ( ca. 51 to 46.5 Ma), a time interval that spans the termination of the Early Eocene Climatic Optimum (EECO). During this time, sea surface temperatures (SST) varied from 30 to 24 °C, and bottom water temperatures (BWT) from 21 to 14 °C. Comparison of Mg/Ca sea temperatures with published δ 18O and TEX 86 temperature data from the same samples (Hollis et al., 2009) shows close correspondence, indicating that LA-ICP-MS can provide reliable Mg/Ca sea temperatures even where foraminiferal test preservation is variable. Agreement between the three proxies also implies that Mg/Ca-temperature calibrations for modern planktonic and benthic foraminifera can generally be applied to Eocene species, although some species (e.g., V. marshalli) show significant calibration differences. The Mg/Ca ratio of the Eocene ocean is constrained by our data to be 35-50% lower than the modern ocean depending on which TEX 86 - temperature calibration (Kim et al., 2008; Liu et al., 2009) - is used to compare with the Mg/Ca sea temperatures. Sea temperatures derived from δ 18O analysis of foraminifera from Waipara show

  13. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  14. Structure and properties of hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O

    NASA Astrophysics Data System (ADS)

    Haussühl, S.; Middendorf, B.; Dörffel, M.

    1991-07-01

    Mg-hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O were prepared by crystallization from hot aqueous solutions (70°C). The structure of (Mg 0.206Zn 0.794) 3(PO 4) 2 · 4H 2O has been determined from 1612 unique reflections (MoKα, R = 0.033): Pnma, a1 = 10.594(2), a2 = 18.333(2), a3 = 5.029(2)Å, Z = 4, Dcalc = 2.943g cm -3. The structure resembles that of pure hopeite. However, the magnesium atoms occupy only the sixcoordinated site. The thermal behavior of hopeites is strongly influenced by the substitution of Zn by Mg. The dehydration range is shifted to higher temperatures with increasing Mg content. A strongly anisotropic thermal expansion was measured by X-ray diffraction in a temperature range of -40° to 50°C. Experiments to substitute Zn by Ca, Sr, and Ba in the hopeite failed. A hitherto unknown monoclinic phase with the composition BaZn 2(PO 4) 2 · H 2O and a1 = 4.707(2), a2 = 7.840(2), a3 = 8.061(3)Å, and α 2 = 88.99(4)° was found.

  15. Investigation of high density two-dimensional electron gas in Zn-polar BeMgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Ding, K.; Ullah, M. B.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2017-10-01

    Zn-polar BeMgZnO/ZnO heterostructures grown by molecular beam epitaxy on high resistivity GaN templates producing high-density two-dimensional electron gas (2DEG) are investigated. This is motivated by the need to reach plasmon-longitudinal optical (LO) phonon resonance for attaining minimum LO phonon lifetime. Achievement of high 2DEG concentration in MgZnO/ZnO heterostructures requires growth of the MgZnO barrier at relatively low temperatures, which compromises the ternary quality that in turn hinders potential field effect transistor performance. When this ternary is alloyed further with BeO, the sign of strain in the BeMgZnO barrier on ZnO switches from compressive to tensile, making the piezoelectric and spontaneous polarizations to be additive in the BeMgZnO/ZnO heterostructures much like the Ga-polar AlGaN/GaN heterostructures. As a result, a 2DEG concentration of 1.2 × 1013 cm-2 is achieved in the Be0.03Mg0.41Zn0.56O/ZnO heterostructure. For comparison, a 2DEG concentration of 7.7 × 1012 cm-2 requires 2% Be and 26% Mg in the barrier, whereas the same in the MgZnO/ZnO system would require incorporation of more than 40% Mg into the barrier, which necessitates very low growth temperatures. Our results are consistent with the demands on achieving short LO phonon lifetimes through plasmon-LO phonon resonance for high carrier velocity.

  16. In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy.

    PubMed

    Sun, Jin'e; Wang, Jingbo; Jiang, Hongfeng; Chen, Minfang; Bi, Yanze; Liu, Debao

    2013-08-01

    In this in vivo study, degradable Mg-3Zn-0.8Zr cylinders were coated with a calcium phosphorus compound (Ca-P) layer or a magnesium fluoride (MgF2) layer; uncoated Mg-3Zn-0.8Zr alloy was used as a control. These were then implanted intramedullary into the femora of nine Japanese big-ear white rabbits for implantation periods of 1, 2 and 3 months. During the postoperative observation period with radiographic examination, the results showed that the MgF2-coated implants were tolerated well compared to the Ca-P-coated implants and uncoated implants. Moreover, large amounts of cells, rich fibrillar collagen and calcium and phosphorus products were found on the surface of the MgF2-coated implants using scanning electron microscopy. Micro-computed tomography further showed a slight decrease in volume (23.85%) and a greater increase in new bone mass (new bone volume fraction=11.56%, tissue mineral density=248.81 mg/cm(3)) for the MgF2-coated implants in comparison to uncoated and Ca-P compound-coated implants after 3 months of implantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.

    PubMed

    Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E

    2011-10-01

    Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

  18. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating.

    PubMed

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-08-22

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0-3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn₂ changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe₂Al₅ inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  19. Local melting in Al-Mg-Zn-alloys

    NASA Astrophysics Data System (ADS)

    Droenen, Per-Erik; Ryum, Nils

    1994-03-01

    The internal melting of several Al-Mg-Zn-alloys has been studied by rapid upquenching in a salt bath of specimens slowly cooled at a rate of 2 °C/h down to 375 °C. The melting reaction was studied metallographically in the light- and electron-scanning microscope, and local concentrations were measured in the microprobe. Local melting of both the equilibrium phases T and η was observed to occur. There were, however, essential differences between the melting kinetics for the two phases. While the T-phase particles melted spontaneously at temperatures at or above the invariant temperature, 489 °C, and after some period of time at lower temperatures, the η-phase particles either melted spontaneously at or above the invariant temperature, T - 475 °C, or dissolved into the matrix at temperatures below 475 °C. This difference in behavior can be accounted for if the α(Al)-η section is not a quasi-binary section. The industrial implications of the internal melting in these alloys are discussed and compared to the same reaction in the Al-Mg-Si alloys. A model is developed in the Appendix to quantify the different behaviors of these two classes of alloys.

  20. On the synthesis, structural, optical and magnetic properties of nano-size Zn-MgO

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Dwivedi, Sonam

    2015-09-01

    Chemical co-precipitation method is employed to synthesize ZnO, MgO and Zn0.5Mg0.5O nanoparticles. X-ray diffraction (XRD) pattern infers that the sample of ZnO is in single-phase wurtzite structure (hexagonal phase, P63mc), MgO crystallizes in cubic Fd3m space group and Zn0.5Mg0.5O represents mixed nature of ZnO and MgO lattices. MgO nanocrystals band around 1078 cm-1 is ascribed to the TO-LO surface phonon modes in MgO lattice. In case of Zn0.5Mg0.5O lattice illustrating two bands at 436 and 1087 cm-1. FTIR spectra clearly show the broad band within 450-600 cm-1 is associated with the special vibration of magnesium oxide. FT-IR spectrum of Zn0.5Mg0.5O represents the combined bands of both ZnO-MgO oxides. Further the optical study obtained value of MgO (4.08 eV) is much lower than the corresponding bulk value (7.08 eV). All samples show diamagnetic nature at room temperature.

  1. Ca Addition Effects on the Microstructure, Tensile and Corrosion Properties of Mg Matrix Alloy Containing 8 wt.% Mg2Si

    NASA Astrophysics Data System (ADS)

    Lotfpour, M.; Emamy, M.; Dehghanian, C.; Pourbahari, B.

    2018-02-01

    The microstructure, tensile properties and corrosion behavior of the Mg-8 wt.% Mg2Si-x%Ca alloy have been studied by the use of optical microscopy, scanning electron microscopy equipped with energy-dispersive spectroscopy, x-ray diffraction, standard tensile testing, polarization test and electrochemical impedance spectroscopy (EIS) measurements. Microstructural studies indicated that Ca modifies both primary and eutectic Mg2Si phase. It was found that the average size of primary Mg2Si particles is about 60 μm, which is dropped by about 82% in the alloy containing 0.05 wt.% Ca. By the addition of different Ca contents, Ca-rich intermetallics (i.e., CaSi2 and CaMgSi) were formed. The modification mechanism of adding Ca during solidification was found to be due to the strong effect of CaMgSi phase as a heterogonous nucleation site, apart from CaSi2 which was reported before, for Mg2Si intermetallics. Tensile testing results ascertained that Ca addition enhances both ultimate tensile strength (UTS) and elongation values. The optimum amount of Ca was found to be 0.1 wt.%, which improved UTS and elongation values from about 130 MPa and 2% to 165 MPa and 5.5%, whereas more Ca addition (i.e., 3 wt.%) reduced the tensile properties of the alloy to about 105 MPa and 1.8%, which can be due to the formation of CaMgSi intermetallics with deteriorating needle-like morphology. Polarization and EIS tests also showed that the Mg-3%Si-0.5%Ca alloy pronounces as the best anti-corrosion alloy. Nevertheless, further added Ca (up to 3 wt.%) deteriorated the corrosion resistance due to predominance of worse galvanic coupling effect stemmed from the presence of stronger CaMgSi cathode in comparison with Mg2Si. With higher Ca additions, an adverse effect was seen on corrosion resistance of the Mg-3%Si alloy, as a result of forming a weak film on the alloy specimen surface.

  2. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    PubMed

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  4. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    NASA Astrophysics Data System (ADS)

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.; Du, X. L.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/α-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg0.53Zn0.47O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  5. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less

  6. Intramitochondrial Zn2+ accumulation via the Ca2+ uniporter contributes to acute ischemic neurodegeneration

    PubMed Central

    Medvedeva, Yuliya V.; Weiss, John H.

    2014-01-01

    Ca2+ and Zn2+ have both been implicated in the induction of acute ischemic neurodegeneration. We recently examined changes in intracellular Zn2+ and Ca2+ in CA1 pyramidal neurons subjected to oxygen glucose deprivation (OGD), and found that Zn2+ rises precede and contribute to the onset of terminal Ca2+ rises (“Ca2+ deregulation”), which are causatively linked to a lethal loss of membrane integrity. The present study seeks to examine the specific role of intramitochondrial Zn2+ accumulation in ischemic injury, using blockers of the mitochondrial Ca2+ uniporter (MCU), through which both Zn2+ and Ca2+ appear able to enter the mitochondrial matrix. In physiological extracellular Ca2+, treatment with the MCU blocker, Ruthenium Red (RR), accelerated the Ca2+ deregulation, most likely by disrupting mitochondrial Ca2+ buffering and thus accelerating the lethal cytosolic Ca2+ overload. However, when intracellular Ca2+ overload was slowed, either by adding blockers of major Ca2+ entry channels or by lowering the concentration of Ca2+ in the extracellular buffer, Ca2+ deregulation was delayed, and under these conditions either Zn2+ chelation or MCU blockade resulted in similar further delays of the Ca2+ deregulation. In parallel studies using the reactive oxygen species (ROS) indicator, hydroethidine, lowering Ca2+ surprisingly accelerated OGD induced ROS generation, and in these low Ca2+ conditions, either Zn2+ chelation or MCU block slowed the ROS generation. These studies suggest that, during acute ischemia, Zn2+ entry into mitochondria via the MCU induces mitochondrial dysfunction (including ROS generation) that occurs upstream of, and contributes to the terminal Ca2+ deregulation. PMID:24787898

  7. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  8. Intersubband transitions and many body effects in ZnMgO/ZnO quantum wells

    NASA Astrophysics Data System (ADS)

    Hierro, Adrian; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hugues, Maxime; Ulloa, J. M.; Le Biavan, N.; Peretti, Romain; Julien, François; Faist, Jerome; Chauveau, Jean-Michel

    2018-02-01

    In this work we show the potential of the ZnO/ZnMgO material system for intersubband (ISB)-based devices. This family of alloys presents a unique set of properties that makes it highly attractive for THz emission as well as strong coupling regimes: it has a very large longitudinal optical phonon energy of 72 meV, it can be doped up to 1021 cm-3, it is very ionic with a large difference between the static and high frequency dielectric constants, and it can be grown homoepitaxially on native substrates with low defect densities. The films analyzed here are grown by molecular beam epitaxy (MBE) on a non-polar orientation, the m-plane, with varying QW thicknesses and 30% Mg concentrations in the barrier, and are examined with polarization-dependent IR absorption spectroscopy. The QW band structure and the intersubband transitions energies are modeled considering many body effects, which are key to predict correctly the measured values.

  9. Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage.

    PubMed

    Reilly-O'Donnell, Benedict; Robertson, Gavin B; Karumbi, Angela; McIntyre, Connor; Bal, Wojciech; Nishi, Miyuki; Takeshima, Hiroshi; Stewart, Alan J; Pitt, Samantha J

    2017-08-11

    Aberrant Zn 2+ homeostasis is associated with dysregulated intracellular Ca 2+ release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca 2+ leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca 2+ leakage through an uncharacterized mechanism. We sought to examine the role of Zn 2+ in shaping intracellular Ca 2+ release in cardiac muscle. Cardiac SR vesicles prepared from sheep or mouse ventricular tissue were incorporated into phospholipid bilayers under voltage-clamp conditions, and the direct action of Zn 2+ on RyR2 channel function was examined. Under diastolic conditions, the addition of pathophysiological concentrations of Zn 2+ (≥2 nm) caused dysregulated RyR2-channel openings. Our data also revealed that RyR2 channels are not the only SR Ca 2+ -permeable channels regulated by Zn 2+ Elevating the cytosolic Zn 2+ concentration to 1 nm increased the activity of the transmembrane protein mitsugumin 23 (MG23). The current amplitude of the MG23 full-open state was consistent with that previously reported for RyR2 sub-conductance gating, suggesting that in heart failure in which Zn 2+ levels are elevated, RyR2 channels do not gate in a sub-conductance state, but rather MG23-gating becomes more apparent. We also show that in H9C2 cells exposed to ischemic conditions, intracellular Zn 2+ levels are elevated, coinciding with increased MG23 expression. In conclusion, these data suggest that dysregulated Zn 2+ homeostasis alters the function of both RyR2 and MG23 and that both ion channels play a key role in diastolic SR Ca 2+ leakage. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  11. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar.

    PubMed

    Fang, Ci; Zhang, Tao; Li, Ping; Jiang, Rongfeng; Wu, Shubiao; Nie, Haiyu; Wang, Yingcai

    2015-03-01

    Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600>Ca-Mg/B450>Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment. Copyright © 2014. Published by Elsevier B.V.

  12. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans.

    PubMed

    Dickson, J A D

    2002-11-08

    Opinion has long been divided as to whether the Mg/Ca ratio of seawater remained constant during the Phanerozoic or underwent substantial secular change. Existing empirical evidence for the Mg/Ca of ancient seawater provides a poorly resolved and often controversial signal. Echinoderm fossils that have retained their bulk original chemistry, despite micrometer-scale changes, preserve a record of seawater Mg/Ca and confirm that major changes in Mg/Ca occurred during the Phanerozoic. Echinoderms from the Cambrian and from the Carboniferous to the Triassic indicate a seawater Mg/Ca of approximately 3.3, whereas echinoderms from the Jurassic to the Cretaceous indicate a Mg/Ca of approximately 1.4. The present seawater Mg/Ca is approximately 5.

  13. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    PubMed

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

  14. Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit

    PubMed Central

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory. PMID:22163318

  15. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    SciTech Connect

    Jarosz, D.; Suchocki, A.; Kozanecki, A.

    2016-03-15

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  16. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  17. Effect of Zn Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloys Processed by Gravity Die Casting

    NASA Astrophysics Data System (ADS)

    Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin

    2018-06-01

    The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.

  18. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.

    PubMed

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, Sander; Guo, Hui; Zheng, Yufeng; Zhou, Jie

    2017-10-15

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials showed higher ultimate tensile strength than previously reported binary Mg-Li alloys and ternary Mg-Li-X (X=Al, Y, Ce, Sc, Mn and Ag) alloys. Among the alloys studied, the Mg-3.5Li-2Zn and Mg-6.5Li-2Zn alloys exhibited comparable corrosion resistance in Hank's solution to pure magnesium and better corrosion resistance in a cell culture medium than pure magnesium. Corrosion products observed on the corroded surface were composed of Mg(OH) 2 , MgCO 3 and Ca-free Mg/P inorganics and Ca/P inorganics. In vitro cytotoxicity assay revealed different behaviors of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Aorta Vascular Smooth Muscle Cells (VSMCs) to material extracts. HUVECs showed increasing nitric oxide (NO) release and tolerable toxicity, whereas VSMCs exhibited limited decreasing viability with time. Platelet adhesion, hemolysis and coagulation tests of these Mg-Li-Zn alloys showed different degrees of activation behavior, in which the hemolysis of the Mg-3.5Li-2Zn alloy was lower than 5%. These results indicated the potential of the Mg-Li-Zn alloys as good candidate materials for cardiovascular stent applications. Mg-Li alloys are promising as absorbable metallic biomaterials, which however have not received significant attention since the low strength, controversial corrosion performance and the doubts in Li toxicity. The Mg-Li-Zn alloy in the present study revealed much improved mechanical properties higher than most reported binary Mg-Li and ternary Mg-Li-X alloys, with superior corrosion resistance in cell culture media. Surprisingly, the addition of Li and Zn showed increased nitric oxide release. The present study indicates good potential of Mg-Li-Zn alloy as

  19. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths

    NASA Astrophysics Data System (ADS)

    Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping

    2017-02-01

    Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.

  20. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.

    PubMed

    Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B

    2012-05-01

    Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.

  1. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    SciTech Connect

    Singh, Jaspal, E-mail: jaspal0314@gmail.com; Vashihth, A.; Gill, Pritampal Singh

    Zn{sub 1-x}Mg{sub x}O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could bemore » attributed to decrease of oxygen vacancies present in host nanoparticles.« less

  2. An investigation of the properties of Mg-Zn-Al alloys

    SciTech Connect

    Zhang, Z.; Couture, A.; Luo, A.

    1998-06-05

    During the past ten years, the use of magnesium castings in the automotive and electronics industries has been expanding at an impressive rate. Die casting is one of the most effective fabrication methods and has been extensively used to produce magnesium components, especially in the automotive industry. However, the number of available Mg-based alloys for die casting is very limited. Therefore, it is pressing to develop some new Mg die casting alloys with good creep resistance, acceptable castability and low cost. Mg-Zn-Al (ZA) is a promising alloy system which is able to meet the requirements. But up to now, onlymore » a small amount of research has been carried out on this system. The aim of the present work is to examine and evaluate the microstructural features, tensile properties and creep resistance in order to get a better overall understanding of alloys of this system and to identify the most promising compositions. The influence of small additions of Ca and Sr on the tensile and creep properties of ZA alloys was also investigated.« less

  3. Multi-terminal Two-color ZnCdSe/ZnCdMgSe Based Quantum-well Infrared Photodetector

    NASA Astrophysics Data System (ADS)

    Kaya, Yasin; Ravikumar, Arvind; Chen, Guopeng; Tamargo, Maria C.; Shen, Aidong; Gmachl, Claire

    Target recognition and identification applications benefits from two-color infrared (IR) detectors in the mid and long-wavelength IR regions. Currently, InGaAs/AlGaAs and GaAs/AlGaAs multiple quantum wells (QWs) grown on GaAs substrate are the most commonly used two-color QW IR photodetectors (QWIPs). However, the lattice-mismatch and the buildup of strain limit the number of QWs that can be grown, in turn increasing the dark current noise, and limiting the device detectivity.In this work, we report on two-color QWIPs based on the large conduction band offset (~1.12ev) ZnCdSe/ZnCdMgSe material system lattice matched to InP. QWIPs were designed based on a bound to quasi-bound transition, centered at 4 μm and 7 μm and each QW is repeated 50 times to eliminate the high dark current and a contact layer is inserted between the two stacks of QWs for independent electrical contacts. Wafers are processed into two step rectangular mesas by lithography and wet etching. Experiments showed absorption spectra centered at 4.9 μm and 7.6 μm at 80 K and the full width at half maximums were Δλ / λ = 21 % and Δλ / λ = 23 % , respectively. Current work studies the Johnson and the background noise limited detectivities of these QWIPs. Current address: School of Earth, Energy and Environmental Sciences, Stanford, CA 94305, USA.

  4. Impact of strain on electronic defects in (Mg,Zn)O thin films

    SciTech Connect

    Schmidt, Florian, E-mail: fschmidt@physik.uni-leipzig.de; Müller, Stefan; Wenckstern, Holger von

    2014-09-14

    We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y₂, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it ismore » shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.« less

  5. Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.

    PubMed

    Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz

    2012-07-11

    An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.

  6. Effect of Ca(OH)2 on Oxidation and Ignition Resistances of Pure Mg

    NASA Astrophysics Data System (ADS)

    Jang, Dong-In; Kim, Shae K.

    CaO added Eco-Mg alloy has the potential to maximize the environmental benefits provided by lightweight, unlimited, and recyclable Mg alloy by eliminating global warming SF6 or other protective gases as well as Be addition. It is possible to ensure the safety during manufacturing and application, especially without sacrificing process abilities and mechanical properties and increasing the cost of Mg alloy. However, the one limitation of CaO is prone to moisture absorption during storage. Instead of CaO, it is attempted to use Ca(OH)2, which does not absorb moisture during storage, for Eco-Mg alloy. This paper discusses the effect of Ca(OH)2 on oxidation and ignition resistances of pure Mg and to compare the results with them of CaO addition. The purpose of this study is to investigate effects of CaO and Ca(OH)2 on pure Mg through micro structure observation, ignition test and phase analysis. With increasing Ca(OH)2 content, the hardness of Ca(OH)2 added Mg alloy increased by grain refinement. From oxidation test by TGA, the oxidation behavior of Ca(OH)2 added Mg was comparable to that of CaO added Mg alloy for the previous study. Consequently, it seems that reduction of fluidity and mold adhesion could be minimized by adding small amount of Ca(OH)2 which is cheap and easy to be handled due to its stability in application for Eco-Mg alloy.

  7. Structural and Optical Studies of ZnCdSe/ZnSe/ZnMgSSe Separate Confinement Heterostructures with Different Buffer Layers

    NASA Astrophysics Data System (ADS)

    Tu, Ru-Chin; Su, Yan-Kuin; Huang, Ying-Sheng; Chen, Giin-Sang; Chou, Shu-Tsun

    1998-09-01

    Detailed structural and optical studies of ZnCdSe/ZnSe/ZnMgSSe separate confinementheterostructures (SCH) grown on ZnSe, ZnSe/ZnSSe strained-layer superlattices (SLS),and GaAs buffer layers at the II VI/GaAs interface have been carried out by employingtransmission electron microscopy, variable temperature photoluminescence (PL), andcontactless electroreflectance (CER) measurements. A significant improvement onthe defect reduction and the optical quality has been observed by using either theZnSe/ZnSSe SLS or GaAs as the buffer layers when compared to that of the sample usingonly ZnSe as the buffer layer. However, the sample grown with the SLS buffer layersreveals a room temperature PL intensity higher than that of the sample grown witha GaAs buffer layer, which may still suffer from the great ionic differences betweenthe II V and III V atoms. Using 15 K CER spectra, we have also studied variousexcitonic transitions originating from strained Zn0.80Cd0.20Se/ZnSe single quantumwell in SCH with different buffer layers. An analysis of the CER spectra has ledto the identification of various excitonic transitions, mnH (L), between the mthconduction band state and the nth heavy (light)-hole band state. An excellentagreement between experiments and theoretical calculations based on the envelopefunction approximation model has been achieved.

  8. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    PubMed

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  9. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.

    PubMed

    Li, Zijian; Gu, Xunan; Lou, Siquan; Zheng, Yufeng

    2008-04-01

    Binary Mg-Ca alloys with various Ca contents were fabricated under different working conditions. X-ray diffraction (XRD) analysis and optical microscopy observations showed that Mg-xCa (x=1-3 wt%) alloys were composed of two phases, alpha (Mg) and Mg2Ca. The results of tensile tests and in vitro corrosion tests indicated that the mechanical properties could be adjusted by controlling the Ca content and processing treatment. The yield strength (YS), ultimate tensile strength (UTS) and elongation decreased with increasing Ca content. The UTS and elongation of as-cast Mg-1Ca alloy (71.38+/-3.01 MPa and 1.87+/-0.14%) were largely improved after hot rolling (166.7+/-3.01 MPa and 3+/-0.78%) and hot extrusion (239.63+/-7.21 MPa and 10.63+/-0.64%). The in vitro corrosion test in simulated body fluid (SBF) indicated that the microstructure and working history of Mg-xCa alloys strongly affected their corrosion behaviors. An increasing content of Mg2Ca phase led to a higher corrosion rate whereas hot rolling and hot extrusion could reduce it. The cytotoxicity evaluation using L-929 cells revealed that Mg-1Ca alloy did not induce toxicity to cells, and the viability of cells for Mg-1Ca alloy extraction medium was better than that of control. Moreover, Mg-1Ca alloy pins, with commercial pure Ti pins as control, were implanted into the left and right rabbit femoral shafts, respectively, and observed for 1, 2 and 3 months. High activity of osteoblast and osteocytes were observed around the Mg-1Ca alloy pins as shown by hematoxylin and eosin stained tissue sections. Radiographic examination revealed that the Mg-1Ca alloy pins gradually degraded in vivo within 90 days and the newly formed bone was clearly seen at month 3. Both the in vitro and in vivo corrosion suggested that a mixture of Mg(OH)2 and hydroxyapatite formed on the surface of Mg-1Ca alloy with the extension of immersion/implantation time. In addition, no significant difference (p>0.05) of serum magnesium was detected

  10. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  11. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo.

    PubMed

    Jiang, Hongfeng; Wang, Jingbo; Chen, Minfang; Liu, Debao

    2017-06-01

    To explore the biodegradable characteristics and biological properties, which could promote new bone formation, of MgF 2 coated magnesium alloy (Mg-3wt%Zn-0.5wt%Zr) in rabbits. Magnesium alloy with MgF 2 coating was made and the MgF 2 /Mg-Zn-Zr was implanted in the femoral condyle of rabbits. Twelve healthy adult Japanese white rabbits in weight of 2.8-3.2kg were averagely divided into A(Mg-Zn-Zr) group and B(MgF 2 /MgZn-Zr) group. Indexes such as microstructural evolution, SEM scan, X-ray, Micro-CT and mechanical properties were observed and detected at 1th day, 2th, 4th, 8th, 12th, 24th week after implantation. Low-density regions occurred around the cancellous bone, and the regions gradually expanded during the 12weeks after implantation. The implant was gradually absorbed from 12 to 24weeks. The density of surrounding cancellous bone increased compared with the 12th week data. The degradation rate of B group was lower than that of A group (P<0.01), while the density of the surrounding cancellous bone increased more evenly. In B group, SEM images after 12weeks showed the rich bone tissues on the alloy surface that were attached by active fibers. Micro-CT also presented alloy residue potholes on the surfaces of alloy combinated with bone tissues. Additionally, the trabecular bone had relatively integrated structures with surrounding cavities. MgF 2 can effectively decrease the degradation rate of Mg-Zn-Zr in vivo. Mg-Zn-Zr coated with MgF 2 can effectively inhibit the corrosion, and delay the release of magnesium ions. The biological properties of the coating itself presented good biocompatibility and bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.

    PubMed

    Etacheri, Vinodkumar; Roshan, Roshith; Kumar, Vishwanathan

    2012-05-01

    Magnesium-doped ZnO (ZMO) nanoparticles were synthesized through an oxalate coprecipitation method. Crystallization of ZMO upon thermal decomposition of the oxalate precursors was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. XRD studies point toward a significant c-axis compression and reduced crystallite sizes for ZMO samples in contrast to undoped ZnO, which was further confirmed by HRSEM studies. X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy and photoluminescence (PL) spectroscopy were employed to establish the electronic and optical properties of these nanoparticles. (XPS) studies confirmed the substitution of Zn(2+) by Mg(2+), crystallization of MgO secondary phase, and increased Zn-O bond strengths in Mg-doped ZnO samples. Textural properties of these ZMO samples obtained at various calcination temperatures were superior in comparison to the undoped ZnO. In addition to this, ZMO samples exhibited a blue-shift in the near band edge photoluminescence (PL) emission, decrease of PL intensities and superior sunlight-induced photocatalytic decomposition of methylene blue in contrast to undoped ZnO. The most active photocatalyst 0.1-MgZnO obtained after calcination at 600 °C showed a 2-fold increase in photocatalytic activity compared to the undoped ZnO. Band gap widening, superior textural properties and efficient electron-hole separation were identified as the factors responsible for the enhanced sunlight-driven photocatalytic activities of Mg-doped ZnO nanoparticles.

  13. Structural and optical properties of Mg doped ZnS quantum dots and biological applications

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Boopathyraja, A.

    2018-01-01

    Zn1-xMgxS (x = 0, 0.2 and 0.4) quantum dots (QDs) were prepared by co-precipitation method. The Mg dopant did not modify the cubic blende structure of ZnS QDs. The Mg related secondary phase was not detected even for 40% of Mg doping. The size mismatch between host Zn ion and dopant Mg ion created distortion around the dopant. The creation of distortion centres produced small changes in the lattice parameters and diffraction peak position. All the QDs showed small sulfur deficiency and the deficiency level were increased by Mg doping. Band gap of the QD was decreased due to the dominated quantum confinement effect over compositional effect at initial doping of Mg. But at higher doping the band gap was increased due to compositional effect, since there was no change in average crystallite size. The prepared QDs had three emission bands in the UV and Visible regions corresponding to near band edge emission and defect related emissions. The electron transport reaction chain which forms free radicals was broken by sulfur vacancy trap sites. Therefore, the ZnS QDs had better antioxidant activity and the antioxidant behaviour was enhanced by Mg doping. The enhanced UV absorption and emission of 20% of Mg doped ZnS QDs let to maximize the zone of inhibition against E. Coli bacterial strain.

  14. Crystal and electronic structures, luminescence properties of Eu 2+-doped Si 6-zAl zO zN 8-z and M ySi 6-zAl z-yO z+yN 8-z-y ( M=2Li, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.

