Sample records for zn ni mn

  1. Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Xi, Yuebin; Xu, Huidao; Wang, Lu

    2016-01-01

    Magnetic nanoparticles of Ni-Mn-Zn ferrite have been prepared by a sol-gel method making use of spent Ni-MH and Zn-Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The Ms values increase and the Hc values decrease as the size of the Ni-Mn-Zn ferrite particles increases.

  2. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  3. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  4. Cation distribution of Ni-Zn-Mn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parvatheeswara Rao, B.; Dhanalakshmi, B.; Ramesh, S.; Subba Rao, P. S. V.

    2018-06-01

    Mn substituted Ni-Zn ferrite nanoparticles, Ni0.4Zn0.6-xMnxFe2O4 (x = 0.00-0.25 in steps of 0.05), using metal nitrates were prepared by sol-gel autocombustion in citric acid matrix. The samples were examined by X-ray diffraction and vibrating sample magnetometer techniques. Rietveld structural refinements using the XRD data were performed on the samples to consolidate various structural parameters like phase (spinel), crystallite size (24.86-37.43 nm), lattice constant (8.3764-8.4089 Å) etc and also to determine cation distributions based on profile matching and integrated intensity ratios. Saturation magnetization values (37.18-68.40 emu/g) were extracted from the measured M-H loops of these nanoparticles to estimate their magnetic moments. Experimental and calculated magnetic moments and lattice constants were used to confirm the derived cation distributions from Rietveld analysis. The results of these ferrite nanoparticles are discussed in terms of the compositional modifications, particle sizes and the corresponding cation distributions as a result of Mn substitutions.

  5. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    NASA Astrophysics Data System (ADS)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  6. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species.

    PubMed

    Kim, Min-Ji; Seo, Ja-Yeon; Choi, Yong-Seok; Kim, Gyu-Hyeok

    2016-05-01

    This research explores the recovery of metals from spent Zn-Mn or Ni-Cd batteries by a bioleaching using six Aspergillus species. Two different nutrients, malt extract and sucrose, were used to produce different types of organic acids. Oxalic acid and citric acid were shown to be the dominant organic acid in malt extract and sucrose media, respectively. In the bioleaching, the metal removal was higher in sucrose media than malt extract. All species, except A. niger KUC5254, showed more than 90% removal of metals from Zn-Mn battery. For Ni-Cd battery, more than 95% of metals was extracted by A. niger KUC5254 and A. tubingensis KUC5037. As a result, A. tubingensis KUC5037 which is a non-ochratoxigenic fungus was considered to have the greatest potential for improving the safety and efficiency of the bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  8. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic properties of Zn0.9(Mn0.05,Ni0.05)O nanoparticle: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Mounkachi, O.; Lakhal, M.; Labrim, H.; Hamedoun, M.; Benyoussef, A.; El Kenz, A.; Loulidi, M.; Bhihi, M.

    2012-06-01

    The crystalline and magnetic properties of 5% Mn and 5% Ni co-doped nanocrystalline ZnO particles, obtained by the co-precipitation method, are performed. X-ray diffraction data revealed that Zn0.90Mn0.05Ni0.05O crystallizes in the monophasic wurtzite structure. DC magnetization measurement showed that the samples are paramagnetic at room temperature. However, a large increase in the magnetization is observed below 50 K. This behavior, along with the negative value of Weiss constant obtained from the linear fit of magnetic susceptibility data below room temperature, indicates ferrimagnetic behavior. The ferrimagnetic properties observed at low temperature are explained and confirmed from ab-initio calculations using the Korringa-Kohn-Rostoker method combined with the coherent potential approximation.

  10. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  11. Synthesis, structural, optical and dielectric properties of transition metal doped ZnMnO nanoparticles by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Dar, M. A.; Varshney, Dinesh

    2018-02-01

    Nanocrystalline samples of Zn0.94Mn0.06O and transition metal (TM) doped Zn0.94Mn0.01TM0.05O (TM = Co, Ni, and Cu) were prepared by sol-gel auto combustion method. X-ray diffraction (XRD) pattern infers that all synthesized samples except Zn0.94Mn0.01Ni0.05O and Zn0.94Mn0.01Cu0.05O with secondary phases of NiO and CuO are in single phase with hexagonal wurtzite structure (P63mc space group). Raman spectroscopy reveals four vibrational phonon modes are centered at 331, 380, 410, and 438 cm-1, assigned as E2 (H)-E2(L), A1(TO), E1(TO), and E1(LO) modes, respectively. A Raman spectrum of Zn0.94Mn0.01TM0.05O is entirely different from undoped Zn0.94Mn0.06O sample. Also, the infrared spectrum of transition metal doped samples is completely different from undoped Zn0.94Mn0.06O. Similar spectra are observed for Zn0.94Mn0.01Co0.05O, Zn0.94Mn0.01NiO, Zn0.94Mn0.01Cu0.05O and Zn0.94Mn0.01Zn0.05O samples. It was found that the band gap of Zn0.94Mn0.06O increased from 3.19 to 3.25eV by doping 5% transition metal oxide. Improved dielectric constant and reduced dielectric loss is measured for Zn0.94Mn0.01Ni/Cu0.05O as compared to Zn0.94Mn0.06O.

  12. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Macdonald, Landan; Croll, Lisa M; Dahn, J R

    2013-02-11

    Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO.

  13. Design of lightweight broadband microwave absorbers in the X-band based on (polyaniline/MnNiZn ferrite) nanocomposites

    NASA Astrophysics Data System (ADS)

    Ali, Nassim Nasser; Al-Qassar Bani Al-Marjeh, Rama; Atassi, Yomen; Salloum, Akil; Malki, Adnan; Jafarian, Mojtaba

    2018-05-01

    We present the design of novel, lightweight, broadband microwave absorbers based on polyaniline/Mn0.1Ni0.45Zn0.45Fe2O4 (PANI/MnNiZn ferrite) nanocomposites. The ferrite is synthesized by sol-gel technique. Then, the polymer is deposited by in-situ chemical oxidative polymerization. The structural and morphological characterizations of the composites are investigated by SEM, XRD, FT-IR and UV-vis spectroscopy. The functional characterization is performed by measuring the dc-conductivity and microwave absorption characteristics in the X-band. The absorbers exhibit broad bandwidths under -10 dB ranging from 2.60 to 3.74 GHz and low surface density ranging from 2.5 to 3.1 kg/m2. The absorber of 3.74 GHz bandwidth has a minimum reflection loss of -31.32 dB at 11.13 GHz with a matching thickness of 3 mm and a low loading in paraffin of only 25% w/w.

  14. Low temperature structural transformation in T[Ni(CN){sub 4}].xpyz with x=1,2; T=Mn,Co,Ni,Zn,Cd; pyz=pyrazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.

    2010-01-15

    The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less

  15. Optical and Magnetic Properties of ZnO Nanoparticles Doped with Co, Ni and Mn and Synthesized at Low Temperature.

    PubMed

    Hancock, Jared M; Rankin, William M; Hammad, Talaat M; Salem, Jamil S; Chesnel, Karine; Harrison, Roger G

    2015-05-01

    Zinc oxide nanomaterials were synthesized with small amounts of magnetic ions to create dilute magnetic semiconductors (DMS), by using a low temperature sol-gel method. Conditions were controlled such that a range of amounts of Co, Ni and Mn were incorporated. The incorporation could be tracked by color changes in the powders to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the ZnO has the wurtzite structure with crystallites 8-12 nm in diameter. Nanoparticles were observed by SEM and TEM and TEM showed that the lattice fringes of different nanoparticles align. Nanoparticle alignment was disrupted when high concentrations of metal dopants were incorporated. Magnetic measurements showed a change in behavior from diamagnetic to paramagnetic with increasing concentration of metal dopants.

  16. Polymorphism of the bivalent metal vanadates MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Mocała, Krzysztof; Ziółkowski, Jacek

    1987-08-01

    Based on the literature data, our former findings and additional DTA and high-temperature X-ray studies performed for CdV 2O 6, MgV 2O 6, and MnV 2O 6, a consistent scheme of the phase transformations of the MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) metavanadates is constructed at normal pressure between room temperature and melting points. Three types of structures exist for the considered compounds: brannerite type (B), pseudobrannerite type (P), and NiV 2O 6 type (N). The following phase transformations have been observed: Me = Mg, B → P at 535°C; Me = Mn, B → P at 540°C; Me = Co, N → B at 660°C; Me = Cu, B (with triclinic distortion) → B at 625°C (secondary order); and Me = Cd, B → P at 170°. CaV 2O 6P, NiV 2O 6N, and ZnV 2O 6B exist in unique form in the entire temperature range. P-form seems to be favored by Me of larger ionic radii. N-form seems to appear at a peculiar d-shell structure and small Me size. Preliminary explanation of the dependence of the structure type on Me size is offered. New X-ray data are given for CdV 2O 6B, CdV 2O 6P, MgV 2O 6B, MgV 2O 6P, and MnV 2O 6P.

  17. Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.

    2018-07-01

    Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.

  18. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  19. Enhanced magnetic properties in Mn0.6Zn0.4-xNixFe2O4 (x=0-0.4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Mandal, P.; Srinivas, V.

    2018-04-01

    Ni substituted MnZn ferrite fine particles were synthesized through sol-gel method. The structure, stability and magnetic properties have been investigated. Thermal stability of as-prepared (AP) particles is improved compared to that of Mn0.6Zn0.4Fe2O4 (MZF) ferrite particles. The as-prepared and samples annealed at 1200 °C exhibit pure spinel ferrite phase, while samples at intermediate temperatures (600 - 1000 °C) exhibit secondary phase of α-Fe2O3 along with ferrite phase. The Mn0.6Zn0.1Ni0.3Fe2O4 (Ni-MZF) sample shows significantly lower volume fraction of secondary phase compared to that of MZF. The observed magnetization of Ni-MZF is twice of that MZF samples. Present results suggest that a small amount (x=0.3) of Ni in place of nonmagnetic Zn in MZF significantly decreases the secondary phase fraction and improves the magnetic properties.

  20. Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-12-01

    Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.

  1. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  2. Zn-Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization

    NASA Astrophysics Data System (ADS)

    Loukil, N.; Feki, M.

    2017-07-01

    Zn-Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn-Mn co-deposition. The electrochemical results show that with increasing Mn2+ ions concentration in the electrolytic bath, Mn2+ reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn-Mn deposits. A dimensionless graph model was used to analyze the effect of Mn2+ ions concentration on Zn-Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn2+ concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn2+ ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn-Mn coatings. It was found that the Mn content increases with increasing the applied current density jimp and Mn2+ ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn-Mn coatings. The phase structure and surface morphology of Zn-Mn deposits are characterized by means of X-ray diffraction analysis and Scanning Electron Microscopy (SEM), respectively. The Zn-Mn deposited at low current density is tri-phasic and consisting of η-Zn, ζ-MnZn13 and hexagonal close packed ε-Zn-Mn. An increase in current density leads to a transition from crystalline to amorphous structure, arising from the hydroxide inclusions in the Zn-Mn coating at high current density.

  3. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  4. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  5. Abundances of O, Mg, S, Cr, Mn, Ti, NI and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Astrophysics Data System (ADS)

    de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-11-01

    The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.

  6. Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn

    2013-05-01

    Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less

  7. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  8. Influence of Na+, K+, Mn2+, Fe2+ and Zn2+ ions on the electrodeposition of Ni-Co alloys: Implications for the recycling of Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Blanco, S.; Orta-Rodriguez, R.; Delvasto, P.

    2017-01-01

    A hydrometallurgical recycling procedure for the recovery of a mixed rare earths sulfate and an electrodeposited Ni-Co alloy has been described. The latter step was found to be complex, due to the presence of several ions in the battery electrode materials. Electrochemical evaluation of the influence of the ions on the Ni-Co alloy deposition was carried out by cyclic voltammetry test. It was found that ions such as K+, Fe2+ and Mn2+ improved the current efficiency for the Ni-Co deposition process on a copper surface. On the other hand, Na+ and Zn2+ ions exhibited a deleterious behaviour, minimizing the values of the reduction current. The results were used to suggest the inclusion of additional steps in the process flow diagram of the recycling operation, in order to eliminate deleterious ions from the electroplating solution.

  9. Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming

    2018-01-01

    A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.

  10. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  11. Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.

    PubMed

    Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua

    2009-01-01

    In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.

  12. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  13. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE PAGES

    Li, Boyan; Zhang, Lei; Li, Chengliang; ...

    2018-04-18

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  14. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Boyan; Zhang, Lei; Li, Chengliang

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  15. UV Spectra of Tris(2,2'-bipyridine)-M(II) Complex Ions in Vacuo (M = Mn, Fe, Co, Ni, Cu, Zn).

    PubMed

    Xu, Shuang; Smith, James E T; Weber, J Mathias

    2016-11-21

    We present electronic spectra in the π-π* region of a series of tris(bpy)-M(II) complex ions (bpy = 2,2'-bipyridine; M = Mn, Fe, Co, Ni, Cu, Zn) in vacuo for the first time. By applying photodissociation spectroscopy to cryogenically cooled and mass selected [M II (bpy) 3 ] 2+ ions, we obtain the intrinsic spectra of these ions at low temperature without perturbation by solvent interaction or crystal lattice shifts. This allows spectroscopic analysis of these complex ions in greater detail than possible in the condensed phase. We interpret our experimental data by comparison with time-dependent density functional theory.

  16. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-02-01

    Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.

  17. Structural evolution of the double perovskites Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinacca, R.M., E-mail: rmp@unsl.edu.ar; Viola, M.C.; Pedregosa, J.C.

    2011-11-15

    Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterizationmore » by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.« less

  18. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  19. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.

    PubMed

    Sobianowska-Turek, Agnieszka

    2018-04-11

    The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H 2 SO 4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of added Zn, Ni and Cd on desert shrubs grown in desert soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.M.; Wallace, A.; Romney, E.M.

    1980-01-01

    Desert shrubs - Ambrosia dumosa, Lycium andersonii, Larrea tridenata, and Ephedra nevadensis wre grown in a glasshouse in desert (calcarous) soil with different levels of added Zn, Ni, and Cd. The objective was to study effects of the metals on growth and yield and uptake and translocation of metals in desert plant species which are common in the Mojave Desert (areas of Nevada and southeast California). Zinc and Cd considerably decreased yields of all four species. Yields of E. nevadensis were increased by Ni at 250 and 500 mg/kg applied to desert soil. Ephedra nevadensis was more tolerant of Nimore » than were the other three desert shrubs. Some interactions were observed among various elements: manganese concentration was increased in shrubs by Zn. Particularly, application of Ni reduced the concentrations of Zn and Mn over the control.« less

  1. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    NASA Astrophysics Data System (ADS)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  2. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    NASA Astrophysics Data System (ADS)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  3. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2015-12-01

    NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux

  4. Magnetic properties and photovoltaic applications of ZnO:Mn nanocrystals.

    PubMed

    Zhang, Ying; Han, Fengxiang; Dai, Qilin; Tang, Jinke

    2018-05-01

    A simple and large-scale synthetic method of Mn doped ZnO (ZnO:Mn) was developed in this work. ZnO:Mn nanocrystals with hexagonal structure were prepared by thermal decomposition of zinc acetate and manganese acetate in the presence of oleylamine and oleic acid with different temperatures, ligand ratios, and Mn doping concentrations. The particle size (47-375 nm) and morphology (hexagonal nanopyramid, hexagonal nanodisk and irregular nanospheres) of ZnO:Mn nanocrystals can be controlled by the ratio of capping ligand, reaction temperature, reaction time and Mn doping concentration. The corresponding optical and magnetic properties were systemically studied and compared. All samples were found to be paramagnetic with antiferromagnetic (AFM) exchange interactions between the Mn moments in the ZnO lattice, which can be affected by the reaction conditions. The quantum dot sensitized solar cells (QDSSCs) were fabricated based on ZnO:Mn nanocrystals and CdS quantum dots, and the device performance affected by Mn doping concentration was also studied and compared. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors.

    PubMed

    Chen, Yu Ming; Li, Zhen; Lou, Xiong Wen David

    2015-09-01

    A simple and versatile method for general synthesis of uniform one-dimensional (1D) M(x)Co(3-x)S4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core-shell polymer@M-Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core-shell polymer@M(x)Co(3-x)S4 composite nanofibers. The as-made M(x)Co(3-x)S4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g(-1) at 10 A g(-1), and the cycling stability is remarkable, with only about 6% loss over 20,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  7. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less

  8. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    NASA Astrophysics Data System (ADS)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  9. Nickel removal by biosorption onto medlar male flowers coupled with photocatalysis on the spinel ZnMn2O4

    PubMed Central

    2014-01-01

    Ni2+ is a highly toxic above 0.07 mg/L and its removal is of high significance. The biosorption of Ni2+ onto medlar male flowers (MMF) was studied in relation with the physical parameters like pH, contact time, biosorbent dosage, Ni2+ concentration and temperature. The interaction biosorbent-Ni2+ was examined by the FTIR technique. The equilibrium was achieved within 40 min and the data were well fitted by the Langmuir and Redlich-Peterson (R-P) models. The maximum Ni2+ uptake capacity was 17.073 mg/g at 25°C and the Ni2+ removal follows a pseudo-second order kinetic with activation energy of 13.3 kJ/mol. The thermodynamic parameters: ΔS°, ΔH° and ΔG° showed that the biosorption was spontaneous and endothermic. MMF was used as a post treatment technique and the biosorption was coupled with the visible light driven Ni2+ reduction over the spinel ZnMn2O4. The effect of the pH, ZnMn2O4 loading and light intensity on the photoactivity was investigated. 77.5% of Ni2+ was reduced after ~140 min under optimal conditions. The Ni2+ removal reached a rate conversion of 96% of with the coupled system biosorption/photocatalysis is very promising for the water treatment. PMID:24401700

  10. Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Agami, W. R.

    2018-04-01

    Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.

  11. Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/NiFe and Mn 80Ir 20/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    2007-03-01

    Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.

  12. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    NASA Astrophysics Data System (ADS)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  13. ``Flash'' synthesis of ``giant'' Mn-doped CdS/ZnSe/ZnS nanocrystals with ZnSe layer as hole quantum-well

    NASA Astrophysics Data System (ADS)

    Xu, Ruilin; Zhang, Jiayu

    Usually, exciton-Mn energy transfer in Mn-doped CdS/ZnS nanocrystals (NCs) can readily outcompete the exciton trapping by an order of magnitude. However, with the accumulation of non-radiative defects in the giant shell during the rapid growth of the thick shell (up to ~20 monolayers in no more than 10 minutes), the photoluminescence (PL) quantum yield of this kind of ``giant'' NCs is significantly reduced by the accumulation of non-radiative defects during the rapid growth of thick shell. That is because the exciton-Mn energy transfer in Mn-doped CdS/ZnS NCs is significantly inhibited by the hole trapping as the major competing process, resulting from the insufficient hole-confinement in CdS/ZnS NCs. Accordingly ``flash'' synthesis of giant Mn-doped CdS/ZnSe/ZnS NCs with ZnSe layer as hole quantum-well is developed to suppress the inhibition. Meanwhile Mn2+ PL peak changes profoundly from ~620 nm to ~540 nm after addition of ZnSe layer. Studies are under the way to explore the relevant mechanisms.

  14. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  15. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    PubMed

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  16. Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.

    PubMed

    Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz

    2012-07-11

    An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.

  17. Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn 2+/Mn 2+ heterobinucleation

    DOE PAGES

    Ransey, Elizabeth; Paredes, Eduardo; Dey, Sourav K.; ...

    2017-05-17

    Here, the RNA lariat debranching enzyme, Dbr1, is a metallophosphoesterase that cleaves 2'-5' phosphodiester bonds within intronic lariats. Previous reports have indicated that Dbr1 enzymatic activity is supported by diverse metal ions including Ni 2+, Mn 2+, Mg 2+, Fe 2+, and Zn 2+. While in initial structures of the Entamoeba histolytica Dbr1 only one of the two catalytic metal-binding sites were observed to be occupied (with a Mn 2+ ion), recent structures determined a Zn 2+/Fe 2+ heterobinucleation. We solved a high-resolution X-ray crystal structure (1.8 Å) of the E. histolytica Dbr1 and determined a Zn 2+/Mn 2+ occupancy.more » ICP-AES corroborate this finding, and in vitro debranching assays with fluorescently labeled branched substrates confirm activity.« less

  18. Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn 2+/Mn 2+ heterobinucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransey, Elizabeth; Paredes, Eduardo; Dey, Sourav K.

    Here, the RNA lariat debranching enzyme, Dbr1, is a metallophosphoesterase that cleaves 2'-5' phosphodiester bonds within intronic lariats. Previous reports have indicated that Dbr1 enzymatic activity is supported by diverse metal ions including Ni 2+, Mn 2+, Mg 2+, Fe 2+, and Zn 2+. While in initial structures of the Entamoeba histolytica Dbr1 only one of the two catalytic metal-binding sites were observed to be occupied (with a Mn 2+ ion), recent structures determined a Zn 2+/Fe 2+ heterobinucleation. We solved a high-resolution X-ray crystal structure (1.8 Å) of the E. histolytica Dbr1 and determined a Zn 2+/Mn 2+ occupancy.more » ICP-AES corroborate this finding, and in vitro debranching assays with fluorescently labeled branched substrates confirm activity.« less

  19. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  20. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  1. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  2. Polycrystalline ZnO and Mn-doped ZnO nanorod arrays with variable dopant content via a template based synthesis from Zn(II) and Mn(II) Schiff base type single source molecular precursors

    NASA Astrophysics Data System (ADS)

    Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.

    2011-01-01

    The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 μm. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.