    2008-12-01

    The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.

  15. Enhanced solar-blind responsivity of photodetectors based on cubic MgZnO films via gallium doping.

    PubMed

    Xie, Xiuhua; Zhang, Zhenzhong; Li, Binghui; Wang, Shuangpeng; Jiang, Mingming; Shan, Chongxin; Zhao, Dongxu; Chen, Hongyu; Shen, Dezhen

    2014-01-13

    We report on gallium (Ga) doped cubic MgZnO films, which have been grown by metal organic chemical vapor deposition. It was demonstrated that Ga doping improves the n-type conduction of the cubic MgZnO films. A two-orders of magnitude enhancement in lateral n-type conduction have been achieved for the cubic MgZnO films. The responsivity of the cubic MgZnO-based photodetector has been also enhanced. Depletion region electric field intensity enhanced model was adopted to explain the improvement of quantum efficiency in Ga doped MgZnO-based detectors.

  16. Synthesis, characterization and antibacterial property of ZnO:Mg nanoparticles

    NASA Astrophysics Data System (ADS)

    Kompany, A.; Madahi, P.; Shahtahmasbi, N.; Mashreghi, M.

    2012-09-01

    Sol-gel method was successfully used for the synthesis of ZnO nanoparticles (NPs) doped with different concentrations of Mg and the structural, optical and antibacterial properties of the nanoparticles were studied. The synthesized ZnO:Mg powders were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation Infrared (FTIR) and UV-Vis spectroscopy. It was revealed that the samples have hexagonal Wurtzite structure, and the phase segregation takes place for 15% Mg content. TEM images show that the average size of the particles is about 50 nm. Also, the antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative) cultures. ZnO:Mg nanofluid showed good antibacterial activity which increases with the increase of NPs concentration, and decreases slightly with the amount of Mg.

  17. Room temperature electroluminescence from n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction device grown by PLD

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Li, Qingshan; Wang, Feifei; Qu, Chong; Zhao, Fengzhou

    2014-05-01

    The n-ZnO:Ga/ p-GaN:Mg and n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated by the pulsed laser deposition (PLD) technique. The blue electroluminescence (EL) of the n-ZnO:Ga/ p-GaN:Mg heterojunction LEDs is emitted mainly from the p-GaN layer instead of the n-ZnO:Ga layer, for the reason that the electron injection from n-ZnO:Ga prevailed over the hole injection from p-GaN:Mg due to the higher carrier concentration and carrier mobility in n-ZnO:Ga. On the other hand, the n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction LEDs exhibited dominant ultraviolet-blue emission. The reason for this difference is attributed to the inserted undoped i-ZnO layer between n-ZnO:Ga and p-GaN:Mg, in which the holes from p-GaN:Mg and the electrons from n-ZnO:Ga are recombined.

  18. Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

    NASA Astrophysics Data System (ADS)

    Lü, Shulin; Yang, Xiong; Hao, Liangyan; Wu, Shusen; Fang, Xiaogang; Wang, Jing

    2018-05-01

    In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in Mg96.9Zn1Y2Zr0.1 alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast Mg96.9Zn1Y2Zr0.1 alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.

  19. Intersubband spectroscopy of ZnO/ZnMgO quantum wells grown on m-plane ZnO substrates for quantum cascade device applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quach, Patrick; Jollivet, Arnaud; Isac, Nathalie; Bousseksou, Adel; Ariel, Frédéric; Tchernycheva, Maria; Julien, François H.; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hierro, Adrián.; Le Biavan, Nolwenn; Hugues, Maxime; Chauveau, Jean-Michel

    2017-03-01

    Quantum cascade (QC) lasers opens new prospects for powerful sources operating at THz frequencies. Up to now the best THz QC lasers are based on intersubband emission in GaAs/AlGaAs quantum well (QW) heterostructures. The maximum operating temperature is 200 K, which is too low for wide-spread applications. This is due to the rather low LO-phonon energy (36 meV) of GaAs-based materials. Indeed, thermal activation allows non-radiative path through electron-phonon interaction which destroys the population inversion. Wide band gap materials such as ZnO have been predicted to provide much higher operating temperatures because of the high value of their LO-phonon energy. However, despite some observations of intersubband absorption in c-plane ZnO/ZnMgO quantum wells, little is known on the fundamental parameters such as the conduction band offset in such heterostructures. In addition the internal field inherent to c-plane grown heterostuctures is an handicap for the design of QC lasers and detectors. In this talk, we will review a systematic investigation of ZnO/ZnMgO QW heterostructures with various Mg content and QW thicknesses grown by plasma molecular beam epitaxy on low-defect m-plane ZnO substrates. We will show that most samples exhibit TM-polarized intersubband absorption at room temperature linked either to bound-to-quasi bound inter-miniband absorption or to bound-to bound intersubband absorption depending on the Mg content of the barrier material. This systematic study allows for the first time to estimate the conduction band offset of ZnO/ZnMgO heterostructures, opening prospects for the design of QC devices operating at THz frequencies. This was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement #665107.

  20. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  1. Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals

    PubMed Central

    Liu, Peisheng; Wang, Hao; Chen, Jun; Li, Xiaoming; Zeng, Haibo

    2016-01-01

    Applications of ZnMgO nanocrystals (NCs), especially in photoelectric detectors, have significant limitations because of the unresolved phase separation in the synthesis process. Here, we propose a rapid and highly efficient ZnMgO NC alloying method based on pulsed laser ablation in liquid. The limit value of homogeneous magnesium (Mg) is pushed from 37% to 62%, and the optical band gap is increased to 3.7 eV with high doping efficiency (>100%). Further investigations on the lattice geometry of ZnMgO NCs indicate that all ZnMgO NCs are hexagonal wurtzite structures, and the (002) and (100) peaks shift to higher diffraction angles with the increase in Mg doping content. The calculated results of the lattice constants a and c slightly decrease based on Bragg’s law and lattice geometry equations. Furthermore, the relationship between annealing temperature and the limit value of homogeneous Mg is examined, and the results reveal that the latter decreases with the former because of the phase separation of MgO. A probable mechanism of zinc magnesium alloy is introduced to expound on the details of the laser-alloying process. PMID:27324296

  2. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    PubMed

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  3. Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis

    SciTech Connect

    Fazio, E.; Hjiri, M.; Dhahri, R.

    2015-03-15

    V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis and successive drying in ethanol under supercritical conditions. Characterization data of nanopowders annealed at 700 °C in air, revealed that they have the wurtzite structure. Raman features of V-doped ZnO:Ca samples were found to be substantially modified with respect to pure ZnO or binary ZnO:Ca samples, which indicate the substitution of vanadium ions in the ZnO lattice. The ammonia sensing properties of V-doped ZnO:Ca thick films were also investigated. The results obtained demonstrate the possibility of a fine tuning of the sensing characteristics of ZnO-based sensors by Camore » and V doping. In particular, their combined effect has brought to an enhanced response towards NH{sub 3} compared to bare ZnO and binary V-ZnO and Ca-ZnO samples. Raman investigation suggested that the presence of Ca play a key role in enhancing the sensor response in these ternary composite nanomaterials. - Graphical abstract: V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis possess enhanced sensing characteristics towards NH{sub 3} compared to bare ZnO. - Highlights: • V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis. • Raman features of V-doped ZnO:Ca samples indicate the substitution of V ions in the ZnO lattice. • Combined effects of dopants have brought to an enhanced response to NH{sub 3} compared to ZnO. • Ca play a key role in enhancing the sensor response of ternary V-doped ZnO:Ca composites.« less

  4. Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Goh, E. S. M.; Yang, H. Y.; Han, Z. J.; Chen, T. P.; Ostrikov, K.

    2012-12-01

    Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.

  5. The synthesis of CaZn2Sb2 and its thermoelectric properties

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Starkll, D.

    2002-01-01

    CaZn2Sb2 was prepared and examined for use as a hightemperature thermoelectric material. It has a high Seebeck coefficient and high electrical conductivity-comparable to B-Zn4Sb3. These two properties are vital in determining the ability of the compound to change heat into electricity isentropically.

  6. The formation of FHA coating on biodegradable Mg-Zn-Zr alloy using a two-step chemical treatment method

    NASA Astrophysics Data System (ADS)

    Jiang, S. T.; Zhang, J.; Shun, S. Z.; Chen, M. F.

    2016-12-01

    To improve the corrosion resistance of the biomedical magnesium alloy, a two-step chemical treatment method has been employed to prepare an FHA coating on the alloy surface. Prior to forming an FHA layer, the samples of Mg-3 wt% Zn-0.5 wt% Zr alloy were soaked in HF with concentration of 20% (v/v) at 37 °C temperature for 2 h, and were then placed into an aqueous solution with 0.1 mol/L Ca(NO3).4H2O and 0.06 mol/L NH4H2PO4 at 90 °C to prepare the Ca-P coating. The concentrations of Mg2+, F- ions, and pH variation with immersing time in the solution were investigated to explore the growth mechanism of FHA. The surface morphologies and compositions of the coatings were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the alloy surface treated with acid formed a layer of MgF2 nanoparticles with a thickness of 0.7 μm. The corrosion resistance of coatings in SBF solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results showed that the substrate with FHA coating had good corrosion resistance. After immersing into the calcium phosphate solution, some small spherical particles were first formed on the surface; these then cover the surface completely after 20 min. Some clusters consisting of needle-like crystal were observed in the spherical particles covering the surface, and the Ca/P ratio of the needle-like crystal was 1.46, clearly growing along the c axis preferred orientation growth. After immersion for 60 min, the FHA coating with completely uniform growth was obtained on the Mg-Zn-Zr alloy surface with its thickness reaching about 120 μm.

  7. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.

    PubMed

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-09

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  8. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance

    PubMed Central

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-01

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized. PMID:28817036

  9. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    SciTech Connect

    Yadav, Anand; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331; Rajpoot, Rambabu

    2016-05-23

    Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference inmore » ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.« less

  10. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-01

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm2/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6 × 10 6 and the maximum interface state density at the ZnO/SiO2 interface is ˜ 6.5 × 10 12 cm-2.

  11. Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Lear, Caroline H.; Coxall, Helen K.; Foster, Gavin L.; Lunt, Daniel J.; Mawbey, Elaine M.; Rosenthal, Yair; Sosdian, Sindia M.; Thomas, Ellen; Wilson, Paul A.

    2015-11-01

    Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw-0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.

  12. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls

    NASA Astrophysics Data System (ADS)

    Gussone, Nikolaus; Filipsson, Helena L.; Kuhnert, Henning

    2016-01-01

    We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3-4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4‰ lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, δ44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal δ44/40Ca and Sr/Ca proxy signals.

  13. Room-Temperature Quantum Cascade Laser: ZnO/Zn1- x Mg x O Versus GaN/Al x Ga1- x N

    NASA Astrophysics Data System (ADS)

    Chou, Hung Chi; Mazady, Anas; Zeller, John; Manzur, Tariq; Anwar, Mehdi

    2013-05-01

    A ZnO/Zn1- x Mg x O-based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/Al x Ga1- x N QCLs of similar geometry. Higher calculated optical output powers [ {P}_{{ZnMgO}} = 2.89 mW (nonpolar) at 5.27 THz and 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared with GaN/Al0.05Ga0.95N QCLs [ {P}_{{AlGaN}} = 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher wall-plug efficiency (WPE) is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared with GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.

  14. A novel biphenolic ligand for selective Mg2+ and Zn2+ ions sensing followed by colorimetric, spectroscopic and cell imaging methods.

    PubMed

    Maheswari, Palanisamy Uma; Renuga, Duraisamy; Henry, Linda Jeeva Kumari; Ruckmani, Kandasamy

    2018-04-30

    The (E)-2-((2-hydrohy-5-methylphenylimino) methyl) phenol ligand was synthesized. The receptor was characterized by IR, 1 H and 13 C NMR and CHN analysis. The ligand exhibits colorimetric and fluorometric sensing of Zn 2+ and Mg 2+ ions in semi-aqueous medium (DMSO-H2O). The receptor was tested with series of transition metal ions (Cr 2+ , Fe 2+ , Ni 2+ , Co 2+ , Cu 2+ , Zn 2+ ) and heavy metal ions (Sn 2+ , Pd 2+ , Ce 2+ , Hg 2+ , Cd 2+ ) and the essential human body elements like Ca 2+ , Mg 2+ , Na + and K + ions. The naked eye colorimetric sensing was absorbed only for Zn 2+ and Mg 2+ . Both ions (ZnCl 2 and MgCl 2 in H 2 O), when added to the colorless solutions of the receptor of about 1 equivalence in incremental additions turn the solution into bright turmeric yellow. All other ions remain inactive, in colorimetric sensing. Further the Zn 2+ and Mg 2+ ions were probed by absorption and emission spectroscopy through incremental addition of respective metal ions. The in-situ deprotonation of the ligand on both Mg 2+ and Zn 2+ ions binding was confirmed by 1 H NMR titration studies. The imino nitrogen of the receptor is not coordinated to the metal ions. The Job's plot studies reveal the 1:2 binding ratio of metal ions to the receptor. The high fold fluorescence output on metal ions binding was positively used to sense the Zn 2+ and Mg 2+ ions, separately and together in HeLa cancer cells through cell imaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.

    PubMed

    Gu, X N; Zheng, Y F; Lan, Q X; Cheng, Y; Zhang, Z X; Xi, T F; Zhang, D Y

    2009-08-01

    The surface morphologies before and after immersion corrosion test of various chitosan-coated Mg-1Ca alloy samples were studied to investigate the effect of chitosan dip coating on the slowdown of biocorrosion. It showed that the corrosion resistance of the Mg-Ca alloy increased after coating with chitosan, and depended on both the chitosan molecular weight and layer numbers of coating. The Mg-Ca alloy coated by chitosan with a molecular weight of 2.7 x 10(5) for six layers has smooth and intact surface morphology, and exhibits the highest corrosion resistance in a simulated body fluid.

  16. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    SciTech Connect

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less

  17. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    SciTech Connect

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.

    2004-10-19

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} betweenmore » 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.« less

  18. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    SciTech Connect

    Ingram, B.L.; Deckker, P. de; Chivas, A.R.

    1998-10-01

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma March over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10--35{per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5{per_thousand} between 500 yrmore » BP and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3--4{per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100--300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600--700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approximately} {minus}12{per_thousand}) to CAM ({delta}{sup 13}C = {minus}26{per_thousand})-type vegetation over time.« less

  19. Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: Towards reduced photonic disorder

    SciTech Connect

    Zuniga-Perez, J., E-mail: jzp@crhea.cnrs.fr; Kappei, L.; Deparis, C.

    2016-06-20

    Nonpolar ZnO/ZnMgO-based optical microcavities have been grown on (10-10) m-plane ZnO substrates by plasma-assisted molecular beam epitaxy. Reflectivity measurements indicate an exponential increase of the cavity quality factor with the number of layers in the distributed Bragg reflectors. Most importantly, microreflectivity spectra recorded with a spot size in the order of 2 μm show a negligible photonic disorder (well below 1 meV), leading to local quality factors equivalent to those obtained by macroreflectivity. The anisotropic character of the nonpolar heterostructures manifests itself both in the surface features, elongated parallel to the in-plane c direction, and in the optical spectra, with twomore » cavity modes being observed at different energies for orthogonal polarizations.« less

  20. Influence of severe plastic deformation on intermetallic particles in Mg-12 wt.%Zn alloy investigated using transmission electron microscopy

    SciTech Connect

    Němec, M., E-mail: nemecm@fzu.cz

    The in-depth microstructural characterization of intermetallic particles in an Mg-12 wt.%Zn binary alloy subjected to a severe plastic deformation is presented. The alloy was processed by four passes via equal channel angular pressing with an applied back pressure at a gradually decreasing temperature and analyzed using transmission electron microscopy techniques to observe the influence of processing on intermetallic particles. The results are compared with the initial state of the material prior to severe plastic deformation. The microstructural evolution of the α-Mg matrix and the Mg{sub 21}Zn{sub 25}, Mg{sub 51}Zn{sub 20} and MgZn{sub 2} was analyzed using bright field imaging, selectedmore » area electron diffraction, high-resolution transmission electron microscopy and high-angle annular dark field imaging in scanning mode. The plastic deformation process influenced the α-Mg matrix and each type of intermetallic particle. The α-Mg matrix consisted of two types of areas. The first type of area had a highly deformed structure, and the second type of area had a partially recrystallized structure with an average grain size of approximately 250 nm. The Mg{sub 21}Zn{sub 25} microparticles exhibited distinct forms in the α-Mg matrix that were characterized as a single-crystalline form, a nano-crystalline form and a broken up form. No evidence of Mg{sub 51}Zn{sub 20} nanoparticles within the α-Mg matrix was found in the microstructure, which indicates their dissolution or phase transformation during the deformation process. MgZn{sub 2} nanoparticles exhibited different behavior in both types of α-Mg matrix. Two orientation relationships toward the highly deformed α-Mg matrix were observed; however, there was no relationship toward the partially recrystallized α-Mg matrix. Additionally, the growth of the MgZn{sub 2} nanoparticles was different in the two types of α-Mg matrix. The Mg{sub 51}Zn{sub 20} nanoparticles inside Mg{sub 21}Zn{sub 25} microparticles

  1. The ternary system K2SO4MgSO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Silber, C.C.

    1967-01-01

    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  2. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  3. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  4. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well

  5. The effect of changing seawater Ca and Mg concentrations upon the distribution coefficients of Mg and Sr in the skeletons of the scleractinian coral Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Giri, Sharmila J.; Swart, Peter K.; Devlin, Quinn B.

    2018-02-01

    The skeletal composition of calcifying organisms, in particular Mg/Ca and Sr/Ca ratios, have been widely used to understand fluctuations in seawater chemistry throughout the Phanerozoic. While the success of applying these data to the geologic record depends on a knowledge of the distribution coefficients for these elements (DMg and DSr), there are scarcely any studies which have described how these values vary as a result of changing seawater Mg/Ca ratios. To address this, we have cultured the scleractinian coral, Pocillopora damicornis, in seawater with ranges of Mg and Ca concentrations. Here, we demonstrate that Mg/Ca and Sr/Ca ratios of coral skeletons correlate with total seawater Mg/Ca and Sr/Ca molar ratios, but that apparent DMg and DSr values do not remain constant across the range of experimental seawater treatments, with DMg values significantly increasing with seawater Mg/Ca ratios and DSr values significantly increasing with seawater Ca concentrations. These trends are not rate dependent and may be best explained by a Rayleigh distillation model, in which the calcifying space is semi-isolated from seawater during skeletogenesis (i.e. leaky). As there is a slight increase in DMg and decrease in DSr values between our "Jurassic" and "Modern" seawater treatments, the application of a constant distribution coefficient to estimate changes in ancient seawater chemistry may underestimate seawater Mg/Ca ratios and overestimate Sr/Ca throughout the Mesozoic and Cenozoic. We suggest that interpretations of seawater chemistry from fossil corals may be improved by using the relationships derived for skeletal and seawater Mg/Ca and Sr/Ca ratios established by our experiments, as they incorporate the effect of seawater Mg/Ca ratios on skeletal Mg/Ca and Sr/Ca ratios.

  6. UV-luminescent MgZnO semiconductor alloys: nanostructure and optical properties

    DOE PAGES

    Thapa, Dinesh; Huso, Jesse; Miklos, Kevin; ...

    2016-10-24

    MgZnO is emerging as a vital semiconductor-alloy system with desirable optical properties that can span a large range of the UV spectrum. Due to its benign chemical character, MgZnO is considered to be an environmentally friendly material. This paper presents studies on annealing as a useful and straightforward approach for the enhancement of the optical and crystal quality of Mg 0.17Zn 0.83O nanocrystalline films grown via DC sputtering. The alloys were studied via several imaging and optical techniques. It was found that high-temperature annealing, ~900 °C, in Argon atmosphere, significantly improves the solubility of the alloy. This temperature range ismore » consistent with the thermal diffusion temperature of Mg needed for the creation of a soluble alloy. Moreover, the annealing process was found to minimize the undesirable visible luminescence, attributed to Mg and Zn interstitials, while significantly enhancing the bandgap sharpness and the efficiency of the UV-luminescence at ~3.5 eV. The analysis indicated that these optical attributes were achieved due to the combined effects of good solubility, an improved morphology, and a reduction of native defects. The annealing was also proven to be beneficial for the reduction of the compressive stress in the alloy: a relaxation ~1.8 GPa was calculated via Raman scattering. The inherent stress was inferred to originate mainly from the granular morphology of the alloys.« less

  7. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOEpatents

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  8. Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells

    DOE PAGES

    Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; ...

    2016-09-20

    In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn 1-xMg xO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Gamore » dopants were added, the electron concentrations were on the order of 10 17 cm -3 or 10 20 cm -3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu 2ZnSnS 4 (CZTS), Cu(In, Ga)Se 2 (CIGS) and other solar cell absorbers.« less

  9. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production

    PubMed Central

    Sensi, Stefano L.; Yin, Hong Z.; Carriedo, Sean G.; Rao, Shyam S.; Weiss, John H.

    1999-01-01

    Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-d-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 μM Zn2+. Indicating particularly high permeability through Ca2+-permeable α-amino3-hydroxy-5-methyl-4-isoxazolepropionic-acid/kainate (Ca-A/K) channels, micromolar [Zn2+]i rises were observed only after kainate exposures and only in neurons expressing these channels [Ca-A/K(+) neurons]. Further studies using the oxidation-sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species (ROS) generation that paralleled the [Zn2+]i rises, with rapid oxidation observed only in the case of Zn2+ entry through Ca-A/K channels. Indicating a mitochondrial source of this ROS generation, hydroethidine oxidation was inhibited by the mitochondrial electron transport blocker, rotenone. Additional evidence for a direct interaction between Zn2+ and mitochondria was provided by the observation that the Zn2+ entry through Ca-A/K channels triggered rapid mitochondrial depolarization, as assessed by using the potential-sensitive dye tetramethylrhodamine ethylester. Whereas Ca2+ influx through Ca-A/K channels also triggers ROS production, the [Zn2+]i rises and subsequent ROS production are of more prolonged duration. PMID:10051656

  10. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    PubMed

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  11. Lithiation-induced zinc clustering of Zn 3, Zn 12, and Zn 18 units in Zintl-like Ca ~30Li 3+xZn 60-x (x=0.44-1.38)

    SciTech Connect

    Lin, Qisheng

    2014-11-14

    Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca ~30Li 3+xZn 60-x, P6/mmm, Z = 1, which can be directly converted from CaZn 2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca 30Li 3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca 30.45(2)Li 4.38(6)Zn 58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca ~30Li 3+xZn 60-x feature a condensed anionicmore » network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca 14, Ca 20, and Ca 30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca ~30Li 3+xZn 60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.« less

  12. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  13. Textural and isotopic evidence for Ca-Mg carbonate pedogenesis

    NASA Astrophysics Data System (ADS)

    Diaz-Hernandez, J. L.; Sánchez-Navas, A.; Delgado, A.; Yepes, J.; Garcia-Casco, A.

    2018-02-01

    Models for evaluating the terrestrial carbon cycle must take into account not only soil organic carbon, represented by a mixture of plant and animal remains, but also soil inorganic carbon, contained in minerals, mainly in calcite and dolomite. Thick soil caliches derived from weathering of mafic and ultramafic rocks must be considered as sinks for carbon storage in soils. The formation of calcite and dolomite from pedogenic alteration of volcanic tephras under an aridic moisture regime is studied in an unusually thick 3-m soil profile on Gran Canaria island (Canary Islands, Spain). The biological activity of the pedogenic environment (soil respiration) releases CO2 incorporated as dissolved inorganic carbon (DIC) in waters. It drives the formation of low-magnesian calcite and calcian dolomite over basaltic substrates, with a δ13C negative signature (-8 to -6‰ vs. V-PDB). Precipitation of authigenic carbonates in the soil is accompanied by the formation of Mg-rich clay minerals and quartz after the weathering of basalts. Mineralogical, textural, compositional, and isotopic variations throughout the soil profile studied indicate that dolomite formed at greater depths and earlier than the calcite. The isotopic signatures of the surficial calcite and deeper dolomite crusts are primary and resulted from the dissolution-precipitation cycles that led to the formation of both types of caliches under different physicochemical conditions. Dolomite formed within a clay-rich matrix through diffusive transport of reactants. It is precipitated from water with more negative δ18O values (-1.5 to -3.5‰ vs. V-SMOW) in the subsoil compared to those of water in equilibrium with surficial calcite. Thus, calcite precipitated after dolomite, and directly from percolating solutions in equilibrium with vadose water enriched in δ18O (-0.5 to +1.5‰) due to the evaporation processes. The accumulation of inorganic carbon reaches 586.1 kg m-2 in the soil studied, which means that the

  14. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, Gary S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M.; ,

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for palaeoceanographic study. Shells from the Polar Surface Water (−1 to −1.5°C) had Mg:Ca molar ratios of about 0.006–0.008; shells from Arctic Intermediate Water (+0.3 to +2.0°C) ranged from 0.09 to 0.013. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2 = 0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from Arctic and Nordic seas from water depths <900 m. Late Quaternary Krithe Mg:Ca ratios were analysed downcore using material from the Gakkel Ridge (water depths 3047 and 3899 m), the Lomonosov Ridge (water depth 1051 m) and the Amundsen Basin (water depth 4226 m) to test the core-top Mg:Ca temperature calibration. Cores from the Gakkel and Lomonosov ridges display a decrease in Mg:Ca ratios during the interval spanning the last glacial/deglacial transition and the Holocene, perhaps related to a decrease in bottom water temperatures or other changes in benthic environments.

  15. Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Rahm, Andreas; Nobis, Thomas; Lorenz, Michael; Zimmermann, Gregor; Boukos, Nikos; Travlos, Anastasios; Grundmann, Marius

    ZnO and Zn0.98Mg0.02O nanowires have been grown by high-pressure pulsed laser deposition on sapphire substrates covered with gold colloidal particles as nucleation sites. We present a detailed study of the nanowire size and length distribution and of the growth evolution. We find that the aspect ratio varies linearly with deposition time. The linearity coefficient is independent of the catalytic gold particle size and lateral nanowire density. The superior structural quality of the whiskers is proven by X-ray diffraction and transmission electron microscopy. The defect-free ZnO nanowires exhibit a FWHM(2θ-ω) of the ZnO(0002) reflection of 22 arcsec. We show (0-11) step habit planes on the side faces of the nanowires that are a few atomic steps in height. The microscopic homogeneity of the optical properties is confirmed by temperature-dependent cathodoluminescence.

  16. Structural and optical properties of ZnO nanorods on Mg0.2Zn0.8O seed layers grown by hydrothermal method.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young

    2013-05-01

    ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.

  17. Adaptation to chronic MG132 reduces oxidative toxicity by a CuZnSOD-dependent mechanism

    PubMed Central

    Leak, Rehana K.; Zigmond, Michael J.; Liou, Anthony K. F.

    2010-01-01

    To study whether and how cells adapt to chronic cellular stress, we exposed PC12 cells to the proteasome inhibitor MG132 (0.1 μM) for 2 weeks and longer. This treatment reduced chymotrypsin-like proteasome activity by 47% and was associated with protection against both 6-hydroxydopamine (6-OHDA, 100 μM) and higher dose MG132 (40 μM). Protection developed slowly over the course of the first 2 weeks of exposure and was chronic thereafter. There was no change in total glutathione levels after MG132. Buthionine sulfoximine (100 μM) reduced glutathione levels by 60%, but exacerbated 6-OHDA toxicity to the same extent in both MG132-treated and control cells and failed to reduce MG132-induced protection. Chronic MG132 resulted in elevated antioxidant proteins CuZn superoxide dismutase (SOD, +55%), MnSOD (+21%), and catalase (+15%), as well as chaperone heat shock protein 70 (+42%). Examination of SOD enzyme activity revealed higher levels of CuZnSOD (+40%), with no change in MnSOD. We further assessed the mechanism of protection by reducing CuZnSOD levels with two independent siRNA sequences, both of which successfully attenuated protection against 6-OHDA. Previous reports suggested that artificial overexpression of CuZnSOD in dopaminergic cells is protective. Our data complement such observations, revealing that dopaminergic cells are also able to use endogenous CuZnSOD in self-defensive adaptations to chronic stress, and that they can even do so in the face of extensive glutathione loss. PMID:18466318

  18. Dynamic defect annealing in wurtzite MgZnO implanted with Ar ions

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Wendler, E.; Du, X. L.; Kuznetsov, A. Yu.; Svensson, B. G.

    2015-09-01

    Successful implementation of ion beams for modification of ternary ZnO-based oxides requires understanding and control of radiation-induced defects. Here, we study structural disorder in wurtzite ZnO and MgxZn1-xO (x ⩽ 0.3) samples implanted at room and 15 K temperatures with Ar ions in a wide fluence range (5 × 1012-3 × 1016 cm-2). The samples were characterized by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The results show that all the samples exhibit high radiation resistance and cannot be rendered amorphous even for high ion fluences. Increasing the Mg content leads to some damage enhancement near the surface region; however, irrespective of the Mg content, the fluence dependence of bulk damage in the samples displays the so-called IV-stage evolution with a reverse temperature effect for high ion fluences.

  19. Inter-species and Seasonal Variability in Mg / Ca in Larger Benthic Foraminifera: Implications for Paleo-proxy

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.

    2015-12-01

    The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.

  20. Structural and electrical properties of ZnO/Zn0.85Mg0.15O thin film prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yang, Jing-Jing; Wang, Gang; Du, Wen-Han; Xiong, Chao

    2017-07-01

    The electrical transport properties are the key factors to determine the performance of ZnO-based quantum effect device. ZnMgO is a typical material to regulate the band of ZnO. In order to investigate the electrical properties of the interface of ZnO/Zn0.85Mg0.15O films, three kinds of ZnO/Zn0.85Mg0.15O films have been fabricated with different thickness. After comparing the structural and electrical properties of the samples, we found that the independent Zn0.85Mg0.15O hexagonal wurtzite structure (002) peak can be detected in XRD spectra. Hall-effect test data confirmed that the two-dimensional electron gas (2DEG) became lower because of the decrease of thickness of Zn0.85Mg0.15O films, increase of impurity scattering and lattice structure distortion caused by the increase of Mg content.

  1. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  2. Evaluation of Benthic Foraminiferal Mg/Ca and δ18O: Paleoceanographic Application

    NASA Astrophysics Data System (ADS)

    Fukuda, K.; Frew, R. D.; Fordyce, R. E.

    2005-12-01

    Using several different analytical approaches on the same samples is crucial for reducing uncertainties in paleoceanographic studies. We examined two different sequences near Oamaru, New Zealand to evaluate a combination of Mg/Ca and δ18O techniques on benthic foraminifera. As a trial, we chose well-preserved material from the Altonian stage (-18 Ma) while as an application, cemented/altered material in Whaingaroan/Runangan stage (-34 Ma) was selected. For the Altonian, Mg/Ca in Notorotalia spinosa and Cibicides spp. were analysed by ICP-OES throughout the fossiliferous sequence and then paleotemperatures were estimated by our modern Mg/Ca calibration curves. The δ18O in N. spinosa and some Cibicides were also measured from the same stations for pairing with Mg/Ca results. Further, to evaluate paleotemperature estimates from the whole tests, spots analyses of Mg/Ca were taken through the successive chambers for the two species using Electron Probe Micro Analysis (EPMA). Paleotemperatures through the successive chambers, which should be related to their life spans, were estimated by the modern calibration curves established from EPMA analysis. Results show that Notorotalia may retain at least an annual record while the signal in Cibicides may retain a part of season. There is distinctive seasonality observed in this period and the δ18Oseawater estimates paired with Mg/Ca in N. spinosa are comparable with published estimates. For the Whaingaroan/Runangan, Mg/Ca in Cibicides parki (ICP) shows relatively low values (cool) through this sequence in agreement with EPMA analysis. However, δ18O-derived temperatures from C. parki imply warmer conditions prevailed. In addition, Mg/Ca and δ18O from Cribrorotalia (closely related to Notorotalia) provide similar temperature estimates to the C. parki isotope results. It appears that Mg/Ca in certain species are susceptible to post-mortem alteration resulting in lower apparent temperatures. Spot analyses in Cribrorotalia show

  3. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  4. Shape and Site Dependent in Vivo Degradation of Mg-Zn Pins in Rabbit Femoral Condyle

    PubMed Central

    Han, Pei; Tan, Moyan; Zhang, Shaoxiang; Ji, Weiping; Li, Jianan; Zhang, Xiaonong; Zhao, Changli; Zheng, Yufeng; Chai, Yimin

    2014-01-01

    A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits’ femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics. PMID:24566138

  5. Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle.

    PubMed

    Han, Pei; Tan, Moyan; Zhang, Shaoxiang; Ji, Weiping; Li, Jianan; Zhang, Xiaonong; Zhao, Changli; Zheng, Yufeng; Chai, Yimin

    2014-02-20

    A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits' femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics.

  6. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  7. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  8. XAS study of chromium in Li 2MSiO 4 (M=Mg, Zn)

    NASA Astrophysics Data System (ADS)

    Jousseaume, C.; Ribot, F.; Kahn-Harari, A.; Vivien, D.; Villain, F.

    2003-01-01

    X-ray absorption spectroscopy (XAS) investigations at the Cr K-edge on Cr:Li 2MSiO 4 (M=Mg, Zn) have been performed to understand the exceptionally long fluorescence lifetime of Cr IV. Previous work has shown the simultaneous presence of three oxidation states Cr IV, Cr V and Cr VI. X-ray absorption near edge structure measurements confirm that Cr in Li 2MSiO 4 (M=Mg, Zn) single crystals is in tetrahedral coordination. They also reveal that Cr VI is the dominant species in Li 2MgSiO 4, and that Li 2ZnSiO 4 contains more Cr V than Li 2MgSiO 4. The extended X-ray absorption fine structure spectra of Cr:Li 2MgSiO 4 single crystals recorded at the Cr K-edge, are fitted with two types of Cr environments: the first one corresponds to oxygen atoms at a mean distance of 1.68 Å and the second to oxygen atoms at a mean distance of 2.07 Å. This second environment is attributed to Cr III in the minor parasitic phase LiCr IIIO 2. The first environment corresponds to Cr that substitutes silicon in the Li 2MgSiO 4 lattice in the silicon site if the cations sizes are considered.

  9. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.

    PubMed

    Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J

    2015-03-13

    Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  10. Electron microprobe analyses of Ca, S, Mg and P distribution in incisors of Spacelab-3 rats

    NASA Technical Reports Server (NTRS)

    Rosenberg, G. D.; Simmons, D. J.

    1985-01-01

    The distribution of Ca, S, Mg and P was mapped within the incisors of Spacelab-3 rats using an electron microprobe. The data indicate that Flight rats maintained in orbit for 7 days have significantly higher Ca/Mg ratios in dentin due to both higher Ca and lower Mg content than in dentin of ground-based Controls. There is no statistical difference in distribution of either P or S within Fligth animals and Controls, but there is clear indication that, for P at least, the reason is the greater variability of the Control data. These results are consistent with those obtained on a previous NASA/COSMOS flight of 18.5 days duration, although they are not pronounced. The results further suggest that continuously growing rat incisors provide useful records of the effects of weightlessness on Ca metabolism.

  11. Fe, Ca and Mg contents in selected fast food products in Poland.

    PubMed

    Grajeta, H; Prescha, A; Biernat, J

    2002-02-01

    The Fe and Mg contents in selected fast food products available in restaurants and fast food outlets in Poland were determined by AAS, and the Ca content by AES. The mean Fe contents in the studied fast food products were from 0.7 to 2.3 mg/100 g, or from 0.6 to 2.3 per single serving. The highest means for this element were found in a serving of hamburger (2.3 mg), fishburger (2.0 mg) and chicken sandwich (2.0 mg). The mean Ca contents in the studied products were from 11.6 to 192.2 mg/100 g, or 10 to 192.2 mg per serving. The highest means for this element were found in a serving of pizza (192.2 mg) and cheeseburger (134.8 mg). The mean Mg contents in the studied products were from 6.8 to 34.1 mg/100 g1 or 5.9 to 37.3 mg per serving. The highest means for this element were found in a serving of french fries (37.3 mg), chicken sandwich (34.7 mg) and fishburger (30.4 mg). Based on the Fe, Ca and Mg contents found in these products, the percentage of the Recommended Dietary Allowance (RDA) of these elements was calculated for one serving of each product. These calculations were done for various groups of people in Poland. The highest percentage of the recommended Fe intake could be covered by one serving of hamburger (15-23% RDA), fishburger (14-20% RDA), or chicken sandwich (13-20% RDA). The highest percentage of the recommended Ca intake could be covered by one serving of pizza (17-24% RDA) or cheeseburger (12-17% RDA); and for Mg one serving of french fries (11-19% RDA), chicken sandwich (10-17% RDA), or fishburger (9-15% RDA). From the conducted studies it may be concluded that some fast food products can serve as a source of Fe, Ca and Mg in the diet of people of various ages.

  12. Phase Transformation and Creep of Mg-Al-Ca Based Die-Cast Alloys

    NASA Astrophysics Data System (ADS)

    Suzuki, Akane; Saddock, Nicholas D.; Jones, J. Wayne; Pollock, Tresa M.

    The microstructure and microstructural stability of die-cast AC53 (Mg-5Al-3Ca) and AXJ530 (Mg-5Al-3Ca-0.15Sr) have been investigated in detail by transmission electron microscopy (TEM). Both alloys have an as-cast microstructure of α-Mg with (Mg, Al)2Ca (dihexagonal C36) eutectic at grain boundaries. During aging at 573 K, the C36 phase transforms to Al2Ca (cubic Cl5) phase. These two phases have a crystallographic orientation relationship of (0001)C36//{111}C15 and [2110]C36//[011]C15, and the transformation from C36 to C15 occurs by a shear-assisted process. Despite this change in the phase constitution, the network structure of the intermetallic compound(s) surrounding α-Mg grains is fairly stable, morphologically, even after prolonged exposure at elevated temperature. In the α-Mg matrix phase, precipitation of Al2Ca was observed after aging for 360 ks at 573 K. The precipitates are disc-shaped with a habit plane of {111}C15//(0001)α. AXJ530 shows higher creep resistance than AC53. The dislocation substructure that evolved during creep deformation was investigated in both alloys, and the basal and non-basal slip of a-dislocation and other slip modes of a+c- dislocations were observed. The relationship between creep properties and microstructure is discussed.

  13. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].

    PubMed

    Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I

    1978-05-01

    The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.

  15. The Interpretation of Mg/Ca in Ostracode Valves: Biokinetic vs. Thermodynamic Controls

    NASA Astrophysics Data System (ADS)

    Dettman, D. L.; Palacios-Fest, M. R.; Cohen, A. S.

    2004-12-01

    The geochemistry of the calcite valves of ostracodes (a group of micro-crustacean) is often used to reconstruct the history of aqueous environments in both marine and fresh-water settings. These benthic animals can be very abundant in lakes and ponds and their low-Mg calcite valves are easily recovered from sediment cores. Many studies have used minor-element ratios (Mg/Ca and Sr/Ca) as indicators of temperature and/or salinity change through time and numerous calibration studies have been undertaken. There is considerable disagreement on the interpretation of both historical data and calibration studies because of differing views on what controls elemental ratios in ostracode valves. Here we focus on Mg/Ca ratios and critique the dominant assumption that Mg/Ca ratios in ostracode calcite are interpretable as a temperature-dependant distribution (or partition) coefficient. The use of a distribution coefficient, usually defined as a ratio of shell-to-water Mg/Ca ratios, assumes that the ratio in the water plays a significant role in the resultant ratio in the shell. Ostracode biomineralization is most commonly viewed as equivalent to inorganic precipitation of low-Mg calcite from solution, a system in which distribution coefficients are probably valid models. However, a re-examination of published studies shows that in many cases Mg/Ca(water) has no statistically demonstrable affect on the Mg/Ca ratio of ostracode valve calcite. The valve Mg/Ca ratio is most often a function of ambient temperature. In a number of studies the importance of the water's Mg/Ca ratio cannot be determined due to auto-correlation with other environmental factors. This implies that there is considerable biological control on the minor element chemistry of the ostracode valve. This is supported by a number of observations: valve calcification is rapid and initiated by the animal; Mg/Ca ratios within the valve vary greatly on a microscopic scale; the earliest carbonate formed during

  16. [Structure and luminescence properties of MgGa2O4 : Cr3+ with Zn substituted for Mg].

    PubMed

    Zhang, Wan-Xin; Wang, Yin-Hai; Li, Hai-Ling; Wang, Xian-Sheng; Zhao, Hui

    2013-01-01

    A series of red long afterglow phosphors with composition Zn(x) Mg(1-2) Ga2 O4 : Cr3+ (x = 0, 0.2, 0.6, 0.8, 1.0) were synthesized by a high temperature solid-state reaction method. The X-ray diffraction studies show that the phase of the phosphors is face-centered cubic structure. Photoluminescence spectra show that the red emission of Cr3+ originated from the transition of 2E-4A2. Due to the large overlap between absorption band of Cr3+ and emission band of the host. Cr3+ could obtain the excitation energy from the host via the effective energy transfer. The afterglow decay characteristics show that the phosphor samples with different Zn contents have different afterglow time and the afterglow time also changes with the value of x. The measurement of thermoluminescence reveals that the trap depth of the phosphor samples with different Zn contents is different. The samples with deeper traps have longer afterglow time.

  17. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  18. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg

    NASA Astrophysics Data System (ADS)

    Fantle, Matthew S.; Higgins, John

    2014-10-01

    The Ca, Mg, O, and C isotopic and trace elemental compositions of marine limestones and dolostones from ODP Site 1196A, which range in depth (∼58 to 627 mbsf) and in depositional age (∼5 and 23 Ma), are presented. The objectives of the study are to explore the potential for non-traditional isotope systems to fingerprint diagenesis, to quantify the extent to which geochemical proxies are altered during diagenesis, and to investigate the importance of diagenesis within the global Ca and Mg geochemical cycles. The data suggest that Ca, which has a relatively high solid to fluid mass ratio, can be isotopically altered during diagenesis. In addition, the alteration of Ca correlates with the alteration of Mg in such a way that both can serve as useful tools for deciphering diagenesis in ancient rocks. Bulk carbonate δ44Ca values vary between 0.60 and 1.31‰ (SRM-915a scale); the average limestone δ44Ca is 0.97 ± 0.24‰ (1SD), identical within error to the average dolostone (1.03 ± 0.15 1SD ‰). Magnesium isotopic compositions (δ26Mg, DSM-3 scale) range between -2.59‰ and -3.91‰, and limestones (-3.60 ± 0.25‰) and dolostones (-2.68 ± 0.07‰) are isotopically distinct. Carbon isotopic compositions (δ13C, PDB scale) vary between 0.86‰ and 2.47‰, with average limestone (1.96 ± 0.31‰) marginally offset relative to average dolostone (1.68 ± 0.57‰). The oxygen isotopic compositions (δ18O, PDB scale) of limestones (-1.22 ± 0.94‰) are substantially lower than the dolostones measured (2.72 ± 1.07‰). The isotopic data from 1196A suggest distinct and coherent trends in isotopic and elemental compositions that are interpreted in terms of diagenetic trajectories. Numerical modeling supports the contention that such trends can be interpreted as diagenetic, and suggests that the appropriate distribution coefficient (KMg) associated with limestone diagenesis is ∼1 to 5 × 10-3, distinctly lower than those values (>0.015) reported in laboratory

  19. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  20. Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.

    PubMed

    Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan

    2009-04-16

    The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.

  1. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  2. Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2015-12-01

    The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.

  3. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy.

    PubMed

    Qin, Hui; Zhao, Yaochao; An, Zhiquan; Cheng, Mengqi; Wang, Qi; Cheng, Tao; Wang, Qiaojie; Wang, Jiaxing; Jiang, Yao; Zhang, Xianlong; Yuan, Guangyin

    2015-06-01

    Magnesium (Mg), a potential biodegradable material, has recently received increasing attention due to its unique antibacterial property. However, rapid corrosion in the physiological environment and potential toxicity limit clinical applications. In order to improve the corrosion resistance meanwhile not compromise the antibacterial activity, a novel Mg alloy, Mg-Nd-Zn-Zr (Hereafter, denoted as JDBM), is fabricated by alloying with neodymium (Nd), zinc (Zn), zirconium (Zr). pH value, Mg ion concentration, corrosion rate and electrochemical test show that the corrosion resistance of JDBM is enhanced. A systematic investigation of the in vitro and in vivo antibacterial capability of JDBM is performed. The results of microbiological counting, CLSM, SEM in vitro, and microbiological cultures, histopathology in vivo consistently show JDBM enhanced the antibacterial activity. In addition, the significantly improved cytocompatibility is observed from JDBM. The results suggest that JDBM effectively enhances the corrosion resistance, biocompatibility and antimicrobial properties of Mg by alloying with the proper amount of Zn, Zr and Nd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.

    2010-07-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.

  5. Synthetic water soluble di-/tritopic molecular receptors exhibiting Ca2+/Mg2+ exchange.

    PubMed

    Lavie-Cambot, Aurélie; Tron, Arnaud; Ducrot, Aurélien; Castet, Frédéric; Kauffmann, Brice; Beauté, Louis; Allouchi, Hassan; Pozzo, Jean-Luc; Bonnet, Célia S; McClenaghan, Nathan D

    2017-05-23

    Structural integration of two synthetic water soluble receptors for Ca 2+ and Mg 2+ , namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg 2+ and Ca 2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca 2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg 2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg 2+ for a single Ca 2+ is possible in both 1 and 2, the simultaneous binding of two Mg 2+ by 2 appears prohibitive for replacement of these two ions by a single Ca 2+ . Ion-binding and exchange was further rationalized by DFT calculations.

  6. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  7. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  8. [Mg2+]o/[Ca2+]o determines Ca2+ response at fertilization: tuning of adult phenotype?

    PubMed

    Ozil, Jean-Pierre; Sainte-Beuve, Thierry; Banrezes, Bernadette

    2017-11-01

    Alteration of the postnatal phenotype has sparked great concern about the developmental impact of culture media used at fertilization. However, the mechanisms and compounds involved are yet to be determined. Here, we used the Ca 2+ responses from mouse eggs fertilized by ICSI as a dynamic and quantitative marker to understand the role of compounds in egg functioning and establish possible correlations with adult phenotypes. We computed 134 Ca 2+ responses from the first to the last oscillation in media with specific formulations. Analyses demonstrate that eggs generated two times as many Ca 2+ oscillations in KSOM as in M16 media (18.8 ± 7.0 vs 9.2 ± 2.5). Moreover, the time increment of the delay between two consecutive oscillations, named TIbO, is the most sensitive coefficient characterizing the mechanism that paces Ca 2+ oscillations once the egg has been fertilized. Neither doubling external free Ca 2+ nor dispermic fertilization increased significantly the total number of Ca 2+ oscillations. In contrast, removing Mg 2+ from the M16 boosted Ca 2+ oscillations to 54.0 ± 35.2. Hence, [Mg 2+ ] o /[Ca 2+ ] o appears to determine the number, duration and frequency of the Ca 2+ oscillations. These changes were correlated with long-term effects. The rate of female's growth was impacted with the 'KSOM' females having only half the fat deposit of 'M16' females. Moreover, adult animals issued from M16 had significantly smaller brain weight vs 'KSOM' and 'control' animals. TIbO is a new Ca 2+ coefficient that gauges the very early functional impact of culture media. It offers the possibility of establishing correlations with postnatal consequences according to IVF medium formulation.Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/154/5/675/suppl/DC2. © 2017 Society for Reproduction and Fertility.

  9. Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application

    NASA Astrophysics Data System (ADS)

    Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.

    2017-04-01

    Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.

  10. Effect of Si, Mg, and Mg Zn doping on structural properties of a GaN layer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Lee, J. Y.; Kim, K. S.; Yang, G. M.

    2001-12-01

    We have studied the structural properties of undoped, Si-doped, Mg-doped, and Mg-Zn codoped GaN using high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy. When compared with undoped GaN, the dislocation density at the surface of the GaN layer decreases with Si doping and increases with Mg doping. In addition, we observed a reduction of dislocation density by codoping with Zn atoms in the Mg-doped GaN layer. The full width at half maximum of HRXRD shows that Si doping and Mg-Zn codoping improve the structural quality of the GaN layer as compared with undoped and Mg-doped GaN, respectively.

  11. Mg/Ca and Sr/Ca as novel geochemical proxies for understanding sediment transport processes within coral reefs

    NASA Astrophysics Data System (ADS)

    Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.

    2017-10-01

    Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of

  12. Structural and optical characterization of ZnO/Mg(x)Zn(1-x)O multiple quantum wells based random laser diodes.

    PubMed

    Jiang, Qike; Zheng, He; Wang, Jianbo; Long, Hao; Fang, Guojia

    2012-12-01

    Two kinds of laser diodes (LDs) comprised of ZnO/Mg(x)Zn(1-x)O (ZnO/MZO) multiple quantum wells (MQWs) grown on GaN (MQWs/GaN) and Si (MQWs/Si) substrates, respectively, have been constructed. The LD with MQWs/GaN exhibits ultraviolet random lasing under electrical excitation, while that with MQWs/Si does not. In the MQWs/Si, ZnO/MZO MQWs consist of nanoscaled crystallites, and the MZO layers undergo a phase separation of cubic MgO and hexagonal ZnO. Moreover, the Mg atom predominantly locates in the MZO layers along with a significant aggregation at the ZnO/MZO interfaces; in sharp contrast, the ZnO/MZO MQWs in the MQWs/GaN show a well-crystallized structure with epitaxial relationships among GaN, MZO, and ZnO. Notably, Mg is observed to diffuse into the ZnO well layers. The structure-optical property relationship of these two LDs is further discussed.

  13. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    DOE PAGES

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit; ...

    2017-06-01

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  14. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    SciTech Connect

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  15. Comparison between Mg II k and Ca II H images recorded by SUNRISE/SuFI

    SciTech Connect

    Danilovic, S.; Hirzberger, J.; Riethmüller, T. L.

    2014-03-20

    We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider.more » Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences cannot be explained only with instrumental effects or the evolution of the solar scene. The differences at least partially arise because of different line-formation heights, the stronger response of Mg k emission peaks to the higher temperatures, and the larger height range sampled by the broad Mg filter used here. This is evidently manifested during the flare when a surge in Mg evolves differently than in Ca.« less

  16. Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.

    PubMed

    Takeda, Atsushi; Suzuki, Miki; Tamano, Haruna; Takada, Shunsuke; Ide, Kazuki; Oku, Naoto

    2012-03-01

    Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  18. Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Prabu, D.; Srinivas, V.

    2017-05-01

    Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.

  19. Si-Ca species modification and microwave sintering for NiZn ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi

    2004-12-01

    NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.

  20. The in vitro biological properties of Mg-Zn-Sr alloy and superiority for preparation of biodegradable intestinal anastomosis rings

    PubMed Central

    Liu, Ling; Li, Nianfeng; Lei, Ting; Li, Kaimo; Zhang, Yangde

    2014-01-01

    Background Magnesium (Mg) alloy is a metal-based biodegradable material that has received increasing attention in the field of clinical surgery, but it is currently seldom used in intestinal anastomosis. This study was conducted to comprehensively assess a ternary magnesium (Mg)-zinc (Zn)-strontium (Sr) alloy’s biological superiorities as a preparation material for intestinal anastomosis ring. Material/Methods Mouse L-929 fibroblasts were cultured with Mg-Zn-Sr alloy extract and compared with both positive (0.64% phenol) and negative (original broth culture) controls. The cell morphology of different groups was examined using microscopy, and a cytotoxicity assessment was performed. Fresh anticoagulated human blood was mixed with Mg-Zn-Sr alloy extract and compared with both positive (distilled water) and negative (normal saline) controls. The absorbance of each sample at 570 nm was used to calculate the Mg-Zn-Sr alloy hemolysis ratio in order to test the Mg alloy’s blood compatibility. Bacterial cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were added to Mg-Zn-Sr alloy block samples and compared with positive (Ceftazidime), negative (316LSS stainless steel), and blank controls. The broth cultures were sampled to compare their bacterial colony counts so as to evaluate the antibacterial properties of the Mg-Zn-Sr alloy. The Mg-Zn-Sr alloy was surface-coated with a layer of poly(lactic-co-glycolic acid) carrying everolimus. The surface morphology and degradability of the coating were examined so as to demonstrate feasibility of coating, which can release the drug evenly. Results The experiments proved that Mg-Zn-Sr alloy has good biocompatible, antibacterial, and drug-loaded coating performances, which are lacking in existing intestinal anastomosis devices/materials. Conclusions The Mg-Zn-Sr alloy increases biocompatibility, and yields a safer and better therapeutic effect; therefore, it is a novel biomaterial that is feasible for

  1. Three-dimensional analysis of the microstructure and bio-corrosion of Mg–Zn and Mg–Zn–Ca alloys

    SciTech Connect

    Lu, Y.; Chiu, Y.L.; Jones, I.P.

    2016-02-15

    The effects of the morphology and the distribution of secondary phases on the bio-corrosion properties of magnesium (Mg) alloys are significant. Focused Ion Beam (FIB) tomography and Micro X-Ray computed tomography (Micro-CT) have been used to characterise the morphology and distribution of (α-Mg + MgZn) and (α-Mg + Ca{sub 2} + Mg{sub 6} + Zn{sub 3}) eutectic phase mixtures in as-cast Mg–3Zn and Mg–3Zn–0.3Ca alloys, respectively. There were two different 3D distributions: (i) an interconnected network and (ii) individual spheres. The tomography informed our understanding of the relationship between the distribution of secondary phases and the development of localized corrosionmore » in magnesium alloys. - Highlights: • Multi-scale tomography was used to characterise the morphology and distribution of secondary phases in Mg alloys. • The development of localized corrosion was investigated using tomography. • An improved understanding of the microstructure and corrosion was achieved using Micro-CT tomography.« less

  2. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  3. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    DOE PAGES

    Li, D. L.; Ma, Q. L.; Wang, S. G.; ...

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δmore » 1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.« less

  4. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    PubMed Central

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X.-G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-01-01

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices. PMID:25451163

  5. Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.

    PubMed

    Kedawat, Garima; Srivastava, Subodh; Jain, Vipin Kumar; Kumar, Pawan; Kataria, Vanjula; Agrawal, Yogyata; Gupta, Bipin Kumar; Vijay, Yogesh K

    2013-06-12

    We report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.38) layer. Furthermore, the microstructures of the ZnS/MgF2 multilayer films are also investigated through TEM and HRTEM imaging. The fabricated filters consist of high and low refractive 7 and 13 alternating layers, which exhibit a reflectance of 89.60% and 99%, respectively. The optical microcavity achieved an average transmittance of 85.13% within the visible range. The obtained results suggest that these filters could be an exceptional choice for next-generation antireflection coatings, high-reflection mirrors, and polarized interference filters.

  6. Evaluation of an Al, La Modified MgZn2Y2 Alloy

    DTIC Science & Technology

    2014-02-01

    Kinoshita, A.; Sugino, Y.; Yamasaki, M.; Kawamura, Y.; Yasuda, Y.; Umakoshi, Y. Plastic Deformation Behavior of Mg97Zn1Y2 Extruded Alloys . Transactions... Deformation between WE43-F and WE43-T5 Magnesium Alloys . In Magnesium Technology; 2011; 2011 TMS Annual Conference; Wim H. Sillekens, Sean R. Agnew, Neale R...Engineering and Engineering Science, University of North Carolina-Charlotte, Charlotte, NC. 14. ABSTRACT Magnesium alloys are of interest due to

  7. Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.

    PubMed

    Godec, M; Podgornik, B; Nolan, D

    2017-11-23

    In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.

  8. Neutron monochromators of BeO, MgO and ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2014-05-01

    The monochromatic features of BeO, MgO and ZnO single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.05 up to 0.5 nm. A computer program MONO, written in “FORTRAN”, has been developed to carry out the required calculations. Calculation shows that a 5 mm thick MgO single crystal cut along its (2 0 0) plane having mosaic spread of 0.5° FWHM has the optimum parameters when it is used as a neutron monochromator. Moreover, at wavelengths shorter than 0.24 nm the reflected monochromatic neutrons are almost free from the higher order ones. The same features are seen with BeO (0 0 2) with less reflectivity than that of the former. Also, ZnO cut along its (0 0 2) plane is preferred over the others only at wavelengths longer than 0.20 nm. When the selected monochromatic wavelength is longer than 0.24 nm, the neutron intensities of higher orders from a thermal reactor flux are higher than those of the first-order one. For a cold reactor flux, the first order of BeO and MgO single crystals is free from the higher orders up to 0.4 nm, and ZnO at wavelengths up to 0.5 nm.

  9. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    SciTech Connect

    Langelier, B., E-mail: langelb@mcmaster.ca

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. Itmore » has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.« less

  10. Phospholipid Requirements of Ca++-Stimulated, Mg++-Dependent ATP hydrolysis in Rat Brain Synaptic Membranes

    DTIC Science & Technology

    1989-01-01

    ATPase is a negative charge around the enzyme based on the observation that Ca++/Mg++-ATPase reconstituted in phosphotidylcholine vesicles is...stimulated by calmodulin, but purified ATPase in phosphotidylserine vesicles is not because the enzyme is already maximally active. Stimulation of the

  11. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry.

    PubMed

    Evans, David; Sagoo, Navjit; Renema, Willem; Cotton, Laura J; Müller, Wolfgang; Todd, Jonathan A; Saraswati, Pratul Kumar; Stassen, Peter; Ziegler, Martin; Pearson, Paul N; Valdes, Paul J; Affek, Hagit P

    2018-02-06

    Past greenhouse periods with elevated atmospheric CO 2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO 2 , the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ 47 )-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ 47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Ca sw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

  12. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    NASA Astrophysics Data System (ADS)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  13. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    NASA Astrophysics Data System (ADS)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  14. Native and engineered sensors for Ca2+ and Zn2+: lessons from calmodulin and MTF1.

    PubMed

    Carpenter, Margaret C; Palmer, Amy E

    2017-05-09

    Ca 2+ and Zn 2+ dynamics have been identified as important drivers of physiological processes. In order for these dynamics to encode function, the cell must have sensors that transduce changes in metal concentration to specific downstream actions. Here we compare and contrast the native metal sensors: calmodulin (CaM), the quintessential Ca 2+ sensor and metal-responsive transcription factor 1 (MTF1), a candidate Zn 2+ sensor. While CaM recognizes and modulates the activity of hundreds of proteins through allosteric interactions, MTF1 recognizes a single DNA motif that is distributed throughout the genome regulating the transcription of many target genes. We examine how the different inorganic chemistries of these two metal ions may shape these different mechanisms transducing metal ion concentration into changing physiologic activity. In addition to native metal sensors, scientists have engineered sensors to spy on the dynamic changes of metals in cells. The inorganic chemistry of the metals shapes the possibilities in the design strategies of engineered sensors. We examine how different strategies to tune the affinities of engineered sensors mirror the strategies nature developed to sense both Ca 2+ and Zn 2+ in cells. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  16. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    PubMed

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn 2+ and Mg 2+ concentrations in rBMSCs by promoting the influx of Zn 2+ and Mg 2+ and inhibiting the outflow of Zn 2+ , and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg 2+ ions from Zn/Mg-PIII increased Mg 2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  17. Ca removal and Mg recovery from flue gas desulfurization (FGD) wastewater by selective precipitation.

    PubMed

    Xia, Min; Ye, Chunsong; Pi, Kewu; Liu, Defu; Gerson, Andrea R

    2017-11-01

    Selective removal of Ca and recovery of Mg by precipitation from flue gas desulfurization (FGD) wastewater has been investigated. Thermodynamic analysis of four possible additives, Na 2 CO 3 , Na 2 C 2 O 4 , NaF and Na 2 SO 4 , indicated that both carbonate and oxalate could potentially provide effective separation of Ca via precipitation from Mg in FGD wastewater. However, it was found experimentally that the carbonate system was not as effective as oxalate in this regard. The oxalate system performed considerably better, with Ca removal efficiency of 96% being obtained, with little Mg inclusion at pH 6.0 when the dosage was ×1.4 the stoichiometric requirement. On this basis, the subsequent recovery process for Mg was carried out using NaOH with two-step precipitation. The product was confirmed to be Mg(OH) 2 (using X-ray diffraction and thermo gravimetric analysis) with elemental analysis suggesting a purity of 99.3 wt.%.