  3. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  4. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    NASA Astrophysics Data System (ADS)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  5. Surface characterization of ZnO/ZnMn2O4 and Cu/Mn3O4 powders obtained by thermal degradation of heterobimetallic complexes

    NASA Astrophysics Data System (ADS)

    Barrault, Joël; Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-01

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2'-bipyridyl by thermal degradation at relatively low (350 °C) temperature, it was possible to get either well defined spinel ZnMn2O4 over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn3O4) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33±0.2 and 9±0.06 m2 g-1 for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products.

  6. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less

  7. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  8. Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects.

    PubMed

    Rötting, Tobias S; Ayora, Carlos; Carrera, Jesus

    2008-12-15

    High concentrations of divalent metals such as Zn, Mn, Cu, Pb, Ni, Cd, Co, etc. are not removed satisfactorily in conventional (calcite- or organic matter-based) passive treatment systems. Caustic magnesia ("MgO") has been used successfully as an alternative alkaline material to remove these metals almost completely from water, but columns with coarse-grained MgO lost reactivity or permeability due to the accumulation of precipitates when only a small portion of the reagent had been spent. In the present study, MgO was mixed with wood chips to overcome these problems. Two columns with different MgO grain sizes were used to treat Zn- and Mn-rich water during one year. Performance was compared by measuring depth profiles of chemical parameters and hydraulic conductivity. The column containing 25% (v/v) of MgO with median particle size of about 3 mm displayed low reactivity and poor metal retention. In contrast, the column containing only 12.5% (v/v) of MgO with median particle size of 0.15 mm depleted Zn and Mn below detection limit throughout the study and had a good hydraulic performance. 95% of the applied MgO was consumed in the zone where Zn and Mn accumulated. The fine alkaline grains can dissolve almost completely before the growing layer of precipitates passivates them, whereas clogging is prevented by the large pores of the coarse inert matrix (wood chips). A reactive transport model corroborated the hypotheses that Zn(II) was removed due to its low solubility at pH near 10 achieved by MgO dissolution, whereas Mn(II) was removed due to rapid oxidation to Mn(III) at this pH and subsequent precipitation. The model also confirmed that the small size and large specific surface area of the MgO particles are the key factor to achieve a sufficiently fast dissolution.

  9. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of the ZnO layer on the structure and white light emission properties of a ZnS:Mn/GaN nanocomposite system.

    PubMed

    Wang, Cai-Feng; Hu, Bo

    2017-10-01

    ZnO films were inserted between the ZnS:Mn films and GaN substrates by pulsed laser deposition (PLD). The structure, morphology, and optical properties of the ZnS:Mn/ZnO/GaN nanocomposite systems have been investigated. X-ray diffraction results show that there are three diffraction peaks located at 28.4°, 34.4°, and 34.1°, which correspond to the β-ZnS(111), ZnO(002), and GaN(002) planes, respectively. Due to the insertion of ZnO films, the diffraction peak intensity of ZnS:Mn in ZnS:Mn/ZnO/GaN is stronger than that of ZnS:Mn in ZnS:Mn/GaN, and the full width at half-maximum is smaller. Though the transmittance of ZnS:Mn/ZnO films is slightly lower than that of ZnS:Mn films, the transmittance is still higher than 80%. Compared with ZnS:Mn/GaN, an ultraviolet (UV) emission at 387 nm (originated from the near-band emission of ZnO) and a green light emission at about 520 nm appeared in the photoluminescence (PL) spectra of ZnS:Mn/ZnO/GaN, in addition to the blue emission at 435 nm and the orange-red emission at 580 nm. The emission at 520 nm may be related to the deep-level emission from ZnO and the interface of ZnS:Mn/ZnO. The PL spectrum of ZnS:Mn/ZnO/GaN covers the visible region from the blue light to the red light (400-700 nm), and its color coordinate and color temperature are (0.3103,0.3063) and 6869 K, respectively, presenting strong white light emission.

  11. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  12. Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO-ZnS complex structure.

    PubMed

    Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong

    2014-03-14

    Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.

  13. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  14. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    PubMed

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemical evaluation of manganese reducers - Recovery of Mn from Zn-Mn and Zn-C battery waste

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2014-12-01

    Extraction of manganese from ores or battery waste involves the use of reductive reagents for transformation of MnO2 to Mn2+ ions. There are many reducers, both organic and inorganic, described in the literature. A series of 18 reducers has been discussed in the paper and they were classified according to standard redox potential (pE = -log ae- where pE is used to express formal electron activity and ae- is formal electron activity). The experiments of manganese extraction from paramagnetic fraction of Zn-C and Zn-Mn battery waste in the laboratory scale have been described for 3 reducers of different origin. The best result was achieved with oxalic acid (75%, with the lowest redox potential) and urea (with typical redox potential) appeared inactive. Extraction supported by hydrogen peroxide resulted in moderate yield (50%). It shows that formal thermodynamic scale is only preliminary information useful for selection of possible reducers for manganese extraction resources.

  16. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    PubMed

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  17. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  18. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke

    2017-02-01

    The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.

  19. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe

  20. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    NASA Astrophysics Data System (ADS)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  1. Damping studies in Ni-Mn-Ga-Fe/PU polymer composites

    NASA Astrophysics Data System (ADS)

    Saranya, C.; Kumar, S. Vinodh; Seenithurai, S.; Pandyan, R. Kodi; Munieswaran, P.; Mahendran, M.

    2015-06-01

    Ni-Mn-Ga-Fe/PU polymer composite is prepared to investigate the damping behavior by using an indigenous experimental setup. The excellent damping properties of Ni-Mn-Ga-Fe alloys bonded with polymer matrix makes possible to develop new damping materials which are effective, less expensive and easier than bulk Ni-Mn-Ga. At low frequency, the stress amplitude increases and then smoothly decreases on increasing the frequency.

  2. Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS:Mn/ZnS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaparde, Rohini A.; Acharya, Smita A.

    2018-05-01

    ZnS:Mn/ ZnS core/shell nanoparticles was prepared by two step synthesis method. In first step, oleic acid - coated Mn doped ZnS core nanoparticles were prepared which were charged through ligand exchange. Shell of ZnS NPs was finally deposited upon the surface of charged Mn doped ZnS core. Scanning electron microscopy (SEM) image exhibit morphological confirmation of ZnS:Mn/ZnS core/shell. As Nano ZnS are the most suitable candidates for photocatalyst that extensively involved in degradation and complete mineralization of various toxic organic pollutants owing to its high efficiency, strong oxidizing power, non-toxicity, high photochemical and biological stability, corrosive resistance and low cost. Photodegradation of malachite green is systematically investigated by adding different molar proportional of ZnS:Mn/ZnS core/shell in the dye. The rate of de-coloration of dye is detected by UV-VIS absorption spectroscopy. Efficient detoriation in the colour of dye is attributed to the core /shell morphology of the particles.

  3. The crystal structures of Ni{sub 3+x}Sn{sub 4}Zn and Ni{sub 6+x}Sn{sub 8}Zn and their structural relations to Ni{sub 3+x}Sn{sub 4}, NiSn and Ni{sub 5−δ}ZnSn{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmetterer, Clemens, E-mail: clemens.schmetterer@univie.ac.at; Effenberger, Herta Silvia; Rajamohan, Divakar

    2016-06-15

    The crystal structures of two new compounds were determined from single-crystal X-ray diffraction measurements: Ni{sub 3+x}Sn{sub 4}Zn, (x~1.35, a=7.110(2) Å, b=4.123(1) Å, c=10.346(3) Å, β=90.23(2)°, space group I2/m, Z=2. R1=0.025, wR2=0.059 for 748 unique reflections, 35 variable parameters) and Ni{sub 6+x}Sn{sub 8}Zn, x~1.35 (a=12.379(3) Å, b=4.095(1) Å, c=12.155(3) Å, β=116.25(3)°, space group C2/m, Z=2. R1=0.026, wR2=0.052 for 1346 unique reflections, 60 variable parameters). In addition, a structural refinement was performed for Ni{sub 3+x}Sn{sub 4}, x~0.13 (a=12.264(3) Å, b=4.066(1) Å, c=5.223(2) Å, β=104.85(3)°, space group C2/m, Z=2. R1=0.019, wR2=0.046 for 617 unique reflections, 29 variable parameters). The three compounds show pronouncedmore » similarities among each other as well as to the crystal structures of surrounding binary Ni–Sn and ternary Ni–Sn–Zn compounds. In particular, the two new compounds form a homologous series with Ni{sub 3+x}Sn{sub 4}, x~0.13. They contain “Ni{sub 4}Sn{sub 4}” and “Ni{sub 2}Sn{sub 4}” building blocks which by different interconnection build up the distinct structures. Topological relations with NiSn and Ni{sub 5−δ}Sn{sub 4}Zn, δ~0.25 are evident. - Graphical abstract: Projection of the structure of Ni{sub 6+x}ZnSn{sub 8}, x~1.35 and constituent building blocks. Display Omitted - Highlights: • The crystal structures of Ni{sub 6+x}Sn{sub 8}Zn and Ni{sub 3+x}Sn{sub 4}Zn were determined using single crystal XRD. • Topological relations to Ni–Sn and Ni–Sn–Zn compounds were established and discussed. • Common structural units were identified and their interconnection patterns described.« less

  4. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  5. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration.

    PubMed

    Xin, Baoping; Jiang, Wenfeng; Aslam, Hina; Zhang, Kai; Liu, Changhao; Wang, Renqing; Wang, Yutao

    2012-02-01

    In this work, bioleaching was used to extract valuable Zn and Mn from spent Zn-Mn batteries. The results showed that 96% of Zn extraction was achieved within 24h regardless of energy source types and bioleaching bacteria species. However, initial pH had a remarkable influence on Zn release, extraction dose sharply decreased from 2200 to 500mg/l when the initial pH value increased from 1.5 to 3.0 or higher. In contrast to Zn, all the tested factors evidently affected Mn extraction; the maximum released dose of 3020mg/l was obtained under the optimum conditions. The acidic dissolution by biogenic H(2)SO(4) by the non-contact mechanism was responsible for Zn extraction, while Mn extraction was owed to both contact/biological and non-contact mechanisms. The combined action of acidic dissolution of soluble Mn(2+) by biogenic H(2)SO(4) and reductive dissolution of insoluble Mn(4+) by Fe(2+) resulted in 60% of Mn extraction, while contact of microbial cells with the spent battery material and incubation for more than 7days was required to achieve the maximum extraction of Mn. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    NASA Astrophysics Data System (ADS)

    Zaspalis, V. T.; Tsakaloudi, V.; Kogias, G.

    2014-07-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz, 200mT, 100°C), (iii) MnZn-ferrites with broad temperature stability (i.e. PV<375 mW cm-3 for 25°CMnZn-ferrites with high and frequency stable permeability (i.e. μi~12600 at 10 kHz, 0.1 mT, 25°C and tan(δ)/μi=20.5×10-6 at 100 kHz). In a final discussion the importance of defect chemistry for the time stability and stress sensitivity of the magnetic properties is discussed and some important issues are addressed, encountered during the transfer of a laboratory developed material to a large scale industrial production process.

  7. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  8. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5Mn 1.5O 4 Electrodes

    DOE PAGES

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...

    2015-11-11

    The LiNi 0.5Mn 1.5O 4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li +). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi 0.5Mn 1.5O 4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi 0.5Mnmore » 1.5O 4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni 2+ and Mn 2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi 0.5Mn 1.5O 4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less

  9. Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO

    NASA Astrophysics Data System (ADS)

    Wu, Kongping; Gu, Shulin; Tang, Kun; Zhu, Shunming; Zhou, Mengran; Huang, Yourui; Xu, Mingxiang; Zhang, Rong; Zheng, Youdou

    2012-07-01

    Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (VO2+) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from VO2+ incorporation. The effect of VO2+ on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of VO2+ makes the Mn empty 3d-t2g minority state broadened, and a t2g-VO2+ hybrid level at the conduction band minimum forms. The presence of VO2+ can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.

  10. Synthesis and characterization of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO nanocomposites from waste batteries for photocatalytic, electrochemical and thermal studies

    NASA Astrophysics Data System (ADS)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2017-11-01

    In the present paper, Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO composites recovered from waste batteries using acid dissolution and ferrite processing were studied. The recovered Mn-ZnFe2O4 nanocomposites were decorated onto rGO using the facile hydrothermal method. The recovered material was characterized using x-ray powder diffraction to study the particle size and crystallinity. The morphology of the composites was analyzed using scanning electron microscopy, and elements present in the materials were studied using energy dispersive x-ray analysis. The functional groups attached were observed using a Fourier transform infrared spectrometer. Furthermore, the recovered composites were evaluated in thermal studies using thermal gravimetric analysis, differential scanning calorimetry and dynamic thermal analysis. The material was used as a photocatalyst for the removal of acid orange 88 dye, and as an electrocatalyst. The decreased band gap energy for the Mn-ZnFe2O4/rGO composite was displayed in better photocatalytic activity for a given reaction. The electrochemical properties of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO have been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a paste-type electrode. The CV indicated the reversibility of the electrode reaction, and the EIS revealed that a decrease in the charge transfer resistance increases the double layer capacitance of the rGO/Mn-ZnFe2O4 electrode.

  11. Synthesis and characterization of single-phase Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  12. Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefkowitz, Joshua P.; Elzinga, Evert J.

    We studied the impacts of aqueous Mn(II) (1 mM) on the sorption of Ni(II) (200 μM) by hexagonal birnessite (0.1 g L- 1) at pH 6.5 and 7.5 with batch experiments and XRD, ATR-FTIR and Ni K-edge EXAFS analyses. In the absence of Mn(II)aq, sorbed Ni(II) was coordinated predominantly as triple corner-sharing complexes at layer vacancies at both pH values. Introduction of Mn(II)aq into Ni(II)-birnessite suspensions at pH 6.5 caused Ni(II) desorption and led to the formation of edge-sharing Ni(II) complexes. This was attributed to competitive displacement of Ni(II) from layer vacancies by either Mn(II) or by Mn(III) formed throughmore » interfacial Mn(II)-Mn(IV) comproportionation, and/or incorporation of Ni(II) into the birnessite lattice promoted by Mn(II)-catalyzed recrystallization of the sorbent. Similar to Mn(II)aq, the presence of HEPES or MES caused the formation of edge-sharing Ni(II) sorption complexes in Ni(II)-birnessite suspensions, which was attributed to partial reduction of the sorbent by the buffers. At pH 7.5, interaction with aqueous Mn(II) caused reductive transformation of birnessite into secondary feitknechtite that incorporated Ni(II), enhancing removal of Ni(II) from solution. These results demonstrate that reductive alteration of phyllomanganates may significantly affect the speciation and solubility of Ni(II) in anoxic and suboxic environments.« less

  13. Quaternary M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (M = Ni, Zn, Co, Mn) ferrite oxides: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocarlan, Radu George; Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen; Pui, Aurel, E-mail: aurel@uaic.ro

    2016-09-15

    Highlights: • Superparamagnetic quaternary nanoferrite (M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4,} where M = Mn, Zn, Co, Ni) were obtained. • C, O, H and metals were observed by XPS analysis. • Phases purity were confirmed by XRD diffraction and crystallite size (3–10 nm) were determind. - Abstract: We report the synthesis of M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (where M = Mn, Zn, Co, Ni) nanoparticles using the coprecipitation method in the presence of carboxymethyl cellulose (CMC) as the in-situ surfactant. The crystalline structure and surface morphology were examined by means of X-ray diffraction (XRD) and scanning electron microscopymore » (SEM) and it was established that the average diameter of the magnetic nanoparticles (MNPs) is in the range of 3–10 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) show that the MNPs are activated by the hydrophilic groups of the surfactant, which coat them and enhance their stability. The vibrating sample magnetometry measurements show the superparamagnetic behavior of the nanoparticles. Due to their small crystallite size, which implies large surface area, and their functionalization with organic groups, the obtained nanoparticles could have medical and catalytic applications.« less

  14. Excitons and photoluminescence in ZnO and Zn0.99Mn0.01O nanocrystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, N. B.; Sokolov, V. I.; Ermakov, A. E.; Uimin, M. A.; Mysik, A. A.; Pustovarov, V. A.

    2010-08-01

    The photoluminescence and photoluminescence excitation spectra for Zn1- x Mn x O nanocrystals are presented. After annealing of powders in air, the intensity of the bands attributable to manganese decreases noticeably. This suggests that the oxygen vacancies affect the Zhang-Rice-like states appearing due to strong d- p-hybridization, which is confirmed by an increase in the band gap of Zn1- x Mn x O for low x. The origin of the 2.9-eV peak and the shape of its excitation spectrum are discussed qualitatively. For Zn1- x Mn x O nanocrystals, the shape of the excitation spectrum is as unusual as the intense absorption in the range (2.2-3.0) eV.

  15. Theory of the magnetism in La2NiMnO6

    NASA Astrophysics Data System (ADS)

    Sanyal, Prabuddha

    2017-12-01

    The magnetism of ordered and disordered La2NiMnO6 is explained using a model involving double exchange and superexchange. An important feature of this model is the majority spin hybridization in the large coupling limit, which results in ferromagnetism rather than ferrimagnetism as in Sr2FeMoO6 . The ferromagnetic insulating ground state in the ordered phase is explained. The essential role played by the Ni-Mn superexchange between the Ni eg electron spins and the Mn t2 g core electron spins in realizing this ground state is outlined. In the presence of antisite disorder, the model system is found to exhibit a tendency of becoming a spin glass at low temperatures, while it continues to retain a ferromagnetic transition at higher temperatures, similar to recent experimental observations [D. Choudhury et al., Phys. Rev. Lett. 108, 127201 (2012), 10.1103/PhysRevLett.108.127201]. This reentrant spin glass or reentrant ferromagnetic behavior is explained in terms of the competition of the ferromagnetic double exchange between the Ni eg and the Mn eg electrons, and the ferromagnetic Ni-Mn superexchange, with the antiferromagnetic antisite Mn-Mn superexchange.

  16. Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Soumyadipta, E-mail: soumyadipta.pal@gmail.com; Mahadevan, Priya; Biswas, C.

    2015-06-24

    The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.

  17. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites

    NASA Astrophysics Data System (ADS)

    Guo, S. L.; Zhao, Y.; Man, H. Y.; Ding, C.; Gong, X.; Zhi, G. X.; Fu, L. C.; Gu, Y. L.; Frandsen, B. A.; Liu, L.; Cheung, S. C.; Munsie, T. J.; Wilson, M. N.; Cai, Y. P.; Luke, G. M.; Uemura, Y. J.; Ning, F. L.

    2016-09-01

    We report the successful synthesis and characterization of a new type I-II-V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to  ˜33 K has been observed with a coercive field  ˜40 Oe for the 12.5% doping level. μSR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs.

  18. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    NASA Astrophysics Data System (ADS)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  19. Magneto-optical studies of ensembles of semimagnetic self-organized Cd(Mn)Se/Zn(Mn)Se Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshina, I. I.; Ivanov, S. V.; Toropov, A. A.

    2013-12-04

    Ensembles of Cd(Mn)Se/ZnSe and CdSe/Zn(Mn)Se semimagnetic self-organized quantum dots with different Mn content have been studied by photoluminescence and resonant Raman scattering under strong magnetic fields in Faraday and Voigt geometries and with spectral and polarization selective excitation. Electron spin-flip Raman scattering has been observed in Voigt geometry in the structures with large Mn content. Narrow exciton peaks completely σ{sup −}σ{sup +} polarized have been observed under selective excitation in Faraday geometry in the structures with medium and small Mn content. A number of specific effects manifested themselves in the structures with a smallest Mn content where no Zeeman shiftmore » of the photoluminescence bands was observed.« less

  20. Characterization of Ni-Mn-Ga alloy with Gd addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.Y.; Du, Z.W.; Shao, B.L.

    2008-08-15

    The effect of rare earth element Gd additions in an Ni-Mn-Ga alloy on magnetocaloric effect has previously been investigated. In this paper, the microstructure of Ni{sub 53.4}Mn{sub 20}Ga{sub 25.6}Gd{sub 1} was studied by TEM. The results show that Gd partly dissolves in the matrix and partly occurs as precipitates such as Gd and Ni-rich Ni-Mn-Ga-Gd quaternary phases. At room temperature, the alloy is mainly composed of non-modulated martensite with a small amount of seven-layered and ten-layered modulated martensite. The high-resolution electron microscopy (HREM) images also reveal that some layered structures in certain zones are microtwins in nature with a thicknessmore » of a few atomic planes as the stacking sequence is not periodic.« less

  1. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.

    PubMed

    Niu, Zhirui; Huang, Qifei; Wang, Jia; Yang, Yiran; Xin, Baoping; Chen, Shi

    2015-11-15

    Bioleaching of spent batteries was often conducted at pulp density of 1.0% or lower. In this work, metallic ions catalytic bioleaching was used for release Zn and Mn from spent ZMBs at 10% of pulp density. The results showed only Cu(2+) improved mobilization of Zn and Mn from the spent batteries among tested four metallic ions. When Cu(2+) content increased from 0 to 0.8 g/L, the maximum release efficiency elevated from 47.7% to 62.5% for Zn and from 30.9% to 62.4% for Mn, respectively. The Cu(2+) catalysis boosted bioleaching of resistant hetaerolite through forming a possible intermediate CuMn2O4 which was subject to be attacked by Fe(3+) based on a cycle of Fe(3+)/Fe(2+). However, poor growth of cells, formation of KFe3(SO4)2(OH)6 and its possible blockage between cells and energy matters destroyed the cycle of Fe(3+)/Fe(2+), stopping bioleaching of hetaerolite. The chemical reaction controlled model fitted best for describing Cu(2+) catalytic bioleaching of spent ZMBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  3. Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors

    PubMed Central

    Wei, Chengzhen; Cheng, Cheng; Zhao, Junhong; Wang, Zhangtao; Wu, Haipeng; Gu, Kaiyue; Du, Weimin; Pang, Huan

    2015-01-01

    Mesoporous ZnS–NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS–NiS composite materials have large surface areas (137.9 m2 g−1) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS–NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS–NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS–NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS–NiS composites are promising materials for nonenzymatic glucose sensors. PMID:25861568

  4. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    NASA Astrophysics Data System (ADS)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  5. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  6. Synthesis and property of spinel porous ZnMn2O4 microspheres

    NASA Astrophysics Data System (ADS)

    Guo, N.; Wei, X. Q.; Deng, X. L.; Xu, X. J.

    2015-11-01

    Mesoporous ternary zinc manganese oxides on the Ti sheet substrate are prepared by easy and fast hydrothermal method for the first time. The obtained ZnMn2O4 materials with homogenously distributed pores have been characterized by XRD, SEM and Raman spectra, which show the good crystal phase and particles for improving supercapacitive performance. XRD and SEM images show that the as-prepared samples have good crystallinity, and ZnMn2O4 microsphere has an average diameter of 10 μm. In addition, ZnMn2O4 are also characterized in 2 M KOH solution using three-electrode system. In the work, we study that different substrates (Ti, carbon and nickel foam) have an important effect on the electrochemical performance of the samples. The research of cyclic voltammogram (CV) indicates that the obtained specific capacitance (155 F g-1) values on nickel foam substrate for the ZnMn2O4 microspheres are higher than the values reported for some inexpensive oxides. However, the specific capacitance of all ZnMn2O4 samples has almost no change at two different scan rates which shows good long-term cycling stability. The electrochemical impedance spectroscopy with a small resistance reveals that the as-synthesized samples have good frequency response characteristics. These results indicate that the unique ZnMn2O4 electrode would be a promising electrode for high-performance supercapacitor applications.

  7. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, R. B.; Department of Physics, Hebei Medical University, Shijiazhuang 050017; Zhao, D. W.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalentmore » hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.« less

  8. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion).

    PubMed

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Martínez-Agudo, J M

    2001-01-01

    The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT.

  9. Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)

    NASA Astrophysics Data System (ADS)

    Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.

    2018-04-01

    We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.

  10. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  11. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  12. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Hernández, L.; Estévez-Hernández, O.; Instituto de Ciencia y Tecnología de Materiales

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}Omore » nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.« less

  13. Enhanced magneto-caloric effect upon Co substitution in Ni-Mn-Sn thin films

    NASA Astrophysics Data System (ADS)

    Modak, Rajkumar; Raja, M. Manivel; Srinivasan, A.

    2018-02-01

    Mn rich Ni-Mn-Sn and Ni-Mn-Co-Sn alloy films were deposited on Si (1 0 0) substrate by dc magnetron sputtering from Ni50Mn37Sn13 alloy target at 1.8 Pa Ar pressure with 70 W dc power. Co was introduced by placing Co chips on the Ni-Mn-Sn target. As-deposited films were vacuum annealed at 823 K for 1 h. X-ray diffraction patterns of the films revealed modulated 14 M structure of the martensite phase at room temperature. Magnetic entropy change (ΔSm) across the Curie temperature of the ferromagnetic films was estimated from initial isothermal magnetization curves using Maxwell's equation. ΔSm and refrigeration capacity (RC) of Ni-Mn-Sn and Ni-Mn-Co-Sn films increased with increasing film thickness. Upon Co substitution in Mn/Sn site(s), ΔSm and RC increased more remarkably. The change is more prominent in the case of 360 nm films, wherein a 3.8-fold increase in ΔSM and 8.9-fold increase in RC was observed. Introduction of Co increased the magnetic moment and broadened the magnetic transition. These factors increased ΔSm and RC in Co substituted Ni-Mn-Sn alloy. Since TC shifted to higher temperatures with Co substitution, operating temperature of these magnetic refrigerants also shifted to higher temperature. This study indicates the possibility of developing high temperature cooling devices and waste energy harvesters using these films.

  14. Investigation of spin-dependent transports and microstructure in NiMnSb-based magnetoresistive devices

    NASA Astrophysics Data System (ADS)

    Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro

    2017-11-01

    We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.

  15. Structural and magnetic characterization of Mn/NiFe bilayers with ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Hsien; Zheng, Chao; Chiu, Chun-Cheng; Manna, Palash Kumar; van Lierop, Johan; Lin, Ko-Wei; Pong, Philip W. T.

    2018-01-01

    The exchange bias effect in ferromagnetic (FM)/antiferromagnetic (AF) bilayer structures has been widely investigated because its underlying principle is critical for spintronic applications. In this work, the effect of Ar+ beam bombardment on the microstructural and magnetic properties of the Mn/NiFe thin films was investigated. The in-situ Ar+ bombardment nontrivially promoted the Mn/NiFe intermixing and facilitated the formation of the FeMn phase, accompanied by a remarkable reduction of Mn and NiFe layer thickness. The enhanced Mn/NiFe intermixing greatly disordered the interfacial spins, inhibiting the interfacial exchange coupling and giving rise to a significant decrease of the exchange bias field (H ex). The facilitated Mn/NiFe intermixing effect also dramatically degraded the magnetocrystalline anisotropy of the NiFe crystallites, leading to a notable suppression of the coercivity (H c). These results indicate that both the exchange bias and coercivity of the Mn/NiFe bilayers can be directly affected by the in-situ Ar+ bombardment, offering an effective way to modify the magnetism of the exchange-bias systems.

  16. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix.

    PubMed

    Kuerbanjiang, Balati; Wiedwald, Ulf; Haering, Felix; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul; Herr, Ulrich

    2013-11-15

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m(-2) at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size.

  17. Synthesis and structural characterization of transition metal doped MgO: Mg0.95Mn0.01TM0.04O (TM = Co, Ni, Cu)

    NASA Astrophysics Data System (ADS)

    Islam, Ishtihadah; Khandy, Shakeel Ahmad; Hafiz, Aurangzeb Khurram

    2018-05-01

    In the present work, preparation and characterization of transition metal doped MgO: Zn0.94Mn0.01TM0.05O (TM = Co, Ni and Cu) nano-particles have been reported. Transition metal doped samples of MgO were synthesized by Sol gel auto combustion method. Structural characterisation from XRD and SEM show the formation of single-phase primary particles, nearly of spherical shaped nano-crystallites. The crystallite size was found to be 78.2, 67.02, 78.11 and 64 nm for pure, Co, Cu and Ni doped MgMnO nano-particles, respectively. Hence, the average crystallite size increases monotonously from Co to Cu doping.

  18. Anisotropic Dirac Fermions in BaMnBi2 and BaZnBi2

    NASA Astrophysics Data System (ADS)

    Ryu, Hyejin; Park, Se Young; Li, Lijun; Ren, Weijun; Petrovic, Cedomir; Hwang, Choonkyu; Mo, Sung-Kwan

    We report electronic structures of BaMnBi2 and BaZnBi2 sharing similar structural properties but having different valence configuration of the Mn/Zn-Bi complex. Our angle-resolved photoemission measurements found a strong anisotropic Dirac dispersion in BaMnBi2 and a complete departure from the Dirac dispersion in BaZnBi2. Our findings, substantiated by the first principle calculations, allow us to understand role of Mn/Zn-Bi tetrahedra in the changes of the electronic structures as well as the effect of varying band filling of Bi-square net. Work at BNL was supported by the U.S. Dept of Energy-BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704 and Chinese Academy of Sciences under Grant No. KJZD-EW-M05.

  19. Solution Combustion Synthesis of Ni/NiO/ZnO Nanocomposites for Photodegradation of Methylene Blue Under Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Biglari, Z.; Masoudpanah, S. M.; Alamolhoda, S.

    2018-02-01

    In this work, Ni/NiO/ZnO nanocomposites were synthesized by the one-pot solution combustion synthesis method. Phase evolution investigated by the x-ray diffraction method showed that the ZnO and NiO contents can be tuned by addition of a zinc precursor. The microstructure characterized by electron microscopy exhibited granular morphology with a particle size of 1.1 μm decreasing to 90 nm as a function of the amounts of ZnO and NiO phases. Specific surface area determined by N2 adsorption-desorption isotherms increased from 1.4 m2/g to 25.6 m2/g with the increase of oxide phases. However, the saturation magnetization decreased from 51.3 emu/g to 25.9 emu/g in the presence of antiferromagnetic NiO and nonmagnetic ZnO phases. Photodegradation of methylene blue under ultraviolet light exhibited the maximum efficiency in the sample containing 16.25 wt.% of ZnO and 21.25 wt.% of NiO, and may be due to the synergic effect between ZnO and NiO.

  20. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.

    PubMed

    Tsai, Yi-Chiun; Yang, Wein-Duo; Lee, Kuan-Ching; Huang, Chao-Ming

    2016-03-30

    Three kinds of MnO₂/Ni foam composite electrode with hierarchical meso-macroporous structures were prepared using potentiodynamic (PD), potentiostatic (PS), and a combination of PS and PD(PS + PD) modes of electrodeposition. The electrodeposition mode markedly influenced the surface morphological, textural, and supercapacitive properties of the MnO₂/Ni electrodes. The supercapacitive performance of the MnO₂/Ni electrode obtained via PS + PD(PS + PD(MnO₂/Ni)) was found to be superior to those of MnO₂/Ni electrodes obtained via PD and PS, respectively. Moreover, an asymmetric supercapacitor device, activated carbon (AC)/PS + PD(MnO₂/Ni), utilizing PS + PD(MnO₂/Ni) as a positive electrode and AC as a negative electrode, was fabricated. The device exhibited an energy density of 7.7 Wh·kg -1 at a power density of 600 W·kg -1 and superior cycling stability, retaining 98% of its initial capacity after 10,000 cycles. The good supercapacitive performance and excellent stability of the AC/PS + PD(MnO₂/Ni) device can be ascribed to its high surface area, hierarchical structure, and interconnected three-dimensional reticular configuration of the nickel metal support, which facilitates electrolyte ion intercalation and deintercalation at the electrode/electrolyte interface and mitigates volume change during repeated charge/discharge cycling. These results demonstrate the great potential of the combination of PS and PD modes for MnO₂ electrodeposition for the development of high-performance electrodes for supercapacitors.

  1. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  2. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  3. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  4. Comparing magnetostructural transitions in Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Dubenko, Igor; Granovsky, Alexander; Lahderanta, Erkki; Kashirin, Maxim; Makagonov, Vladimir; Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Rodionov, Igor; Samanta, Tapas; Stadler, Shane; Mazumdar, Dipanjan; Ali, Naushad

    2016-03-01

    The crystal structure, magnetic and transport properties, including resistivity and thermopower, of Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys were studied in the (10-400) K temperature interval. We show that their physical properties are remarkably different, thereby pointing to different origin of their magnetostructural transition (MST). A Seebeck coefficient (S) was found to pass minimum of about -20 μV/K in respect of temperature for both compounds. It was shown that MST observed for both compounds results in jump-like changes in S for Ga-based compound and jump in resistivity of about 20 and 200 μΩ cm for Ga and In -based compounds, respectively. The combined analyzes of the present results with that from literature show that the density of states at the Fermi level does not change strongly at the MST in the case of Ni-Mn-In alloys as compared to that of Ni-Mn-Ga.

  5. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.

    2016-05-01

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  6. The polarization of Sb overlayers on NiMnSb(100)

    NASA Astrophysics Data System (ADS)

    Komesu, Takashi; Borca, C. N.; Jeong, Hae-Kyung; Dowben, P. A.; Ristoiu, Delia; Nozières, J. P.; Stadler, Shane; Idzerda, Y. U.

    2000-08-01

    We have investigated the induced polarization of paramagnetic Sb overlayers on the Heusler alloy NiMnSb. From combined X-ray absorption spectroscopy (XAS) and spin-polarized inverse photoemission spectroscopy (SPIPES), we can assign some of the unoccupied states of the Heusler alloy NiMnSb. With increasing thickness of the Sb overlayer, there is a decline in the density of states near the Fermi energy, as expected for a semimetal overlayer on a metallic substrate. While the Sb is polarized by the ferromagnetic NiMnSb substrate, consistent with the expectations of mean field theory, the polarization at the center of the surface/overlayer Brillouin zone cannot be easily related to the induced magnetization.

  7. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  8. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  9. Compositional instability of {beta}-phase in Ni-Mn-Ga alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.

    1999-02-05

    The ferromagnetic Heusler alloys of stoichiometric Ni{sub 2}MnGa and nonstoichiometric Ni-Mn-Ga chemical compositions though not containing a noble-metal, indeed, belong to {beta}-alloys which lattice stability is decided by the Hume-Rothery mechanism: electron concentration e/a measuring the decrease of the electron energy due to the pseudogap formation and size factor. The intriguing feature of Ni-Mn-Ga alloys similarly to Ti-Ni, Cu-Al-Be and Ni-Al alloys arises that transformation temperature, M{sub s}, is dramatically dependent on concentration reflecting an extremely high sensitivity of the lattice stability toward the content variation. The main purpose of present paper is an analysis of previous data concerning themore » compositional dependence of M{sub s} from the viewpoint of searching for empirical correlation between the electron concentration and stability of {beta}-phase in Ni-Mn-Ga system. This analysis will provide a confirmation of the feasibility of a reasonable explanation of seemingly random collection of alloys grouped with respect to their M{sub s} values as well as other features. The alloys of compositional range studied previously are added here to a few alloys including ones doped with V and Ge to ensure the decisive role of e/a ratio on M{sub s}. Original results about the temperature dependent resistance behavior are presented as well.« less

  10. Partitioning of Dissolved Metals (Fe, Mn, Cu, Cd, Zn, Ni, and Pb) into Soluble and Colloidal Fractions in Continental Shelf and Offshore Waters, Northern California

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.

    2016-02-01

    The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.

  11. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  12. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  13. Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Mukherjee, K.; Kushwaha, P.; Barman, S. R.; Agarwal, Sandeep; Mukhopadhyay, P. K.; Chakrabarti, Aparna; Sampathkumaran, E. V.

    2014-06-01

    Large magnetocaloric effect is observed in Ni1.8Pt0.2MnGa close to room temperature. The entropy change shows a crossover from positive to negative sign at the martensite transition. It is negative above 1.6 T and its magnitude increases linearly with magnetic field. An increase in the saturation magnetic moment is observed with Pt doping in Ni2MnGa. Ab initio theoretical calculations show that the increase in magnetic moment with Pt doping in Ni2MnGa is associated with increase in the Mn and Pt local moments in the ferromagnetic ground state. The Curie temperature calculated from the exchange interaction parameters is in good agreement with experiment, showing the absence of any antiferromagnetic correlation due to Pt doping.

  14. Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates

    NASA Astrophysics Data System (ADS)

    Putri, Nur Ajrina; Fauzia, Vivi; Iwan, S.; Roza, Liszulfah; Umar, Akrajas Ali; Budi, Setia

    2018-05-01

    Mn-doped ZnO nanorods were synthesized on glass substrates via a two-steps process of ultrasonic spray pyrolysis and hydrothermal methods with four different concentrations Mn-doping (0, 1, 3, and 7 mol%). Introduction of Mn into ZnO is known could enhance the photocatalytic activity owing to the increase in the defect sites that effectively suppress the recombination of free electrons and holes. In this study, results show that Mn-doping has effectively modified the nucleations and crystal growth of ZnO, as evidenced by the increasing in the diameter, height, and the number of nanorods per unit area, besides slightly reduced the band gap and increased the oxygen vacancy concentrations in the ZnO lattice. This condition has successfully multiplied the photocatalytic performance of the ZnO nanorods in the degradation of methylene blue (MB) compared to the undoped-ZnO sample where in the typical process the MB can be degraded approximately 77% within only 35 min under a UV light irradiation.

  15. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  16. Thouless length and valley degeneracy factor of ZnMnO thin films with anisotropic, highly conductive surface layers

    NASA Astrophysics Data System (ADS)

    Vegesna, Sahitya V.; Bürger, Danilo; Patra, Rajkumar; Abendroth, Barbara; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie

    2017-06-01

    Isothermal magnetoresistance (MR) of n-type conducting Zn1-xMnxO thin films on a sapphire substrate with a Mn content of 5 at. % has been studied in in-plane and out-of-plane magnetic fields up to 6 T in the temperature range of 5 K to 300 K. During pulsed laser deposition of the ZnMnO thin films, we controlled the thickness and roughness of a highly conductive ZnMnO surface layer. The measured MR has been modeled with constant s-d exchange (0.2 eV in ZnMnO) and electron spin (S = 5/2 for Mn2+) for samples with a single two dimensional (2D) ZnMnO layer, a single three dimensional (3D) ZnMnO layer, or a 2D and 3D (2D + 3D) ZnMnO layer in parallel. The temperature dependence of modeled Thouless length LTh (LTh ˜ T-0.5) is in good agreement with the theory [Andrearczyk et al., Phys. Rev. B 72, 121309(R) (2005)]. The superimposed positive and negative MR model for ZnCoO thin films [Xu et al., Phys. Rev. B 76, 134417 (2007)] has been extended in order to account for the increase in the density of states close to the Fermi level of n-ZnMnO due to substitutional Mn2+ ions and their effect on the negative MR in ZnMnO.

  17. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  18. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, C.J.

    1987-01-01

    A precipitate of nearly pure hetaerolite, ZnMn2O4, a spinel-structured analog of hausmannite, Mn3O4, was prepared by an irreversible wprecipitation of zinc with manganese at 25°C. The synthesis technique entailed constant slow addition of a dilute solution of Mn2+ and Zn2+ chlorides having a Mn/Zn ratio of 2:1 to a reaction vessel that initially contained distilled deionized water, maintained at a pH of 8.50 by addition of dilute NaOH by an automated pH stat, with continuous bubbling of CO2-free air. The solid was identified by means of X-ray diffraction and transmission electron microscopy and consisted of bipyramidal crystals generally less than 0.10 μm in diameter. Zn2+ ions are able to substitute extensively for Mn2+ ions that occupy tetrahedral sites in the hausmannite structure.Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  19. Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni{sub 1−x}Zn{sub x}O nanoparticles and Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposites via pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Kenfack Tsobnang, Patrice

    2015-10-15

    Nanoparticles of Ni{sub 1−x}Zn{sub x}O and Ni{sub 1−x}Zn{sub x}O/ZnO, which can be good candidates for selective gas sensors, were successfully obtained via a two-step synthetic route, in which the nickel zinc malonate precursor was first synthesized by co-precipitation from an aqueous solution, followed by pyrolysis in air at a relatively low temperature (~500 °C). The precursor was characterized by ICP-AES, FTIR and TG and the results indicate the molecular structure of the precursor to be compatible with Ni{sub 1−x}Zn{sub x}(OOCCH{sub 2}COO)·2H{sub 2}O. The decomposition product, characterized using various techniques (FTIR, XRD, ToF-SIMS, SEM, TEM and XPS), was established to bemore » a doped nickel oxide (Ni{sub 1−x}Zn{sub x}O for 0.01≤x≤0.1) and a composite material (Ni{sub 1−x}Zn{sub x}O/ZnO for 0.2≤x≤0.5). To elucidate the form in which the Zn is present in the NiO structure, three analytical techniques were employed: ToF-SIMS, XRD and XPS. While ToF SIMS provided a direct evidence of the presence of Zn in the NiO crystal structure, XRD showed that Zn actually substitutes Ni in the structure and XPS is a bit more specific by indicating that the Zn is present in the form of Zn{sup 2+} ions. - Highlights: • Coprecipitation synthesis of nickel zinc malonate single bath precursor was achieved. • The as synthesized precursors are an homogeneous mixture of nickel and zinc malonate. • XRD, ToF-SIMS, XPS, SEM and TEM was used to characterized decomposition products. • Ni{sub 1−x}Zn{sub x}O nanoparticles (0.01≤x≤0.1) formed after pyrolysis (~500 °C) of precursor. • Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposite (0.2≤x≤0.5) formed after pyrolysis at 500 °C of precursor.« less

  20. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  1. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams.

    PubMed

    Chmielus, M; Zhang, X X; Witherspoon, C; Dunand, D C; Müllner, P

    2009-11-01

    The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000 cycles, are much larger than those of any polycrystalline, active material.

  2. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  3. Enhanced electrochemical performance of a ZnO-MnO composite as an anode material for lithium ion batteries.

    PubMed

    Song, Min Seob; Nahm, Sahn; Cho, Won Il; Lee, Chongmok

    2015-09-28

    A ZnO-MnO composite was synthesized using a simple solvothermal method combined with a high-temperature treatment. To observe the phase change during the heating process, in situ high-temperature XRD analysis was performed under vacuum conditions. The results indicated that ZnMn2O4 transformed into the ZnO-MnO composite phase starting from 500 °C and that this composite structure was retained until 700 °C. The electrochemical performances of the ZnO-MnO composite electrode were evaluated through galvanostatic discharge-charge tests and cyclic voltammetry analysis. Its initial coulombic efficiency was significantly improved to 68.3% compared to that of ZnMn2O4 at 54.7%. Furthermore, the ZnO-MnO composite exhibited improved cycling performance and enhanced rate capability compared with untreated ZnMn2O4. To clarify the discharge-charge mechanism of the ZnO-MnO composite electrode, the structural changes during the charge and discharge processes were also investigated using ex situ XRD and TEM.

  4. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    NASA Astrophysics Data System (ADS)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo

    2015-12-01

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H2O2) oxidation and its eventual reduction (-0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L-0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H2O2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.