  18. Physical properties of solar chromospheric plages. III - Models based on Ca II and Mg II observations

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.; Linsky, J. L.

    1978-01-01

    Solar plages are modeled using observations of both the Ca II K and the Mg II h and k lines. A partial-redistribution approach is employed for calculating the line profiles on the basis of a grid of five model chromospheres. The computed integrated emission intensities for the five atmospheric models are compared with observations of six regions on the sun as well as with models of active-chromosphere stars. It is concluded that the basic plage model grid proposed by Shine and Linsky (1974) is still valid when the Mg II lines are included in the analysis and the Ca II and Mg II lines are analyzed using partial-redistribution diagnostics.

  19. Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors

    SciTech Connect

    Liang, H. L.; Mei, Z. X.; Zhang, Q. H.

    2011-05-30

    High-quality wurtzite MgZnO film was deposited on Si(111) substrate via a delicate interface engineering using BeO, by which solar-blind ultraviolet photodetectors were fabricated on the n-MgZnO(0001)/p-Si(111) heterojunction. A thin Be layer was deposited on clean Si surface with subsequent in situ oxidation processes, which provides an excellent template for high-Mg-content MgZnO growth. The interface controlling significantly improves the device performance, as the photodetector demonstrates a sharp cutoff wavelength at 280 nm, consistent with the optical band gap of the epilayer. Our experimental results promise potential applications of this technique in integration of solar-blind ultraviolet optoelectronic device with Si microelectronic technologies.

  20. A dilute-and-shoot sample preparation strategy for new and used lubricating oils for Ca, P, S and Zn determination by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Mota, Mariana F. B.; Gama, Ednilton M.; Rodrigues, Gabrielle de C.; Rodrigues, Guilherme D.; Nascentes, Clésia C.; Costa, Letícia M.

    2018-01-01

    In this work, a dilute-and-shoot method was developed for Ca, P, S and Zn determination in new and used lubricating oil samples by total reflection X-ray fluorescence (TXRF). The oil samples were diluted with organic solvents followed by addition of yttrium as internal standard and the TXRF measurements were performed after solvent evaporation. The method was optimized using an interlaboratorial reference material. The experimental parameters evaluated were sample volume (50 or 100 μL), measurement time (250 or 500 s) and volume deposited on the quartz glass sample carrier (5 or 10 μL). All of them were evaluated and optimized using xylene, kerosene and hexane. Analytical figures of merit (accuracy, precision, limit of detection and quantification) were used to evaluate the performance of the analytical method for all solvents. The recovery rates varied from 99 to 111% and the relative standard deviation remained between 1.7% and 10% (n = 8). For all elements, the results obtained by applying the new method were in agreement with the certified value. After the validation step, the method was applied for Ca, P, S and Zn quantification in eight new and four used lubricating oil samples, for all solvents. The concentration of the elements in the samples varied in the ranges of 1620-3711 mg L- 1 for Ca, 704-1277 mg L- 1 for P, 2027-9147 mg L- 1 for S, and 898-1593 mg L- 1 for Zn. The association of TXRF with a dilute-and-shoot sample preparation strategy was efficient for Ca, P, S and Zn determination in lubricating oils, presenting accurate results. Additionally, the time required for analysis is short, the reagent volumes are low minimizing waste generation, and the technique does not require calibration curves.

  1. Ca and Mg isotope constraints on the origin of Earth's deepest δ13 C excursion

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Higgins, John A.; Maloof, Adam C.; Schoene, Blair

    2015-07-01

    Understanding the extreme carbon isotope excursions found in carbonate rocks of the Ediacaran Period (635-541 Ma), where δ13 C of marine carbonates (δ13 Ccarb) reach their minimum (- 12 ‰) for Earth history, is one of the most vexing problems in Precambrian geology. Known colloquially as the 'Shuram' excursion, the event has been interpreted by many as a product of a profoundly different Ediacaran carbon cycle. More recently, diagenetic processes have been invoked, with the very negative δ13 C values of Ediacaran carbonates explained via meteoric alteration, late-stage burial diagenesis or growth of authigenic carbonates in the sediment column, thus challenging models which rely upon a dramatically changing redox state of the Ediacaran oceans. Here we present 257 δ 44 / 40 Ca and 131 δ26 Mg measurements, along with [Mg], [Mn] and [Sr] data, from carbonates of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia to bring new isotope systems to bear on understanding the 'Shuram' excursion. Data from four measured sections spanning the basin reveal stratigraphically coherent trends, with variability of ∼1.5‰ in δ26 Mg and ∼1.2‰ in δ 44 / 40 Ca. This Ca isotope variability dwarfs the 0.2-0.3 ‰ change seen coeval with the Permian-Triassic mass extinction, the largest recorded in the rock record, and is on par with putative changes in the δ 44 / 40 Ca value of seawater seen over the Phanerozoic Eon. Changes in both isotopic systems are too large to explain with changes in the isotopic composition of Ca and Mg in global seawater given modern budgets and residence times, and thus must be products of alternative processes. Relationships between δ 44 / 40 Ca and [Sr] and δ26 Mg and [Mg] are consistent with mineralogical control (e.g., aragonite vs. calcite, limestone vs. dolostone) on calcium and magnesium isotope variability. The most pristine samples in the Wonoka dataset, preserving Sr concentrations (in the 1000s of ppm range) and δ 44 / 40

  2. Possible nucleus of the Bergman cluster in the Zn-Mg-Y alloy system

    NASA Astrophysics Data System (ADS)

    Nakayama, Kei; Nakagawa, Masaya; Koyama, Yasumasa

    2018-01-01

    To understand the formation of the Bergman cluster in the F-type icosahedral quasicrystal (IQ), crystallographic relations between the quasicrystal and the intermetallic-compound H and Zn23Y6 phases in the Zn-Mg-Y alloy system were investigated mainly by transmission electron microscopy. It was found that, although sample rotations of about 1° were required to obtain simple crystallographic relations, the orientation relationship was established among the cubic-Fm?m Zn23Y6 structure, the hexagonal-P63/mmc H structure and the F-type IQ; that is, [? 1 3]c // the five-fold axis in the IQ // N(2 ? 0)H, and [1 1 0]c // the two-fold axis in the IQ // N(0 5 ? 3)H, where N(h k m l)H means the normal direction of the (h k m l)H plane in the H structure. The correspondences between atomic positions in the Bergman cluster and in the Zn23Y6 structure and between those in the cluster and in the H structure were investigated on the basis of the established relationship. As a result, an assembly of six short-penetrated-decagonal columns was identified as an appropriate nucleus in the formation of the Bergman cluster from these two structures.

  3. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran.

    PubMed

    Kashian, S; Fathivand, A A

    2015-06-01

    This paper presents the findings of study undertaken to estimate the dietary intake of iron (Fe), copper (Cu), calcium (Ca) and zinc (Zn) through common cereals in Tehran, Iran. 100 samples of rice, wheat and barley were collected from various brands between August and October 2013. The samples were analyzed performing instrumental neutron activation analysis (INAA). The dietary intake for adults was estimated by a total cereal study. Calculations were carried out on the basis of the reported adults' average food consumption rate data. The total daily intake estimated in mgd(-1) for Tehran population were 3.6 (Fe), 10.2 (Zn), 0.3 (Cu) and 234.5 (Ca). Wheat showed the highest contribution to Zn, Cu and Ca intakes. Furthermore, intakes were compared with recommended dietary allowance (RDA). Zn total intake (10.2mgd(-1)) was comparable with RDA values for males (11mgd(-1)) and was higher than recommended value for females (8mgd(-1)). The intakes of other studied elements were below the respective RDAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells

    SciTech Connect

    Teisseyre, Henryk, E-mail: teiss@ifpan.edu.pl; Institute of High Pressure, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw; Kaminska, Agata

    We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gapmore » pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.« less

  5. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene-Pleistocene seawater Mg/Ca, temperature and sea level change

    NASA Astrophysics Data System (ADS)

    Evans, David; Brierley, Chris; Raymo, Maureen E.; Erez, Jonathan; Müller, Wolfgang

    2016-03-01

    Foraminifera Mg/Ca paleothermometry forms the basis of a substantial portion of ocean temperature reconstruction over the last 5 Ma. Furthermore, coupled Mg/Ca-oxygen isotope (δ18O) measurements of benthic foraminifera can constrain eustatic sea level (ESL) independent of paleo-shoreline derived approaches. However, this technique suffers from uncertainty regarding the secular variation of the Mg/Ca seawater ratio (Mg/Casw) on timescales of millions of years. Here we present coupled seawater-test Mg/Ca-temperature laboratory calibrations of Globigerinoides ruber in order to test the widely held assumptions that (1) seawater-test Mg/Ca co-vary linearly, and (2) the Mg/Ca-temperature sensitivity remains constant with changing Mg/Casw. We find a nonlinear Mg/Catest-Mg/Casw relationship and a lowering of the Mg/Ca-temperature sensitivity at lower than modern Mg/Casw from 9.0% °C-1 at Mg/Casw = 5.2 mol mol-1 to 7.5 ± 0.9% °C-1 at 3.4 mol mol-1. Using our calibrations to more accurately calculate the offset between Mg/Ca and biomarker-derived paleotemperatures for four sites, we derive a Pliocene Mg/Casw ratio of ∼4.3 mol mol-1. This Mg/Casw implies Pliocene ocean temperature 0.9-1.9 °C higher than previously reported and, by extension, ESL ∼30 m lower compared to when one assumes that Pliocene Mg/Casw is the same as at present. Correcting existing benthic foraminifera datasets for Mg/Casw indicates that deep water source composition must have changed through time, therefore seawater oxygen isotope reconstructions relative to present day cannot be used to directly reconstruct Pliocene ESL.

  6. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  7. Coherent dynamics of localized excitons and trions in ZnO/(Zn,Mg)O quantum wells studied by photon echoes

    NASA Astrophysics Data System (ADS)

    Solovev, I. A.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Akimov, I. A.; Sadofev, S.; Puls, J.; Yakovlev, D. R.; Bayer, M.

    2018-06-01

    We study optically the coherent evolution of trions and excitons in a δ -doped 3.5-nm-thick ZnO/Zn0.91Mg0.09O multiple quantum well by means of time-resolved four-wave mixing at a temperature of 1.5 K. Employing spectrally narrow picosecond laser pulses in the χ(3 ) regime allows us to address differently localized trion and exciton states, thereby avoiding many-body interactions and excitation-induced dephasing. The signal in the form of photon echoes from the negatively charged A excitons (TA, trions) decays with coherence times varying from 8 up to 60 ps, depending on the trion energy: more strongly localized trions reveal longer coherence dynamics. The localized neutral excitons decay on the picosecond time scale with coherence times up to T2=4.5 ps. The coherent dynamics of the XB exciton and TB trion are very short (T2<1 ps), which is attributed to the fast energy relaxation from the trion and exciton B states to the respective A states. The trion population dynamics is characterized by the decay time T1, rising from 30 to 100 ps with decreasing trion energy.

  8. High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film

    SciTech Connect

    Fan, M. M.; State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, 130033 Changchun; Liu, K. W., E-mail: liukw@ciomp.ac.cn, E-mail: shendz@ciomp.ac.cn

    High Mg content mixed-phase Zn{sub 0.38}Mg{sub 0.62}O was deposited on a-face sapphire by plasma-assisted molecular beam epitaxy, based on which a metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector was fabricated. The dark current is only 0.25 pA at 5 V, which is much lower than that of the reported mixed-phase ZnMgO photodetectors. More interestingly, different from the other mixed-phase ZnMgO photodetectors containing two photoresponse bands, this device shows only one response peak and its −3 dB cut-off wavelength is around 275 nm. At 10 V, the peak responsivity is as high as 1.664 A/W at 260 nm, corresponding to an internal gain of ∼8. The internal gain is mainlymore » ascribed to the interface states at the grain boundaries acting as trapping centers of photogenerated holes. In view of the advantages of mixed-phase ZnMgO photodetectors over single-phase ZnMgO photodetectors, including easy fabrication, high responsivity, and low dark current, our findings are anticipated to pave a new way for the development of ZnMgO solar-blind UV photodetectors.« less

  9. Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy

    NASA Astrophysics Data System (ADS)

    Lotfpour, M.; Emamy, M.; Dehghanian, C.; Tavighi, K.

    2017-05-01

    Effects of different concentrations of Cu on the structure, mechanical and corrosion properties of Mg-2%Zn alloy were studied by the use of x-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, standard tensile testing, polarization and electrochemical impedance spectroscopy (EIS) measurements. The average grain size of the alloy decreased from above 1000 μm to about 200 μm with 5 wt.% Cu addition in as-cast condition. Microstructural studies revealed that Mg-2Zn- xCu alloys matrix typically consists of primary α-Mg and MgZnCu and Mg(Zn,Cu)2 intermetallics which are mainly found at the grain boundaries. The results obtained from mechanical testing ascertained that Cu addition increased the hardness values significantly. Although the addition of 0.5 wt.% Cu improved the ultimate tensile strength and elongation values, more Cu addition (i.e., 5 wt.%) weakened the tensile properties of the alloy by introducing semi-continuous network of brittle intermetallic phases. Based on polarization test results, it can be concluded that Cu eliminates a protective film on Mg-2%Zn alloy surface. Among Mg-2%Zn- x%Cu alloys, the one containing 0.1 wt.% Cu exhibited the best anti-corrosion property. However, further Cu addition increased the volume fraction of intermetallics culminating in corrosion rate enhancement due to the galvanic couple effect. EIS and microstructural analysis also confirmed the polarization results.

  10. Ca2+ and MgATP2- dependence of shortening in skinned single smooth muscle cells.

    PubMed

    Warshaw, D M; McBride, W J; Hubbard, M S

    1987-04-01

    Most studies of skinned smooth muscle have been performed in whole tissue preparations. In this study, we report the development of a chemically skinned single smooth muscle cell preparation from the toad, Bufo marinus, stomach. Isolated smooth muscle cells were skinned using saponin. The effect of various ionic environments (i.e., changing free Ca2+ and MgATP2-) on skinned cell contractile response was assessed by measuring cell lengths from populations of cells using a computer-assisted length-measuring system. Comparison of cell length histograms were used to determine the extent of cell shortening in response to a given ionic perturbation. Once skinned, the single cells shortened with a sensitivity to free calcium (ED50 = 1.5 microM Ca2+) that was three orders of magnitude lower than potassium depolarized cells (ED50 = 1.5 mM Ca2+). In addition to the calcium sensitivity, the effect of free MgATP2- on the extent of cell shortening was investigated. The extent of cell shortening was dependent on free MgATP2- with the maximum shortening response occurring at MgATP2- greater than 1 mM.

  11. Mössbauer and magnetic studies of surfactant mediated Ca-Mg doped ferrihydrite nanoparticles.

    PubMed

    Layek, Samar; Mohapatra, M; Anand, S; Verma, H C

    2013-03-01

    Ultrafine (2-5 nm) particles of amorphous Ca-Mg co-doped ferrihydrite have been synthesized by surfactant mediated co-precipitation method. The evolution of the amorphous ferrihydrite by Ca-Mg co-doping is quite different from our earlier investigations on individual doping of Ca and Mg. Amorphous phase of ferrihydrite for the present study has been confirmed by X-ray diffraction (XRD) and Mössbauer spectroscopy at room temperature and low temperatures (40 K and 20 K). Hematite nanoparticles with crystallite size about 8, 38 and 70 nm were obtained after annealing the as-prepared samples at 400, 600 and 800 degrees C respectively in air atmosphere. Superparamagnetism has been found in 8 nm sized hematite nanoparticles which has been confirmed from the magnetic hysteresis loop with zero remanent magnetization and coercive field and also from the superparamagnetic doublet of its room temperature Mössbauer spectrum. The magnetic properties of the 38 and 70 nm sized particles have been studied by room temperature magnetic hysteresis loop measurements and Mössbauer spectroscopy. The coercive field in these hematite nanoparticles increases with increasing particle size. Small amount of spinel MgFe2O4 phase has been detected in the 800 degrees C annealed sample.

  12. Coupled gating of skeletal muscle ryanodine receptors is modulated by Ca2+, Mg2+, and ATP

    PubMed Central

    Porta, Maura; Diaz-Sylvester, Paula L.; Neumann, Jake T.; Escobar, Ariel L.; Fleischer, Sidney

    2012-01-01

    Coupled gating (synchronous openings and closures) of groups of skeletal muscle ryanodine receptors (RyR1), which mimics RyR1-mediated Ca2+ release underlying Ca2+ sparks, was first described by Marx et al. (Marx SO, Ondrias K, Marks AR. Science 281: 818–821, 1998). The nature of the RyR1-RyR1 interactions for coupled gating still needs to be characterized. Consequently, we defined planar lipid bilayer conditions where ∼25% of multichannel reconstitutions contain mixtures of coupled and independently gating RyR1. In ∼10% of the cases, all RyRs (2–10 channels; most frequently 3–4) gated in coupled fashion, allowing for quantification. Our results indicated that coupling required cytosolic solutions containing ATP/Mg2+ and high (50 mM) luminal Ca2+ (Calum) or Sr2+ solutions. Bursts of coupled activity (events) started and ended abruptly, with all channels activating/deactivating within ∼300 μs. Coupled RyR1 were heterogeneous, where highly active RyR1 (“drivers”) seemed open during the entire coupled event (Po = 1), while other RyR1s (“followers”) displayed abundant flickering and smaller amplitude. Drivers mean open time increased with cytosolic Ca2+ (Cacyt) or caffeine, whereas followers flicker frequency was Cacyt independent and more sensitive to inhibition by cytosolic Mg2+. Coupled events were insensitive to varying lumen-to-cytosol Ca2+ fluxes from ∼1 to 8 pA, which does not corroborate coupling of neighboring RyR1 by local Ca2+-induced Ca2+ release. However, coupling requires specific Calum sites, as it was lost when Calum was replaced by luminal Ba2+ or Mg2+. In summary, coupled events reveal complex interactions among heterogeneous RyR1, differentially modulated by cytosolic ATP/Mg2+, Cacyt, and Calum, which under cell-like ionic conditions may parallel synchronous RyR1 gating during Ca2+ sparks. PMID:22785120

  13. Different thermostabilities of sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPases from rabbit and trout muscles.

    PubMed

    de Toledo, F G; Albuquerque, M C; Goulart, B H; Chini, E N

    1995-05-01

    Trout and rabbit (Ca2+ + Mg2+)-ATPases from sarcoplasmic reticulum were compared for differences in thermal inactivation and susceptibility to trypsin digestion. The trout ATPase is more heat-sensitive than the rabbit ATPase and is stabilized by Ca2+, Na+, K+ and nucleotides. Solubilization of both ATPases shows that the two ATPases have different protein-intrinsic inactivation kinetics. When digested by trypsin, the two ATPases display different cleavage patterns. The present results indicate that the trout and rabbit ATPases have dissimilarities in protein structure that may explain the differences in thermal inactivation kinetics.

  14. Effect of hydrogen on Ca and Mg acceptors in GaN

    SciTech Connect

    Lee, J.W.; Pearton, S.J.; Zolper, J.C.

    The influence of minority carrier injection on the reactivation of hydrogen passivated Mg in GaN at 175 C has been investigated in p-n junction diodes. The dissociation of the neutral MgH complexes is greatly enhanced in the presence of minority carrier and the reactivation process follows second order kinetics. Conventional annealing under zero-bias conditions does not produce Mg-H dissociation until temperatures {ge} 450 C. These results provide an explanation for the e-beam induced reactivation of Mg acceptors in hydrogenated GaN. Exposure to a hydrogen plasma at 250 C of p-type GaN (Ca) prepared by either Ca{sup +} or Ca{sup +}more » plus P{sup +} coimplantation leads to a reduction in sheet carrier density of approximately an order of magnitude (1.6 {times} 10{sup 12} cm{sup {minus}2} to 1.8 {times} 10{sup 11} cm{sup {minus}2}), and an accompanying increase in hole mobility (6 cm{sup 2}/Vs to 18 cm{sup 2}/Vs). The passivation process can be reversed by post-hydrogenation annealing at 400--500 C under a N{sub 2} ambient. This reactivation of the acceptors is characteristic of the formation of neutral (Ca-H) complexes in the GaN. The thermal stability of the passivation is similar to that of Mg-H complexes in material prepared in the same manner (implantation) with similar initial doping levels. Hydrogen passivation of acceptor dopants in GaN appears to be a ubiquitous phenomenon, as it is in other p-type semiconductors.« less

  15. Mg/Ca in foraminifera from plankton tows: Evaluation of proxy controls and comparison with core tops

    NASA Astrophysics Data System (ADS)

    Martínez-Botí, M. A.; Mortyn, P. G.; Schmidt, D. N.; Vance, D.; Field, D. B.

    2011-07-01

    Calibrations and validations of the Mg/Ca paleothermometer in planktic foraminifera have traditionally been performed by means of core tops, sediment trap samples and culture experiments. In this study, Mg/Ca ratios have been measured in 8 species of planktic foraminifera (non-globorotaliids Globigerina bulloides, Neogloboquadrina incompta, Orbulina universa, Globigerinoides ruber (white) and G. sacculifer, and globorotaliids Globorotalia inflata, G. hirsuta and G. truncatulinoides), collected live from the North Atlantic, the Southeast Atlantic, the Northeast Pacific and the Norwegian Sea. Mg/Ca ratios for N. incompta, O. universa, G. ruber, G. sacculifer and G. truncatulinoides are similar to available North Atlantic core-top studies and consistent with previous calibration equations. In contrast, some G. bulloides, G. inflata and G. hirsuta Mg/Ca ratios are higher than predicted based on δ 18O values, and exhibit considerable scatter. This elevation may be in part related to the impact of potential isotopic disequilibrium effects on δ 18O-derived temperatures, which the Mg/Ca ratios are compared to. Another factor that may affect Mg/Ca ratios in some plankton samples is the lack of low-Mg test components (e.g., final chambers or gametogenic calcite), because of the incompleteness of the life cycle at the time of collection. N. incompta Mg/Ca ratios are correlated with salinity, with Mg/Ca changing about 16% per salinity unit, suggesting that salinity may have an important influence on Mg/Ca of some species even in non-extreme salinity environments. This is the first extensive multispecific plankton tow Mg/Ca data set from different oceanographic regions, which has been used to test the Mg/Ca temperature proxy in the context of published calibration data, highlighting the complex physiological/ecological controls on the acquisition of the proxy signal.

  16. Effect of Inner Electrode on Reliability of (Zn,Mg)TiO3-Based Multilayer Ceramic Capacitor

    NASA Astrophysics Data System (ADS)

    Lee, Wen‑His; Su, Chi‑Yi; Lee, Ying Chieh; Yang, Jackey; Yang, Tong; PinLin, Shih

    2006-07-01

    In this study, different proportions of silver-palladium alloy acting as the inner electrode were adopted to a (Zn,Mg)TiO3-based multilayer ceramic capacitor (MLCC) sintered at 925 °C for 2 h to evaluate the effect of the inner electrode on reliability. The main results show that the lifetime is inversely proportional to Ag content in the Pd/Ag inner electrode. Ag+1 diffusion into the (Zn,Mg)TiO3-based MLCC during cofiring at 925 °C for 2 h and Ag+1 migration at 140 °C against 200 V are both responsible for the short lifetime of the (Zn,Mg)TiO3-based MLCC, particularly the latter factor. A (Zn,Mg)TiO3-based MLCC with high Ag content in the inner electrode Ag/Pd=99/01 exhibits the shortest lifetime (13 h), and the effect of Ag+1 migration is markedly enhanced when the activation energy of the (Zn,Mg)TiO3 dielectric is greatly lowered due to the excessive formation of oxygen vacancies and the semiconducting Zn2TiO4 phase when Ag+ substitutes for Zn+2 during co-firing.

  17. Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion

    NASA Astrophysics Data System (ADS)

    Yu, L. H.; Yao, K. L.; Liu, Z. L.

    2004-12-01

    The band structures of the filled tetrahedral semiconductors LiMgN and LiZnN, viewed as the zinc-blende (MgN) - and (ZnN) - lattices partially filled with He-like Li + ion interstitials, were studied using the full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The conduction band distortions of LiMgN and LiZnN, compared to their “parent” zinc-blende analog AlN and GaN, are discussed. It was found that the insertion of Li + ions at the interstitial sites near the cation or anion pushes the conduction band minimum of the X point in the Brillouin zone upward, relative to that of the Γ point, for both (MgN) - and (ZnN) - lattices (the valence band maximum is at Γ for AlN, GaN, LiMgN, and LiZnN), which provides a method to convert a zinc-blende indirect gap semiconductor into a direct gap material, but the conduction band distortion of the β phase (Li + near the cation) is quite stronger than that of the α phase (Li + near the anion). The total energy calculations show the α phase to be more stable than the β phase for both LiMgN and LiZnN. The Li-N and Mg-N bonds exhibit a strong ionic character, whereas the Zn-N bond has a strong covalent character in LiMgN and LiZnN.

  18. Quasicrystal-reinforced Mg alloys.

    PubMed

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  19. In vivo evaluation of Mg-6Zn and titanium alloys on collagen metabolism in the healing of intestinal anastomosis

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Hu; Ni, Jian-Shu; Cao, Nai-Long; Yu, Song; Chen, Yi-Gang; Zhang, Shao-Xiang; Gu, Bao-Jun; Yan, Jun

    2017-03-01

    There is a great clinical need for biodegradable materials, which were used as pins of circular staplers, for gastrointestinal reconstruction in medicine. In this work we compared the effects of the Mg-6Zn and the titanium alloys on collagen metabolism in the healing of the intestinal tract in vivo. The study included Sprague-Dawley rats and their effect was compared on rat’s intestinal tract, using serum magnesium, radiology, and immunohistochemistry in vivo. Radiographic and scanning electron microscope evaluation confirmed the degradation by Mg-6Zn alloy during the implantation period. Biochemical measurements including serum magnesium, creatinine, blood urea nitrogen and glutamic-pyruvic-transaminase proved that degradation of Mg-6Zn alloy showed no impact on serum magnesium and the function of other important organs. Superior to titanium alloy, Mg-6Zn alloy enhanced the expression of collagen I/III and relatively suppressed the expression of MMP-1/-13 in the healing tissues, leading to more mature collagen formation at the site of anastomosis. In conclusion, Mg-6Zn alloy performed better than titanium alloy on collagen metabolism and promoted the healing of intestinal anastomosis. Hence, Mg-6Zn may be a promising candidate for use of stapler pins for intestinal reconstruction in the clinically.

  20. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi 2O 6, CaSiO 3 and CaSi 2O 5-CaTiSiO 5 system

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Yano, M.; Tejima, Y.; Iijima, M.; Kojitani, H.

    2004-06-01

    Phase transitions of CaMgSi 2O 6 diopside and CaSiO 3 wollastonite were examined at pressures to 23 GPa and temperatures to 2000 °C, using a Kawai-type multiavil apparatus. Enthalpies of high-pressure phases in CaSiO 3 and in the CaSi 2O 5-CaTiSiO 5 system were also measured by high-temperature calorimetry. At 17-18 GPa, diopside dissociates to CaSiO 3-rich perovskite + Mg-rich (Mg,Ca)SiO 3 tetragonal garnet (Gt) above about 1400 °C. The solubilities of CaSiO 3 in garnet and MgSiO 3 in perovskite increase with temperature. At 17-18 GPa below about 1400 °C, diopside dissociates to Ca-perovskite + β-Mg 2SiO 4 + stishovite. The Mg, Si-phases coexisting with Ca-perovskite change to γ-Mg 2SiO 4 + stishovite, to ilmenite, and finally to Mg-perovskite with increasing pressure. CaSiO 3 wollastonite transforms to the walstromite structure, and further dissociates to Ca 2SiO 4 larnite + CaSi 2O 5 titanite. The latter transition occurs at 9-11 GPa with a positive Clapeyron slope. At 1600 °C, larnite + titanite transform to CaSiO 3 perovskite at 14.6±0.6 GPa, calibrated against the α-β transition pressure of Mg 2SiO 4. The enthalpies of formation of CaSiO 3 walstromite and CaSi 2O 5 titanite from the mixture of CaO and SiO 2 quartz at 298 K have been determined as -76.1±2.8, and -27.8±2.1 kJ/mol, respectively. The latter was estimated from enthalpy measurements of titanite solid solutions in the system CaSi 2O 5-CaTiSiO 5, because CaSi 2O 5 titanite transforms to a triclinic phase upon decompression. The enthalpy difference between titanite and the triclinic phase is only 1.5±4.8 kJ/mol. Using these enthalpies of formation and those of larnite and CaSiO 3 perovskite, the transition boundaries in CaSiO 3 have been calculated. The calculated boundaries for the wollastonite-walstromite-larnite + titanite transitions are consistent with the experimental determinations within the errors. The calculated boundary between larnite + titanite and Ca-perovskite has a slope of

  1. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    NASA Astrophysics Data System (ADS)

    Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.

    2015-02-01

    The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.

  2. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys.

    PubMed

    Kubásek, J; Vojtěch, D; Jablonská, E; Pospíšilová, I; Lipov, J; Ruml, T

    2016-01-01

    Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Li, Q.; Zu, X. T.; Xiang, X.; Liu, W.; Li, S.

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M2+ ion active sites were coordinated by -OH of the water molecules except for EDTA anions. The MFe2O4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe2O4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly.

  4. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

    PubMed

    Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S

    2016-06-01

    The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.

  5. Mg/Ca Ratios in Coralline Red Algae as Temperature Proxies for Reconstructing Labrador Current Variability

    NASA Astrophysics Data System (ADS)

    Gamboa, G.; Hetzinger, S.; Halfar, J.; Zack, T.; Kunz, B.; Adey, W.