  5. Switchable Schottky diode characteristics induced by electroforming process in Mn-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nam, Yoonseung; Hwang, Inrok; Oh, Sungtaek; Lee, Sangik; Lee, Keundong; Hong, Sahwan; Kim, Jinsoo; Choi, Taekjib; Ho Park, Bae

    2013-04-01

    We investigated the asymmetric current-voltage (I-V) characteristics and accompanying unipolar resistive switching of pure ZnO and Mn(1%)-doped ZnO (Mn:ZnO) films sandwiched between Pt electrodes. After electroforming, a high resistance state of the Mn:ZnO capacitor revealed switchable diode characteristics whose forward direction was determined by the polarity of the electroforming voltage. Linear fitting of the I-V curves highlighted that the rectifying behavior was influenced by a Schottky barrier at the Pt/Mn:ZnO interface. Our results suggest that formation of conducting filaments from the cathode during the electroforming process resulted in a collapse of the Schottky barrier (near the cathode), and rectifying behaviors dominated by a remnant Schottky barrier near the anode.

  6. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo

    2017-05-19

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolytemore » and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  7. Characterisation of a Zn / Ni Plating Bath

    DTIC Science & Technology

    2009-09-03

    accelerated corrosion in the first stages which is then slowed down by its own product of corrosion, Zn(OH)212. Zinc hydroxide dehydrates in time to form ZnO ... Electrochemistry , 1991, 21, 642 [5] – Alfantasi, A.M., A study on the synthesis, characterization ans properties of pulse-plated ultrafine- grained Zn-Ni alloy

  8. Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slobodskyy, T.; Ruester, C.; Fiederling, R.

    2004-12-20

    We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.

  9. In situ spectroscopic characterization of Ni 1-xZn x/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less

  10. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz.more » In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078« less

  11. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  12. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Cadis, A.-I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.; Ayvacikli, M.; Can, N.

    2017-10-01

    Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a 4T1→6A1 transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by ∼3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials.

  14. Control of conduction type in ferromagnetic (Zn,Sn,Mn)As2 thin films by changing Mn content and effect of annealing on thin films with n-type conduction

    NASA Astrophysics Data System (ADS)

    Minamizawa, Yuto; Kitazawa, Tomohiro; Hidaka, Shiro; Toyota, Hideyuki; Nakamura, Shin-ichi; Uchitomi, Naotaka

    2018-04-01

    The conduction type in (Zn,Sn,Mn)As2 thin films grown by molecular beam epitaxy (MBE) on InP substrates was found to be controllable from p-type to n-type as a function of Mn content. n-type (Zn,Sn,Mn)As2 thin films were obtained by Mn doping of more than approximately 11 cat.%. It is likely that Mn interstitials (MnI) incorporated by excess Mn doping are located at tetrahedral hollow spaces surrounded by Zn and Sn cation atoms and four As atoms, which are expected to act as donors in (Zn,Sn,Mn)As2, resulting in n-type conduction. The effect of annealing on the structural, electrical and magnetic properties of n-type (Zn,Sn,Mn)As2 thin films was investigated as functions of annealing temperature and time. It was revealed that even if the annealing temperature is considerably higher than the growth temperature of 320 °C, the magnetic properties of the thin films remain stable. This suggests that a MnI complex surrounded by Zn and Sn atoms is thermally stable during high-temperature annealing. The n-type (Zn,Sn,Mn)As2 thin films may be suitable for application as n-type spin-polarized injectors.

  15. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  16. Microstructure and Mechanical Properties of Zn-Ni-Al₂O₃ Composite Coatings.

    PubMed

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia; Li, Yan

    2018-05-21

    Zn-Ni-Al₂O₃ composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al₂O₃. The energy-dispersive spectroscopy results show that the Al₂O₃ content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al₂O₃ particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al₂O₃ and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  17. MnNiO3 revisited with modern theoretical and experimental methods

    NASA Astrophysics Data System (ADS)

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; Kuhn, Stephen; Jellison, Gerald E.; Sefat, Athena S.; Krogel, Jaron T.; Reboredo, Fernando A.

    2017-11-01

    MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å3, which compares well to the experimental value of 94.4 Å3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3.

  18. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    PubMed

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  19. Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Susanto Gultom, Noto; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    The conversion of 4-nitrophenol as a toxic and waste pollutant to 4-aminophenol as a non-toxic and useful compound by photocatalytic reduction is highly important. In this work, the solid-solution concept by doping was involved to synthesis earth-abundant and green material of Mn-doped Zn(O,S). Zn(O,S) with different Mn doping contents was easily synthesized at low temperature 90°C for 4-NP reduction without using the reducing agent of NaBH4. The Mn-doped Zn(O,S) catalyst exhibited the enhancements in optical and electrochemical properties compared to un-doped Zn(O,S).It was found that 10% Mn-doped Zn(O,S) had the best properties and it could totally reduce 4-NP after 2h photoreactions under low UV illumination. The hydrogen ion was proposed to involve the 4-NP reduction to 4-AP, which is hydrogen ion and electron replaced the oxygen in amino (NO2) group of 4-NP to form the nitro (NH2) group. We alsoproposed the incorporation of Mn in Zn site in the Zn(O,S) host lattice could make the oxygen surface bonding weak for easily forming the oxygen vacancy. The more oxygen vacancy for more hydrogen ion would be generated to consume for 4-NP reduction.

  20. Magnetic properties of Ni-Cu-Mn ferrite system

    NASA Astrophysics Data System (ADS)

    Roumaih, Kh.

    2011-10-01

    Three groups according to the substitution of Cu 2+ and Mn 3+ in the system Ni 1-xCu xFe 2-yMn yO 4 ferrite with x = 0.2, 0.5, 0.8, and y varying from 0.0 to 1.0 in steps of 0.25 are prepared by solid state reactions. The phases of the Ni 1-xCu xFe 2-yMn yO 4 ferrite have been confirmed by X-ray diffraction (XRD). The results demonstrate that all of the synthesized materials are spinel with cubic unit cell and the lattice constant increased with increases of the Cu and Mn ions for all samples. The hyperfine interaction was studied by the Mössbauer spectroscopy at room temperature for all samples. The spectra of all samples show two well-resolved Zeeman patterns corresponding to A- and B-sites. The hyperfine field decreases with increasing Cu and Mn ions concentration. The Curie temperature, TC, was calculated from the temperature dependence of magnetization curves. The hysteresis curve recorded at room temperature shows that the samples are ferrimagnetic materials. The cation distribution was estimated from the results of Mössbauer spectroscopy and magnetic measurements.

  1. Effect of anti-site disorder on magnetism in La2NiMnO6

    NASA Astrophysics Data System (ADS)

    Pal, Somnath; Sharada Govinda, Goyal, Manik; Mukherjee, Soham; Pal, Banabir; Saha, Rana; Sundaresan, A.; Jana, Somnath; Karis, Olof; Freeland, John W.; Sarma, D. D.

    2018-04-01

    La2NiMnO6 has been reported to exhibit a paramagnetic to ferromagnetic transition with a transition temperature of ˜260 K. However, most of its magnetic properties, such as the saturation magnetization and even the transition temperature, appear to vary considerably among different reports. This is possibly because the crystallographic structure as well as the extent of the anti-site disorder (ASD) at the Ni/Mn sites are strongly influenced by the choice of synthesis routes. There are diverse reports connecting the extent of ASD to the valencies of Ni and Mn ions, such as Ni2 +-Mn4 + and Ni3 +-Mn3 + , including suggestions of thermally induced valence transitions. Consequently, these reports arrive at very different conclusions on the mechanism behind the magnetic properties of La2NiMnO6 . To address the correlation between ASD and valency, we have carried out a comparative study of two monoclinic La2NiMnO6 polycrystals with different degrees of ASD. Using a combination of x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and magnetometry, we conclude that the valency of the transition metal ions, and the transition temperature, are insensitive to the extent of ASD. However, we find the magnetic moment decreases strongly with an increasing ASD. We attribute this effect to the introduction of antiferromagnetic interactions in the anti-site disordered regions.

  2. Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Minglei; Liu, Yuhao; Zhang, Min; Wei, Helin; Gao, Yihua

    2016-12-01

    Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm-1 (73.2 mF cm-2, 9.8 F cm-3). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 μWh cm-1 (0.88 mWh cm-3). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes.

  3. Interfacial Ferromagnetism in LaNiO3/CaMnO3 Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grutter, Alexander J.; Yang, Hao; Kirby, B. J.

    2013-08-01

    We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coincident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.

  4. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window.

    PubMed

    Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng

    2016-03-16

    The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.

  5. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE PAGES

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo; ...

    2017-05-08

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn 2+ ion chemistry. There are several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. Our study utilizes a combination of analytical tools to probe the chemistry of a nanostructured δ-MnO 2 cathode in association withmore » a nonaqueous acetonitrile–Zn(TFSI) 2 electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte–electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. There are numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/δ-MnO 2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  6. Novel magneto-luminescent effect in LSMO/ZnS:Mn nanocomposites at near-room temperature

    NASA Astrophysics Data System (ADS)

    Beltran-Huarac, Juan; Diaz-Diestra, Daysi; Bsatee, Mohammed; Wang, Jingzhou; Jadwisienczak, Wojciech M.; Weiner, Brad R.; Morell, Gerardo

    2016-02-01

    We report the tuning of the internal Mn photoluminescence (PL) transition of magnetically-ordered Sr-doped lanthanum manganite (LSMO)/Mn-doped zinc sulfide (ZnS:Mn) nanocomposites (NCs) by applying a static magnetic field in the range of 0-1 T below the critical temperature of ˜225 K. To do that, we have systematically fabricated LSMO/ZnS:Mn at different concentrations (1:1, 1:3, 1:5 and 1:10 wt%) via a straightforward solid-state reaction. X-ray diffraction and Raman analyses reveal that both phases coexist with a high degree of crystallinity and purity. Electron microscopy indicates that the NCs are almost spherical with an average crystal size of ˜6 nm, and that their surfaces are clean and smooth. The bifunctional character of LSMO/ZnS:Mn was evidenced by vibrating sample magnetometry and PL spectroscopy analyses, which show a marked ferromagnetic behavior and a broad, intense Mn orange emission band at room temperature. Moreover, the LSMO/ZnS:Mn at 1:3 wt% exhibits magneto-luminescent (ML) coupling below 225 K, and reaches the largest suppression of Mn-band PL intensity (up to ˜10%) at 150 K, when a magnetic field of 1.0 T is applied. The ML effect persists at magnetic fields as low as 0.2 T at 8 K, which can be explained by evoking a magnetic-ordering-induced spin-dependent restriction of the energy transfer to Mn states. No ML effect was observed in bare ZnS:Mn nanoparticles under the same experimental parameters. Our findings suggest that this NC can be considered as a new ML compound, similar to FeCo/InGaN-GaN and LSMO/ZnO NCs, useful as q-bits for quantum computation. The results presented here bring forth new avenues to better understand the interaction between semiconductors and perovskites, and exploit their synergistic effects in magneto-optics, spintronics and nanoelectronics.

  7. An Effective Electrodeposition Mode for Porous MnO2/Ni Foam Composite for Asymmetric Supercapacitors

    PubMed Central

    Tsai, Yi-Chiun; Yang, Wein-Duo; Lee, Kuan-Ching; Huang, Chao-Ming

    2016-01-01

    Three kinds of MnO2/Ni foam composite electrode with hierarchical meso-macroporous structures were prepared using potentiodynamic (PD), potentiostatic (PS), and a combination of PS and PD(PS + PD) modes of electrodeposition. The electrodeposition mode markedly influenced the surface morphological, textural, and supercapacitive properties of the MnO2/Ni electrodes. The supercapacitive performance of the MnO2/Ni electrode obtained via PS + PD(PS + PD(MnO2/Ni)) was found to be superior to those of MnO2/Ni electrodes obtained via PD and PS, respectively. Moreover, an asymmetric supercapacitor device, activated carbon (AC)/PS + PD(MnO2/Ni), utilizing PS + PD(MnO2/Ni) as a positive electrode and AC as a negative electrode, was fabricated. The device exhibited an energy density of 7.7 Wh·kg−1 at a power density of 600 W·kg−1 and superior cycling stability, retaining 98% of its initial capacity after 10,000 cycles. The good supercapacitive performance and excellent stability of the AC/PS + PD(MnO2/Ni) device can be ascribed to its high surface area, hierarchical structure, and interconnected three-dimensional reticular configuration of the nickel metal support, which facilitates electrolyte ion intercalation and deintercalation at the electrode/electrolyte interface and mitigates volume change during repeated charge/discharge cycling. These results demonstrate the great potential of the combination of PS and PD modes for MnO2 electrodeposition for the development of high-performance electrodes for supercapacitors. PMID:28773371

  8. Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers

    NASA Astrophysics Data System (ADS)

    Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.

    2017-08-01

    Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.

  9. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Maniraj, M.; D`Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-11-01

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. In the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Based on the first principle calculations of the electronic structure of Ni-Mn-Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  10. MnNiO 3 revisited with modern theoretical and experimental methods

    DOE PAGES

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; ...

    2017-11-03

    MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less

  11. MnNiO 3 revisited with modern theoretical and experimental methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael

    MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less

  12. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  13. Enhancement of electrochemical performance by simultaneous substitution of Ni and Mn with Fe in Ni-Mn spinel cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kiziltas-Yavuz, Nilüfer; Yavuz, Murat; Indris, Sylvio; Bramnik, Natalia N.; Knapp, Michael; Dolotko, Oleksandr; Das, Bijoy; Ehrenberg, Helmut; Bhaskar, Aiswarya

    2016-09-01

    LiNi0.5-xFe2xMn1.5-xO4 (x = 0, 0.1, 0.15, 0.2) spinel cathode materials are synthesized using citric acid-assisted sol-gel method with final calcination temperature of 1000 °C. The structure and morphology of the materials are characterized by using synchrotron and neutron powder diffraction as well as scanning electron microscopy. Different from the parent LiNi0.5Mn1.5O4 (LNMO) material, the Fe-doped spinels do not contain a rock-salt type impurity phase. However, they contain additional layered (C2/m) and spinel Fe3O4 (Fd 3 bar m) phases in small amounts. The substitution of Fe into the spinel structure has been confirmed by Mössbauer spectroscopy. The Fe-doped spinels exhibit improved cycling stability (with a C/2 charge-discharge rate) and rate capability compared to the parent LNMO at room temperature in a voltage range 3.5-5.0 V. Among all these samples, the composition LiNi0.4Fe0.2Mn1.4O4 shows the best room temperature cycling stability (capacity retention of 92% after 300 cycles) as well as the highest initial discharge capacity (134 mAh g-1). The delivered capacities at high C-rates (especially at 10C and 20C) with respect to the capacity delivered at C/2 are higher for all Fe-doped samples compared to the parent LNMO. Furthermore, Fe-doping improves the thermal stability of the Ni-Mn spinels in the delithiated state.

  14. Role of Ni doping on transport properties of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less

  15. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  16. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  17. Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route

    NASA Astrophysics Data System (ADS)

    Labiadh, Houcine; Sellami, Badreddine; Khazri, Abdelhafidh; Saidani, Wiem; Khemais, Said

    2017-02-01

    Undoped and Mn-doped ZnS nanoparticles were synthesized at 95 °C in basic aqueous solution using the nucleation-doping strategy. Various samples of the Mn:ZnS NPs with 5, 10 and 20% of Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive X-ray analysis, high resolution electron microscopy and photoluminescence (PL) measurements. When increasing the concentration of manganese Mn, the photoluminescence intensity gradually decreases. The PL spectra of the Mn-doped ZnS nanoparticles at room temperature exhibit both, the 450 nm blue defect-related emission and the 592 nm orange Mn2+ emission. It is vital to obtain NPs that meet the application requirements, however their environmental toxicity needs to be investigated. In this study, the induction of oxidative stress within the digestive gland of the Ruditapes decussatus organism (clam) is described. Antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) as well as malondialdehyde (MDA) levels have been determined in the digestive gland after exposure to 100 μg/L of ZnS, ZnS:Mn (5%), ZnS:Mn (10%) and ZnS:Mn (20%). The nanomaterials studied exhibit different responses in the digestive gland. Undoped Mn-ZnS has no effect on the markers considered, showing the limited interaction between this nanoparticle and the cells of the test organisms. In contrast, Mn-doped ZnS increases the activities of SOD and CAT and the level of MDA species, although this toxicity is highly dependent on the chemical properties of the material. These findings provide ideas for future considerations of ZnS nanoparticles, as well as information on the interaction between these materials and an aquatic environment. These data are the first evidence available of the formation of ZnS NPs using aqueous method and are an indication of the importance of knowing the biological target of the NPs when testing their potential impact on environmental model organisms.

  18. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    NASA Astrophysics Data System (ADS)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused.The hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure photocatalyst has successfully been prepared by the reduction of nickel chloride hexahydrate using hydrazine hydrate through the solvothermal process at 140 °C followed by surface modification of the product by the reflux method at 110 °C for 1 h. The X-ray diffraction (XRD) pattern showed that the `as prepared' sample consists of face

  19. Super-bright and short-lived photoluminescence of textured Zn2SiO4:Mn2+ phosphor film on quartz glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.

    2010-02-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.

  20. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less

  1. Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6

    NASA Astrophysics Data System (ADS)

    Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya

    2018-05-01

    Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.

  2. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  3. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  4. Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Zhuang, Jiaqi; Guan, Shaowei; Yang, Wensheng

    2008-04-01

    Water-soluble Mn doped ZnS (ZnS:Mn) nanocrystals synthesized by using 3-mercaptopropionic acid (MPA) as stabilizer were homogeneously coated with a dense silica shell through a multi-step procedure. First, 3-mercaptopropyl triethoxy silane (MPS) was used to replace MPA on the particle surface to form a vitreophilic layer for further silica deposition under optimal experimental conditions. Then a two-step silica deposition was performed to form the final water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. The as-prepared core/shell nanoparticles show little change in fluorescence intensity in a wide range of pH value.

  5. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  6. Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles.

    PubMed

    Barick, K C; Bahadur, D

    2007-06-01

    We report here a novel process to prepare Mn doped ZnO nanoparticles by a soft chemical route at low temperature. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and manganese acetate tetrahydrate heated under reflux to 160-175 degrees C using diethylene glycol as a solvent. X-ray diffraction analysis reveals that the Mn doped ZnO crystallizes in a wurtzite structure with crystal size of 15-25 nm. These nano size crystallites of Mn doped ZnO self-organize into polydisperse spheres in size ranging from 100-400 nm. Transmission Electron Microscopy image also shows that each sphere is made up of numerous nanocrystals of average diameter 15-25 nm. By means of X-ray photoelectron spectroscopy and electron spin resonance spectroscopy, we determined the valence state of Mn ions as 2+. These nanoparticles were found to be ferromagnetic at room temperature. Monodisperse porous spheres (approximately 250 nm) were obtained by size selective separation technique and then self-assembled in a closed pack periodic array through sedimentation with slow solvent evaporation, which gives strong opalescence in visible region.

  7. Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity.

    PubMed

    Boonyongmaneerat, Yuttanant; Chmielus, Markus; Dunand, David C; Müllner, Peter

    2007-12-14

    Foams with 55% and 76% open porosity were produced from a Ni-Mn-Ga magnetic shape-memory alloy by replication casting. These polycrystalline martensitic foams display a fully reversible magnetic-field-induced strain of up to 0.115% without bias stress, which is about 50 times larger than nonporous, fine-grained Ni-Mn-Ga. This very large improvement is attributed to the bamboolike structure of grains in the foam struts which, due to reduced internal constraints, deform by magnetic-field-induced twinning more easily than equiaxed grains in nonporous Ni-Mn-Ga.

  8. Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.

    2015-09-01

    The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.

  9. NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites

    NASA Astrophysics Data System (ADS)

    Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.

    2006-12-01

    Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a

  10. MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.

    2018-01-01

    The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.

  11. Mechanical and shape memory properties of ferromagnetic Ni2MnGa sputter-deposited films

    NASA Astrophysics Data System (ADS)

    Ohtsuka, M.; Matsumoto, M.; Itagaki, K.

    2003-10-01

    The ternary intermetallic compound Ni2MnGa is an intelligent material, which has a shape memory effect and a ferromagnetic property. Use of shape memory alloy films for an actuator of micro machines is very attractive because of its large recovery force. The data of mechanical and shape memory properties of the films are required to use for the actuator. The purpose of this study is to investigate the effects of fabrication conditions and to clarify the relationships between these properties and fabrication conditions of the Ni{2}MnGa films. The Ni{2}MnGa films were deposited with a radio-frequency magnetron sputtering apparatus using a Ni{50}Mn{25}Ga{25} or Ni{52}Mn{24}Ga{24} target. After deposition, the films were annealed at 873sim 1173 K. The asdeposited films were crystalline and had columnar grains. After the heat treatment, the grains widened and the grain boundary became indistinct with increasing heat treatment temperature. MnO and Ni{3} (Mn, Ga) precipitations were observed in the heat-treated films. The mechanical properties of the films were measured by the nanoindentation method. Hardness and elastic modulus of as-deposited films were larger than those of arcmelted bulk alloys. The hardness of the films was affected by the composition, crystal structure, microstructure and precipitation, etc. The elastic modulus of the films was also changed with the heat treatment conditions. The heat-treated films showed a thermal two-way shape memory effect.

  12. Excellent Brightness with Shortening Lifetime of Textured Zn2SiO4:Mn2+ Phosphor Films on Quartz Glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Kim, Seongsin Margaret; Kung, Patrick

    2010-04-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor films were fabricated by the thermal diffusion of ZnO:Mn on quartz glass. The Zn2SiO4:Mn2+ phosphor films became textured along several hexagonal directions and their chemical composition was continuously graded at the interface. The decay time of Mn2+ was as short as 4.4 ms, and the optical transition probability of the films defined as the inverse of decay time showed a strong correlation with film texture degree as a function of annealing temperature. The brightest Zn2SiO4:Mn2+ film showed a photoluminescent brightness as high as 65% compared with a commercial Zn2SiO4:Mn2+ phosphor powder screen and a maximum absolute transparency of 70%. These excellent optical properties are explained by the combination of the unique textured structure and continuous grading of the Zn2SiO4:Mn2+ chemical composition at the interface.