    2009-05-01

    Marine ecosystems and fishery productivity in the Northwestern Atlantic have been considerably affected by regional climate and oceanographic changes. Fluctuations of North Atlantic marine climate have been linked in part to a dominant pattern of atmospheric circulation known as the North Atlantic Oscillation, which has a strong influence on transport variability of the Labrador Current (LC). The cold LC originates in the Labrador Sea and flows southbound along the Eastern Canadian coastline causing an important cooling effect on marine waters off the Canadian Atlantic provinces. Although interdecadal and interannual variability of sea surface temperatures (SST) in the LC system have been documented, a long-term pattern has not been identified. In order to better understand the observed ecosystem changes and their relationship with climate variability in the Northwestern Atlantic, a century-scale reconstruction of spatial and temporal variations of the LC is needed. This, however, requires reliable long-term and high-resolution SST records, which are not available from short instrumental observations. Here we present the first century-scale SST reconstructions from the Northwest Atlantic using long-lived coralline red algae. Coralline red algae have a high-Mg calcite skeleton, live in shallow water worldwide and develop annual growth bands. It has previously been demonstrated that subannual resolution SSTs can be obtained from coralline red algal Mg/Ca ratios, a commonly used paleotemperature proxy. Specimens of the long-lived coralline red algae Clathromorphum compactum were collected alive in August 2008 along a latitudinal transect spanning the southern extent of LC flow in Nova Scotia and Newfoundland. This collection is supplemented with specimens from the same region collected in the 1960's. In order to reconstruct spatial and temporal patterns of the LC, selected samples of C. compactum were analyzed for Mg/Ca using Laser Ablation Inductively-Coupled Plasma

  6. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  7. Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase.

    PubMed

    Steiner, B; Lüscher, E F

    1985-09-10

    The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.

  8. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.

    PubMed

    Takeda, A; Suzuki, M; Tempaku, M; Ohashi, K; Tamano, H

    2015-09-24

    Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Exciton localization and large Stokes shift in quaternary BeMgZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Toporkov, Mykyta; Ullah, Md. Barkat; Hafiz, Shopan; Nakagawara, Tanner; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Owing to wide range bandgap tunability to more than 5 eV, the quaternary (Be,Mg)ZnO solid solutions are attractive for a variety of UV optoelectronic applications, inclusive of solar blind photodetectors, and intersubband transition devices. The mutual compensation effects of Be and Mg on the formation energy and strain allows a wide range of compositions and bandgaps beyond those achievable by MgZnO and BeZnO ternaries. Localization effects are well pronounced in such wide-bandgap semiconductor alloys due to large differences in metal covalent radii and the lattice constants of the binaries, resulting in strain-driven compositional variations within the film and consequently large potential fluctuations, in addition to that possibly caused by defects. However, carrier localization may suppress recombination through nonradiative channels, and thus, facilitate high-efficiency optoelectronic devices. To investigate potential fluctuations and localization in BexMgyZn(1-x-y)O films grown by plasma-assisted molecular beam epitaxy, optical absorption and steady-state and time-resolved photoluminescence (PL) measurements were performed. O-polar BexMgyZn(1-x-y)O samples grown on GaN templates with compositions up to x = 0.04 and y = 0.18 were used for timeresolved studies, and O-polar BexMgyZn(1-x-y)O samples grown on sapphire with compositions up to x = 0.19 and y = 0.52 were used for absorption measurements. From spectrally resolved PL transients, BeMgZnO samples with higher Mg/Be content ratio were found to exhibit smaller localization depth, Δ0=98 meV for Be0.04Mg0.17Zn0.79O and Δ0=173 meV for Be0.10Mg0.25Zn0.65O, compared to samples with smaller Mg/Be ratio, Δ0=268 meV for Be0.11Mg0.15Zn0.74O. Similar correlation is observed in temporal redshift of the PL peak position of 8 meV, 42 meV and 55 meV for Be0.04Mg0.17Zn0.79O, Be0.10Mg0.25Zn0.65O and Be0.11Mg0.15Zn0.74O, respectively, that originates from potential fluctuations and removal of band filling effect in the

  10. Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.

    PubMed

    Panov, A; Scarpa, A

    1996-01-16

    The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.

  11. Development of Room Temperature Excitonic Lasing From ZnO and MgZnO Thin Film Based Metal-Semiconductor-Metal Devices

    NASA Astrophysics Data System (ADS)

    Suja, Mohammad Zahir Uddin

    Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum

  12. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.

    2013-12-01

    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  13. Enhancement of Strength and Ductility of Mg96Zn2Y2 Rolled Sheet by Controlling Structure and Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Noda, Masafumi; Kawamura, Yoshihito; Sakurai, Hiroshi; Funami, Kunio

    Mg-Zn-Y alloys are well known to possess greatly enhanced strength during plastic deformation because of the presence of kink bands in the LPSO phase and refinement of the grains of the alpha Mg phase. On the other hand, Mg-rare earth (RE) and Mg-Zn-RE alloys with a long period stacking order (LPSO) phase show a high tensile yield strength when subjected to an extrusion process but it is not known whether the LPSO and alpha Mg phases develop during plastic deformation. We examined the effect of the finely dispersed LPSO phase and the alpha Mg phase on the development of high strength in sheets of Mg96Zn2Y2 subjected to a few passes of rolling. The mechanical properties and thermal stability of the alloy were also investigated. The tensile yield strength of rolled sheets of Mg96Zn2Y2 was 360 MPa and its elongation was 5% when the material was subjected to thermomechanically controlled processing at 673 K with a four-pass rolling schedule. However, the tensile yield strength decreased and the elongation increased at annealing temperature of 623 K or above, because of the presence of grain growth in the alpha Mg phase and the restoration of kink bands in the LPSO phase.

  14. Lattice parameters and electronic structure of BeMgZnO quaternary solid solutions: Experiment and theory

    SciTech Connect

    Toporkov, M.; Avrutin, V.; Morkoç, H.

    2016-03-07

    Be{sub x}Mg{sub y}Zn{sub 1−x−y}O semiconductor solid solutions are attractive for UV optoelectronics and electronic devices owing to their wide bandgap and capability of lattice-matching to ZnO. In this work, a combined experimental and theoretical study of lattice parameters, bandgaps, and underlying electronic properties, such as changes in band edge wavefunctions in Be{sub x}Mg{sub y}Zn{sub 1−x−y}O thin films, is carried out. Theoretical ab initio calculations predicting structural and electronic properties for the whole compositional range of materials are compared with experimental measurements from samples grown by plasma assisted molecular beam epitaxy on (0001) sapphire substrates. The measured a and c latticemore » parameters for the quaternary alloys Be{sub x}Mg{sub y}Zn{sub 1−x} with x = 0−0.19 and y = 0–0.52 are within 1%–2% of those calculated using generalized gradient approximation to the density functional theory. Additionally, composition independent ternary BeZnO and MgZnO bowing parameters were determined for a and c lattice parameters and the bandgap. The electronic properties were calculated using exchange tuned Heyd-Scuseria-Ernzerhof hybrid functional. The measured optical bandgaps of the quaternary alloys are in good agreement with those predicted by the theory. Strong localization of band edge wavefunctions near oxygen atoms for BeMgZnO alloy in comparison to the bulk ZnO is consistent with large Be-related bandgap bowing of BeZnO and BeMgZnO (6.94 eV). The results in aggregate show that precise control over lattice parameters by tuning the quaternary composition would allow strain control in Be{sub x}Mg{sub y}Zn{sub 1−x−y}O/ZnO heterostructures with possibility to achieve both compressive and tensile strain, where the latter supports formation of two-dimensional electron gas at the interface.« less

  15. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation

    NASA Astrophysics Data System (ADS)

    Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.; Robinson, Laura F.

    2007-09-01

    Deep-sea corals are a new tool in paleoceanography with the potential to provide century long records of deep ocean change at sub-decadal resolution. Complicating the reconstruction of past deep-sea temperatures, Mg/Ca and Sr/Ca paleothermometers in corals are also influenced by non-environmental factors, termed vital effects. To determine the magnitude, pattern and mechanism of vital effects we measure detailed collocated Sr/Ca and Mg/Ca ratios, using a combination of micromilling and isotope-dilution ICP-MS across skeletal features in recent samples of Desmophyllum dianthus, a scleractinian coral that grows in the near constant environment of the deep-sea. Sr/Ca variability across skeletal features is less than 5% (2σ relative standard deviation) and variability of Sr/Ca within the optically dense central band, composed of small and irregular aragonite crystals, is significantly less than the surrounding skeleton. The mean Sr/Ca of the central band, 10.6 ± 0.1 mmol/mol (2σ standard error), and that of the surrounding skeleton, 10.58±0.09 mmol/mol, are statistically similar, and agree well with the inorganic aragonite Sr/Ca-temperature relationship at the temperature of coral growth. In the central band, Mg/Ca is greater than 3 mmol/mol, more than twice that of the surrounding skeleton, a general result observed in the relative Mg/Ca ratios of D. dianthus collected from separate oceanographic locations. This large vital effect corresponds to a ˜ 10 °C signal, when calibrated via surface coral Mg/Ca-temperature relationships, and has the potential to complicate paleoreconstructions. Outside the central band, Mg/Ca ratios increase with decreasing Sr/Ca. We explain the correlated behavior of Mg/Ca and Sr/Ca outside the central band by Rayleigh fractionation from a closed pool, an explanation that has been proposed elsewhere, but which is tested in this study by a simple and general relationship. We constrain the initial solution and effective partition

  16. Electrical modulus and dielectric behavior of Cr3+ substituted Mg-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Abdo, M. A.

    2017-04-01

    The dielectric parameters and ac electrical conductivity of Mg0.8Zn0.2CrxFe2-xO4; (0≤x≤0.025) nanoferrites synthesized citrate-nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz-5 MHz and 303-873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε‧), dielectric loss tangent (tanδ) and ac electrical conductivity (σac) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr3+ substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications.

  17. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  18. Heat capacities and entropies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite)

    USGS Publications Warehouse

    Robie, R.A.; Haselton, H.T.; Hemingway, B.S.

    1989-01-01

    Heat capacities of synthetic MgTiO3 (geikielite), ZnO (zincite), and natural crystals of smithsonite (ZnCO3) were measured between 9 and 366 K using an automatic adiabatically shielded calorimeter. At 298.15 K the standard molar entropies Smo of MgTiO3, ZnO, and ZnCO3 are (74.64 ?? 0.15), (43.16 ?? 0.09), and (81.19 ?? 0.16) J??K-1??mol-1, respectively. Debye temperatures for MgTiO3 and ZnO calculated from our Cp, mo values below 20 K are (900 ?? 20) K and (440 ?? 25) K respectively. Heat capacities for MgTiO3 and ZnO were combined with enthalpy increments from the literature to derive heat-capacity equations for these phases from 260 to about 1800 K. The heat capacities of MgTiO3 between 260 and 1720 K were fitted with an average deviation of 0.3 per cent by the equation: C??p,m/(J??K-1??mol-1) = 222.5-0.05274(T/K)-6.092x105(T/K)-1-1874.6(T/K) -1/2+1.878x10-5(T/K)2 and for ZnO the equation: C??p,m/(J??K-1??mol-1) = 53.999+7.851x10-4(T/K)-5.868x105(T/K)-2 -127.50(T/K)-:1/2+1.9376x10-6(T/K)2 fits the heat capacities in the temperature interval of 250 to 1800 K with an average deviation of 0.7 per cent. ?? 1989.

  19. The Raman spectrum of Ca-Mg-Fe carbonates; Applications in geobiology

    NASA Astrophysics Data System (ADS)

    van Zuilen, M. A.; Rividi, N.; Ménez, B.; Philippot, P.

    2012-04-01

    Carbonates form a very important mineral group in geobiological studies. They are a common mineral matrix for putative carbonaceous microfossils in Archean greenstone belts, form an important chemical deposit in seafloor hydrothermal systems, and are a common product in biomineralization processes. In many geobiological studies there is a specific need for simple characterization of carbonate composition while avoiding complex sample preparation or sample destruction. Raman spectroscopy is a highly versatile non-destructive technique enabling in-situ characterization of minerals and carbonaceous materials. It can be combined with confocal microscopy enabling high-resolution Raman mapping of entire rock thin sections, or can be integrated in submersibles and potentially Mars-rovers for direct field-based mineral identification. It is thus important that well-established spectral databases exist which enable unambiguous identification of a wide variety of carbonate minerals. The most common carbonates in the Ca-Mg-Fe system include the CaCO3 polymorphs calcite, aragonite, and vaterite, as well as the solid solutions CaMg(CO3)2-CaFe(CO3)2 (dolomite-ankerite) and MgCO3-FeCO3 (magnesite-siderite). Although various carbonate end-members have been studied exhaustively by Raman spectroscopy, a simple protocol for rapid distinction of various carbonate solid solutions is still lacking. Here we present a detailed study of Raman shifts in various carbonate standards of known composition in the Ca-Mg-Fe system. Carbonates with rhombohedral symmetry display a Raman spectrum with six characteristic vibrational modes - four of these represent vibrations within the (CO3)2- unit and two represent external vibrations of the crystal lattice. We show that Raman band shifts of internal mode 2ν2 (range 1725-1765 cm-1), and external modes T (range 170-215 cm-1) and L (range 285-330 cm-1) for siderite-magnesite and ankerite-dolomite solid solutions display distinct and well defined

  20. Thermal properties and cycling performance of Ca(BH4)2/MgH2 composite for energy storage

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ping; Tan, Qiwei; Zhang, Zongliang; Wan, Qi; Liu, Zhiwei; Subramanian, Arunprabaharan; Qu, Xuanhui

    2018-05-01

    Here we report the thermal properties and cycling performance of Ca(BH4)2/MgH2. The reaction enthalpy is 48 kJ mol-1 H2 and equilibrium pressure at 350 °C is 0.4981 MPa. We add NbF5 into Ca(BH4)2/MgH2to figure out the degradation mechanism because of its catalytic ability. Ca(BH4)2/MgH2 follows the dehydrogenation path to form CaH2, CaB6 and Mg. The degradation of Ca(BH4)2/MgH2 composite during cycling is due to the particle aggregation and the reduction of CaB6 product. NbF5 can promote the forming of CaB6 and prevent microstructural coarsening in Ca(BH4)2/MgH2 during cycling, which leads to better reversibility.

  1. Gastrointestinal transport of Ca2+ and Mg2+ during the digestion of a single meal in the freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2007-04-01

    A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca(2+) and Mg(2+) from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca(2+) was observed in the stomach followed by subsequent Ca(2+) fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca(2+) along the intestinal tract resulting in a net assimilation of dietary Ca(2+) of 28%. Similar handling of Ca(2+) and Mg(2+) was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg(2+) assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg(-1) fish body mass for Ca(2+) and Mg(2+), respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca(2+) and Mg(2+) were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca(2+) and Mg(2+) handling in the GI tract were similar to those observed for Na(+) and K(+) (but not Cl(-)) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.

  2. CO2 sensing properties of electro-spun Ca-doped ZnO fibres.

    PubMed

    Pantò, Fabiola; Leonardi, Salvatore Gianluca; Fazio, Enza; Frontera, Patrizia; Bonavita, Anna; Neri, Giovanni; Antonucci, Pierluigi; Neri, Fortunato; Santangelo, Saveria

    2018-07-27

    The availability of low-cost, high-performing sensors for carbon dioxide detection in the environment may play a crucial role for reducing CO 2 emissions and limiting global warming. In this study, calcium-doped zinc oxide nanofibres with different Ca to Zn loading ratios (1:40 or 1:20) are synthesised via electro-spinning, thoroughly characterised and, for the first time, tested as an active material for the detection of carbon dioxide. The results of their characterisation show that the highly porous fibres consist of interconnected grains of oxide with the hexagonal wurtzite structure of zincite. Depending on the Ca:Zn loading ratio, calcium fully or partly segregates to form calcite on the fibre surface. The high response of the sensor based on the fibres with the highest Ca-doping level can be attributed to the synergy between the fibre morphology and the basicity of Ca-ion sites, which favour the diffusion of the gas molecules within the sensing layer and the CO 2 adsorption, respectively.

  3. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  4. Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Guan, Y.; MacPherson, G. J.

    2007-08-01

    Textures, mineral assemblages, and Al-Mg isotope systematics indicate a protracted, episodic secondary mineralization history for Allende Ca-Al-rich inclusions (CAIs). Detailed observations from one type B1 CAI, one B2, one compact type A (CTA), and one fluffy type A (FTA) indicate that these diverse types of CAIs are characterized by two distinct textural and mineralogic types of secondary mineralization: (1) grossular-rich domains, concentrated along melilite grain boundaries in CAI interiors, and (2) feldspathoid-bearing domains, confined mostly to CAI margins just interior to the Wark-Lovering rim sequence. The Al-Mg isotopic compositions of most secondary minerals in the type B1 CAI, and some secondary minerals in the other CAIs, show no resolvable excesses of 26Mg, whereas the primary CAI phases mostly yield correlated excesses of 26Mg with increasing Al/Mg corresponding to "canonical" initial 26Al/27Al ˜ 4.5-5 × 10-5. These secondary minerals formed at least 3 Ma after the primary CAI minerals. All but two analyses of secondary minerals from the fluffy type-A CAI define a correlated increase in 26Mg/24Mg with increasing Al/Mg, yielding (26Al/27Al)0 = (4.9 ± 2.8) × 10-6. The secondary minerals in this CAI formed 1.8-3.2 Ma after the primary CAI minerals. In both cases, the timing of secondary alteration is consistent with, but does not necessarily require, alteration in an asteroidal setting. One grossular from the type B2 CAI, and several grossular and secondary feldspar analyses from the compact type A CAI, have excesses of 26Mg consistent with initial 26Al/27Al ˜ 4.5 × 10-5. Especially in the compact type A CAI, where 26Mg/24Mg in grossular correlates with increasing Al/Mg, these 26Mg excesses are almost certainly due to in situ decay of 26Al. They indicate a nebular setting for formation of the grossular. The preservation of these diverse isotopic patterns indicates that heating on the Allende parent body was not pervasive enough to reset isotopic

  5. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  6. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prentice, Katy; Jones, Tom Dunkley; Lees, Jackie; Young, Jeremy; Bown, Paul; Langer, Gerald; Fearn, Sarah; EIMF

    2014-12-01

    Here we present the first multi-species comparison of modern and fossil coccolith trace metal data obtained from single liths. We present both trace metal analyses (Sr, Ca, Mg and Al) and distribution maps of individual Paleogene fossil coccoliths obtained by Secondary Ion Mass Spectrometry (SIMS). We use this data to determine the effects of variable coccolith preservation and diagenetic calcite overgrowths on the recorded concentrations of strontium and magnesium in coccolith calcite. The analysis of coccoliths from deep-ocean sediments spanning the Eocene/Oligocene transition demonstrates that primary coccolith calcite is resistant to the neomorphism that is common in planktonic foraminifera from similar depositional environments. Instead, where present, diagenetic calcite forms distinct overgrowths over primary coccolith calcite rather than replacing this calcite. Diagenetic overgrowths on coccoliths are easily distinguished in SIMS analyses on the basis of relatively higher Mg and lower Sr concentrations than co-occurring primary coccolith calcite. This interpretation is confirmed by the comparable SIMS analyses of modern cultured coccoliths of Coccolithus braarudii. Further, with diagenetic calcite overgrowth being the principle source of bias in coccolith-based geochemical records, we infer that lithologies with lower carbonate content, deposited below the palaeo-lysocline, are more likely to produce geochemical records dominated by primary coccolith calcite than carbonate-rich sediments where overgrowth is ubiquitous. The preservation of primary coccolith carbonate in low-carbonate lithologies thus provides a reliable geochemical archive where planktonic foraminifera are absent or have undergone neomorphism.

  7. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.

    PubMed

    Yusof, Alias Mohd; Malek, Nik Ahmad Nizam Nik; Kamaruzaman, Nurul Asyikin; Adil, Muhammad

    2010-01-01

    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).

  8. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties

    NASA Astrophysics Data System (ADS)

    Shi, Ling-Ling; Xu, Jian; Ma, Evan

    2008-05-01

    In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.

  10. Determination of the Mg/Mn ratio in foraminiferal coatings: An approach to correct Mg/Ca temperatures for Mn-rich contaminant phases

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Adam P.; Martínez-García, Alfredo; Jaccard, Samuel L.; Vance, Derek; Wälle, Markus; Greaves, Mervyn; Haug, Gerald H.

    2017-01-01

    The occurrence of manganese-rich coatings on foraminifera can have a significant effect on their bulk Mg/Ca ratios thereby biasing seawater temperature reconstructions. The removal of this Mn phase requires a reductive cleaning step, but this has been suggested to preferentially dissolve Mg-rich biogenic carbonate, potentially introducing an analytical bias in paleotemperature estimates. In this study, the geochemical composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS in order to determine the amount of Mg incorporated into the coatings. The analysis of planktonic and benthic foraminifera revealed a nearly constant Mg/Mn ratio in the Mn coating of ∼0.2 mol/mol. Consequently, the coating Mg/Mn ratio can be used to correct for the Mg incorporated into the Mn phase by using the down core Mn/Ca values of samples that have not been reductively cleaned. The consistency of the coating Mg/Mn ratio obtained in this study, as well as that found in samples from the Panama Basin, suggests that spatial variation of Mg/Mn in foraminiferal Mn overgrowths may be smaller than expected from Mn nodules and Mn-Ca carbonates. However, a site-specific assessment of the Mg/Mn ratio in foraminiferal coatings is recommended to improve the accuracy of the correction.

  11. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide.

    PubMed

    Ma, Chi; Wang, Fenghua; Zhang, Chang; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Li, Yongqiu; Li, Zihao; Zhu, Mengying; Shen, Liuqing; Zeng, Guangming

    2017-02-01

    The new nanophotocatalyst MgZnCr-TiO 2 was prepared by co-precipitation under different molar ratio of metals (Zn:Cr) and the loaded amount of TiO 2 . And it was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy et al. Langmuir model fitted well the adsorption isotherm with the value of R 2 0.9765, the maximum adsorption capacity was 526.32 mg g -1 , the adsorption followed pseudo second order kinetic by MgZnCr-TiO 2 (1:1:2-0.05). The photocatalytic oxidation of Congo red was used to determine the photocatalytic performance of MgZnCr-TiO 2 (1:1:2-0.05) under visible light irradiation, and the removal rate reached 98% after reaction for 40 min. The degradation mechanism of Congo red also was proposed, and the MgZnCr-TiO 2 (1:1:2-0.05) was stable after five cycles. Compared to the adsorption, Congo red was removed fundamentally by photocatalysis and it is expected to be an effective way to eliminate Congo red. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mg/Ca temperature calibration for the benthic foraminifers Bulimina inflata and Bulimina mexicana

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Rosenthal, Yair; Jorissen, Frans; Holbourn, Ann

    2016-04-01

    Bulimina inflata Seguenza 1862 and Bulimina mexicana Cushman 1922 are cosmopolitan, shallow infaunal benthic foraminifers which are common in the fossil record throughout the Neogene and Quaternary. The closely related species share a similar costate shell morphology that differs in the presence or absence of an apical spine. In the present study, we evaluate the temperature dependency of Mg/Ca ratios of these species from an extensive set of core-top samples from the Atlantic and Pacific oceans. The results show no significant offset in Mg/Ca values between B. inflata, B. mexicana, and two other costate morphospecies when present in the same sample. The apparent lack of significant inter-specific/inter-morphotype differences amongst the analysed costate buliminds allows for the combined use of their data-sets for our core-top calibration. Over a bottom-water temperature range of 3-14°C, the Bulimina inflata/mexicana group shows a sensitivity of ˜0.12 mmol/mol/°C which is comparable to the epifaunal Cibicidoides pachyderma and higher than for the shallow infaunal Uvigerina spp., the most commonly used taxa in Mg/Ca-based palaeotemperature reconstruction. B. inflata and B. mexicana might thus be a valuable alternative in mesotrophic settings where many of the commonly used species are diminished or absent, and particularly useful in hypoxic settings where costate buliminds may dominate foraminiferal assemblages. This study was financially supported by the Max-Kade-Foundation and contributes to project P25831-N29 of the Austrian Science Fund (FWF).

  13. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing

    2017-07-01

    We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.

  14. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records

    USGS Publications Warehouse

    Wong, C.I.; Banner, J.L.; Musgrove, M.

    2011-01-01

    A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves

  15. Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions

    NASA Astrophysics Data System (ADS)

    Gorzelak, Przemysław; Krzykawski, Tomasz; Stolarski, Jarosław

    2016-09-01

    One of the most profound environmental changes thought to be reflected in chemical composition of numerous geological archives is Mg/Ca ratio of the seawater, which has varied dramatically throughout the Phanerozoic. Echinoderms that today typically form high magnesium calcite skeletons are increasingly being utilized as a proxy for interpreting secular changes in seawater chemistry. However, accurate characterization of the diagenetic changes of their metastable high magnesium calcite skeletons is a prerequisite for assessing their original, major-element geochemical composition. Here we expand the existing models of diagenesis of echinoderm skeleton by integration of various analytical methods that up to now rarely have been used to assess the diagenetic changes of fossil echinoderms. We validated the preservation of a suite of differently preserved echinoderm ossicles, mostly crinoids, ranging in age from the Cambrian through Recent. In 13 of 99 fossil echinoderm ossicles we found well-preserved porous microstructure (stereom), non-luminescent behaviour or blotchy dark color in cathodoluminescence, and distinct nanostructural features (layered and nanocomposite structure). Moreover, in representatives of such preserved samples, distribution of sulphates associated with organic matter is identical to those in Recent echinoderms. Only such ossicles, despite of local micrometer-scale diagenetic changes, were herein considered well-preserved, retaining their original major-element skeletal composition. By contrast, majority of samples show transformation to the stable low magnesium calcite that leads to obliteration of the primary geochemical and micro/nanostructural features and is accompanied with increase in cathodoluminescence emission intensity. Using only well-preserved fossil echinoderm samples, we found purely random variation in Mg/Ca in echinoderm skeletons through the observed time series; any periodicities in echinoderm skeletal Mg/Ca ratio which might

  16. Nanoheterostructures with CdTe/ZnMgSeTe Quantum Dots for Single-Photon Emitters Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.

    2018-03-01

    Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.

  17. Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness

    PubMed Central

    Liu, Long; Yuan, Fulai; Zhao, Mingchun; Gao, Chengde; Feng, Pei; Yang, Youwen; Yang, Sheng; Shuai, Cijun

    2017-01-01

    The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the formation of Al2Y phase that has a more active potential, which decreased galvanic corrosion resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y contents increased due to the uniform distribution of the Al2Y and Mg17Al12 phases. However, as the Y contents increased further, the formation of excessive Al2Y phase resulted in the increasing of degradation rate and the decreasing of hardness due to its agglomeration. PMID:28772837

  18. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.

    PubMed

    Launikonis, B S; Stephenson, D G

    2000-07-15

    1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and

  19. Facially Selective Cu-catalyzed Carbozincation of Cyclopropenes Using Arylzinc Reagents Formed by Sequential I/Mg/Zn exchange

    PubMed Central

    Tarwade, Vinod; Selvaraj, Ramajeyam; Fox, Joseph M.

    2012-01-01

    Described is a Cu-catalyzed directed carbozincation of cyclopropenes with organozinc reagents prepared by I/Mg/Zn exchange. This protocol broadens the scope with respect to functional group tolerance and enables use of aryl iodide precursors, rather than purified diorganozinc precursors. Critical to diastereoselectivity of the carbozincation step is the removal of magnesium halide salts after transmetallation with ZnCl2. PMID:23035947

  20. Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects.

    PubMed

    Rötting, Tobias S; Ayora, Carlos; Carrera, Jesus

    2008-12-15

    High concentrations of divalent metals such as Zn, Mn, Cu, Pb, Ni, Cd, Co, etc. are not removed satisfactorily in conventional (calcite- or organic matter-based) passive treatment systems. Caustic magnesia ("MgO") has been used successfully as an alternative alkaline material to remove these metals almost completely from water, but columns with coarse-grained MgO lost reactivity or permeability due to the accumulation of precipitates when only a small portion of the reagent had been spent. In the present study, MgO was mixed with wood chips to overcome these problems. Two columns with different MgO grain sizes were used to treat Zn- and Mn-rich water during one year. Performance was compared by measuring depth profiles of chemical parameters and hydraulic conductivity. The column containing 25% (v/v) of MgO with median particle size of about 3 mm displayed low reactivity and poor metal retention. In contrast, the column containing only 12.5% (v/v) of MgO with median particle size of 0.15 mm depleted Zn and Mn below detection limit throughout the study and had a good hydraulic performance. 95% of the applied MgO was consumed in the zone where Zn and Mn accumulated. The fine alkaline grains can dissolve almost completely before the growing layer of precipitates passivates them, whereas clogging is prevented by the large pores of the coarse inert matrix (wood chips). A reactive transport model corroborated the hypotheses that Zn(II) was removed due to its low solubility at pH near 10 achieved by MgO dissolution, whereas Mn(II) was removed due to rapid oxidation to Mn(III) at this pH and subsequent precipitation. The model also confirmed that the small size and large specific surface area of the MgO particles are the key factor to achieve a sufficiently fast dissolution.

  1. A Combined MG II/CA II Survey of Stellar Magnetic Activity in the Solar Neighborhood

    NASA Technical Reports Server (NTRS)

    Wicklund, B. M.; Donahue, R. A.; Dobson, A. K.; Baliunas, Sallie L.

    1997-01-01

    We use nearly contemporaneus low-resolution IUE observations of Mg II h + k emission and Mount Wilson Observatory Ca II H + K S indices for 33 pairs of observations of lower main sequence stars to formulate a relationship that will permit accurate predictions of S values as a function of (B - V) color and Mg II h + k flux. The resulting relationship is useful because it will extend the set of solar neighborhood stars for which a uniform estimate of chromospheric activity is available to include stars that are not observable from Mount Wilson as well as providing additional estimates of activity levels for stars that are on the Mount Wilson HK Project observing list.

  2. Structure and mechanical characterization of Mg-Nd-Zn alloys prepared by different processes

    NASA Astrophysics Data System (ADS)

    Dvorský, D.; Kubásek, J.; Vojtěch, D.; Voňavková, I.; Veselý, M.; Čavojský, M.