  13. Role of polar compensation in interfacial ferromagnetism of LaNiO3/CaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Flint, C. L.; Jang, H.; Lee, J.-S.; N'Diaye, A. T.; Shafer, P.; Arenholz, E.; Suzuki, Y.

    2017-07-01

    Polar compensation can play an important role in the determination of interfacial electronic and magnetic properties in oxide heterostructures. Using x-ray absorption spectroscopy, x-ray magnetic circular dichroism, bulk magnetometry, and transport measurements, we find that interfacial charge redistribution via polar compensation is essential for explaining the evolution of interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices as a function of LaNiO3 layer thickness. In insulating superlattices (four unit cells or less of LaNiO3), magnetism is dominated by Ni-Mn superexchange, while itinerant electron-based Mn-Mn double exchange plays a role in thicker metallic superlattices. X-ray magnetic circular dichroism and resonant x-ray scattering show that Ni-Mn superexchange contributes to the magnetization even in metallic superlattices. This Ni-Mn superexchange interaction can be explained in terms of polar compensation at the LaNiO3-CaMnO3 interface. These results highlight the different mechanisms responsible for interfacial ferromagnetism and the importance of understanding compensation due to polar mismatch at oxide-based interfaces when engineering magnetic properties.

  14. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  15. Facile hydrothermal synthesis of mn doped ZnO nanopencils for development of amperometric glucose biosensors

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2018-05-01

    Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.

  16. Crystal structure and magnetic properties of Sr 4Mn 2NiO 9

    NASA Astrophysics Data System (ADS)

    El Abed, Ahmed; Gaudin, Etienne; Lemaux, Sylvain; Darriet, Jacques

    2001-12-01

    The crystal structure of Sr 4Mn 2NiO 9 has been refined on single crystal. This phase belongs to the series A 1+ x(A 'xB 1- x)O 3 ( x=1/3) related to the 2H-hexagonal perovskite. The structure contains transition metals in chains of oxide polyhedra (trigonal prisms and octahedra); neighboring chains are separated from each other by the Sr atoms. The sequence of the face sharing polyhedra along the chains is two octahedra + one trigonal prism. Mn occupies the octahedra and Ni is disordered in the trigonal prism with ≈80% in the pseudo square faces of the prism and ≈20% at the centre. This result has been confirmed by XANES experiments at Mn K and Ni K edges, respectively. Sr 4Mn 2NiO 9 is antiferromagnetic with a Néel temperature at T=3 K. The Curie constant measured at high temperature is in good agreement with ≈80% of the Ni 2+ ions in the spin state configuration S=0.

  17. Chromium doping effects on structural and dielectric properties of Mn-Zn cobaltites

    NASA Astrophysics Data System (ADS)

    Yadav, A.; Dar, Mashkoor A.; Choudhary, P.; Shah, P.; Varshney, Dinesh

    2016-05-01

    The effect of transition metal Cr2+ ion as a dopant of Zn2+ in Mn0.5Zn0.5Co2O4 is investigated. Co-doped Mn0.5Zn0.5-xCrxCo2O4 (x = 0, 0.3 and 0.5) cobaltites were prepared by solid-state reaction route. X-ray powder diffraction (XRD) analysis reveals that the samples prepared are polycrystalline single-phase cubic spinel in structure having a space group Fd3m. An increase in average particle size observed with Cr2+ doping. However other structural parameters such as X-ray density, micro strain and dislocation density shows almost a similar decreasing trend with increase in Cr2+. High value of permittivity ˜105 is observed for the parent Mn0.5Zn0.5Co2O4 and shows a substantial decrease with increase in the Cr2+ doping. Higher doping of Cr2+ also increases the dielectric loss and hence limits its technological importance. At lower frequencies ac conductivity has been found to increase with increase in Cr2+ content.

  18. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.

    PubMed

    Li, Huifeng; Huang, Yunhua; Zhang, Qi; Qiao, Yi; Gu, Yousong; Liu, Jing; Zhang, Yue

    2011-02-01

    In this article, Co/Mn-codoped ZnO nanowires (NWs) were successfully synthesized on a silicon substrate by the thermal evaporation method with Au catalyst. The X-ray diffraction pattern indicated that the Co/Mn-codoped ZnO NWs are a hexagonal wurtzite structure without a second phase, and energy dispersive X-ray spectroscopy revealed that the Co and Mn ions were introduced into the ZnO NWs with the content of ∼0.8 at% and ∼1.2 at%, respectively. Photoluminescence spectra and Raman spectra showed that the Co/Mn were doped into the NWs and resulted in the shift of the near-band-edge emission. Moreover, the novel Raman peak at 519.3 cm(-1) has suggested that the two kinds of cations via doping could affect the local polarizability. Compared with the undoped ZnO NW, the electrical measurement showed that the Co/Mn-codoping enhanced the conductivity by an order of magnitude due to the presence of Co, Mn cations. The electron mobility and carrier concentration of a fabricated field effect transistor (FET) device is 679 cm2 V(-1) s(-1) and 2×10(18) cm(-3), respectively. Furthermore, the M-H curve demonstrated that the Co/Mn-codoped ZnO NWs have obvious ferromagnetic characteristics at room temperature. Our study enhances the understanding of the novel performances of transition-metal codoped ZnO NWs and also provides a potential way to fabricate optoelectronic devices.

  19. The role of marine biotoxins on the trophic transfer of Mn and Zn in fish.

    PubMed

    Pouil, Simon; Clausing, Rachel J; Metian, Marc; Bustamante, Paco; Dechraoui Bottein, Marie-Yasmine

    2018-05-01

    Essential nutrients are critical for physiological processes of organisms. In fish, they are obtained primarily from the diet, and their transfer and accumulation are known to be impacted by environmental variables such as water temperature, pH and salinity, as well as by diet composition and matrices. Yet, prey items consumed by fish may also contain toxic compounds such as marine toxins associated with harmful algae. These biotoxins have the potential to affect essential trace element assimilation in fish through chemical interactions such as the formation of trace element-toxin complexes or by affecting general fish physiology as in the modification of ion-specific transport pathways. We assessed the influence of dietary exposure to brevetoxins (PbTxs), ichthyotoxic neurotoxins produced by the dinoflagellate Karenia brevis, on trophic transfer of two essential trace elements, Mn and Zn, in a fish model. Using ecologically relevant concentrations of PbTxs and trace elements in controlled laboratory conditions, juvenile turbots Scophthalmus maximus were given food containing PbTxs before or at the same time as a feeding with radiotracers of the chosen essential elements ( 54 Mn and 65 Zn). Treatments included simultaneous exposure (PbTxs +  54 Mn +  65 Zn) in a single-feeding, 3-week daily pre-exposure to dietary PbTx followed by a single feeding with 54 Mn and 65 Zn, and a control ( 54 Mn and 65 Zn only). After a 21-day depuration period, turbot tissue brevetoxin levels were quantified and assimilation efficiencies of 54 Mn and 65 Zn were assessed. PbTxs were found in turbot tissues in each exposure treatment, demonstrating dietary trophic transfer of these toxins; yet, no differences in assimilation efficiencies of Mn or Zn were found between treatments or the control (p > 0.05). These results indicate that, in our experimental conditions, PbTx exposure does not significantly affect the trophic transfer of Mn and Zn in fish. Copyright © 2018

  20. Development of a Nanostructured α-MnO2/Carbon Paper Composite for Removal of Ni2+ / Mn2+ ions by Electrosorption.

    PubMed

    Li, Pengju; Gui, Yang; Blackwood, Daniel John

    2018-05-22

    Toxic metal ions, such as Ni2+ and Mn2+, in industrial waste streams are non-biodegradable and can cause damage to the human body. Electrochemical cleaning techniques are attractive as they offer more control and produce less sludge than chemical / biological approaches without the high pressures needed for membranes. Here nanoneedle structured α-MnO2/carbon fiber paper (CFP) composites were synthesized by a hydrothermal approach and used as electrodes for combined electro-adsorption and capacitive deionization removal of nickel and manganese ions from pseudo industrial waste streams. The specific performance of α-MnO2/CFP (16.4 mg Ni2+ per gram of active material) not only shows a great improve in comparison with its original CFP substrate (0.034 Ni2+ mg per gram), but is over six times that of activated carbon (2.5 mg Ni2+ per gram). The high performance of α-MnO2/CFP composite is attributed to its high surface area, desirable mesoporosity and pore size distribution that permits the further access of ions, and the property as a pseudocapacitor, which contributes to a more efficient electron/charge transfer in the faradic process. Unfortunately, it was also found that some Mn2+ ions are released due to partial reduction of the MnO2 when operated as a negative electrode. For the removal of Mn2+ ions an asymmetric arrangement, consisting of a MnO2/CFP positive electrode and an activated carbon negative electrode was employed. This arrangement reduced the Mn2+ concentration from 100 ppm to less than 2 ppm, a vast improvement over a systematical two activated carbon electrodes system that could only reach 42 ppm under the same conditions. It was also observed that as long as the MnO2/CFP composite was maintained as a positive electrode it was completely stable. The technique was able to reduce both Ni2+ and Mn2+ ions to well below the 10 ppm requirement for discharge into public sewers in Singapore.

  1. Synthesis, structural characterization, and electrochemical properties of dinuclear Ni/Mn model complexes for the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Li, Jia-Peng; Xie, Zhao-Jun; Song, Hai-Bin

    2013-10-07

    Four new dinuclear Ni/Mn model complexes RN(PPh2)2Ni(μ-SEt)2(μ-Cl)Mn(CO)3 (7, R = p-MeC6H4CH2; 8, R = EtO2CCH2) and RN(PPh2)2Ni(μ-SEt)2(μ-Br)Mn(CO)3 (9, R = p-MeC6H4CH2; 10, R = EtO2CCH2) have been prepared via the four separated step-reactions involving six new precursors RN(PPh2)2 (1, R = p-MeC6H4CH2; 2, R = EtO2CCH2), RN(PPh2)2NiCl2 (3, R = p-MeC6H4CH2; 4, R = EtO2CCH2), and RN(PPh2)2Ni(SEt)2 (5, R = p-MeC6H4CH2; 6, R = EtO2CCH2). The Et3N-assisted aminolysis of Ph2PCl with p-MeC6H4CH2NH2 or EtO2CCH2NH2·HCl in CH2Cl2 gave the azadiphosphine ligands 1 and 2 in 38% and 53% yields, whereas the coordination reaction of 1 or 2 with NiCl2·6H2O in CH2Cl2/MeOH afforded the mononuclear Ni dichloride complexes 3 and 4 in 59% and 78% yields, respectively. While thiolysis of 3 or 4 with EtSH under the assistance of Et3N in CH2Cl2 produced the mononuclear Ni dithiolate complexes 5 and 6 in 64% and 68% yields, further treatment of 5 and 6 with Mn(CO)5Cl or Mn(CO)5Br resulted in formation of the dinuclear Ni/Mn model complexes 7-10 in 31-73% yields. All the new compounds 1-10 have been structurally characterized, while model complexes 7 and 9 have been found to be catalysts for HOAc proton reduction to hydrogen under CV conditions.

  2. Bottle-brush-shaped heterostructures of NiO-ZnO nanowires: growth study and sensing properties

    NASA Astrophysics Data System (ADS)

    Baratto, C.; Kumar, R.; Comini, E.; Ferroni, M.; Campanini, M.

    2017-11-01

    We present here heterostructured ZnO-NiO nanowires (NWs), constituted by a core of single crystalline ZnO NWs, covered by poly-crystalline NiO nanorods (NRs). The bottle-brush shape was investigated by scanning electron microscopy and transmission electron microscope, confirming that a columnar growth of NiO occurred over the ZnO core, with a preferred orientation of NiO over ZnO NWs. The heterostructured devices are proposed for gas sensing application. Bare ZnO NWs and heterostructured sensors with two different thicknesses of NiO poly-crystalline NRs were analysed for acetone, ethanol, NO2 and H2 detection. All sensors maintained n-type sensing mechanism, with improved sensing performance for lower thickness of NiO, due to high catalytic activity of NiO. The sensing dynamic is also strongly modified by the presence of heterojunction of NiO/ZnO, with a reduction of response and recovery times towards ethanol and acetone at 400 °C.

  3. Template-free fabrication of graphene-wrapped mesoporous ZnMn2O4 nanorings as anode materials for lithium-ion batteries.

    PubMed

    Zhou, Weiwei; Wang, Dong; Zhao, Limin; Ding, Chunyan; Jia, Xingtao; Du, Yu; Wen, Guangwu; Wang, Huatao

    2017-06-16

    We rationally designed a facile two-step approach to synthesize ZnMn 2 O 4 @G composite anode material for lithium-ion batteries (LIBs), involving a template-free fabrication of ZnMn 2 O 4 nanorings and subsequent coating of graphene sheets. Notably, it is the first time that ring-like ZnMn 2 O 4 nanostructure is reported. Moreover, our system has been demonstrated to be quite powerful in producing ZnMn 2 O 4 nanorings regardless of the types of Zn and Mn-containing metal salts reactants. The well-known inside-out Ostwald ripening process is tentatively proposed to clarify the formation mechanism of the hollow nanorings. When evaluated as anode material for LIBs, the resulting ZnMn 2 O 4 @G hybrid displays significantly improved lithium-storage performance with high specific capacity, good rate capability, and excellent cyclability. After 500 cycles, the ZnMn 2 O 4 @G hybrid can still deliver a reversible capacity of 958 mAh g -1 at a current density of 200 mA g -1 , much higher than the theoretical capacity of 784 mAh g -1 for pure ZnMn 2 O 4 . The outstanding electrochemical performance should be reasonably ascribed to the synergistic interaction between hollow and porous ZnMn 2 O 4 nanorings and the three-dimensional interconnected graphene sheets.

  4. Preliminary Study of ZnS:Mn2+ Quantum Dots Response Under UV and X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Saatsakis, G.; Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Koukou, V.; Martini, N.; Kalyvas, N.; Bakas, A.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G. S.

    2017-11-01

    Quantum Dots are semiconductor nanocrystals, with their optical properties controlled by their size, shape and material composition. The aim of the present study is to examine the scintillation properties of Manganese Doped Zinc Sulfide (ZnS:Mn 2+) Quantum Dot (QDs) nanocrystals under UV and X-ray irradiation. ZnS:Mn 2+ Quantum Dots, with typical diameter of ZnS dots of 13-20nm (also called scintillation QDs, stQDs), were developed and acquired by Mesolight Inc. The initial stQD sample was a solution of 75mg of ZnS:Mn 2+ dissolved in 100μL of Toluene, having a concentration of 75% w/v. Emission characteristics under UV and X-Ray excitation were examined. Two ultraviolet sources were incorporated (315 nm and 365 nm) as well as a medical X-ray tube with tube voltage from 50 to 130 kVp. Parameters such as Energy Quantum Efficiency under UV excitation and Luminescence Efficiency-LE (light energy flux over exposure rate) under X-ray excitation were examined. Luminescence Efficiency (LE) of ZnS:Mn 2+ was higher than that exhibited by previously examined QDs, (ZnCdSeS:ZnS and ZnCuInS:ZnS). The ability of ZnS:Mn 2+ to transform UV photons energy into optical photons energy, tends to increase while the incident UV wavelength decreases. Energy Quantum Efficiency of the sample exhibited a 6% increase when exposed to 315nm UV light compared to 365 nm. The emission spectrum of the stQDs, exhibited a narrow peak (~585nm) in the yellow range.

  5. Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98 Mn0.02O material

    NASA Astrophysics Data System (ADS)

    Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, S. F.; Sudiro, T.; Ginting, M.; Sebayang, P.

    2018-02-01

    Zn0.98Mn0.02O material was synthesized from ZnO and MnO2 powders using solid state reaction method. The microstructure, electrical and magnetic properties of Zn0.98Mn0.02O were studied as a function of sintering temperature. The X-ray diffraction analysis indicates that the main phase of synthesized sample is composed of hexagonal wurtzite ZnO phase. While the secondary phase of ZnMnO3 were found at the sintering temperature of 700°C and 900°C. The electrical properties measurement of Zn0.98Mn0.02O sample revealed that the resistivity and the dielectric constant of samples increase with the increase of sintering temperature. The ferromagnetic properties at room temperature were observed in the Zn0.98Mn0.02O samples sintered at 500°C and 700°C. It also found that the increase in sintering temperature leads to a tendency toward the changes in the magnetic properties into paramagnetic. The presence of ZnMnO3 secondary phases in Zn0.98Mn0.02O system is believed to be a factor that affects the decrease of the electrical and magnetic properties of the sample.

  6. Magnetic proximity effect and shell-ferromagnetism in metastable Ni50Mn45Ga5

    NASA Astrophysics Data System (ADS)

    Krenke, Thorsten; ćakır, Aslı; Scheibel, Franziska; Acet, Mehmet; Farle, Michael

    2016-12-01

    The present study on magnetic and structural properties of Ni50Mn45Ga5 confirms that structural metastability is an inherent property of Ni50Mn50-xXx Heusler alloys with X as In, Ga, and Sn. The ternary alloy transforms during temper-annealing into a dual-phase composite alloy. The two phases are identified to be cubic L21, Ni50Mn25Ga25, and tetragonal L10 Ni50Mn50. Depending on the annealing temperature, the magnetic-proximity effect giving rise to shell-ferromagnetism has been observed when annealing is carried out under an external magnetic field. The upper and lower remanence values MR+ and MR- have the same sign even at high temperatures. Such alloys can be promising candidates for heat- and magnetic-field-resistant magnetic recording media.

  7. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Z. Q.; Zou, B.; Zhao, X. G.; Tang, Z.; Wang, S. J.

    2012-10-01

    NiO/ZnO nanocomposites with NiO content of 4 at. % and 20 at. % were annealed up to 1200 °C to get Ni doped ZnO nanocrystals. Raman scattering spectra illustrate a broad and strong band at 500-600cm-1 in all nanocomposites after annealing above 700 °C, which suggests incorporation of Ni in the ZnO lattice. However, x-ray diffraction measurements show that NiO phase can be still observed in all nanocomposites after annealing, which indicates that Ni is partially doped into the ZnO structure. Positron annihilation measurements reveal large number of vacancy defects in the interface region of all nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room temperature ferromagnetism can be observed in the NiO/ZnO nanocomposites, which is stronger in the 20 at. % NiO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. This indicates that the ferromagnetism at low annealing temperatures originates from the NiO nanograins, and they become antiferromanetic after subsequent higher temperature annealing which leads to the weakening of ferromagnetism. After annealing up to 1000 °C, the ferromagnetism in both the two samples becomes nearly invisible. The disappearance of ferromagnetism shows good coincidence with the recovery of vacancy defects in NiO/ZnO nanocomposites. It can be inferred that the ferromagnetism is mediated by vacancy defects which are distributed in the interface region.

  8. Phase Transitions and Magnetocaloric Effects in GdNi2MnX

    NASA Astrophysics Data System (ADS)

    Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Samanta, Tapas; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2015-03-01

    The structural and magnetic properties of the GdNi2Mnx system (for x = 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5) have been studied by x-ray diffraction and magnetization measurements. A rhombohedral PuNi3-type structure was observed in the XRD data. A second order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) was found, characterized by a long-range exchange interaction as predicted by mean field theory. A magnetic entropy change of | Δ SM | = 3.1 J/kg K and 2.9 J/kg K for ΔH = 5 T was observed in the vicinity of the Curie temperature (TC) for GdNi2Mn0.8 and GdNi2Mn1.4 respectively. In spite of the low values of ΔSM, the relative cooling power (RCP) was found to be 176 J/Kg for the GdNi2Mn0.8 compound. . This work was supported by the Office of Basic Energy Sciences, Material Science and Engineering Division of the U.S. Department of Energy (USDOE-DE-FG02-06ER46291 and DE-FG02-13ER46946).

  9. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  10. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors.

    PubMed

    Zou, Xu; Sun, Qing; Zhang, Yuxin; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Yang, Lan; Zou, Xiaoxin

    2018-03-14

    Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni 3 S 2 nanosheets (denoted as Ni-Mn-OH@Ni 3 S 2 /NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni 3 S 2 /NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g -1 at a current density of 15 A g -1 can achieve high current density charge and discharge at 20/30 A g -1 that the corresponding capacitance is 1529.16 and 1350 F g -1 , respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g -1 . The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems.

  11. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  12. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  13. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs.

    PubMed

    Xu, Chaoying; Zhou, Ronghui; He, Wenwei; Wu, Lan; Wu, Peng; Hou, Xiandeng

    2014-04-01

    Fingerprints are unique characteristics of an individual, and their imaging and recognition is a top-priority task in forensic science. Fast LFP (latent fingerprint) acquirement can greatly help policemen in screening the potential criminal scenes and capturing fingerprint clues. Of the two major latent fingerprints (LFP), eccrine is expected to be more representative than sebaceous in LFP identification. Here we explored the heavy metal-free Mn-doped ZnS quantum dots (QDs) as a new imaging moiety for eccrine LFPs. To study the effects of different ligands on the LFP image quality, we prepared Mn-doped ZnS QDs with various surface-capping ligands using QDs synthesized in high-temperature organic media as starting material. The orange fluorescence emission from Mn-doped ZnS QDs clearly revealed the optical images of eccrine LFPs. Interestingly, N-acetyl-cysteine-capped Mn-doped ZnS QDs could stain the eccrine LFPs in as fast as 5 s. Meanwhile, the levels 2 and 3 substructures of the fingerprints could also be simultaneously and clearly identified. While in the absence of QDs or without rubbing and stamping the finger onto foil, no fluorescent fingerprint images could be visualized. Besides fresh fingerprint, aged (5, 10, and 50 days), incomplete eccrine LFPs could also be successfully stained with N-acetyl-cysteine-capped Mn-doped ZnS QDs, demonstrating the analytical potential of this method in real world applications. The method was also robust for imaging of eccrine LFPs on a series of nonporous surfaces, such as aluminum foil, compact discs, glass, and black plastic bags.