    2017-02-01

    Magnesium alloys containing about 3 wt. % of Nd and 0.5 wt. % of Zn are considered as promising materials for application in transport and medical industry. Properly treated materials can reach ultimate tensile strength (UTS) higher than 300 MPa. Also the corrosion resistance of these alloys is superior to many other magnesium-based materials. Present work is focused on the preparation of Mg-3Nd-0.5Zn magnesium alloy by classical casting and subsequent thermal treatment. As-cast material was extruded at 400 °C, with extrusion ratio equal to 16 and velocity of 0.2 mm/s. The effect of thermal treatment and also strong plastic deformation during extrusion on final structure conditions and mechanical properties is specified. Present results confirm significant improvement of tensile yield strength (TYS) and UTS after extrusion process as a consequence of fine-grained structure combined with precipitation strengthening. Beside, texture strengthening in the direction parallel to the extrusion has been observed too.

  3. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca.

    PubMed

    Wang, Bo-Shian; Lee, Chih-Ping; Ho, Tung-Yuan

    2014-10-01

    A fully automated high pressure pretreatment system with Nobias Chelate-PA1 resin (PA1) was developed for trace metal determination by ICP-MS in natural waters. By varying the concentrations of Mg and Ca to mimic the concentrations in the eluate obtained by PA1 or iminodiacetate type resins, the overall analytical performance of the system was assessed for the determination of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Cd, Ag, Pb and REE. Comparing with the low mM level Mg and Ca (both ranging from 1 to 4mM) eluted by iminodiacetate type resins, the eluate obtained by PA1 contains sub-μM level Mg and Ca, which remarkably decrease matrix effect in ICP-MS analysis and significantly improve the analytical performance. With recovery better than 90% for most the trace metals examined, the accuracy was further verified through the analysis of five natural water reference materials with salinity spanning from 0 to 35‰. We have successfully applied the pretreatment system to determine trace metals in the seawater samples collected in the Western Philippine Sea through Taiwan GEOTRACES cruise. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analisis.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Wildland fires have important implications in ecosystems dynamic. Their effects depends on many biophysical components, mainly burned specie, ecosystem affected, amount and spatial distribution of the fuel, relative humidity, slope, aspect and time of residence. These parameters are heterogenic across the landscape, producing a complex mosaic of severities. Wildland fires have a heterogenic impact on ecosystems due their diverse biophysical features. It is widely known that fire impacts can change rapidly even in short distances, producing at microplot scale highly spatial variation. Also after a fire, the most visible thing is ash and his physical and chemical properties are of main importance because here reside the majority of the available nutrients available to the plants. Considering this idea, is of major importance, study their characteristics in order to observe the type and amount of elements available to plants. This study is focused on the study of the spatial variability of two nutrients essential to plant growth, Ca2+ and Mg2+, released from ash after a wildfire at microplot scale. The impacts of fire are highly variable even small distances. This creates many problems at the hour of map the effects of fire in the release of the studied elements. Hence is of major priority identify the less biased interpolation method in order to predict with great accuracy the variable in study. The aim of this study is map the effects of wildfire on the referred elements released from ash at microplot scale, testing several interpolation methods. 16 interpolation techniques were tested, Inverse Distance to a Weight (IDW), with the with the weights of 1,2, 3, 4 and 5, Local Polynomial, with the power of 1 (LP1) and 2 (LP2), Polynomial Regression (PR), Radial Basis Functions, especially, Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (MTQ), and Thin Plate Spline (TPS). Also geostatistical methods were

  5. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering

    PubMed Central

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-01-01

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on–off current ratio of 105, subthreshold swing of 0.8 V/decade, and mobility of 5 cm2/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of −5 V under 290 nm illumination. PMID:28772487

  6. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering.

    PubMed

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-02-04

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on-off current ratio of 10⁵, subthreshold swing of 0.8 V/decade, and mobility of 5 cm²/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 10⁵ at a gate bias of -5 V under 290 nm illumination.

  7. Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.

    PubMed

    Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng

    2012-08-01

    An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.

  8. Research and Development of High-Strength of Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Vakhromov, R. O.; Antipov, V. V.; Tkachenko, E. A.

    The paper is focused on high-strength alloys (UTS=600-650 MPa, specific strength (UTS/density) 220-230 kN•m/kg) which will allow one to retain aluminum's predominant position during the next 15-20 years as applied in advanced aircraft primary structures. Parameters of microstructure (dispersoids, precipitates, degree of recrystallisation, grain size) and properties of semiproducts were studied in dependence on content of base alloying elements in chemical compositions of alloys (total sum of Zn+Mg+Cu — higher than 10 % mass). Contribution of minor additions (Zr, Sc, Ag) to strengthening and creation of improved combination of service properties was investigated. Evolution of phase composition and properties was studied as a dependence of different aging treatments.

  9. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE PAGES

    Rossouw, David; Fu, Dong; Leonard, Donovan N.; ...

    2017-02-15

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  10. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    SciTech Connect

    Rossouw, David; Fu, Dong; Leonard, Donovan N.

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  11. Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad.

    PubMed Central

    Lamb, G D; Stephenson, D G

    1991-01-01

    1. The effect of myoplasmic Mg2+ on Ca2+ release was examined in mechanically skinned skeletal muscle fibres, in which the normal voltage-sensor control of Ca2+ release is preserved. The voltage sensors could be activated by depolarizing the transverse tubular (T-) system by lowering the [K+] in the bathing solution. 2. Fibres spontaneously contracted when the free [Mg2+] was decreased from 1 to 0.05 mM, with no depolarization or change of total ATP, [Ca2+] or pH (pCa 6.7, 50 microM-EGTA). After such a 'low-Mg2+ response' the sarcoplasmic reticulum (SR) was depleted of Ca2+ and neither depolarization nor caffeine (2 mM) could induce a response, unless the [Mg2+] was raised and the SR reloaded with Ca2+. Exposure to 0.05 mM-Mg2+ at low [Ca2+] (2 mM-free EGTA, pCa greater than 8.7) also induced Ca2+ release and depleted the SR. 3. The response to low [Mg2+] was unaffected by inactivation of the voltage sensors, but was completely blocked by 2 microM-Ruthenium Red indicating that it involved Ca2+ efflux through the normal Ca2+ release channels. 4. In the absence of ATP (and creatine phosphate), complete removal of Mg2+ (i.e. no added Mg2+ with 1 mM-EDTA) did not induce Ca2+ release. Depolarization in the absence of Mg2+ and ATP also did not induce Ca2+ release. 5. Depolarization in 10 mM-Mg2+ (pCa 6.7, 50 microM-EGTA, 8 mM-total ATP) did not produce any response. In the presence of 1 mM-EGTA to chelate most of the released Ca2+, depolarizations in 10 mM-Mg2+ did not noticeably deplete the SR of Ca2+, whereas a single depolarization in 1 mM-Mg2+ (and 1 mM-EGTA) resulted in marked depletion. Depolarization in the presence of D600 and 10 mM-Mg2+ produced use-dependent 'paralysis', indicating that depolarization in 10 mM-Mg2+ did indeed activate the voltage sensors. 6. Depolarization in the presence of 10 mM-Mg2+ and 25 microM-ryanodine neither interfered with the normal voltage control of Ca2+ release nor caused depletion of the Ca2+ in the SR even after returning to 1 mM-Mg

  12. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  13. Resistivity Changes Due to Precipitation Effects in Fibre Reinforced Mg-Al-Zn-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Kiehn, J.; Kainer, K. U.; Vostrý, P.; Stulíková, I.

    1997-05-01

    The change of electrical properties of alumina short fibre reinforced Mg-Al-Zn-Mn alloy AZ91D during isochronal annealing up to 300 °C is discussed. The Saffil® fibres were incorporated into the magnesium alloy by direct squeeze casting. The fibre distribution is random planar parallel to the flat faces of the dc four-point resistivity specimens machined from the solution treated castings. A sharp drop of resistivity between 140 and 260 °C is explained by the formation of incoherent -phase particles. Some practical recommendations concerning the use of alumina short fibre reinforced AZ91 alloy are made on the basis of the results obtained. Es werden die Änderungen der elektrischen Eigenschaften der aluminiumoxid-kurzfaserverstärkten Mg-Al-Zn-Mn Legierung AZ91D während isochroner Wärmebehandlungen bis 300 °C diskutiert. Das direkte Preßgießverfahren diente zur Herstellung der Saffil®-Faser Magnesium Verbundwerkstoffe. Die Proben zur Widerstandsmessung nach der Vier-Punkt Methode wurden durch spanende Bearbeitung aus den lösungsgeglühten Preßgußstücken herausgearbeitet, so daß sie regellose Faserverteilung in den Ebenen parallel zu den flachen Probenseiten aufwiesen. Ein starker Abfall des elektrischen Widerstands im Temperaturbereich zwischen 140 und 260 °C wird durch die Bildung inkohärenter β-Phase erklärt. Auf Grundlage der Ergebnisse werden einige Empfehlungen zur Anwendung der kurzfaserverstärkten Legierung AZ91 gegeben.

  14. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    PubMed Central

    2009-01-01

    The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433

  15. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

    NASA Astrophysics Data System (ADS)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp

    2015-09-01

    Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

  16. Selective recovery of uranium from Ca-Mg uranates by chlorination

    NASA Astrophysics Data System (ADS)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.; Bohé, Ana E.

    2017-07-01

    A chlorination process is proposed for the uranium extraction and separation using Calciumsbnd Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO4) as reaction product. The formation of U3O8 and MgU3O10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h-1 of chlorine and 10 hs of reaction at 700 °C being U3O8 the single uranium product obtained.

  17. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    PubMed

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dolomite-II: A new high pressure polymorph of CaMg(CO3)2

    NASA Astrophysics Data System (ADS)

    Santillan, J.; Williams, Q.; Knittle, E.

    2002-12-01

    We have measured the infrared spectra and x-ray diffraction of CaMg(CO3)2-dolomite to pressures of 50 GPa at 300 K. We observe both splittings and disappearances of x-ray diffraction peaks between 15 and 20 GPa, as well as new bands in the infrared spectrum of dolomite. The onset of the changes in both the x-ray and infrared data appears to be gradual, and thus kinetically impeded: this is consistent with previous shock results. The infrared and x-ray data are consistent with dolomite adopting a calcite-III-like structure. The net volume change associated with the transition based on a calcite-III monoclinic unit cell is ~4 percent. We calculate that the high pressure phase of dolomite has a volume virtually indistinguishable from that of magnesite plus aragonite. Similarly, an assemblage of the high pressure phase of dolomite and magnesium silicate perovskite has an essentially volume to a magnesite plus calcium silicate perovskite assemblage. Our results thus indicate that high-pressure polymorphism in dolomite could stabilize CaMg(CO3)2 in the deep mantle, and thus that high-pressure polymorphs of dolomite could represent the main reservoir for carbon storage within Earth's lower mantle.

  19. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  20. Structure and Stoichiometry of MgxZny in Hot-Dipped Zn-Mg-Al Coating Layer on Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jaenam; Lee, Chongsoo; Jin, Youngsool

    2018-03-01

    Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn-Mg-Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn-Mg-Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b = 0.5252 nm, c = 0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a = 0.8575 nm, b = 0.8874 nm, c = 0.8771 nm) in the equilibrium state.

  1. Multi-proxy Reconstructions of the Eastern Equatorial Pacific: Measuring Sr/Ca, Ba/Ca, and Li/Mg in Modern Corals Using ICP-OES

    NASA Astrophysics Data System (ADS)

    Cheung, A. H.; Cole, J. E.; Vetter, L.; Jimenez, G.; Thompson, D. M.; Tudhope, A. W.

    2017-12-01

    Sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) exhibits large variability on multiple timescales. These variations are often related to modes of climate variability that exert significant influence on global climate, such as the El Niño Southern Oscillation. However, the short length and sparsity of instrumental data in the EEP limits our ability to discern changes in this region. Geochemical signals in corals can help extend instrumental data further back in time. While δ18O and Sr/Ca are the most commonly analyzed geochemical tracers of SST in corals, they often have site-specific complications. Several alternatives (e.g., Li/Mg) have been proposed to overcome these challenges, but have yet to be applied to long climate records, in part due to the cost and time required to measure these elements. Here, we develop a new method that uses Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to analyze Li/Mg, Sr/Ca, and Ba/Ca ratios in coral aragonite. We apply this method to two Porites spp. corals collected from the northern Galapagos archipelago (Wolf and Darwin Islands). We specifically assess the fidelity of Li/Mg and Sr/Ca to reconstruct SST, and Ba/Ca to reconstruct upwelling conditions. Our results confirm that both Li/Mg and Sr/Ca track SST. We show that despite analytical noise, downcore reconstructions of Li/Mg have the potential to provide additional information about SST that is not present in reconstructions generated from Sr/Ca alone. Skeletal Ba/Ca shows little relationship with upwelling, perhaps because of the distance of our sites from the center of upwelling in the southern Galapagos. These results demonstrate the potential for analyzing Sr, Li, Ba, Mg simultaneously in corals with a cost- and time- efficient method, which may be applied to coral paleoclimate sites worldwide.

  2. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Environmental Controls on Mg/Ca in Neogloboquadrina incompta: A Core-Top Study From the Subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Morley, Audrey; Babila, Tali L.; Wright, James; Ninnemann, Ulysses; Kleiven, Kikki; Irvali, Nil; Rosenthal, Yair

    2017-12-01

    Magnesium/calcium paleothermometry is an established tool for reconstructing past surface and deep-sea temperatures. However, our understanding of nonthermal environmental controls on the uptake of Mg into the calcitic lattice of foraminiferal tests remains limited. Here we present a combined analysis of multiple trace element/calcium ratios and stable isotope (δ18O and δ13C) geochemistry on the subpolar planktonic foraminifera Neogloboquadrina incompta to assess the validity of Mg/Ca as a proxy for surface ocean temperature. We identify small size-specific offsets in Mg/Ca and δ18Oc values for N. incompta that are consistent with depth habitat migration patterns throughout the life cycle of this species. Additionally, an assessment of nonthermal controls on Mg/Ca values reveals that (1) the presence of volcanic ash, (2) the addition of high-Mg abiotic overgrowths, and (3) ambient seawater carbonate chemistry can have a significant impact on the Mg/Ca-to-temperature relationship. For carbonate-ion concentrations of values > 200 μmol kg-1, we find that temperature exerts the dominant control on Mg/Ca values, while at values < 200 μmol kg-1 the carbonate-ion concentration of seawater increases the uptake of Mg, thereby resulting in higher-than-expected Mg/Ca values at low temperatures. We propose two independent correction schemes to remove the effects of volcanic ash and carbonate-ion concentration on Mg/Ca values in N. incompta within the calibration data set. Applying the corrections improves the fidelity of past ocean temperature reconstructions.

  4. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed. © 2013.

  5. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  6. Segmental transport of Ca²⁺ and Mg²⁺ along the gastrointestinal tract.

    PubMed

    Lameris, Anke L; Nevalainen, Pasi I; Reijnen, Daphne; Simons, Ellen; Eygensteyn, Jelle; Monnens, Leo; Bindels, René J M; Hoenderop, Joost G J

    2015-02-01

    Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. Since dietary intake is the only source of minerals for the body, intestinal absorption is essential for normal homeostatic levels. The aim of this study was to characterize the absorption of Ca(2+) as well as Mg(2+) along the gastrointestinal tract at a molecular and functional level. In both humans and mice the Ca(2+) channel transient receptor potential vanilloid subtype 6 (TRPV6) is expressed in the proximal intestinal segments, whereas Mg(2+) channel transient receptor potential melastatin subtype 6 (TRPM6) is expressed in the distal parts of the intestine. A method was established to measure the rate of Mg(2+) absorption from the intestine in a time-dependent manner by use of (25)Mg(2+). In addition, local absorption of Ca(2+) and Mg(2+) in different segments of the intestine of mice was determined by using surgically implanted intestinal cannulas. By these methods, it was demonstrated that intestinal absorption of Mg(2+) is regulated by dietary needs in a vitamin D-independent manner. Also, it was shown that at low luminal concentrations, favoring transcellular absorption, Ca(2+) transport mainly takes place in the proximal segments of the intestine, whereas Mg(2+) absorption predominantly occurs in the distal part of the gastrointestinal tract. Vitamin D treatment of mice increased serum Mg(2+) levels and 24-h urinary Mg(2+) excretion, but not intestinal absorption of (25)Mg(2+). Segmental cannulation of the intestine and time-dependent absorption studies using (25)Mg(2+) provide new ways to study intestinal Mg(2+) absorption. Copyright © 2015 the American Physiological Society.

  7. A New Multi-Basin Calibration for Estimating Paleo-Temperature Using Mg/Ca from Tests of Neogloboquadrina dutertrei

    NASA Astrophysics Data System (ADS)

    Collins, M. S.; Hertzberg, J. E.; Mekik, F.; Schmidt, M. W.

    2017-12-01

    Based on the thermodynamics of solid-solution substitution of Mg for Ca in biogenic calcite, magnesium to calcium ratios in planktonic foraminifera have been proposed as a means by which variations in habitat water temperatures can be reconstructed. Doing this accurately has been a problem, however, as we demonstrate that various calibration equations provide disparate temperature estimates from the same Mg/Ca dataset. We examined both new and published data to derive a globally applicable temperature-Mg/Ca relationship and from this relationship to accurately predict habitat depth for Neogloboquadrina dutertrei - a deep chlorophyll maximum dweller. N. dutertrei samples collected from Atlantic core tops were analyzed for trace element compositions at Texas A&M University, and the measured Mg/Ca ratios were used to predict habitat temperatures using multiple pre-existing calibration equations. When combining Atlantic and previously published Pacific Mg/Ca datasets for N. dutertrei, a notable dissolution effect was evident. To overcome this issue, we used the G. menardii Fragmentation Index (MFI) to account for dissolution and generated a multi-basin temperature equation using multiple linear regression to predict habitat temperature. However, the correlations between Mg/Ca and temperature, as well as the calculated MFI percent dissolved, suggest that N. dutertrei Mg/Ca ratios are affected equally by both variables. While correcting for dissolution makes habitat depth estimation more accurate, the lack of a definitively strong correlation between Mg/Ca and temperature is likely an effect of variable habitat depth for this species because most calibration equations have assumed a uniform habitat depth for this taxon.

  8. Reproducibility of Clathromorphum compactum coralline algal Mg/Ca ratios and comparison to high-resolution sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Halfar, J.; Kronz, A.; Simon, K.; Adey, W. H.; Steneck, R. S.

    2018-01-01

    The potential of crustose coralline algae as high-resolution archives of past ocean variability in mid- to high-latitudes has only recently been recognized. Few comparisons of coralline algal proxies, such as temperature-dependent algal magnesium to calcium (Mg/Ca) ratios, with in situ-measured surface ocean data exist, even rarer are well replicated records from individual sites. We present Mg/Ca records from nine coralline algal specimens (Clathromorphum compactum) from a single site in the Gulf of Maine, North Atlantic. Sections from algal mounds were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding individual Mg/Ca records of up to 30 years in length. We first test intra- and intersample signal replication and show that algal Mg/Ca ratios are reproducible along several transects within individual sample specimens and between different samples from the same study site. In addition, LA-ICP-MS-derived Mg/Ca ratios are compared to electron microprobe (EMP) analyzed data on the longest-lived specimens and were found to be statistically commensurable. Second, we evaluate whether relationships between algal-based SST reconstructions and in situ temperature data can be improved by averaging Mg/Ca records from multiple algal specimens (intersample averages). We found that intersample averages yield stronger relationships to sea surface temperature (SST) data than Mg/Ca records derived from individual samples alone. Thus, Mg/Ca-based paleotemperature reconstructions from coralline algae can benefit from using multiple samples per site, and can expand temperature proxy precision from seasonal to monthly.

  9. Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er

    NASA Astrophysics Data System (ADS)

    Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.

    2017-02-01

    Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.

  10. Microstructure Evolution in Mg-Zn-Zr-Gd Biodegradable Alloy: The Decisive Bridge Between Extrusion Temperature and Performance

    PubMed Central

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-01-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments. PMID:29616216

  11. Microstructure evolution in Mg-Zn-Zr-Gd biodegradable alloy: the decisive bridge between extrusion temperature and performance

    NASA Astrophysics Data System (ADS)

    Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko

    2018-03-01

    Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330-350 C of the extrusion temperature, and decreases within 350-370 C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350 C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350 C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments.

  12. Melting phase relations in the MgSiO3-CaSiO3 system at 24 GPa

    NASA Astrophysics Data System (ADS)

    Nomura, Ryuichi; Zhou, Youmo; Irifune, Tetsuo

    2017-12-01

    The Earth's lower mantle is composed of bridgmanite, ferropericlase, and CaSiO3-rich perovskite. The melting phase relations between each component are key to understanding the melting of the Earth's lower mantle and the crystallization of the deep magma ocean. In this study, melting phase relations in the MgSiO3-CaSiO3 system were investigated at 24 GPa using a multi-anvil apparatus. The eutectic composition is (Mg,Ca)SiO3 with 81-86 mol% MgSiO3. The solidus temperature is 2600-2620 K. The solubility of CaSiO3 component into bridgmanite increases with temperature, reaching a maximum of 3-6 mol% at the solidus, and then decreases with temperature. The same trend was observed for the solubility of MgSiO3 component into CaSiO3-rich perovskite, with a maximum of 14-16 mol% at the solidus. The asymmetric regular solutions between bridgmanite and CaSiO3-rich perovskite and between MgSiO3 and CaSiO3 liquid components well reproduce the melting phase relations constrained experimentally. [Figure not available: see fulltext.

  13. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  14. (Cd,Zn,Mg)Te-based microcavity on MgTe sacrificial buffer: Growth, lift-off, and transmission studies of polaritons

    NASA Astrophysics Data System (ADS)

    Seredyński, B.; Król, M.; Starzyk, P.; Mirek, R.; Ściesiek, M.; Sobczak, K.; Borysiuk, J.; Stephan, D.; Rousset, J.-G.; Szczytko, J.; Pietka, B.; Pacuski, W.

    2018-04-01

    Opaque substrates precluded, so far, transmission studies of II-VI semiconductor microcavities. This work presents the design and molecular beam epitaxy growth of semimagnetic (Cd,Zn,Mn)Te quantum wells embedded into a (Cd,Zn,Mg)Te-based microcavity, which can be easily separated from the GaAs substrate. Our lift-off process relies on the use of a MgTe sacrificial layer which stratifies in contact with water. This allowed us to achieve a II-VI microcavity prepared for transmission measurements. We evidence the strong light-matter coupling regime using photoluminescence, reflectivity, and transmission measurements at the same spot on the sample. By comparing a series of reflectance spectra before and after lift-off, we prove that the microcavity quality remains high. Thanks to Mn content in quantum wells we show the giant Zeeman splitting of semimagnetic exciton-polaritons in our transmitting structure.

  15. Differential response of corals to regional mass-warming events as evident from skeletal Sr/Ca and Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Clarke, Harry; D'Olivo, Juan Pablo; Falter, James; Zinke, Jens; Lowe, Ryan; McCulloch, Malcolm

    2017-05-01

    During the summer of 2010/2011, a regional marine heat wave resulted in coral bleaching of variable severity along much of the western coastline of Australia. At Ningaloo Reef, a 300 km long fringing reef system and World Heritage site, highly contrasting coral bleaching was observed between two morphologically distinct nearshore reef communities located on either side of the Ningaloo Peninsula: Tantabiddi (˜20% bleaching) and Bundegi (˜90% bleaching). For this study, we collected coral cores (Porites sp.) from Tantabiddi and Bundegi reef sites to assess the response of the Sr/Ca temperature proxy and Mg/Ca ratios to the variable levels of thermal stress imposed at these two sites during the 2010/2011 warming event. We found that there was an anomalous increase in Sr/Ca and decrease in Mg/Ca ratios in the Bundegi record that was coincident with the timing of severe coral bleaching at the site, while no significant changes were observed in the Tantabiddi record. We show that the change in the relationship of Sr/Ca and Mg/Ca ratios with temperature at Bundegi during the 2010/2011 event reflects changes in related coral "vital" processes during periods of environmental stress. These changes were found to be consistent with a reduction in active transport of Ca2+ to the site of calcification leading to a reduction in calcification rates and reduced Rayleigh fractionation of incorporated trace elements.

  16. Leachable Li and Mg Evidence for Hydrological Changes in the Mono Basin, CA, USA

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hemming, N.; Zimmerman, S. R.; Hemming, S. R.

    2007-12-01

    Hydrology in closed basin lakes, such as Mono Lake of the US western Great Basin, is sensitive to regional climate changes. Lake level history of the Mono Basin has been put into a precise age framework using the paleomagnetic intensity of the Wilson Creek Formation sediments to North Atlantic records, and accordingly Greenland's GISP2 oxygen isotope record (Zimmerman et al., 2006, EPSL, v. 252, pp. 94- 106). This allows correlation of the lake level indicators and Greenland climate at high resolution. The physical evidence for lake level, based on the association of strata in near shore terraces, can be confidently correlated to proxies of lake chemistry preserved in the strata. We have tested the application of leachable Li, following the procedure developed by Bischoff et al. (1997, Quaternary Research, v. 48, pp. 313-325) for Owens Lake. At Owens Lake there is a positive correlation between salinity based on diatoms with leachable Li concentrations. In contrast, at Mono Lake the leachable Li concentration follows the bulk carbonate concentration, generally correlating low lake levels (high salinity) with low leachable Li concentrations. Our preferred explanation for both the carbonate and leachable Li concentrations is based on the fact that the Mono Basin rarely overflows, and therefore precipitation of minerals during evaporation leads to chemical divides (Garrels and Mackenzie., 1967, in "Equilibrium Concepts in Natural Water Systems", W. Stumm, Ed., pp. 222-242). As Li behaves conservatively compared to elements like Ca2+ and Mg2+, it might be expected that the leachable Li would be higher when lake level is lower. However, the host for the Li appears to be Mg-smectite. Therefore, the concentration of leachable Li in the sediment is controlled by the concentration of Mg-smectite, as well as the Li/Mg of the water from which the Mg- smectite precipitated and the Kd of the Li into the Mg-smectite. We are studying the Li and Mg systematics of these samples in

  17. Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon

    NASA Astrophysics Data System (ADS)

    Karmakar, Supriya; Suarez, Ernesto; Jain, Faquir C.

    2011-08-01

    This paper presents the three-state behavior of quantum dot gate field-effect transistors (FETs). GeO x -cladded Ge quantum dots (QDs) are site-specifically self-assembled over lattice-matched ZnS-ZnMgS high- κ gate insulator layers grown by metalorganic chemical vapor deposition (MOCVD) on silicon substrates. A model of three-state behavior manifested in the transfer characteristics due to the quantum dot gate is also presented. The model is based on the transfer of carriers from the inversion channel to two layers of cladded GeO x -Ge quantum dots.

  18. Magnetic, hyperthermic and structural properties of zn substituted CaFe2O4 powders

    NASA Astrophysics Data System (ADS)

    Kheradmand, Abbas; Vahidi, Omid; Masoudpanah, S. M.

    2018-03-01

    In the present study, we have synthesized single phase Ca1 - x Zn x Fe2O4 powders by hydrothermal method. The cation distribution between the tetrahedral and octahedral sites in the spinel structure and the magnetic properties as a function of the zinc substitution have been investigated by X-ray diffraction (XRD), infrared spectroscopy and vibrating sample magnetometer methods. The obtained XRD pattern indicated that the synthesized particles had single phase cubic spinel structure with no impurity. The magnetic measurements showed that the saturation magnetization increased from 83 to 98 emu/g with the addition of zinc due to the decrease of inversity. The particle size observed by electron microscopy decreased from 1.38 to 0.97 µm with the increase of zinc addition. The Ca0.7Zn0.3Fe2O4 powders exhibited appropriate heating capability for hyperthermia applications with the maximum AC heating temperature of 20 °C and specific loss power of 9.29 W/g.

  19. Enhanced bioactivity of Mg-Nd-Zn-Zr alloy achieved with nanoscale MgF2 surface for vascular stent application.

    PubMed

    Mao, Lin; Shen, Li; Chen, Jiahui; Wu, Yu; Kwak, Minsuk; Lu, Yao; Xue, Qiong; Pei, Jia; Zhang, Lei; Yuan, Guangyin; Fan, Rong; Ge, Junbo; Ding, Wenjiang

    2015-03-11

    Magnesium (Mg) alloys have revolutionized the application of temporary load-bearing implants as they meet both engineering and medical requirements. However, rapid degradation of Mg alloys under physiological conditions remains the major obstacle hindering the wider use of Mg-based implants. Here we developed a simple method of preparing a nanoscale MgF2 film on Mg-Nd-Zn-Zr (denoted as JDBM) alloy, aiming to reduce the corrosion rate as well as improve the biological response. The corrosion rate of JDBM alloy exposed to artificial plasma is reduced by ∼20% from 0.337 ± 0.021 to 0.269 ± 0.043 mm·y(-1) due to the protective effect of the MgF2 film with a uniform and dense physical structure. The in vitro cytocompatibility test of MgF2-coated JDBM using human umbilical vein endothelial cells indicates enhanced viability, growth, and proliferation as compared to the naked substrate, and the MgF2 film with a nanoscale flakelike feature of ∼200-300 nm presents a much more favorable environment for endothelial cell adhesion, proliferation, and alignment. Furthermore, the animal experiment via implantation of MgF2-coated JDBM stent to rabbit abdominal aorta confirms excellent tissue compatibility of the well re-endothelialized stent with no sign of thrombogenesis and restenosis in the stented vessel.

  20. Mg2+ activates the ryanodine receptor type 2 (RyR2) at intermediate Ca2+ concentrations.

    PubMed

    Chugun, Akihito; Sato, Osamu; Takeshima, Hiroshi; Ogawa, Yasuo

    2007-01-01

    To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca(2+)-dependent [(3)H]ryanodine binding, a biochemical measure of Ca(2+)-induced Ca(2+) release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca(2+) dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [(3)H]ryanodine binding initially increased as [Ca(2+)] increased, with a plateau in the range of 10-100 microM Ca(2+), and thereafter further increased to an apparent peak around 1 mM Ca(2+), followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3-1 mM Mg(2+) unexpectedly increased the binding two- to threefold and enhanced the affinity for [(3)H]ryanodine at 10-100 microM Ca(2+), resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg(2+). Ca(2+) could be a substitute for Mg(2+). Mg(2+) also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg(2+) on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg(2+) concentration.