  14. Magnetic, Optical and Magneto-optical Properties of Ni2MnGe Alloy Films

    NASA Astrophysics Data System (ADS)

    Kim, R. J.; Kudryavtsev, Y. V.; Kim, K. W.

    2005-03-01

    The influence of atomic ordering on the magnetic, the optical and the magneto-optical (MO) properties of Ni2MnGe Heusler alloy (HA) films was investigated. The bulk Ni2MnGe HA was prepared by arc melting, and the films were deposited by flash evaporation onto glass substrates at several substrate temperatures from 150 to 730 K. The bulk Ni2MnGe HA exhibits the cubic L21 structure with a = b = c = 0.5761 nm, and the annealed (at 573 K) bulk alloy is in the tetragonal structure with a = b = 0.5720 nm and c = 0.5865 nm. While the films deposited at 720 K show a well-ordered L21 structure, the deposition at 150 K < T < 710 K results in the formation of a nanocrystalline or an amorphous microstructure. It was found the structural disorder in Ni2MnGe films induces lack of the ferromagnetic order and noticeable changes in the optical and MO response.

  15. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observemore » the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.« less

  16. Structural, electrical, optical and magnetic properties of NiO/ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sushmitha, V.; Maragatham, V.; Raj, P. Deepak; Sridharan, M.

    2018-02-01

    Nickel oxide/Zinc oxide (NiO/ZnO) thin films have been deposited onto thoroughly cleaned glass substrates by reactive direct current (DC) magnetron sputtering technique and subsequently annealed at 300 °C for 3 h in vacuum. The NiO/ZnO thin films were then studied for their structural, optical and electrical properties. X-ray diffraction (XRD) pattern of ZnO and NiO showed the diffraction planes corresponding to hexagonal and cubic phase respectively. The optical properties showed that with the increase in the deposition time of NiO the energy band gap varied between 3.1 to 3.24 eV. Hence, by changing the deposition time of NiO the tuning of band gap and conductivity were achieved. The magnetic studies revealed the diamagnetic nature of the NiO/ZnO thin films.

  17. Effect of 50 MeV Li3+ irradiation on structural and electrical properties of Mn-doped ZnO.

    PubMed

    Neogi, S K; Chattopadhyay, S; Banerjee, Aritra; Bandyopadhyay, S; Sarkar, A; Kumar, Ravi

    2011-05-25

    The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn(1 - x)Mn(x)O-type system. Zn(1 - x)Mn(x)O (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li(3+) ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn(0.98)Mn(0.02)O, whereas for the Zn(0.96)Mn(0.04)O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn(0.98)Mn(0.02)O, the observed sharp decrease in room temperature resistivity (ρ(RT)) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn(0.96)Mn(0.04)O, ρ(RT) decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn(0.98)Mn(0.02)O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn(0.96)Mn(0.04)O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.

  18. Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Sedky, A.; Mohamed, S. B.

    2014-01-01

    We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300-500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.

  19. Study on Properties of CoNi Films with mn Doping Prepared by Magnetic Fields Induced Codeposition Technology

    NASA Astrophysics Data System (ADS)

    Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia

    Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.

  20. Wetting of Sn-Zn-Ga and Sn-Zn-Na Alloys on Al and Ni Substrate

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Bobrowski, Piotr; Pawlak, Sylwia; Schell, Norbert; Chulist, Robert; Janik, Katarzyna

    2018-01-01

    Wetting of Al and Ni substrate by Sn-Zn eutectic-based alloys with 0.5 (wt.%) of Ga and 0.2 (wt.%) of Na was studied using the sessile drop method in the presence of ALU33® flux. Spreading tests were performed for 60 s, 180 s, and 480 s of contact, at temperatures of 503 K, 523 K and 553 K (230°C, 250°C, and 280°C). After cleaning the flux residue from solidified samples, the spreading areas of Sn-Zn0.5Ga and Sn-Zn0.2Na on Al and Ni substrate were determined. Selected, solidified solder-pad couples were cross-sectioned and subjected to scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction study and synchrotron measurements of the interfacial microstructure and identification of the phases. The growth of the intermetallic Ni5Zn21 phase layer was studied at the solder/Ni substrate interface, and the kinetics of the formation and growth of the intermetallic layer were determined. The formation of interlayers was not observed on the Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  1. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  2. Optical and Structural Properties of Zn2TiO4:Mn2+

    NASA Astrophysics Data System (ADS)

    Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.

    2017-12-01

    Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.

  3. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery.

    PubMed

    Zhang, Ning; Cheng, Fangyi; Liu, Yongchang; Zhao, Qing; Lei, Kaixiang; Chen, Chengcheng; Liu, Xiaosong; Chen, Jun

    2016-10-05

    Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn 2 O 4 /carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF 3 SO 3 ) 2 electrolyte. In 3 M Zn(CF 3 SO 3 ) 2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g -1 and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g -1 . The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and promote the use of cation-defective spinel compounds and trifluoromethanesulfonic electrolyte to develop high-performance rechargeable zinc batteries.

  5. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

    PubMed

    Radhamani, A V; Shareef, K M; Rao, M S Ramachandra

    2016-11-09

    Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO 2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO 2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO 2 nanoflakes coating delivered a specific capacitance of 907 Fg -1 at 0.6 Ag -1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO 2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg -1 and a power density of 6.5 kWkg -1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO 2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

  6. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  7. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni 50Mn 37In 13

    DOE PAGES

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; ...

    2017-03-15

    Here, the structural, magnetic, and magnetotransport properties of Ni 50-xCr xMn 37In 13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD), field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni 50Mn 37In 13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (T M). This system also shows a large negative entropy change at the Curie temperature (T C), making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC) values atmore » T M and T C increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni 45Cr 5Mn 37In 13. The influence of Cr substitution on the transport properties of Ni 48Cr 2Mn 37In 13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near T M for Ni 48Cr 2Mn 37In 13.« less

  8. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni 50Mn 37In 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil

    Here, the structural, magnetic, and magnetotransport properties of Ni 50-xCr xMn 37In 13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD), field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni 50Mn 37In 13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (T M). This system also shows a large negative entropy change at the Curie temperature (T C), making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC) values atmore » T M and T C increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni 45Cr 5Mn 37In 13. The influence of Cr substitution on the transport properties of Ni 48Cr 2Mn 37In 13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near T M for Ni 48Cr 2Mn 37In 13.« less

  9. Field dependence of TB in NiO and (Ni, Zn)O Nanoclusters

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Peck, M.; Skomski, R.; Zhang, R.; Kharel, P.; Allison, M.; Sellmyer, D.; Langell, M.

    2011-03-01

    Size dependence of magnetic properties of rocksalt NiO and Zn substituted NiO nanoparticles are investigated. Nanoparticle diameters are determined from 8 to 30 nm by XRD and AFM. Uncompensated spins at the nanoparticle surface contribute to superparametism at low temperatures and their blocking temperatures increase with stronger applied field. The field induced spin canting of the antiferromagnetic sublattices is a bulk effect and studied by the substitution of Zn with transition metal. Nanoparticles start exhibiting bulk magnetic behavior with size greater than 18 nm. Magnetization rotation of uncompensated spins under the magnetic field is mainly due to nanoscale size effect. The anisotropy of the nanoparticle is about four times larger than that of the bulk NiO. This research is supported by the NSF (CHE-1012366 and Nebraska MRSEC Grant DMR-0820521), the DOE Grant DE-FG02-04ER46152 (P. K. and D. J. S.) and NCMN.

  10. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    PubMed

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  11. Chemical and electrochemical recycling of the nickel, cobalt, zinc and manganese from the positives electrodes of spent Ni-MH batteries from mobile phones

    NASA Astrophysics Data System (ADS)

    Santos, V. E. O.; Celante, V. G.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2012-11-01

    Chemical and electrochemical recycling methods for the Ni, Co, Zn and Mn from the positives electrodes of spent Ni-MH batteries were developed. The materials recycled by chemical precipitation have the composition β-Ni(OH)2, Co(OH)2, Zn(OH)2 and Mn3O4. The powder retains sulphate, nitrate and carbonate anions from the mother solution as well as adsorbed water. Studies using cyclic voltammetry show that the current density decreases for scan rates greater than 10 mV s-1 because of the formation of hydroxide films. The amounts of Ni2+, Co2+, Zn2+ and Mn2+ were obtained by analysis of the solution using the inductively coupled plasma with optical emission spectroscopy technique, which demonstrated that the electrodeposition method exhibits anomalous behaviour. The amount of deposited nickel ions is related to the composition of the sulfamate bath. The presence of manganese in the electrodeposits is due to the precipitation of Mn(OH)2, and Zn(OH)42- does not undergo reduction in the investigated potential range. The electrodeposited material contains Ni, Co, CoO, Co(OH)2, and Mn3O4. A charge efficiency of 83.7% was attained for the electrodeposits formed by the application of -1.1 V vs. Ag/AgCl at a charge density of -90 C cm-2. The dissolution of the electrodeposits depends on the applied potential.

  12. Hollow spiny shell of porous Ni-Mn oxides: A facile synthesis route and their application as electrode in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2015-07-01

    Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.

  13. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE PAGES

    Hu, Lei; Chen, Jun; Xu, Jiale; ...

    2016-10-26

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  14. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Chen, Jun; Xu, Jiale

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  15. Synthesis and Optical Properties of MnS–ZnS and MnS–CdS Nanoparticles in Montmorillonite.

    PubMed

    Kabilaphat, Jirabhorn; Poosimma, Poonsuk; Khaorapapong, Nithima; Intachai, Sonchai; Ogawa, Makoto

    2017-02-01

    The incorporation of metal sulfide mixture, manganese sulfide and zinc sulfide (MnS–ZnS) or manganese sulfide and cadmium sulfide (MnS–CdS), in two types of montmorillonites (sodium montmorillonite and cetyltrimethylammonium modified montmorillonite) was investigated. The hybrids were characterized by powder X-ray diffraction, thermogravimetric-differential thermal analysis, transmission electron microscopy (TEM), and Raman, UV-visible and photoluminescence spectroscopies. The experimental evidences such as the expansion of the interlayer spaces and the presence of the absorption and photoluminescence due to MnS, ZnS and/or CdS revealed that the mixed metal sulfides formed in the interlayer space of montmorillonites. TEM images of the hybrids showed diskor plate-shaped nanoparticles with a mean diameter of ca. 2 nm. The increase of the luminescence intensities of the hybrids was assumed to be caused by quantum confinement effect in the interlayer space of montmorillonite.

  16. Interaction with biomacromolecules and antiproliferative activities of Mn(II), Ni(II), Zn(II) complexes of demethylcantharate and 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan

    2013-06-01

    Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.

  17. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  18. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  19. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng

    2017-11-01

    The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.

  20. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    PubMed Central

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia

    2018-01-01

    Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391

  1. Giant magnetic coercivity in YNi4B-type SmNi3TB (T=Mn-Cu) solid solutions

    NASA Astrophysics Data System (ADS)

    Yao, Jinlei; Yan, Chang; Yapaskurt, V. O.; Morozkin, A. V.

    2016-12-01

    The effects of transition metal substitution for Ni on the magnetic properties of the YNi4B-type SmNi4B via SmNi3TB (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi4B, SmNi3MnB, SmNi3FeB, SmNi3CoB and SmNi3CuB show ferromagnetic ordering at 40 K, 210 K, 322 K, 90 K and 57 K and field sensitive metamagnetic-like transitions at 15 K, 100 K, 185 K, 55 K and 15 K in a magnetic field of 10 kOe, respectively. The magnetocaloric effects of SmNi3TB (T=Mn-Cu) were calculated in terms of isothermal magnetic entropy change (ΔSm). The magnetic entropy ΔSm reaches value of -0.94 J/kg K at 40 K for SmNi4B, -1.5 J/kg K at 205 K for SmNi3MnB, -0.54 J/kg K at 320 K for SmNi3FeB, -0.49 J/kg K at 90 K for SmNi3CoB and -0.54 J/kg K at 60 K for SmNi3CuB in field change of 0-50 kOe around the Curie temperature. They show positive ΔSm of +0.71 J/kg K at ~10 K for SmNi4B, +1.69 J/kg K at 30 K for SmNi3MnB, +0.89 J/kg K at 110 K for SmNi3FeB, +1.08 J/kg K at 25 K for SmNi3CoB and +1.12 J/kg K at 10 K for SmNi3CuB in field change of 0-50 kOe around the low temperature metamagnetic-like transition. Below the field induced transition temperature (change of magnetic structure), SmNi3TB (T=Mn-Cu) exhibits giant magnetic coercivity of 74 kOe at 5 K for SmNi4B, 69 kOe at 20 K (90 kOe at 10 K) for SmNi3MnB, 77 kOe at 60 K for SmNi3FeB, 88 kOe at 20 K for SmNi3CoB and 52 kOe at 5 K for SmNi3CuB.

  2. Effect of 50 MeV Li3 + irradiation on structural and electrical properties of Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Chattopadhyay, S.; Banerjee, Aritra; Bandyopadhyay, S.; Sarkar, A.; Kumar, Ravi

    2011-05-01

    The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn1 - xMnxO-type system. Zn1 - xMnxO (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li3 + ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn0.98Mn0.02O, whereas for the Zn0.96Mn0.04O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn0.98Mn0.02O, the observed sharp decrease in room temperature resistivity (ρRT) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn0.96Mn0.04O, ρRT decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn0.98Mn0.02O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn0.96Mn0.04O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.

  3. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  4. Three NiAs-Ni 2In Type Structures in the Mn-Sn System

    NASA Astrophysics Data System (ADS)

    Elding-Pontén, Margareta; Stenberg, Lars; Larsson, Ann-Kristin; Lidin, Sven; Ståhl, Kenny

    1997-03-01

    TheB8-type structure field of the Mn-Sn system has been investigated. Two high temperature phases (HTP1 and HTP2) and one low temperature phase (Mn3Sn2) were found. They all crystallize with the NiAs structure type with part of the trigonal bipyramidal interstices filled by manganese atoms in an ordered manner. The ordering as well as the manganese content is different for the three phases, giving rise to three different orthorhombic superstructures. Mn3Sn2seems to have the lowest manganese content, since the corresponding basal unit cell is smaller than for HTP1-2. Structural models of the phases are based on selected area electron diffraction, X-ray powder diffraction, and preliminary single crystal X-ray measurements. The ideal cell parameters found are (a=7ahex,b=3ahex,c=chex), (a=5ahex,b=3ahex,c=chex), and (a=2ahex,b=3ahex,c=chex) for HTP1, HTP2, and Mn3Sn2, respectively. The crystal structure of Mn3Sn2has been refined by means of the Rietveld method from X-ray powder diffraction data. Mn3Sn2is orthorhombic,Pnma,a=7.5547(2),b=5.4994(2),c=8.5842(2) Å,Z=4. (Pbnmin the setting above.) The compound is isostructural with Ni3Sn2andγ‧-Co3Sn2(H. Fjellvåg and A. Kjekshus,Acta Chem. Scand.A40, 23-30 (1986)). FinalRp=8.97%,Rwp=11.44%, GOF=2.86, andRBragg=4.11% using 43 parameters and 5701 observations and 330 Bragg reflections.

  5. Neutron diffraction study of a non-strichiometric Ni-Mn-Ga MSM alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ari-Gur, Pnina; Garlea, Vasile O

    2013-01-01

    The structure and chemical order of a Heusler alloy of non-stoichiometric composition Ni-Mn-Ga were studied using constant-wavelength (1.538 ) neutron diffraction at 363K and the diffraction pattern was refined using the FullProf software. At this temperature the structure is austenite (cubic) with Fm-3m space group and lattice constant of a = 5.83913(4) [ ]. The chemical order is of critical importance in these alloys, as Mn becomes antiferromagnetic when the atoms are closer than the radius of the 3d shell. In the studied alloy the refinement of the site occupancy showed that the 4b (Ga site) contained as much asmore » 22% Mn; that significantly alters the distances between the Mn atoms in the crystal and, as a result, also the exchange energy between some of the Mn atoms. Based on the refinement, the composition was determined to be Ni1.91Mn1.29Ga0.8« less

  6. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  7. Localized deformation in Ni-Mn-Ga single crystals

    NASA Astrophysics Data System (ADS)

    Davis, Paul H.; Efaw, Corey M.; Patten, Lance K.; Hollar, Courtney; Watson, Chad S.; Knowlton, William B.; Müllner, Peter

    2018-06-01

    The magnetomechanical behavior of ferromagnetic shape memory alloys such as Ni-Mn-Ga, and hence the relationship between structure and nanoscale magnetomechanical properties, is of interest for their potential applications in actuators. Furthermore, due to its crystal structure, the behavior of Ni-Mn-Ga is anisotropic. Accordingly, nanoindentation and magnetic force microscopy were used to probe the nanoscale mechanical and magnetic properties of electropolished single crystalline 10M martensitic Ni-Mn-Ga as a function of the crystallographic c-axis (easy magnetization) direction relative to the indentation surface (i.e., c-axis in-plane versus out-of-plane). Load-displacement curves from 5-10 mN indentations on in-plane regions exhibited pop-in during loading, whereas this phenomenon was absent in out-of-plane regions. Additionally, the reduced elastic modulus measured for the c-axis out-of-plane orientation was ˜50% greater than for in-plane. Although heating above the transition temperature to the austenitic phase followed by cooling to the room temperature martensitic phase led to partial recovery of the indentation deformation, the magnitude and direction of recovery depended on the original relative orientation of the crystallographic c-axis: positive recovery for the in-plane orientation versus negative recovery (i.e., increased indent depth) for out-of-plane. Moreover, the c-axis orientation for out-of-plane regions switched to in-plane upon thermal cycling, whereas the number of twins in the in-plane regions increased. We hypothesize that dislocation plasticity contributes to the permanent deformation, while pseudoelastic twinning causes pop-in during loading and large recovery during unloading in the c-axis in-plane case. Minimization of indent strain energy accounts for the observed changes in twin orientation and number following thermal cycling.

  8. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.

    PubMed

    Berlinger, B; Náray, M; Sajó, I; Záray, G

    2009-06-01

    In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of

  9. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.

    PubMed

    Raja, S Philip; Venkateswaran, C

    2011-03-01

    Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.

  10. Exploring the Cr{sup 2+} doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com

    2016-05-23

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less

  11. Size tuned polyol-made Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey

    NASA Astrophysics Data System (ADS)

    Basti, H.; Hanini, A.; Levy, M.; Ben Tahar, L.; Herbst, F.; Smiri, L. S.; Kacem, K.; Gavard, J.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S.

    2014-12-01

    Zn-rich substituted Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles (NPs) of about 5 and 10 nm were produced by the so-called polyol method. They were engineered for hyperthermia therapy based on their magnetic and morphological properties. Indeed, because of their comparatively low Curie temperature and reasonable magnetization, these probes may turn into useful self-regulated heating agents under suitable conditions. For such a purpose, the structure, the microstructure, the magnetic and magnetocalorimetric properties of the produced NPs as well as their in vitro cytotoxicity were investigated. Our results demonstrate that the magnetic properties of these magnetically diluted spinel ferrite particles can be largely modified by just changing their size. They also show that the about 10 nm sized manganese-based ones exhibit the highest heating power under a 700 kHz ac magnetic field and the lowest cytotoxicity on Immortalized human umbilical vascular endothelial cells (HUVEC).

  12. Modifying exchange bias effects of Mn/NiFe bilayers by in-situ Ar+ bombardment

    NASA Astrophysics Data System (ADS)

    Causer, G. L.; Manna, P. K.; Chiu, C.-C.; van Lierop, J.; Ionescu, M.; Lin, K.-W.; Klose, F.

    2017-10-01

    In this work, we present a procedure to modify the exchange bias (EB) properties of antiferromagnetic Mn/ferromagnetic NiFe bilayers by in-situ low energy Ar+ bombardment of the Mn layer during sample deposition. We present structural and magnetic results for unassisted and Ar+ assisted Mn/NiFe bilayers. X-ray diffraction, transmission electron microscopy and electron diffraction results establish different preferred Mn orientation directions between the two samples as a result of the Ar+ bombardment process. Hysteresis loops taken over several temperatures reveal that samples assisted with Ar+ ions during the Mn layer deposition had suppressed EB properties at low temperature as compared to samples grown without Ar+ assistance.

  13. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  14. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon

    DOE PAGES

    Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia; ...

    2017-10-31

    The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less

  15. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia

    The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less

  16. Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang

    2016-09-19

    Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less

  17. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.

    2016-01-01

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  18. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.

    1995-10-15

    The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less

  19. Chromium doping effects on structural and dielectric properties of Mn-Zn cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, A.; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 45331; Dar, Mashkoor A., E-mail: darmashkoor.phst@gmail.com

    2016-05-06

    The effect of transition metal Cr{sup 2+} ion as a dopant of Zn{sup 2+} in Mn{sub 0.5}Zn{sub 0.5}Co{sub 2}O{sub 4} is investigated. Co-doped Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Co{sub 2}O{sub 4} (x = 0, 0.3 and 0.5) cobaltites were prepared by solid-state reaction route. X-ray powder diffraction (XRD) analysis reveals that the samples prepared are polycrystalline single-phase cubic spinel in structure having a space group Fd3m. An increase in average particle size observed with Cr{sup 2+} doping. However other structural parameters such as X-ray density, micro strain and dislocation density shows almost a similar decreasing trend with increase in Cr{sup 2+}. Highmore » value of permittivity ∼10{sup 5} is observed for the parent Mn{sub 0.5}Zn{sub 0.5}Co{sub 2}O{sub 4} and shows a substantial decrease with increase in the Cr{sup 2+} doping. Higher doping of Cr{sup 2+} also increases the dielectric loss and hence limits its technological importance. At lower frequencies ac conductivity has been found to increase with increase in Cr{sup 2+} content.« less

  20. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  1. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu

    2018-07-01

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.