  1. In-situ grown MgO-ZnO ceramic coating with high thermal emittance on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong

    2017-07-01

    Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.

  2. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  3. Ultraviolet photodetector based on Mg{sub x}Zn{sub 1-x}O films using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Ching-Ting

    2016-01-15

    A plasma-enhanced atomic layer deposition (PE-ALD) system was used to deposit magnesium zinc oxide (Mg{sub x}Zn{sub 1−x}O) films with various Mg content (x). The Mg{sub x}Zn{sub 1-x}O films were applied to metal–semiconductor–metal ultraviolet (UV) photodetectors (MSM-UPDs) as an active layer. The Mg content in the Mg{sub x}Zn{sub 1-x}O films was modulated by adjusting the ZnO–MgO cycle ratios to 15:1, 12:1, and 9:1. Correspondingly, the Mg content in the Mg{sub x}Zn{sub 1-x}O films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the Mg{sub x}Zn{sub 1-x}O films increased from 3.56 to 3.66 eV withmore » an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was also shifted from 350 to 340 nm. The UV-visible rejection ratios of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were higher than 3 orders of magnitude. In addition, excellent detectivity and noise equivalent power for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were observed at a bias voltage of 5 V. The high performance of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was achieved by PE-ALD at a low temperature.« less

  4. Preparation of low cost n-ZnO/MgO/p-Si heterojunction photodetector by laser ablation in liquid and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Khashan, Khawla S.; Jawad, Muslim F.; Mousa, Ali M.; Mahdi, Farah

    2018-05-01

    In this study, low cost ZnO/Si and ZnO/MgO/Si heterojunction (HJ) photodetectors were fabricated using laser ablation and spray Pyrolysis techniques. MgO nanofibers were synthesized by laser ablation of Mg target in distilled water. Also; the ZnO films were prepared by spray pyrolysis technique. The optical and structural properties of nanostructured MgO were investigated using XRD, SEM and FT-IR. The XRD results showed that the MgO was polycrystalline with cubic structure. SEM investigation confirmed the formation of MgO nanofibers and sub-microparticles. The optical energy gaps of MgO and ZnO were calculated and found to be 5.7 eV and 3.3 eV, respectively. For the electrical properties; responsivity, quantum efficiency, specific detectivity, and speed of response of the photodetector were measured and found to enhance after the insertion of nanostructured MgO film. The Photoresponse results at 3 V reverse bias showed that the maximum responsivity of ZnO/Si and ZnO/MgO/Si photodetectors were 185 and 331 mAW‑1 at 500 nm, respectively. The specific detectivity of ZnO/MgO/Si Photodetector was higher than that of ZnO/Si.

  5. Broad range tuning of structural and optical properties of Zn x Mg1-x O nanostructures grown by vapor transport method

    NASA Astrophysics Data System (ADS)

    Vanjaria, Jignesh V.; Azhar, Ebraheem Ali; Yu, Hongbin

    2016-11-01

    One-dimensional (1D) Zn x Mg1-x O nanomaterials have drawn global attention due to their remarkable chemical and physical properties, and their diverse current and future technological applications. In this work, 1D ZnMgO nanostructures with different magnesium concentrations and different morphologies were grown directly on zinc oxide-coated silicon substrates by thermal evaporation of zinc oxide, magnesium boride and graphite powders. Highly well-defined Mg-rich ZnMgO nanorods with a rock salt structure and Zn-rich ZnMgO nanostructures with a wurtzite structure have been deposited individually by careful optimization of the source mixture and process parameters. Structural and optical properties of the deposited products were studied by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction, and Raman spectroscopy. Cathodoluminescence measurements demonstrate strong dominant peaks at 3.3 eV in Mg poor ZnMgO nanostructures and 4.8 eV in Mg rich nanostructures implying that the ZnMgO nanostructures can be used for the fabrication of deep UV optoelectronic devices. A mechanism for the formation and achieved diverse morphology of the ZnMgO nanostructures was proposed based on the characterization results.

  6. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  7. Mg/Ca-temperature calibration and flux variability of Globigerinoides ruber based on a bi-weekly resolved sediment trap

    NASA Astrophysics Data System (ADS)

    Monteagudo, M. M.; Weldeab, S.; Lea, D. W.; Karl, D. M.; Rosenthal, Y.

    2016-12-01

    Planktonic foraminiferal Mg/Ca is one of the most widely-applied proxies for sea surface temperature reconstructions. Current calibrations yield a temperature sensitivity of 9.0 ± 1.0% Mg/Ca per °C (1-2). According to culture studies (3-4), salinity may also influence Mg/Ca ratios by 3.3 ± 1.7% per salinity unit (4), though this effect has not been verified by a field-based study. Paired Mg/Ca-δ18O and faunal fluxes of Globigerinoides ruber (sensu lato) were measured from sediment trap samples at the Hawaii Ocean Time Series. Within the habitat depth range of G. ruber (0-50 m), seasonal temperature and salinity vary by 4 °C and 0.7 practical salinity units, respectively. Multivariate regression reveals that salinity influence is not significant at this site, allowing us to isolate and quantify the temperature influence on Mg/Ca using spatially and temporally highly-resolved temperature measurements. Our study shows an exponential Mg/Ca-temperature relationship of: Mg/Ca [mmol/mol] = (0.97 ± 0.39) exp ((0.063 ± 0.016)*T[°C]) (RMSE=0.32). The results of our faunal and geochemical analyses highlight two key findings. First, foraminiferal assemblage data reveals that the mean annual flux of G. ruber (13 shells/m2/day) is strongly skewed by flux during the summer (up to 63 shells/m2/day) with potential implications for reconstructing annual SST. Second, our results indicate a temperature sensitivity of 6.3 ± 1.6% Mg/Ca per °C, suggesting that the temperature influence on Mg/Ca may be lower than the canonical 9 ± 1 % Mg/Ca per °C value and is sensitive to the choice of habitat depth. 1. Anand et al., Paleoceanography, 18, 1050 (2003); 2. Dekens et al., G3, 3, 1022 (2002); 3. Hönisch et al., GCA, 121, 196-213 (2013); 4. Kisakürek et al., EPSL, 273, 260-269 (2008).

  8. Calmodulin antagonists have differential effects on Ca/sup 2 +/ uptake, (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase and Ca/sup 2 +/ release in hepatic endoplasmic reticulum

    SciTech Connect

    Delfert, D.M.; Koepnick, S.; McDonald, J.M.

    1986-05-01

    The effect of calmodulin (CaM) antagonists on Ca/sup 2 +/ handling by hepatic endoplasmic reticulum (ER) was studied. Ca/sup 2 +/ uptake by saponin-permeabilized hepatocytes or isolated ER was measured using /sup 45/Ca/sup 2 +/ in a filtration assay in the presence of 0.09 ..mu..M free (Ca/sup 2 +/) and inhibitors of mitochondrial Ca/sup 2 +/ transport. Each CaM-antagonist (chlorpromazine, CPZ; trifluoperazine, TFP; calmidazolium, W7 and 48/80) showed a dose-dependent inhibition of Ca/sup 2 +/ accumulation in permeabilized hepatocytes. Both the initial rate and steady state values for Ca/sup 2 +/ uptake were reduced by 50% with 40 ..mu..M calmidazolium,more » 100 ..mu..M TFP, 150..mu..M W7, 150 ..mu..M CPZ and 300 ..mu..M 48/80. Using isolated ER both calmidazolium (20 ..mu..M) and W7 (150 ..mu..M) inhibited the initial rate and steady state level of Ca/sup 2 +/ accumulation. At this concentration calmidazolium inhibited the initial rate of (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase activity, and enhanced Ca/sup 2 +/ release. In contrast, W7 had no effect on these parameters. These results suggest that the reduced level of Ca/sup 2 +/ uptake into ER vesicles in the presence of calmidazolium may result from inhibition of the (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase as well as induction of Ca/sup 2 +/ release, while W7 may act to uncouple Ca/sup 2 +/ transport from its (Ca/sup 2 +/ + Mg/sup 2 +/)-ATPase counterpart.« less

  9. Mechano-luminescence studies of nano ZnMgAl10O17:Eu phosphor under UV irradiation

    NASA Astrophysics Data System (ADS)

    Verma, Akshkumar; Verma, Ashish; Panda, Maheswar

    2018-05-01

    ZnMgAl10O17:Eu nano phosphors were prepared successfully, using the combustion route by employing urea as a fuel. The structural, and Morphological, properties were measured using x-ray diffraction (XRD) Scanning electron microscopy (SEM) transition electron microscopy. The BET surface area of sample were found to be of ˜13.92 m2/g. The ML (Mechano-luminescence) were measured to the home made instrument. The phosphor showed more strong and high ML intensity to the without UV irradiated material. Therefore ZnMgAl10O17:Eu2+ phosphor may use as a damage sensor and dosimetry material. The ML emission spectra of the Zn0.99MgAl10O17:Eu0.01 phosphor showed the characteristic Eu2+ emission peaks ˜453nm (blue) originating from the transitions 4f65d1→4f7, Therefore ZnMgAl10O17:Eu2+ phosphor may use as a blue phosphor material.

  10. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  11. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedMg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  12. Single-valley quantum Hall ferromagnet in a dilute Mg xZn 1-xO/ZnO strongly correlated two-dimensional electron system

    DOE PAGES

    Kozuka, Y.; Tsukazaki, A.; Maryenko, D.; ...

    2012-02-03

    We investigate the spin susceptibility (g*m*) of dilute two-dimensional (2D) electrons confined at the Mg xZn 1-xO/ZnO heterointerface. Magnetotransport measurements show a four-fold enhancement of g*m*, dominated by the increase in the Landé g-factor. The g-factor enhancement leads to a ferromagnetic instability of the electron gas as evidenced by sharp resistance spikes. At high magnetic field, the large g*m* leads to full spin polarization, where we found sudden increase in resistance around the filling factors of half-integer, accompanied by complete disappearance of fractional quantum Hall (QH) states. Along with its large effective mass and the high electron mobility, our resultmore » indicates that the ZnO 2D system is ideal for investigating the effect of electron correlations in the QH regime.« less

  13. The influence of HF treatment on corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ye, Xin-Yu; Chen, Min-Fang; You, Chen; Liu, De-Bao

    2010-06-01

    The samples made of a Mg-2.5wt.%Zn-0.5wt.%Zr alloy were immersed in the 20% hydrofluoric acid (HF) solution at room temperature for different time, with the aim of improving the properties of magnesium (Mg) alloy in applications as biomaterials. The corrosion resistance and in vitro biocompatibility of untreated and fluoride-coated samples were investigated. The results show that the optimum process is to immerse Mg alloys in the 20% HF solution for 6 h. After the immersion, a dense magnesium fluoride (MgF2) coating of 0.5 μm was synthesized on the surface of Mg-Zn-Zr alloy. Polarization tests recorded a reduction in the corrosion current density from 2.10 to 0.05 μA/cm2 due to the MgF2 protective coating. Immersion tests in the simulated body fluid (SBF) also reveal a much milder corrosion on the fluoride-coated samples, and its corrosion rate was calculated to be 0.05 mm/yr. Hemolysis test suggests that the conversion coated Mg alloy has no obvious hemolysis reaction. The hemolysis ratio (HR) of the samples decreases from 11.34% to 1.86% with the HF treatment, which meets the requirements of biomaterials (HR < 5%). The coculture of 3T3 fibroblasts with Mg alloy results in the adhesion and proliferation of cells on the surface of fluoride-coated samples. All the results show that the MgF2 conversion coating would markedly improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy.

  14. Rearrangements under confinement lead to increased binding energy of Synaptotagmin-1 with anionic membranes in Mg2+ and Ca2.

    PubMed

    Gruget, Clémence; Coleman, Jeff; Bello, Oscar; Krishnakumar, Shyam S; Perez, Eric; Rothman, James E; Pincet, Frederic; Donaldson, Stephen H

    2018-05-01

    Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca 2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca 2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 k B T in EGTA, ~10 k B T in Mg 2+ and ~18 k B T in Ca 2+ . Molecular rearrangements measured during confinement are more prevalent in Ca 2+ and Mg 2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca 2+ -activation process in synaptic transmission. © 2018 Federation of European Biochemical Societies.

  15. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region

    USGS Publications Warehouse

    Takesue, R.K.; VanGeen, A.

    2004-01-01

    This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ???1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell ??13C values (<-0.5???) marked spring and summer coastal upwelling events. The Mg contents of P. staminea midden shells dated to ???3 ka and ???9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated ??13C values in the ???3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon. Copyright ?? 2004 Elsevier Ltd.

  16. Selenium Speciation in the Fountain Creek Watershed (Colorado, USA) Correlates with Water Hardness, Ca and Mg Levels.

    PubMed

    Carsella, James S; Sánchez-Lombardo, Irma; Bonetti, Sandra J; Crans, Debbie C

    2017-04-30

    The environmental levels of selenium (Se) are regulated and strictly enforced by the Environmental Protection Agency (EPA) because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries-Upper Fountain Creek, Monument Creek and Lower Fountain Creek-located in the Fountain Creek Watershed (Colorado, USA). There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca 2+ , Mg 2+ , SeO₄ 2- , SeO₃ 2- and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO₄. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca 2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg 2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg 2+ the Ca 2+ would be significantly reduced. The major role of Mg 2+ is thus to raise the Ca 2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca 2+ levels.

  17. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  18. Sr/Ca and Mg/Ca in Glycymeris glycymeris (Bivalvia) shells from the Iberian upwelling system: Ontogeny and environmental control

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Richardson, Christopher; Chenery, Simon; Monteiro, Carlos; Butler, Paul; Reynolds, David; Scourse, James; Gaspar, Miguel

    2017-04-01

    Bivalve shells have a great potential as high-resolution geochemical proxy archives of marine environmental conditions. In addition, sclerochronology of long-lived bivalve species (e.g. Arctica islandica) provides a timeline of absolutely dated shell material for geochemical analysis that can extend into the past beyond the lifetime of single individuals through the use of replicated crossmatched centennial to millennial chronologies. However, the interpretation of such records remains extremely challenging and complex, with multiple environmental and biological processes affecting element incorporation in the shell (e.g. crystal fabrics, organic matrix, biomineralization mechanisms and physiological processes). As a result, the effective use of bivalve shell elemental/Ca ratios as palaeoenvironmental proxies has been limited, often to species-specific applications or applications restricted to particular environmental settings. The dog-cockle, Glycymeris glycymeris, is a relatively long-lived bivalve (up to 200 years) that occurs in coarse-grained subtidal sediments of coastal shelf seas of Europe and North West Africa. Glycymeris glycymeris shells provide a valuable, albeit not fully explored, archive to reconstruct past environmental variability in an area lacking sclerochronological studies due to the rarity of long-lived bivalves and lack of coral reefs. In this study, we evaluate the potential of Sr/Ca and Mg/Ca ratios in G. glycymeris shells as geochemical proxies of upwelling conditions in the Iberian Upwelling System, the northern section of the Canary Current Eastern Boundary Upwelling System. Sr/Ca and Mg/Ca generally co-varied significantly and a clear ontogenetic, non-environmental related change in Sr/Ca and Ba/Ca variability was observed. High Sr/Ca and Mg/Ca ratios in older shells (> 10 years old) were found to be associated with the occurrence of growth lines deposited during the winter reduction in shell growth. Nevertheless, Sr/Ca and Mg/Ca

  19. Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg-Zn chromites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-05-01

    Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.

  20. Dynamic room temperature precipitation during cyclic deformation of an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Hutchinson, C. R.; de Geuser, F.; Deschamps, A.

    The effect of pre-straining on a precipitation heat treatment is a well-chartered area and is relevant to a number of Al alloy manufacturing processes. When straining and precipitation occur concurrently, the situation is less clear. This may arise during creep, fatigue or elevated temperature forming operations. Straining introduces dislocations and strain-induced vacancies that may enhance nucleation and growth processes but the dislocations may also shear and/or cause precipitate dissolution. This study reports a systematic characterization of precipitation during room temperature cyclic deformation of the AA7050 (Al-Zn-Mg-Cu) alloy. The mechanical response is monitored using plastic strain controlled cyclic deformation tests and the precipitation state is characterized using small angle x-ray scattering. It is shown that the precipitate volume fraction increases with the number of deformation cycles and is well correlated with the hardening increment observed but the mean precipitate radii remains relatively constant during cycling at 4-5A.

  1. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    PubMed Central

    Lei, Qian; Xiao, Zhu; Wang, Mingpu

    2017-01-01

    Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C), while the precipitation nucleation was scarce in the low-temperature zone (<250 °C) and in the high-temperature zone (>400 °C). Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C), and corresponding time-temperature-property (TTP) curves of the studied alloy have been established. PMID:28925964

  2. Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg)

    NASA Astrophysics Data System (ADS)

    Politaev, V. V.; Nalbandyan, V. B.; Petrenko, A. A.; Shukaev, I. L.; Volotchaev, V. A.; Medvedev, B. S.

    2010-03-01

    A family of α-NaFeO 2-type oxides Na xM (1+x)/3Sb (2-x)/3O 2 ( M=Ni, Co, Zn, Mg; x≈0.8 or 0.9) has been prepared by solid state reactions and characterized by powder XRD. At x=1, ordering occurs with tripling the unit cells and formula units. The powder patterns for Na 3M2SbO 6 ( M=Ni, Co) comply with both trigonal P3 112 cell and monoclinic C2/ m cell. The Ni compound exhibits also a series of extremely weak reflections ( I<0.3%) that need doubling of the c axis, and the final cell is C2/ c, a=5.3048(3), b=9.1879(4), c=10.8356(7), β=99.390(5). These ambiguities are explained by stacking faults. The compounds absorb atmospheric moisture with c-axis expansion up to 29%. A delafossite-related superlattice Ag 3Co 2SbO 6 has been prepared by ion exchange and refined: P3 112, a=5.3842(2), c=18.6613(10). Ionic conductivity of the Na 0.8Ni 0.6Sb 0.4O 2 ceramics, 0.4 S/m at 300 °C, is greater than reported previously, presumably owing to the grain orientation produced by hot pressing.

  3. Effect of differential speed rolling on the texture evolution of Mg-4Zn-1Gd alloy

    NASA Astrophysics Data System (ADS)

    Shim, Myeong-Shik; Suh, Byeong-Chan; Kim, Jae H.; Kim, Nack J.

    2015-05-01

    The microstructural and texture evolution during differential speed rolling process of Mg 4Zn-1Gd (wt%) alloy have been investigated by means of electron backscatter diffraction observation and texture analysis. The angular distribution of basal poles are inclined about 10° from the normal direction towards the rolling direction and the maximum intensities of basal poles are decreased, compared to the conventional rolling process. Such an inclination of angular distribution of basal poles can be induced by the operation of shear stress along the rolling direction, as much as one quarter of tensile stress along the RD and one quarter of compressive stress along the ND. When the reduction ratios in differential speed rolling increase, there is no difference in texture evolution although there is a significant change in activated twinning systems. In addition, the engineering stresses after differential speed rolling are also similar to that after conventional rolling process, while ductility and stretch formability in the former are worse than those in the latter.

  4. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  5. Avalanche solar blind photodetectors based on single crystalline Mg0.47Zn0.53O thin film on Ga:ZnO substrate

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Jingtao; Chen, Zuxin; Liu, Huiqiang; Ma, Xinzhou; Li, Qiuguo; Chu, Guang; Chu, Sheng

    2018-05-01

    Single crystalline wurtzite Mg0.47Zn0.53O films were grown on Ga:ZnO substrates by pulse laser deposition. The band gap of the films was measured to be 4.43 eV. Vertical devices were fabricated for solar blind photodetection, realizing a high responsivity of 2 A W‑1 at 278 nm and  ‑5 V bias as well as a rejection ratio (R 278 nm/R 350 nm) of over 6  ×  103. A cut-off wavelength of 286 nm and a response time of 77 ms were also achieved. Besides, the devices showed stable response without degeneration under repeating illumination. The high performance of this photodetector was analyzed and attributed to the avalanche effect from high quality Mg0.47Zn0.53O/Ga:ZnO heterojunction at reverse bias. The avalanche gain was calculated to be 14.5 at  ‑10 V.

  6. Activation of an intense near band edge emission from ZnTe/ZnMgTe core/shell nanowires grown on silicon.

    PubMed

    Wojnar, P; Szymura, M; Zaleszczyk, W; Kłopotowski, L; Janik, E; Wiater, M; Baczewski, L T; Kret, S; Karczewski, G; Kossut, J; Wojtowicz, T

    2013-09-13

    The absence of luminescence in the near band edge energy region of Te-anion based semiconductor nanowires grown by gold catalyst assisted molecular beam epitaxy has strongly limited their applications in the field of photonics. In this paper, an enhancement of the near band edge emission intensity from ZnTe/ZnMgTe core/shell nanowires grown on Si substrates is reported. A special role of the use of Si substrates instead of GaAs substrates is emphasized, which results in an increase of the near band edge emission intensity by at least one order of magnitude accompanied by a simultaneous reduction of the defect related luminescence. A possible explanation of this effect relies on the presence of Ga-related deep level defects in structures grown on GaAs substrates, which are absent when Si substrates are used. Monochromatic mapping of the cathodoluminescence clearly confirms that the observed emission originates, indeed, from the ZnTe/ZnMgTe core/shell nanowires, whereas individual objects are studied by means of microphotoluminescence.

  7. New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys

    NASA Astrophysics Data System (ADS)

    Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.

    2018-06-01

    Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.

  8. Crystallization kinetics of bioactive glasses in the ZnO-Na2O-CaO-SiO2 system.

    PubMed

    Malavasi, Gianluca; Lusvardi, Gigliola; Pedone, Alfonso; Menziani, Maria Cristina; Dappiaggi, Monica; Gualtieri, Alessandro; Menabue, Ledi

    2007-08-30

    The crystallization kinetics of Na(2)O.CaO.2SiO(2) (x = 0) and 0.68ZnO.Na(2)O.CaO.2SiO(2) (x = 0.68, where x is the ZnO stoichiometric coefficient in the glass formula) bioactive glasses have been studied using both nonisothermal and isothermal methods. The results obtained from isothermal XRPD analyses have showed that the first glass crystallizes into the isochemical Na(2)CaSi(2)O(6) phase, whereas the Na(2)ZnSiO(4) crystalline phase is obtained from the Zn-rich glass, in addition to Na(2)CaSi(2)O(6). The activation energy (Ea) for the crystallization of the Na(2)O.CaO.2SiO(2) glass is 193 +/- 10 and 203 +/- 5 kJ/mol from the isothermal in situ XRPD and nonisothermal DSC experiments, respectively. The Avrami exponent n determined from the isothermal method is 1 at low temperature (530 degrees C), and its value increases linearly with temperature increase up to 2 at 607 degrees C. For the crystallization of Na(2)CaSi(2)O(6) from the Zn-containing glass, higher values of both the crystallization temperature (667 and 661 degrees C) and Ea (223 +/- 10 and 211 +/- 5 kJ/mol) have been found from the isothermal and nonisothermal methods, respectively. The Na(2)ZnSiO(4) crystalline phase crystallizes at lower temperature with respect to Na(2)CaSi(2)O(6), and the Ea value is 266 +/- 20 and 245 +/- 15 kJ/mol from the isothermal and nonisothermal methods, respectively. The results of this work show that the addition of Zn favors the crystallization from the glass at lower temperature with respect to the Zn-free glass. In fact, it causes an increase of Ea for the Na diffusion process, determined using MD simulations, and consequently an overall increase of Ea for the crystallization process of Na(2)CaSi(2)O(6). Our results show good agreement between the Ea and n values obtained with the two different methods and confirm the reliability of the nonisothermal method applied to kinetic crystallization of glassy systems. This study allows the determination of the temperature

  9. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.

    PubMed

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D

    2005-03-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  10. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  11. Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites.

    PubMed

    Zheng, H R; Li, Z; You, C; Liu, D B; Chen, M F

    2017-03-01

    The mechanical properties and corrosion resistance of magnesium alloy composites were improved by the addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with unmodified (MZZT) and modified (MZZMT) nanoparticles were produced by high shear mixing technology. Effects of MgO m-β-TCP nanoparticles on the microstructure, mechanical properties, electrochemical corrosion properties and cytocompatibility of Mg-Zn-Zr/β-TCP composites were investigated. After hot extrusion deformation and dynamic recrystallization, the grain size of MZZMT was the half size of MZZT and the distribution of m-β-TCP particles in the matrix was more uniform than β-TCP particles. The yield tensile strength (YTS), ultimate tensile strength (UTS), and corrosion potential (Ecorr) of MZZMT were higher than MZZT; the corrosion current density (I corr ) of MZZMT was lower than MZZT. Cell proliferation of co-cultured MZZMT and MZZT composite samples were roughly the same and the cell number at each time point is higher for MZZMT than for MZZT samples.

  12. Microstructure and Phase Evolution in Mg-Gd and Mg-Gd-Nd Alloys With Additions of Zn, Y and Zr

    NASA Astrophysics Data System (ADS)

    Khawaled, S.; Bamberger, M.; Katsman, A.

    Microstructure and phase evolution in Mg-Gd and Mg-Gd-Nd based alloys with additions of Zn, Zr and Y were analyzed in the as-cast, solution treated and aged conditions. Alloys has been investigated after solution treatment at 540°C for 24hr followed by isothermal aging at 175°C up to 32 days by using of Vickers hardness, optical microscopy, scanning electron microscopy equipped with EDS, X-ray diffraction and transmission electron microscopy. It was found that the as-cast alloys contained primary α-Mg matrix, eutecticlike structures, cuboid-like phases and Zr-rich clusters. The homogenized and quenched alloys contained primary α-Mg solid solution, smaller amount of divorced eutectic compounds, enlarged cuboid-like particles and Zr-rich clusters. The eutectic phase was Mg5Gd prototype with the composition Mg5(GdxNd1-x, x≈0.2). The compositions of the cuboid shaped particles are characterized by enlarged amount of Gd and can be written as Mg2(Gd x Y1-x) with x≈0.85 in the Mg-5Gd based alloy, and Gd4(YxNd1-x) with x≈0.5 in the Mg-6Gd-3.7Nd based alloy. The cuboid shaped particles grew during aging and reached 3µm average size. Precipitation of ß″ and ß' phases during aging was observed. Mg-6Gd-3.7Nd based alloy reached a maximum value of microhardness after 16 days of aging; in Mg-Gd based alloy, microhardness increased more slowly and reached a maximum value after 32 days of aging.

  13. Properties of Mg and Zn acceptors in MOVPE GaN as studied by optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kunzer, M.; Baur, J.; Kaufmann, U.; Schneider, J.; Amano, H.; Akasaki, I.

    1997-02-01

    We have studied the photoluminescence (PL) and optically detected magnetic resonance (ODMR) of undoped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. The ODMR data obtained for undoped. Mg-doped and Zn-doped GaN layers provide an insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors do not behave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core. In addition concentration effects in heavily doped GaN:Mg have been studied.

  14. Salinity bias on the foraminifera Mg/Ca thermometry: Correction procedure and implications for past ocean hydrographic reconstructions

    NASA Astrophysics Data System (ADS)

    Mathien-Blard, Elise; Bassinot, Franck

    2009-12-01

    Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.

  15. Surface compositions of atomic layer deposited Zn{sub 1−x}Mg{sub x}O thin films studied using Auger electron spectroscopy

    SciTech Connect

    Xie, Ting; Romero, Danilo; Gomez, Romel D., E-mail: rdgomez@umd.edu

    2015-09-15

    In this paper, the authors present Auger electron spectroscopy (AES) studies of Zn{sub 1−x}Mg{sub x}O (ZMO) films grown via interrupted atomic-layer deposition (ALD) techniques. The ZMO films were fabricated by alternating ALD deposition of ZnO and MgO layers up to 1000 cycles. Zn{sub 1−x}Mg{sub x}O films with progressively decreasing Mg/Zn ratios (Mg/Zn = 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/9, and 2/8, 3/12, 4/16, and 5/20) were fabricated for this study. The AES results exhibit an abrupt drop of Mg composition on the ZMO surface when the Mg/Zn < 1/3. Additionally, the surface composition ratios of O to Mg, O to Zn, and Mgmore » to Zn were estimated with known Auger sensitivity factors. The results indicate that Mg ions diffuse into the bulk, forming Zn{sub 1−x}Mg{sub x}O alloys.« less

  16. Modulation of sarcoplasmic reticulum Ca(2+)-release channels by caffeine, Ca2+, and Mg2+ in skinned myocardial fibers of fetal and adult rats.

    PubMed

    Su, J Y; Chang, Y I

    1993-05-01

    Ryanodine causes depression of the caffeine-induced tension transient (ryanodine depression) in skinned muscle fibers, because it blocks the sarcoplasmic reticulum (SR) Ca(2+)-release channels [Su, J. Y. (1988) Pflügers Arch 411:132-136, 371-377; (1992) Pflügers Arch 421:1-6]. This study was performed to examine the sensitivity of SR Ca(2+)-release channels to ryanodine in fetal compared to adult myocardium and to investigate the influence of Ca2+, caffeine, and Mg2+ on ryanodine depression in skinned fibers. Ryanodine (0.3 nM-1 microM) caused a dose-dependent depression in skinned myocardial fibers of the rat, and the fetal fibers (IC50 approximately 74 nM) were 26-fold less sensitive than those of the adult (IC50 approximately 2.9 nM). The depression induced by 0.1 microM or 1 microM ryanodine was a function of [caffeine], or [Ca2+] (pCa < 6.0), which was potentiated by caffeine, and an inverse function of [Mg2+]. At pCa > 8.0 plus 25 mM caffeine, a 20% ryanodine depression was observed in both the fetal and adult fibers, indicating independence from Ca2+. Ryanodine depression in skinned fibers of the fetus was less affected than that seen in the adult by pCai, [caffeine]i, or 25 mM caffeine plus pCai or plus pMgi (IC50 approximately pCa 4.5 versus 5.1; caffeine 12.7 mM versus 2 mM; pCa 6.7 versus 7.3; and pMg 3.9 versus 3.3 respectively). The results show that the SR Ca(2+)-release channel in both fetal and adult myocardium is modulated by Ca2+, caffeine, and Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.

    PubMed

    Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H

    2014-06-11

    High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.

  18. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl 6

    DOE PAGES

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl 6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl 3 and RbZnCl 3) forming the double perovskite exhibit a stark contrast. While CsCaCl 3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl 3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We showmore » that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl 6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  19. Field-assisted sintering and phase transition of ZnS-CaLa 2S 4 composite ceramics

    DOE PAGES

    Li, Yiyu; Zhang, Lihua; Kisslinger, Kim; ...

    2017-07-17

    In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa 2S 4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800–1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by themore » formation of stacking faults and twins in the ceramics. Furthermore, it was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.« less

  20. Field-assisted sintering and phase transition of ZnS-CaLa 2S 4 composite ceramics

    SciTech Connect

    Li, Yiyu; Zhang, Lihua; Kisslinger, Kim

    In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa 2S 4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800–1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by themore » formation of stacking faults and twins in the ceramics. Furthermore, it was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.« less

  1. In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws.

    PubMed

    Li, Zhen; Shizhao, Sun; Chen, Minfang; Fahlman, Bradley Dean; Debao Liu; Bi, Hongwei

    2017-06-01

    Magnesium (Mg) and its alloys as biodegradable materials have received much attention in the orthopedics applications; however, the corrosion behavior of these metals in vivo remains challenging. In this work, a dense and nanoscale magnesium fluoride (MgF 2 ) coating was deposited on the surface of Mg-Zn-Zr (MZZ) alloy cancellous screw. The MZZ cancellous screw with MgF 2 coating maintained an integrated shape and high yield tensile stress after 30days immersion in SBF, comparing with the bare screw. Hydrogen releasing rate of the MZZ samples was suppressed at a lower level at the initial stage, which is in favour of the adhesion of the cells. And in vivo experiments indicated that MgF 2 -coated MZZ screws presented advantages in cytocompatibility, osteoconductivity and osteogenesis of cancellous bone in rabbits. Corrosion rate in vivo perfusion environment increased very slowly with time in long-term study, which was an opposite trend in vitro static immersion test. Moreover, maximum corrosion rate (CR max ), a critical calculation method of corrosion rate was introduced to predict fracture regions of the sample. The MZZ alloy with MgF 2 coating possesses a great potential for clinical applications for internal fracture fixation repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-09-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.

  3. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  4. High - Resolution SST Record Based on Mg/Ca Ratios of Late Holocene Planktonic Foraminifers From the Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Reijmer, J. J.; Roth, S.

    2001-12-01

    We analyzed five different planktic foraminifera species in the high resolution core MD 992201 off the Great Bahama Bank (79° 16.34 W; 25° 53.49 N) in 290 m water depth. This 38.05 m long core comprises a 7,000 year long Holocene record. The selected species were Orbulina universa, Globigerinoides ruber, Globigerinoides sacculifer, Globorotalia menardii and Globigerinella aequilateralis, which live in the upper 200 m of the water column. The Mg/Ca ratios of these different foraminifers show species-specific values, which represent a distinct habitat depth. With this species-specific Mg/Ca ratios we can reconstruct a temperature profile through the water column. The lowest Mg/Ca are shown by G. menardii (2.5 - 4 mmol/mol), followed by G. sacculifer (4.2 - 5.6 mmol/mol), G. ruber (5.1 - 7.2 mmol/mol) and G. aequilateralis (5.5 - 8.7 mmol/mol). Highest are shown by O. universa (6 - 14 mmol/mol). During the Little Ice Age, the Mg/Ca ratios of all species except for the deeper dwelling G. menardii, became more variable and showed lower ratios. The shallow dwelling species like G. ruber and G. sacculifer display an increase in the Mg/Ca ratios during the Medieval Warm Period. Our data show that transferring Mg/Ca ratios into SST based calibration curves known from literature needs re-evaluation. Species-specific calibration seems to be necessary to achieve reliable results.

  5. ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation

    PubMed Central

    Li, Jiao; Imtiaz, Mohammad S.; Beard, Nicole A.; Dulhunty, Angela F.; Thorne, Rick; vanHelden, Dirk F.; Laver, Derek R.

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] <1 µM, ß-adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter. PMID:23533585

  6. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.

    PubMed

    Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N

    2016-11-01

    3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone

  7. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing.

    PubMed

    Henderson, Hunter B; Ramaswamy, Vidhya; Wilson-Heid, Alexander E; Kesler, Michael S; Allen, Josephine B; Manuel, Michele V

    2018-04-01

    Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradation rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. Maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing

    DOE PAGES

    Henderson, Hunter B.; Ramaswamy, Vidhya; Wilson-Heid, Alexander E.; ...

    2018-02-03

    Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradationmore » rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. In conclusion, maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials.« less

  9. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing

    SciTech Connect

    Henderson, Hunter B.; Ramaswamy, Vidhya; Wilson-Heid, Alexander E.

    Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradationmore » rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. In conclusion, maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials.« less

  10. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  11. Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.

    PubMed

    Dudev, Todor; Chang, Li-Ying; Lim, Carmay

    2005-03-23

    Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.

  12. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys

    PubMed Central

    Cipriano, Aaron F.; Sallee, Amy; Tayoba, Myla; Cortez Alcaraz, Mayra C.; Lin, Alan; Guan, Ren-Guo; Zhao, Zhan-Yong; Liu, Huinan

    2018-01-01

    Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate, for the first time, the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ~1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ~1. Additionally, the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24 h was not adversely affected by the degradation of the alloys. Importantly, neither culture media supplemented with up to 27.6 mM Mg2+ ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast, the significantly higher, yet non-cytotoxic, Zn2+ ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly, analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface, most likely caused by either a high local alkalinity, change in surface topography, and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro, in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. PMID:27746360

  13. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  14. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  15. Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing.

    PubMed

    Zhang, Junyi; Kang, Zhixin; Wang, Fen

    2016-11-01

    A Mg-Gd-Nd-Zn-Zr alloy was processed by equal channel angular pressing (ECAP) at 375°C. The grain size of Mg-Gd-Nd-Zn-Zr alloy was refined to ~2.5μm with the spherical precipitates (β1 phase) distributing in the matrix. The mechanical properties of ECAPed alloy were significantly improved as a result of the grain refinement and precipitation strengthening. The corrosion rate of the ECAPed magnesium alloy in simulated body fluid dramatically decreased from 0.236mm/a to 0.126mm/a due to the strong basal texture and refined microstructure. This wrought magnesium alloy shows potentials in biomedical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. First-principles investigation for some physical properties of some fluoroperovskites compounds ABF3 (A = K, Na; B = Mg, Zn)

    NASA Astrophysics Data System (ADS)

    Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah

    2017-12-01

    In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.

  17. Effect of Ag and Cu Contents on the Age Hardning Behavior of Al-Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Watanabe, Katsumi; Kawabata, Tokimasa; Ikeno, Susumu; Yoshida, Tomoo; Murakami, Satoshi; Matsuda, Kenji

    Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg-Si alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2 at.% and 0.2at.%, respectively. The age-hardening behavior and microstructures of those alloys were investigated by hardness measurement, high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) technique. Ag or Cu added alloy showed higher peak hardness than Ag or Cu free alloy. According to addition of Ag or Cu, the number density of the precipitates increased than Ag or Cu free alloy.

  18. Influence of Nd and Y on texture of as-extruded Mg-5Li-3Al-2Zn alloy

    NASA Astrophysics Data System (ADS)

    Wu, Liqun; Zhang, Tianlong; Cui, Chongliang; Wu, Ruizhi; Zhang, Milin; Hou, Legan

    2016-07-01

    Mg-5Li-3Al-2Zn alloys with the additions of Y and Nd were prepared using induction melting furnace under the atmosphere of pure argon; then they were extruded. The textures of the as-extruded alloys were analyzed by pole figures and electron backscatter diffraction. Results show that the addition of a small amount of Nd can weaken the basal texture. The further increase of Nd content has no corresponding further influence on texture. When a small amount of Y is used to replace Nd, the basal texture can be further weakened and the prismatic slip system can be further activated. In the alloy of Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, the basal textures almost vanish.

  19. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Weyland, Matthew; Milkereit, Benjamin; Reich, Michael; Rometsch, Paul A.

    2016-03-01

    A previously undescribed high aspect ratio strengthening platelet phase, herein named the Y-phase, has been identified in a commercial Al-Zn-Mg-Cu alloy. Differential scanning calorimetry indicates that this phase only precipitates at temperature and cooling rate of about 150-250 °C and 0.05-300 K/s, respectively. This precipitate is shown to be responsible for a noticeable improvement in mechanical properties. Aberration corrected scanning transmission electron microscopy demonstrates the minimal thickness (~1.4 nm) precipitate plates are isostructural to those of the T1 (Al2CuLi) phase observed in Al-Cu-Li alloys. Low voltage chemical analysis by energy dispersive X-ray spectroscopy and electron energy loss spectroscopy gives evidence of the spatial partitioning of the Al, Cu and Zn within the Y-phase, as well as demonstrating the incorporation of a small amount of Mg.

  20. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates

    PubMed Central

    Cheng, Weili; Bai, Yang; Wang, Lifei; Wang, Hongxia; Bian, Liping; Yu, Hui

    2017-01-01

    In this study, Mg-8Sn-2Zn-2Al (TZA822) alloys with varying Mg2Sn contents prior to extrusion were obtained by different pre-treatments (without and with T4), and the strengthening response related to micro and nano-size Mg2Sn precipitates in the extruded TZA822 alloys was reported. The results showed that the morphology of nano-size Mg2Sn precipitates exhibits a significant change in basal plane from rod-like to spherical, owing to the decrement in the fraction of micro-size particles before extrusion. Meanwhile, the spherical Mg2Sn precipitates provided a much stronger strengthening effect than did the rod-like ones, which was ascribed to uniform dispersion and refinement of spherical precipitates to effectively hinder basal dislocation slip. As a consequence, the extruded TZA822 alloy with T4 showed a higher tensile yield strength (TYS) of 245 MPa, ultimate tensile strength (UTS) of 320 MPa and elongation (EL) of 26.5%, as well as a lower degree of yield asymmetry than their counterpart without T4. Detailed reasons for the strengthening effect were given and analyzed. PMID:28773180

  1. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Zhongping; Li, Liangliang; Jiang, Zhaohua

    2009-04-01

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na 2SiO 3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na 2SiO 3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca 2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi 2O 3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  2. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films

    NASA Astrophysics Data System (ADS)

    Yang, A. L.; Song, H. P.; Liang, D. C.; Wei, H. Y.; Liu, X. L.; Jin, P.; Qin, X. B.; Yang, S. Y.; Zhu, Q. S.; Wang, Z. G.

    2010-04-01

    Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li et al. [Appl. Phys. Lett. 91, 232115 (2007)].

  3. Study of new sheep bone and Zn/Ca ratio around TiAlV screw: PIXE RBS analysis

    NASA Astrophysics Data System (ADS)

    Guibert, G.; Munnik, F.; Langhoff, J. D.; Von Rechenberg, B.; Buffat, Ph. A.; Laub, D.; Faber, L.; Ducret, F.; Gerber, I.; Mikhailov, S.

    2008-03-01

    This study reports on in vivo particle induced X-ray emission (PIXE) measurements combined with Rutherford backscattering spectroscopy (RBS) analyses of new remodeled sheep bone formed around TiAlV screws. The implants (screws) were anodized by a modified TiMax™ process. The interface between the implant and the bone was carefully investigated. [Zn]/[Ca] in-depth composition profiles as well as Ca, Fe elemental maps were recorded. The thickness of new bone formed around the screw reached 300-400 μm. Osteon and Osteoid phases were identified in the new bone. A higher [Zn]/[Ca] ratio was observed in the new bone as compared to the mature bone. Blood vessels were observed in the bone in close contact with the screw. This study shows the potential of ion beam analysis for biological and biomedical characterization.

  4. Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO

    NASA Astrophysics Data System (ADS)

    Alidoust, Nima; Carter, Emily A.

    2015-11-01

    It has been shown previously that the movement of a hole in nickel oxide is confined to two dimensions, along a single ferromagnetic plane. Such confinement may hamper hole transport when NiO is used as a p-type transparent conductor in various solar energy conversion technologies. Here, we use the small polaron model, along with unrestricted Hartree-Fock and complete active space self-consistent field calculations to show that forming substitutional MxNi1-xO alloys with M = Mg or Zn reduces the barrier for movement of a hole away from the ferromagnetic plane to which it is confined. Such reduction occurs for hole transfer alongside one or two M ions that have been substituted for Ni ions. Furthermore, the Mg and Zn ions do not trap holes on O sites in their vicinity, and NiO's transparency is preserved upon forming the alloys. Thus, forming MxNi1-xO alloys with M = Mg or Zn may enhance NiO's potential as a p-type transparent conducting oxide, by disrupting the two-dimensional confinement of holes in pure NiO.

  5. Orientation relationship between the T structure and the icosahedral quasicrystal in the Zn-Mg-Al alloy system

    SciTech Connect

    Nakayama, Kei, E-mail: k.n@aoni.waseda.jp; Watanabe, Junya; Koyama, Yasumasa, E-mail: ykoyama@waseda.jp

    2016-08-26

    To understand the crystallographic relation between the Bergman-type icosahedral quasicrystal and its approximant-T structure, we have investigated the crystallographic features of prepared Zn-Mg-Al alloy samples, mainly by transmission electron microscopy. It was found that there existed three kinds of regions: that is, C14-Laves, approximant-T, and icosahedral-quasicrystal regions, in Zn-Mg-Al alloy samples with the composition of Zn-36at.%Mg-9at.%Al. Among these regions, in particular, we tried to determine an orientation relationship between neighboring icosahedral-quasicrystal and approximant-T regions. Based on the determined relationship, for instance, four threefold rotatory-inversion axes in the T structure were found to be parallel to four of ten threefold rotatory-inversionmore » axes in the icosahedral quasicrystal. It was thus understood that the atomic arrangements of the Bergman-type icosahedral quasicrystal and its approximant-T structure are likely to resemble each other.« less

  6. Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr

    NASA Astrophysics Data System (ADS)

    Senkova, S. V.; Senkov, O. N.; Miracle, D. B.

    2006-12-01

    The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.

  7. Inositol phosphates influence the membrane bound Ca/sup 2 +//Mg/sup 2 +/ stimulated ATPase from human erythrocyte membranes

    SciTech Connect

    Kester, M.; Ekholm, J.; Kumar, R.

    1986-03-01

    The modulation by exogenous inositol phosphates of the membrane Ca/sup 2 +//Mg/sup 2 +/ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl/sub 2/, 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na/sub 2/ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl/sub 2/ and EGTA. The ATPase assay was linear with time at 44/sup 0/C. The inositol phosphates were commercially obtained and were also prepared from /sup 32/P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP/sub 3/) elevated the Ca/sup 2 +//Mg/sup 2 +/ ATPase activity over basal levelsmore » in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na/sup +//K/sup +/-ATPase and a Mg/sup 2 +/ ATPase were not effected by IP/sub 3/. Ca/sup 2 +//Mg/sup 2 +/APTase activity with IP/sub 2/ or IP/sub 3/ could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP/sub 3/ was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP/sub 3/ stimulated Ca/sup 2 +//Mg/sup 2 +/ ATPase.« less

  8. Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Lashuang; Jiang, Yue; Zai, Wei; Li, Guangyu; Liu, Shaocheng; Lian, Jianshe; Jiang, Zhonghao

    2017-12-01

    A novel superhydrophobic calcium phosphate coating was prepared on a magnesium alloy substrate by a highly effective chemical conversion process and subsequent chemical modification. Different methods were employed to characterize the surface morphology and chemical composition as well as measure the wettability of the coating. It was demonstrated that the as-prepared superhydrophobic calcium phosphate coating has a typical three-level hierarchical structure consisted of micro-protrusions, submicro-lumps and nano-grains, conferring excellent superhydrophobicity with a water contact angle of 159°. The electrochemical measurements and appropriate equivalent circuit revealed that the corrosion-resistant performance of the superhydrophobic calcium phosphate coating was significantly improved as compared with that of the substrate, the corrosion potential of the superhydrophobic coating increases from -1.56 to -1.36 V, and its corrosion current density decreases from 1.29 × 10-4 to 1.3 × 10-6 A/cm2. The anti-corrosion mechanism of the superhydrophobic coating was also discussed. It can be indicated that the corrosion inhibitive properties of the coating are in accordance with its hydrophobicity, which is owing to the presence of a protective layer of air trapped in the grooves of the coating surface to isolate the underlying materials from the external environment.

  9. Local Atomic Structure of Ca-Mg-Zn Metallic Glasses (Postprint)

    DTIC Science & Technology

    2010-09-16

    218 2010. 23 A. C. Hannon, Nucl. Instrum. Methods Phys. Res. A 551, 88 2005. 24 A. K. Soper private communication; GUDRUN software, http...analysis/xrd-data-analysis9203 html 26 A. C. Hannon, W. S. Howells, and A. K. Soper , Inst. Phys. Conf. Ser. 107, 193 1990. 27 D. A. Keen, J. Appl

  10. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein.

    PubMed

    Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K

    2009-05-01

    Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.

  11. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO3 on binary Mg-1.0Ca alloy

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.

    2015-01-01

    Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.

  12. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.

    PubMed

    Gao, Hongli; Zhu, Tiejun; Zhao, Xinbing; Deng, Yuan

    2014-10-07

    Mg2Si1-xSnx alloys are a prospective material for thermoelectric generators at moderate temperatures. The thermoelectric properties of Mg2Si0.5Sn0.5-based thermoelectric materials with only Zn substitution or Zn/Sb co-doping were investigated. Isoelectronic Zn substitution did not affect the carrier concentration, but improved the carrier mobility. Zn atoms incorporated into a Sb-doped Mg2Si0.5Sn0.5 matrix simultaneously boosted the power factor and suppressed the lattice thermal conductivity, leading to an enhancement of the thermoelectric figure of merit ZT of the resulting bulk materials. The interplay between the electron and phonon transport of Mg2Si0.5Sn0.49Sb0.01 substituted with Zn at Mg sites results in an enhancement of the ZT by 25% at ∼730 K, from ZT≈ 0.8 in Mg2Si0.5Sn0.49Sb0.01 to ZT≈ 1.0 in Mg1.98Zn0.02Si0.5Sn0.49Sb0.01. Solid solutions in the Mg2Si-Mg2Sn system appear to be more promising for thermoelectric applications.

  13. Petrography, mineralogy, and Mg isotope composition of VICTA: A vigarano CaAl4O7-bearing type A inclusion

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Morse, A.; Long, J. V. P.

    1993-01-01

    Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.

  14. The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against Listeria monocytogenes of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Shadan, Nima; Ziabari, Ali Abdolahzadeh; Meraat, Rafieh; Jalali, Kamyar Mazloum

    2017-02-01

    In this paper, Mg-doped ZnO nanoparticles were synthesized by the facile sol-gel method. The crystalline structure, characteristic absorption bands and morphology of the obtained Mg-doped ZnO nanoparticles were studied by XRD, FTIR and TEM. The thermal degradation behaviour of the samples was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The effect of Mg concentrations and annealing temperatures on the antibacterial properties of the obtained nanoparticles was investigated in detail. The results indicated that doping Mg ions into ZnO lattice could enhance its antibacterial activity. Antibacterial assay demonstrated that Mg-doped ZnO with 7% Mg content annealed at 400 ∘C had the strongest antibacterial activity against Listeria monocytogenes (98.7%). This study indicated that the inhibition rate of ZnO nanoparticles increased with the formation of granular structure and the decrease of ZnO size due to the doping of Mg ions into the ZnO lattice.

  15. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  16. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    PubMed

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  17. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions

    NASA Astrophysics Data System (ADS)

    Steinke, Stephan; Chiu, Han-Yi; Yu, Pai-Sen; Shen, Chuan-Chou; LöWemark, Ludvig; Mii, Horng-Sheng; Chen, Min-Te

    2005-11-01

    Tests of the planktonic foraminifer Globigerinoides ruber (white; d'Orbigny) have become a standard tool for reconstructing past oceanic environments. Paleoceanographers often utilize the Mg/Ca ratios of the foraminiferal tests for reconstructing low-latitude ocean glacial-interglacial changes in sea surface temperatures (SST). We report herein a comparison of Mg/Ca measurements on sample pairs (n = 20) of two G. ruber (white) morphotypes (G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.)) from surface and downcore samples of the western Pacific and Indian Oceans. G. ruber s.s. refers to specimens with spherical chambers sitting symmetrically over previous sutures with a wide, high arched aperture, whereas G. ruber s.l. refers to a more compact test with a diminutive final chamber and small aperture. The G. ruber s.s. specimens generally show significantly higher Mg/Ca ratios compared to G. ruber s.l. Our results from the Mg/Ca ratio analysis suggest that G. ruber s.l. specimens precipitated their shells in slightly colder surface waters than G. ruber s.s. specimens. This conclusion is supported by the differences in δ18O and δ13C values between the two morphotypes. Although it is still unclear if these two morphotypes represent phenotypic variants or sibling species, our findings seem to support the hypothesis of depth and/or seasonal allopatry within a single morphospecies.

  18. Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin

    2017-11-01

    In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.

  19. Fabrication of wide-band-gap Mg{sub x}Zn{sub 1-x}O quasi-ternary alloys by molecular-beam epitaxy

    SciTech Connect

    Tanaka, Hiroshi; Fujita, Shigeo; Fujita, Shizuo

    2005-05-09

    A series of wurtzite MgZnO quasi-ternary alloys, which consist of wurtzite MgO/ZnO superlattices, were grown by molecular-beam epitaxy on sapphire substrates. By changing the thicknesses of ZnO layers and/or of MgO layers of the superlattice, the band-gap energy was artificially tuned from 3.30 to 4.65 eV. The highest band gap, consequently realized by the quasi-ternary alloy, was larger than that of the single MgZnO layer, we have ever reported, keeping the wurtzite structure. The band gap of quasi-ternary alloys was well analyzed by the Kronig-Penny model supposing the effective masses of wurtzite MgO as 0.30m{sub 0} and (1-2)m{sub 0} formore » electrons and holes, respectively.« less

  20. Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase.

    PubMed

    Leng, Zhe; Zhang, Jinghuai; Yin, Tingting; Zhang, Li; Guo, Xuying; Peng, Qiuming; Zhang, Milin; Wu, Ruizhi

    2013-12-01

    The microstructure and mechanical properties of as-extruded Mg-8Y-1Er-2Zn (wt%) alloy containing long period stacking ordered (LPSO) phase are comparatively investigated before and after corrosion in a simulated body fluid (SBF) at 37°C. The as-extruded alloy consists of a long strip-like 18R-LPSO phase and some fine lamellae grains formed by primary recrystallization during the extrusion process. The hydrogen evolution volume per day fluctuates between 0.21 and 0.32ml/cm(2) in the immersion test for 240h, and the corresponding corrosion rate is calculated as 0.568mm/y. The corrosion product is determined as Mg(OH)2, whilst a Ca(H2PO4)2 compound is also observed on the surface of the samples. The corrosion site preferentially occurs at the interface between LPSO phase and Mg matrix. Before immersing, the tensile yield strength (TYS), ultimate tensile strength (UTS) and elongation of the alloy are 275MPa, 359MPa, and 19%, respectively. More attractively, these mechanical properties can be maintained even after immersing in SBF for 240h (TYS, UTS and elongation are 216MPa, 286MPa and 6.8%, respectively) because of the existence of high anti-corrosion LPSO phase. © 2013 Elsevier Ltd. All rights reserved.

  1. New Structured Laves Phase in the Mg-In-Ca System with Nontranslational Symmetry and Two Unit Cells

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Pan, Hucheng; Ren, Yuping; Wang, Liqing; He, Yufeng; Qi, Xixi; Qin, Gaowu

    2018-02-01

    All of the A B2 Laves phases discovered so far satisfy the general crystalline structure characteristic of translational symmetry; however, we report here a new structured Laves phase directly precipitated in an aged Mg-In-Ca alloy by using aberration-corrected scanning transmission electron microscopy. The nanoprecipitate is determined to be a (Mg,In ) 2Ca phase, which has a C 14 Laves structure (hcp, space group: P 63/m m c , a =6.25 Å , c =10.31 Å ) but without any translational symmetry on the (0001) p basal plane. The (Mg,In ) 2Ca Laves phase contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present Laves phase, followed by the Penrose geometrical rule. The orientation relationship between the Laves precipitate and Mg matrix is (0001) p//(0001) α and [11 ¯00 ] p//[112 ¯0 ] α . More specifically, in contrast to the traditional view that the third element would orderly replace other atoms in a manner of layer by layer on the close-packed (0001) L plane, the In atoms here have orderly occupied certain position of Mg atomic columns along the [0001] L zone axis. The finding would be interesting and important for understanding the formation mechanism of Laves phases, and even atom stacking behavior in condensed matter.

  2. Electronic and optical properties of Cu2XSnS4 (X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of native defect pairs

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-05-01

    Reducing or controlling cation disorder in Cu2ZnSnS4 is a major challenge, mainly due to low formation energies of the anti-site pair ( CuZn - + ZnCu +) and the compensated Cu vacancy ( VCu - + ZnCu +). We study the electronic and optical properties of Cu2XSnS4 (CXTS, with X = Be, Mg, Ca, Mn, Fe, and Ni) and the impact of defect pairs, by employing the first-principles method within the density functional theory. The calculations indicate that these compounds can be grown in either the kesterite or stannite tetragonal phase, except Cu2CaSnS4 which seems to be unstable also in its trigonal phase. In the tetragonal phase, all six compounds have rather similar electronic band structures, suitable band-gap energies Eg for photovoltaic applications, as well as good absorption coefficients α(ω). However, the formation of the defect pairs ( C u X + X Cu) and ( V Cu + X Cu) is an issue for these compounds, especially considering the anti-site pair which has formation energy in the order of ˜0.3 eV. The ( C u X + X Cu) pair narrows the energy gap by typically ΔEg ≈ 0.1-0.3 eV, but for Cu2NiSnS4, the complex yields localized in-gap states. Due to the low formation energy of ( C u X + X Cu), we conclude that it is difficult to avoid disordering from the high concentration of anti-site pairs. The defect concentration in Cu2BeSnS4 is however expected to be significantly lower (as much as ˜104 times at typical device operating temperature) compared to the other compounds, which is partly explained by larger relaxation effects in Cu2BeSnS4 as the two anti-site atoms have different sizes. The disadvantage is that the stronger relaxation has a stronger impact on the band-gap narrowing. Therefore, instead of trying to reduce the anti-site pairs, we suggest that one shall try to compensate ( C u X + X Cu) with ( V Cu + X Cu) or other defects in order to stabilize the gap energy.

  3. Tracing mineral weathering reactions in the critical zone using Mg, Ca, and Sr isotopes, Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Buss, H. L.; White, A. F.; Vivit, D.; Bullen, T. D.; Blum, A. E.; Dessert, C.; Gaillardet, J.

    2008-12-01

    Mineral weathering in the critical zone directly impacts the availability of many important soil nutrients. As part of the USGS Water Energy and Biogeochemical Budgets (WEBB) program and the Critical Zone Exploration Network, we are investigating mineral nutrient distributions and fluxes in depth profiles (to 16 m) at five sites in the Bisley 1 catchment in the Luquillo Mountains of Puerto Rico. The Bisley 1 catchment contains a thick regolith developed on marine bedded, andesitic, volcaniclastic bedrock. Pore waters were sampled as a function of depth from nested suction water samplers. Pore water chemistry was analyzed and compared to total chemistry of solid samples taken from augered cores. Mg, Ca and Sr isotope ratios were measured of the pore waters at the Institut de Physique du Globe de Paris (Mg) and at the USGS in Menlo Park, CA (Ca, Sr). The Mg isotope ratios increase with increasing depth from δ26Mg = -0.772 at the surface to - 0.267 at depth, relative to the DSM3 standard. Sr isotope ratios vary from 0.70922 to 0.71016 87Sr/86Sr, with no discernible depth trend. The regolith is highly weathered and is depleted in primary minerals (except quartz) with respect to bedrock. Volumetric strain, calculated with respect to quartz, indicates approximately 25% volume collapse occurred relative to the original volume of the bedrock. Plagioclase, chlorite, pyroxene, and amphibole weather at the bedrock-regolith interface. The regolith contains quartz, kaolinite, other clays, and iron and manganese oxides. Increasing solid and pore water Mg concentrations and δ26Mg with depth likely indicate a two step weathering process wherein high-Mg chlorite dissolves at the bedrock-regolith interface and forms Mg-containing secondary clays and oxides, which then dissolve within the regolith profile.

  4. Unraveling the mechanism of ultraviolet-induced optical gating in Zn1-x Mg x O nanocrystal solid solution field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Cho, Seongeun; Park, Byoungnam

    2018-03-01

    We report ultraviolet (UV)-induced optical gating in a Zn1-x Mg x O nanocrystal solid solution (NCSS) field effect transistor (FET) through a systematic study in which UV-induced charge transport properties are probed as a function of Mg composition. Change in the electrical properties of Zn1-x Mg x O NCSS associated with electronic traps is investigated by field effect-modulated current-voltage characteristic curves in the dark and under illumination. Under UV illumination, significant threshold voltage shift to a more negative value in an n-channel Zn1-x Mg x O NCSS FET is observed. Importantly, as the Mg composition increases, the effect of UV illumination on the threshold voltage shift is alleviated. We found that threshold voltage shift as a function of Mg composition in the dark and under illumination is due to difference in the deep trap density in the Zn1-x Mg x O NCSS. This is supported by Mg composition dependent photoluminescence intensity in the visible range and reduced FET mobility with Mg addition. The presence of the deep traps and the corresponding trap energy levels in the Zn1-x Mg x O NCSS are ensured by photoelectron spectroscopy in air.

  5. Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.

    PubMed

    Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming

    2018-06-20

    As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.

  6. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.