  2. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering.

    PubMed

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Hung; Ho, Ting-Hsiu

    2018-05-03

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1,300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface. © 2018 IOP Publishing Ltd.

  3. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    PubMed

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  4. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  5. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  6. Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires

    NASA Astrophysics Data System (ADS)

    Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.

    2018-05-01

    In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.

  7. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  8. Spatially-controlled NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-01

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 Cores and MnO2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo2O4 and MnO2 compositions.

  9. Spatially-controlled NiCo2O4@MnO2 core-shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction.

    PubMed

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-13

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.

  10. Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Ronghui; Li, Mei; Wang, Shanling; Wu, Peng; Wu, Lan; Hou, Xiandeng

    2014-11-01

    Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research.Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate

  11. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less

  12. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures.

    PubMed

    Borysiewicz, M A; Ekielski, M; Ogorzałek, Z; Wzorek, M; Kaczmarski, J; Wojciechowski, T

    2017-06-08

    The recent rapid development of transparent electronics, notably displays and control circuits, requires the development of highly transparent energy storage devices, such as supercapacitors. The devices reported to date utilize carbon-based electrodes for high performance, however at the cost of their low transparency around 50%, insufficient for real transparent devices. To overcome this obstacle, in this communication highly transparent supercapacitors were fabricated based on ZnO/MnO 2 nanostructured electrodes. ZnO served as an intrinsically transparent skeleton for increasing the electrode surface, while MnO 2 nanoparticles were applied for high capacitance. Two MnO 2 synthesis routes were followed, based on the reaction of KMnO 4 with Mn(Ac) 2 and PAH, leading to the synthesis of β-MnO 2 with minority α-MnO 2 nanoparticles and amorphous MnO 2 with embedded β-MnO 2 , respectively. The devices based on such electrodes showed high capacitances of 2.6 mF cm -2 and 1.6 mF cm -2 , respectively, at a scan rate of 1 mV s -1 and capacitances of 104 μF cm -2 and 204 μF cm -2 at a very high rate of 1 V s -1 , not studied for transparent supercapacitors previously. Additionally, the Mn(Ac) 2 devices exhibited very high transparencies of 86% vs. air, far superior to other transparent energy storage devices reported with similar charge storage properties. This high device performance was achieved with a non-acidic LiCl gel electrolyte, reducing corrosion and handling risks associated with conventional highly concentrated acidic electrolytes, enabling applications in safe, wearable, transparent devices.

  13. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    NASA Astrophysics Data System (ADS)

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-01

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni) 6(SO 4)(OH,Cl) 10·5H 2O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO 4·7H 2O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn 3.52Ni 1.63)(SO 4) 1.33(OH 7.64)·4.67H 2O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with {1}/{4} empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates.

  14. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    NASA Astrophysics Data System (ADS)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz). Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  15. Effects of co-dopants on the microstructure and electroluminescence of ZnS:Mn thin film phosphors

    NASA Astrophysics Data System (ADS)

    Zhai, Qing

    The objective of this study is to investigate the effects of the co-dopants of KCl and Ga2S3 and post-deposition annealing on the microstructure and electroluminescence (EL) properties of ZnS:Mn thin film phosphors. ZnS:Mn thin films are deposited by radio frequency (RF) magnetron sputtering from ZnS and Mn targets onto pre-deposited indium tin oxide (ITO) and aluminum titanium oxide (ATO) layers on Corning 7059 glass. Argon at 20mTorr is the sputtering ambient. The substrates are held at 180°C during deposition. Co-dopants are thermally evaporated after the ZnS:Mn films, and diffused into the ZnS:Mn films by ex situ annealing between 600°C and 800°C for 5 minutes in a nitrogen ambient. Brightness versus the applied voltage, luminous efficiency, and photoluminescence (PL) are used to characterize the EL devices. The figures of merit are the threshold voltage Vth, at which luminescence is first detected, B40 and eta40, the brightness and efficiency at 40V above the threshold voltage, respectively. In the as-deposited ZnS:Mn phosphor, the microstructure is heavily defected with two different grain morphologies: a roughly 100nm layer of equiaxed fine grains at the insulator/phosphor interface and columnar grains with an average diameter of 89nm in the rest of the film. The EL properties of as-deposited films are poor, with a Vth of 125V, B40 of 48.7nits, and a eta40 of 0.2275lm/W. Annealing at 700°C for 5 minutes raises B40 to 99.6nits and eta40 to 0.4463lm/W, with little change in Vth. In KCl doped ZnS:Mn samples, after 5 minutes of annealing at 700°C, SIMS indicates a uniform distribution of K and a complete diffusion of Cl throughout the phosphor. KCl co-doping enhances grain growth by improving dislocation motion, and the columnar grain size increases from 132nm to 187nm. EL properties are improved, with a B40 of 252nits and eta 40 of 0.9879lm/W. A slight increase in Vth is observed. In ZnS:Mn samples with Ga2S3, the grain growth is less than that in undoped

  16. SHI irradiation effect on pure and Mn doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Khawal, H. A.; Raskar, N. D.; Dole, B. N.

    2017-05-01

    Investigated the structural, surface, electrical and modifications induced by Swift Heavy Ions (SHI) irradiation on pure and Mn substituted ZnO thin films were observed. Thin films of Zn1-xMnxO (x = 0.00, 0.04) were synthesized using the dip coating technique. All thin films irradiated by Li3+ swift heavy ions with fluence 5 × 1013 ions/cm2. The XRD peak reveals that all the samples exhibit wurtzite structures. Surface morphology of samples was investigated by SEM, it was observed that pristine samples of ZnO thin film shows spherical shape but for 4 % Mn substituted ZnO thin film with 5 × 1013 ions/cm2 fluence, it reveals that big grain spherical morphology like structure respectively. I-V characteristics were recorded in the voltage range -5 to 5 V. All curves were passed through origin and nearly linear exhibit ohmic in nature for the films.

  17. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  18. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn-MnO2 Battery.

    PubMed

    Zeng, Yinxiang; Zhang, Xiyue; Meng, Yue; Yu, Minghao; Yi, Jianan; Wu, Yiqiang; Lu, Xihong; Tong, Yexiang

    2017-07-01

    Advanced flexible batteries with high energy density and long cycle life are an important research target. Herein, the first paradigm of a high-performance and stable flexible rechargeable quasi-solid-state Zn-MnO 2 battery is constructed by engineering MnO 2 electrodes and gel electrolyte. Benefiting from a poly(3,4-ethylenedioxythiophene) (PEDOT) buffer layer and a Mn 2+ -based neutral electrolyte, the fabricated Zn-MnO 2 @PEDOT battery presents a remarkable capacity of 366.6 mA h g -1 and good cycling performance (83.7% after 300 cycles) in aqueous electrolyte. More importantly, when using PVA/ZnCl 2 /MnSO 4 gel as electrolyte, the as-fabricated quasi-solid-state Zn-MnO 2 @PEDOT battery remains highly rechargeable, maintaining more than 77.7% of its initial capacity and nearly 100% Coulombic efficiency after 300 cycles. Moreover, this flexible quasi-solid-state Zn-MnO 2 battery achieves an admirable energy density of 504.9 W h kg -1 (33.95 mW h cm -3 ), together with a peak power density of 8.6 kW kg -1 , substantially higher than most recently reported flexible energy-storage devices. With the merits of impressive energy density and durability, this highly flexible rechargeable Zn-MnO 2 battery opens new opportunities for powering portable and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  20. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish.

    PubMed

    de Oliveira, Luciana Fernandes; Santos, Caroline; Risso, Wagner Ezequiel; Dos Reis Martinez, Claudia Bueno

    2018-06-01

    Metal bioaccumulation and oxidative stress biomarkers were determined in Prochilodus lineatus to understand the effects of short-term exposure to a triple-mixture of Zn, Mn, and Fe. Three independent tests were carried out, in which fish were exposed to 3 concentrations of Zn (0.18, 1.0, and 5.0 mg L -1 ), Mn (0.1, 0.5, and 5.0 mg L -1 ), and in the mix test to Fe (5.0 mg L -1 ) and a mixture of Zn (1.0 mg L -1 ) + Mn (0.5 mg L -1 ), with and without Fe. After exposure for 96 h, tissues were removed for metal bioaccumulation analysis and oxidative stress biomarkers were determined in liver, along with DNA damage in blood cells. Our results revealed that Zn and Mn were bioaccumulated in fish tissues after exposure to 5.0 mg L -1 , whereas Fe only bioaccumulated in muscle and gills after mixture exposure. Results indicated that 1 metal interfered with the other's bioaccumulation. In P. lineatus, 5 mg L -1 of both Mn and Fe were toxic, because damage was observed (lipid peroxidation [LPO] in liver and DNA damage in blood cells), whereas Zn induced liver responses (metallothionein [MT] and reduced glutathione [GSH] increases) to prevent damage. In terms of bioaccumulation and alterations of oxidative stress biomarkers, we showed that Zn, Mn, and Fe triple-mixture enhances individual metal toxicity in Neotropical fish P. lineatus. Environ Toxicol Chem 2018;37:1749-1756. © 2018 SETAC. © 2018 SETAC.

  1. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  2. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    PubMed

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  3. Texture inheritance from austenite to 7 M martensite in Ni-Mn-Ga melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Jiang, Yiwen; Li, Zhenzhuang; Yang, Yiqiao; Yang, Bo; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    In this work, Ni53Mn22Ga25 and Ni51Mn27Ga22 ribbons with austenite and 7 M martensite at room temperature respectively, were prepared by melt-spinning. Through the detailed crystallographic analyses, the preferred orientation in ribbons was confirmed. It is shown that the austenite in Ni53Mn22Ga25 ribbons forms a preferred orientation with {4 0 0}A in parallel to ribbon plane, whereas the 7 M martensite in Ni51Mn27Ga22 ribbons develops the preferred orientation with {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M crystallographic planes parallel to the ribbon plane. Since {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M are originated from {4 0 0}A, the preferred orientation in ribbons thus can be inherited after the martensitic transformation. Such texture inheritance is attributed to the intrinsic orientation relationship between austenite and 7 M martensite.

  4. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  5. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature

    NASA Astrophysics Data System (ADS)

    Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi

    2018-06-01

    Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.

  6. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  7. Rietveld refinement and electrical properties of Ni-Zn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana

    2017-05-01

    NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.

  8. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  9. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.

  10. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  11. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  12. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  13. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  14. Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2013-06-01

    X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.

  15. A secondary, coplanar design Ni/MCM-41/Zn microbattery

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    A secondary Ni/Zn microbattery (∼200 µm thick) has been developed in a coplanar electrode configuration. The cell is essentially of a circular shape (∼30 mm in diameter) consisting of a fine circular ring (cathode) and a circle (anode) split apart (~800 µm). Unlike the stacking cell architecture, coplanar configuration offers simple design, ease of fabrication and eventually cost saving. The use of MCM-41 mesoporous silica as the membrane separator cum electrolyte reservoir enables the successful implementation of coplanar configuration. The fabrication of Ni/Zn microbattery first begins with electrodeposition of zinc (Zn) and nickel hydroxide (Ni(OH)2) thin films onto patterned FR4 printed circuit board, followed by deposition of zinc oxide (ZnO) slurry onto the zinc active layer, and finally ends by multiple drop-coating procedures of MCM-41 from its precursor solution at ambient temperature. Once a potassium hydroxide (6 M KOH)/MCM-41 electrolyte-separator mixture is incorporated, the cell is sealed with an acrylic sheet and epoxy adhesive. The fabricated microbatteries were capable to sustain around 130 deep charge-discharge cycles. When rated at 0.1 mA, the energy density of the microbattery was around 3.82 Wh l-1 which is suitable for low rate applications and storage for micro energy harvesters such as piezoelectric generators.

  16. Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Borah, J. P.

    2017-01-01

    Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn  =  0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f  =  337 kHz) range and maximum concentration of Mn doping.

  17. UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Julian, T.; Suharyadi, E.

    2018-04-01

    The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.

  18. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.

    PubMed

    Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J

    2016-01-15

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  19. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Satoru; Honda, Joji; Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing themore » aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.« less

  20. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  1. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  2. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    NASA Astrophysics Data System (ADS)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  3. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  4. Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior

    PubMed Central

    Xiao, Ying; Allen, Emily C.

    2012-01-01

    A deoxyribozyme that hydrolyzes DNA phosphodiester linkages with a requirement for both Zn2+ and Mn2+ is switched by only two nucleotide mutations to require Zn2+ alone, demonstrating that DNA-catalyzed DNA hydrolysis can be achieved using only one metal ion cofactor. PMID:21125108

  5. Mechanochemical Synthesis of Li2MnO3 Shell/LiMO2 (M = Ni, Co, Mn) Core-Structured Nanocomposites for Lithium-Ion Batteries

    PubMed Central

    Noh, Jae-Kyo; Kim, Soo; Kim, Haesik; Choi, Wonchang; Chang, Wonyoung; Byun, Dongjin; Cho, Byung-Won; Chung, Kyung Yoon

    2014-01-01

    Core/shell-like nanostructured xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, Mn) composite cathode materials are successfully synthesized through a simple solid-state reaction using a mechanochemical ball-milling process. The LiMO2 core is designed to have a high-content of Ni, which increases the specific capacity. The detrimental surface effects arising from the high Ni-content are countered by the Li2MnO3 shell, which stabilizes the nanoparticles. The electrochemical performances and thermal stabilities of the synthesized nanocomposites are compared with those of bare LiMO2. In particular, the results of time-resolved X-ray diffraction (TR-XRD) analyses of xLi2MnO3·(1−x)LiMO2 nanocomposites as well as their differential scanning calorimetry (DSC) profiles demonstrate that the Li2MnO3 shell is effective in stabilizing the LiMO2 core at high temperatures, making the nanocomposites highly suitable from a safety viewpoint. PMID:24784478

  6. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  7. Effect of chromium doping on the structural and vibrational properties of Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Varshney, Dinesh

    2018-05-01

    The synthesis of Mn0.5Zn0.5-xCrxFe2O4 (x = 0.0, 0.1, 0.2 and 0.5) via sol-gel Auto-combustion technique is reported. The x-ray diffraction spectra analysis revealed the cubic spinel structure for all the prepared spinel ferrite samples with the space group Fd3m. The structural studies identify the decrease of lattice parameter however the crystallite size decreases on increasing the Cr concentration. The Raman spectrum reveals five active phonon modes at room temperature and shifting of modes toward the higher frequency side on moving from Mn-ZnFe2O4 to Mn-CrFe2O4.

  8. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S.; Del Bianco, L.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence ofmore » the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.« less

  9. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  10. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  11. Magnetic Photocatalyst BiVO₄/Mn-Zn ferrite/Reduced Graphene Oxide: Synthesis Strategy and Its Highly Photocatalytic Activity.

    PubMed

    Xie, Taiping; Li, Hui; Liu, Chenglun; Yang, Jun; Xiao, Tiancun; Xu, Longjun

    2018-05-29

    Magnetic photocatalyst BiVO₄/Mn-Zn ferrite (Mn 1- x Zn x Fe₂O₄)/reduced graphene oxide (RGO) was synthesized by a simple calcination and reduction method. The magnetic photocatalyst held high visible light-absorption ability with low band gap energy and wide absorption wavelength range. Electrochemical impedance spectroscopies illustrated good electrical conductivity which indicated low charge-transfer resistance due to incorporation of Mn 1- x Zn x Fe₂O₄ and RGO. The test of photocatalytic activity showed that the degradation ratio of rhodamine B (RhB) reached 96.0% under visible light irradiation after only 1.5 h reaction. The photocatalytic mechanism for the prepared photocatalyst was explained in detail. Here, the incorporation of RGO enhanced the specific surface area compared with BiVO4/Mn 1- x Zn x Fe₂O₄.The larger specific surface area provided more active surface sites, more free space to improve the mobility of photo-induced electrons, and further facilitated the effective migration of charge carriers, leading to the remarkable improvement of photocatalytic performance. Meanwhile, RGO was the effective acceptor as well as transporter of photo-generated electron hole pairs. •O₂ - was the most active species in the photocatalytic reaction. BiVO₄/Mn 1- x Zn x Fe₂O₄/RGO had quite a wide application in organic contaminants removal or environmental pollution control.

  12. The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel

    NASA Astrophysics Data System (ADS)

    Hermanto, B.; Ciswandi; Afriani, F.; Aryanto, D.; Sudiro, T.

    2018-03-01

    The spinel based on transition-metal oxides has a typical composition of AB2O4. In this study, the ZnMn2O4 spinel was synthesized using a powder metallurgy technique. The Zn and Mn metallic powders with an atomic ratio of 1:2 were mechanically alloyed for 3 hours in aqueous solution. The mixed powder was then calcined in a muffle furnace at elevated temperature of 400, 500 and 600 °C. The X-ray Diffractometer (XRD) was used to evaluate the formation of a ZnMn2O4 spinel structure. The magnetic properties of the sample at varying calcination temperatures were characterized by a Vibrating Sample Magnetometer (VSM). The results show that the fraction of ZnMn2O4 spinel formation increases with the increase of calcination temperature. The calcination temperature also affects the magnetic properties of the samples.

  13. Effect of Ni and Ti substitutions on Li1.05Mn2O4-δ electrical conductivities at high temperature

    NASA Astrophysics Data System (ADS)

    Abe, Satoko; Iwasaki, Shoko; Shimonishi, Yuta; Komine, Shigeki; Munakata, Fumio

    2016-10-01

    Samples of Li1.05Mn2O4-δ, Li1.05Mn1.5Ni0.5O4-δ, and Li1.05Mn1.0Ni0.5Ti0.5O4-δ were prepared by a solid-state reaction technique and ultimately refined to a space group Fd-3m of spinel structure by the Rietveld method using synchrotron powder X-ray diffraction data. Comparison of lattice constants suggested that Ni-substitution increased the covalency in the bonding of MO6 (M: metal ion at 16d site) octahedrals, but Ni/Ti co-substitution decreased the covalency of M-O bonds and introduced structural distortion. Electrical conductivity measurements by a four-probe method resulted in the determination that electrical conduction (within all samples) exhibits a nonadiabatic hopping process at high temperatures. The activation energies of Li1.05Mn2O4-δ and Li1.05Mn1.5Ni0.5O4-δ were found to be of similar values. The Ni/Ti co-substituted sample of Li1.05Mn1.0Ni0.5Ti0.5O4-δ, on the other hand, showed the highest activation energy among all the measured samples. Substitution reduced the electrical conductivity relative to Li1.05Mn2O4-δ; furthermore, both the substituted samples (Li1.05Mn1.5Ni0.5O4-δ and Li1.05Mn1.0Ni0.5Ti0.5O4-δ) were found to exhibit functional independence from oxygen partial pressure (PO2).

  14. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: In-doped Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin

    2014-09-01

    Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.

  15. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors.

    PubMed

    Yu, Mei; Liu, Ruili; Liu, Jianhua; Li, Songmei; Ma, Yuxiao

    2017-11-01

    Polyhedral-like NiMn-layered double hydroxide/porous carbon (NiMn-LDH/PC-x) composites are successfully synthesized by hydrothermal method (x = 1, 2 means different mass percent of porous carbon (PC) in composites). The NiMn-LDH/PC-1 composites possess specific capacitance 1634 F g -1 at a current density of 1 A g -1 , and it is much better than that of pure LDH (1095 F g -1 at 1 A g -1 ). Besides, the sample can retain 84.58% of original capacitance after 3000 cycles at 15 A g -1 . An asymmetric supercapacitor with NiMn-LDH/PC-1 as anode and activated carbon as cathode is fabricated, and the supercapacitor can achieve an energy density of 18.60 Wh kg -1 at a power density of 225.03 W kg -1 . The enhanced electrochemical performance attributes to the high faradaic pseudocapacitance of NiMn-LDH, the introduction of PC, and the 3D porous structure of LDH/PC-1 composites. The introduction of PC hinders serious agglomeration of LDH and further accelerates ions transport. The encouraging results indicate that these materials are one of the most potential candidates for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    PubMed Central

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504

  17. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene.

    PubMed

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-21

    Ni(2+)Mn(3+) layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni(2+)/Mn(2+) salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.

  18. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    NASA Astrophysics Data System (ADS)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  19. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity

    PubMed Central

    Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei

    2016-01-01

    Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260

  20. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells.

    PubMed

    Zeng, Lizhen; Zhang, Wenguang; Xia, Pan; Tu, Wenqiang; Ye, Changchun; He, Miao

    2018-04-15

    A novel bi-component composite of porous self-assembled micro-/nanostructured Ni 0.1 Mn 0.9 O 1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells (MFCs) is successfully synthesized via a simple coprecipitation reaction in microemulsion and calcination method in air atmosphere. The morphology and structural characterization indicate that the as-fabricated Ni 0.1 Mn 0.9 O 1.45 product is consist of Mn 2 O 3 and NiMn 2 O 4 (n(Mn 2 O 3) : n(NiMn 2 O 4 ) = 0.35: 0.1) and has a porous microellipsoidal morphology. The microellipsoids are compose of numerous layered micro-/nanostructured blocks and the special porous microellipsoids structure of Ni 0.1 Mn 0.9 O 1.45 offers a large specific surface area for bacteria adhesion. The porous Ni 0.1 Mn 0.9 O 1.45 microellipsoids as anode electrocatalyst for MFCs exhibits excellent electrocatalytic activity to promote the extracellular electron transfer (EET) between the anode and bacteria, hence improves the performance of MFC. The MFC equipped with Ni 0.1 Mn 0.9 O 1.45 /CF anode achieves a maximum power density of 1.39 ± 0.02Wm -2 , is significantly higher than that of commercial carbon felt anode. This work proposes a new method for the synthesis of high-performance and environmentally friendly anode electrocatalyst for MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  3. Eradication of Multi-drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mansoor, Qaisar; Mahmood, Arshad; Ahmad, Amaar

    2014-07-01

    In this paper, ZnO nanorods doped with varying amounts of Ni have been prepared by chemical co-precipitation technique. Structural investigations provide the evidence that Ni is successfully doped into ZnO host matrix without having any secondary phases. Scanning electron microscopy (SEM) images reveal the formation of rodlike structure of undoped ZnO with average length and diameter of 1 μm and 80 nm, respectively. Raman spectroscopy results show that the E1LO phonons mode band shifts to the higher values with Ni doping, which is attributed to large amount of crystal defects. Ni doping is also found to greatly influence the optical properties of ZnO nanorods. The influence of Ni doping on antibacterial characteristics of ZnO nanorods have been studied by measuring the growth curves of Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria in the presence of prepared nanorods. ZnO nanorods antibacterial potency is found to increase remarkably with Ni doping against S. aureus and P. aeruginosa microbials, which might possibly be due to the increase in reactive oxygen species (ROS) generation. Interestingly, it is observed that Ni doped ZnO nanorods completely eradicates these multi-drug resistant bacteria.

  4. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.

    PubMed

    Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei

    2014-01-21

    Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.

  5. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.

    PubMed

    Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H

    2014-06-11

    High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.

  6. Electronic structure, optical and magnetic studies of PLD-grown (Mn, P)-doped ZnO nanocolumns at room temperature

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong

    2017-07-01

    We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x  =  0-0.02, and y  =  0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x  =  0.02 and y  =  1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.

  7. Time and temperature dependent breakdown characteristics of ZnS:Mn films obtained by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.

    1994-04-01

    Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.

  8. Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Cheng, Bei; Jiang, Chuanjia; Qin, Jiaqian

    2018-03-01

    Hierarchical porous zinc oxide (ZnO)/nickel(II) oxide (NiO) hollow microspheres were fabricated by a facile hydrothermal approach and subsequent calcination process. The synthesized samples were used as adsorbent for removing Congo red (CR), a commercial azo dye. The synthesized hierarchical porous ZnO/NiO composites exhibit a superior adsorption capacity for CR (518 mg/g), compared with pure NiO (397 mg/g) and ZnO (304 mg/g). The high CR adsorption capacity of ZnO/NiO composites was associated with its hierarchical porous hollow structures and large specific surface area (130 m2/g), which provide a large quantity of active sites for CR molecules. The adsorption kinetics data were perfectly fitted to a pseudo-second-order model. The isotherms were accurately described by the Langmuir model. The results suggest that the as-prepared hierarchical porous ZnO/NiO composites are a highly efficient adsorbent for treating organic dye-impacted wastewater.

  9. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is

  10. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  11. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  12. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Evans, K. A.; O'Neill, H. St. C.; Mavrogenes, J. A.; Keller, N. S.; Jang, L.-Y.; Lee, J.-F.

    2009-11-01

    S K-edge XANES and Mn-, W- and Ni-XANES and EXAFS spectra of silicate glasses synthesised at 1400 °C and 1 bar with compositions in the CaO-MgO-Al 2O 3-SiO 2-S plus MnO, NiO, or WO 3 systems were used to investigate sulphur speciation in silicate glasses. S K-edge spectra comprised a composite peak with an edge between 2470 and 2471.4 eV, which was attributed to S 2-, and a peak of variable height with an edge at 2480.2-2480.8 eV, which is consistent with the presence of S 6+. The latter peak was attributed to sample oxidation during sample storage. W-rich samples produced an additional lower energy peak at 2469.8 eV that is tentatively attributed to the existence of S 3p orbitals hybridised with the W 5d states. Deconvolution of the composite peak reveals that the composite peak for Mn-bearing samples fits well to a model that combines three Lorentzians at 2473.1, 2474.9 and 2476.2 eV with an arctan edge step. The composite peak for W-bearing samples fits well to the same combination plus an additional Lorentzian at 2469.8 eV. The ratio of the proportions of the signal accounted for by peaks at 2473.1 and 2476.2 eV correlates with Mn:Ca molar ratios, but not with W:Ca ratios. Spectra from Ni-bearing samples were qualitatively similar but S levels were too low to allow robust quantification of peak components. Some part of the signal accounted for by the 2473.1 eV peak was therefore taken to record the formation of Mn-S melt species, while the 2469.8 peak is interpreted to record the formation of W-S melt species. The 2474.9 and 2476.2 eV peaks were taken to be dominated by Ca-S and Mg-S interactions. However, a 1:1 relationship between peak components and specific energy transitions is not proposed. This interpretation is consistent with known features of the lower parts of the conduction band in monosulphide minerals and indicates a similarity between sulphur species in the melts and the monosulphides. S-XANES spectra cannot be reproduced by a combination of the

  14. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  15. Unoccupied electronic structure of Ni 2MnGa ferromagnetic shape memory alloy

    DOE PAGES

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; ...

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni 2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  16. End-of-life Zn-MnO2 batteries: electrode materials characterization.

    PubMed

    Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A

    2013-01-01

    Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.

  17. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    PubMed

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  18. Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.

    PubMed

    Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M

    2017-12-26

    Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

  19. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  20. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  1. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less

  2. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian

    2018-05-01

    Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.

  3. Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions

    PubMed Central

    Heo, Jungho; Hwang, Cheong-Soo

    2015-01-01

    Water-dispersible ZnS:Mn nanocrystals (NC) were synthesized by capping the surface with mercaptoacetic acid (MAA) molecules at three different pH conditions. The obtained ZnS:Mn-MAA NC products were physically and optically characterized by corresponding spectroscopic methods. The UV-Visible absorption spectra and PL emission spectra showed broad peaks at 310 and 590 nm, respectively. The average particle sizes measured from the HR-TEM images were 5 nm, which were also supported by the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charges and the degrees of aggregation of the ZnS:Mn-MAA NCs were determined by electrophoretic and hydrodynamic light scattering methods, indicating formation of agglomerates in water with various sizes (50–440 nm) and different surface charge values accordingly the preparation conditions of the NCs (−7.59 to −24.98 mV). Finally, the relative photocatalytic activities of the ZnS:Mn-MAA NCs were evaluated by measuring the degradation rate of methylene blue (MB) molecule in a pseudo first-order reaction condition under the UV-visible light irradiation. As a result, the ZnS:Mn-MAA NC prepared at the pH 7 showed the best photo-degradation efficiency of the MB molecule with the first-order rate constant (kobs) of 2.0 × 10−3·min−1. PMID:28347105

  4. Phase diagram and magnetocaloric effects in aluminum doped MnNiGe alloys

    NASA Astrophysics Data System (ADS)

    Quetz, Abdiel; Samanta, Tapas; Dubenko, Igor; Kangas, Michael J.; Chan, Julia Y.; Stadler, Shane; Ali, Naushad

    2013-10-01

    The magnetocaloric and thermomagnetic properties of the MnNiGe1-xAlx system have been studied by temperature-dependent x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. The partial substitution of Al for Ge in MnNiGe1-xAlx results in a first order magnetostructural transition (MST) from a hexagonal ferromagnetic to an orthorhombic antiferromagnetic phase at 186 K (for x = 0.09). A large magnetic entropy change of ΔSM = -17.6 J/kg K for ΔH = 5 T was observed in the vicinity of TM = 186 K for x = 0.09. The value is comparable to those of giant magnetocaloric materials such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13. The values of the latent heat (L = 6.6 J/g) and corresponding total entropy changes (ΔST = 35 J/kg K) have been evaluated for the MST using DSC measurements. Large negative values of ΔSM of -5.8 and -4.8 J/kg K for ΔH = 5 T in the vicinity of TC were observed for x = 0.09 and 0.085, respectively. A concentration-dependent phase diagram of transition temperatures (magnetic, structural, and magnetostructural) has been generated using magnetic, XRD, and DSC data. The role of magnetic and structural changes on transition temperatures is discussed.

  5. Room-temperature spin-orbit torque in NiMnSb

    NASA Astrophysics Data System (ADS)

    Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.

    2016-09-01

    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.

  6. Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.

    2015-08-01

    Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.

  7. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    NASA Astrophysics Data System (ADS)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  8. Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.

    2018-04-01

    The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.

  9. Structural and electrical properties of nanostructured Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr; Kouass, Salah; Jaouad, Najeh

    2014-01-01

    Graphical abstract: - Highlights: • Nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were synthesized and characterized by XRD and SEM. • The ac-conductivity at different values of temperature for Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials shows frequency independence in the lower frequency range. • Obvious improvements of the electrical conductivity and the electrochemical properties are achieved comparatively Mn{sub 2}P{sub 2}O{sub 7}. • The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry. - Abstract: The nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} was prepared. The synthesis technique was based on the hydrothermal method at 150 °Cmore » using poly-ethylene-glycol (PEG-10000) as surfactant with further calcination at 500 °C. A structural analysis of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} compound was carried out by applying X-ray diffraction (XRD) and using the Rietveld method. Morphological characterizations were performed using a scanning electron microscope (SEM) and transmission electron microscopy (TEM). A comparative study of the electrical conductivity of Mn{sub 2}P{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials was carried out by impedance spectroscopy in the temperature range 500–680 °C. The activation energies for MnP{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were 2.00 and 0.88 eV, respectively. Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial presents a good electric conductivity compared to Mn{sub 2}P{sub 2}O{sub 7}, due to the substitution effect. The improvement of the electronic and ionic conductivity makes the Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial possible electrode materials for rechargeable batteries. The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry.« less

  10. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry.

    PubMed

    Mocellin, J; Mercier, G; Morel, J L; Blais, J F; Simonnot, M O

    2015-08-01

    In this laboratory study, a process has been developed for selectively leaching zinc and manganese from pyrometallurgical sludge produced in the steel manufacturing industry. In the first part, the yield of Zn extraction was studied using four factors and four levels of the Box-Behnken response surface design. The optimum conditions for the step of Zn leaching were determined to be a sulfuric acid concentration of 0.25 mol/L, a pulp density of 10%, an extraction temperature of 20 °C, and three stages of leaching. Under such conditions, 75% of the Zn should be leached. For Mn leaching, the optimum conditions were determined to be a sulfuric acid concentration of 0.25 mol/L, a Na2S2O5/Mn stoichiometry of 1, a leaching time of 120 min and two leaching steps. In this case, 100% of the Mn should be leached. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spectral Weight Redistribution in ( LaNiO 3 ) n / ( LaMnO 3 ) 2 Superlattices from Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pietro, P.; Hoffman, J.; Bhattacharya, A.

    2015-04-01

    We have studied the optical properties of four (LaNiO3)(n)/(LaMnO3)(2) superlattices (SL) (n = 2, 3, 4, 5) on SrTiO3 substrates. We have measured the reflectivity at temperatures from 20 to 400 K, and extracted the optical conductivity through a fitting procedure based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing LaNiO3 thickness, the SLs undergo an insulator-to-metal transition (IMT) that is accompanied by the transfer of spectral weight from high to low frequency. The presence of a broad midinfrared band, however, shows that the optical conductivity of the (LaNiO3)(n)/(LaMnO3)(2) SLs is not a linear combination of the LaMnO3 and LaNiO3more » conductivities. Our observations suggest that interfacial charge transfer leads to an IMT due to a change in valence at the Mn and Ni sites.« less

  12. Enhanced biocompatibility of ZnS:Mn quantum dots encapsulated with Aloe vera extract for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Anilkumar, M.; Bindu, K. R.; Sneha Saj, A.; Anila, E. I.

    2016-08-01

    Toxicity of nanoparticles remains to be a major issue in their application to the biomedical field. Aloe vera (AV) is one of the most widely exploited medicinal plants that have a multitude of amazing properties in the field of medicine. Methanol extract of Aloe vera can be used as a novel stabilising agent for quantum dots to reduce toxicity. We report the synthesis, structural characterization, antibacterial activity and cytotoxicity studies of ZnS:Mn quantum dots synthesized by the colloidal precipitation method, using methanol extract of Aloe vera (AVME) as the capping agent. The ZnS:Mn quantum dots capped with AVME exhibit superior performances in biocompatibility and antibacterial activity compared with ZnS:Mn quantum dots without encapsulation. Project supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

  13. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  14. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  15. Exciton and intracenter radiative recombination in ZnMnTe and CdMnTe quantum wells with optically active manganese ions

    NASA Astrophysics Data System (ADS)

    Agekyan, V. F.; Akai, I.; Vasil'Ev, N. N.; Karasawa, T.; Karczewski, G.; Serov, A. Yu.; Filosofov, N. G.

    2007-06-01

    The emission spectra of Zn1-x Mn x Te/Zn0.6Mg0.4Te and Cd1-x Mn x Te/Cd0.5Mg0.5Te quantum-well structures with different manganese concentrations and quantum-well widths are studied at excitation power densities ranging from 105 to 107 W cm-2. Under strong optical pumping, intracenter luminescence of Mn2+ ions degrades as a result of the interaction of excited managanese ions with high-density excitons. This process is accompanied by a strong broadening of the emission band of quantum-well excitons due to the exciton-exciton interaction and saturation of the exciton ground state. Under pumping at a power density of 105 W cm-2, stimulated emission of quantum-well excitons arises in CdTe/Cd0.5Mg0.5Te. The luminescence kinetics of the quantum-well and barrier excitons is investigated with a high temporal resolution. The effect of the quantum-well width and the managanese concentration on the kinetics and band shape of the Mn2+ intracenter luminescence characterized by the contribution of the manganese interface ions is determined.

  16. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  17. Magnetic properties and martensitic transformation of Ni-Mn-Ge Heusler alloys from first-principles and Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.

    2017-05-01

    In the present study, the magnetic properties and possibility of martensitic transformation in a series of off-stoichiometric Ni2+x Mn1-x Ge and Ni2Mn1+x Ge1-x Heusler alloys have been studied by using both first-principles and Monte Carlo methods. It is shown that in both cases an increase in chemical disorder stimulates the austenite-martensite transformation and leads to an increase in transition temperature. Moreover, the calculated formation energies confirm that these compounds are stable chemically. By using the exchange coupling constants obtained from ab initio calculations in combination with the Heisenberg model and Monte Carlo methods, the temperature-dependent magnetizations as well as Curie temperatures of the cubic and tetragonal Ni2+x Mn1-x Ge and Ni2Mn1+x Ge1-x have been determined. The phase diagrams of alloys studied showing the compositions with magnetostructural transformation are obtained. Calculated results demonstrate a similar trend to the previous experimental and theoretic results for Ni-Mn-(Ga, In, Sn, Sb) alloys that makes them possible promising magnetic materials in technological applications.

  18. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexi; Qian, Mingfang; Zhang, Zhe; Wei, Longsha; Geng, Lin; Sun, Jianfei

    2016-02-01

    Ni-Mn-Ga-X microwires were produced by melt-extraction technique on a large scale. Their shape memory effect, superelasticity, and damping capacity have been demonstrated. Here, the excellent magnetocaloric effect was revealed in Ni-Mn-Ga-Cu microwires produced by melt-extraction and subsequent annealing. The overlap of the martensitic and magnetic transformations, i.e., magnetostructural coupling, was achieved in the annealed microwires. The magnetostructural coupling and wide martensitic transformation temperature range contribute to a large magnetic entropy change of -8.3 J/kg K with a wide working temperature interval of ˜13 K under a magnetic field of 50 kOe. Accordingly, a high refrigeration capacity of ˜78 J/kg was produced in the annealed microwires.

  20. Preparation of Superparamagnetic Zn0.5Mn0.5Fe2O4 Particle by Coprecipitation-Sonochemical Method for Radar Absorbing Material

    NASA Astrophysics Data System (ADS)

    Taufiq, A.; Bahtiar, S.; Sunaryono; Hidayat, N.; Hidayat, A.; Mufti, N.; Diantoro, M.; Fuad, A.; Munasir; Rahmawati, R.; Adi, W. A.; Pratapa, S.; Darminto

    2017-05-01

    One of many applications of spinel ferrite nanoparticles is related to their performance as radar absorbing materials. In this work, we report developing synthesis method through combined coprecipitation-sonochemical routes in preparing Zn0.5Mn0.5Fe2O4 nanoparticle from iron sand in Indonesia as a vital raw material. The structure, size, morphology, and elements of the Zn0.5Mn0.5Fe2O4 nanoparticle were investigated via X-Ray diffractometry and Transmission/Scanning Electron Microscopy (TEM/SEM) combining Energy Dispersive Spectroscopy (EDS). The magnetic properties of the Zn0.5Mn0.5Fe2O4 nanoparticle were characterized by using Vibrating Sample Magnetometer (VSM). Furthermore, the reflection loss character of the Zn0.5Mn0.5Fe2O4 nanoparticle was determined via Vector Network Analyzer (VNA). From the qualitative and quantitative analysis of the XRD data, it can be identified that the Zn0.5Mn0.5Fe2O4 particle formed a spinel cubic structure in a single phase with the lattice parameter of approximately 8.401 Å. It is known from the TEM image that the Zn0.5Mn0.5Fe2O4 particle had a size of about 9.7 nm and tended to agglomerate. Furthermore, the data analysis of the M(H) curve presented that the Zn0.5Mn0.5Fe2O4 nanoparticle has a superparamagnetic behavior with the saturation magnetization of approximately 43 emu/g. Finally, the data analysis of the reflection loss as a function of frequency showed that the Zn0.5Mn0.5Fe2O4 nanoparticle performs as a radar absorbing material with the absorption performance of approximately -11.0 dB at the frequency of 10.8 GHz

  1. Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Eiki, E-mail: e-niwa@phys.chs.nihon-u.ac.jp; Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550; Maeda, Hiroki

    Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-freemore » new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.« less

  2. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.

    PubMed

    Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-08-07

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

  3. Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods on their Mn doping levels

    NASA Astrophysics Data System (ADS)

    Thongjamroon, S.; Ding, J.; Herng, T. S.; Tang, I. M.; Thongmee, S.

    2017-10-01

    The effects of Mn doping on the ferromagnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods (NR's) having the nominal composit-ions x = 0, 0.01, 0.03, 0.04 and 0.05 grown by a low temperature hydrothermal method are studied. Energy dispersive X-ray (EDX) is used to determine the actual amounts of the elements in each NR's. X-ray diffraction, scanning electron microscopy, photoluminescence and vibrating sample magnetometer measurements are used to observe the effects of the Mn substitution on the properties of the doped ZnO and to relate the changes in the properties to changes in the defect content. It is observed that the saturation magnetization of the Mn ions in the wurtzite structure varies from 0.0210 μB/Mn2+ to 0.0234 μB/Mn2+ reaching a high of 0.0251 μB/Mn2+ as the Mn concentrations is varied from 0.9 to 7.36 atomic%. It is argued that the changes in the saturation magnetization are due to the competition between the direct Mn-Mn exchange interaction and the indirect Mn-O-Mn exchange interaction in the doped Mn ZnO NP's.

  4. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haiqing; Moronta, Dominic; Li, Luyao

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as

  5. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Moronta, Dominic; Li, Luyao; ...

    2018-03-28

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as

  6. Electrical characterization of ZnO/NiO p-n junction prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Merih Akyuzlu, A.; Dagdelen, Fethi; Gultek, Ahmet; Hendi, A. A.; Yakuphanoglu, Fahrettin

    2017-04-01

    ZnO and NiO films were synthesized on fluourine-doped tin oxide (FTO) glass substrate by the sol-gel method. The surface morphology of the films was investigated by atomic force microscopy. The optical band gaps of the ZnO and NiO films were found to be 3.198 and 3.827eV, respectively. A ZnO/NiO p-n junction diode was prepared and electrical charge transport mechanism of the diode was analyzed using thermionic emission and Norde functions. The ideality factor, barrier height and series resistance of the diode were determined to be 6.46, 1.036eV and 39.1 M {Ω} , respectively. The obtained results indicate that ZnO/NiO p-n junction can be used as transparent diode for optic communications.

  7. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  8. Integrated spectral photocurrent density and reproducibility analyses of excitonic ZnO/NiO heterojunction.

    PubMed

    Patel, Malkeshkumar; Kim, Joondong

    2017-12-01

    In this data article, the excitonic ZnO/NiO heterojunction device (Patel et al., 2017) [1] was measured for the integrated photocurrent density and reproducibility. Photograph of the prepared devices of ZnO/NiO on the FTO/glass is presented. Integrated photocurrent density as a function of photon energy from the sunlight is presented. Quantum efficiency measurement system (McScienceK3100, Korea) compliance with International Measurement System was employed to measure ZnO/NIO devices. These data are shown for the 300-440 nm of segment of the sunlight (AM1.5G, http://rredc.nrel.gov/solar/spectra/am1.5/). Reproducibility measure of ZnO/NiO device was presented for nine devices with the estimated device performance parameters including the open circuit voltage, short circuit current density, fill factor and power conversion efficiency.

  9. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    PubMed Central

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao; Pryds, Nini

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  10. [The quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in crystalline lenses under the influence of hypodynamic stress and zinc].

    PubMed

    Kusleika, Saulius

    2002-01-01

    The aim of the study was to investigate and estimate quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in the lenses on the influence of hypodynamic stress and zinc (Zn). Hypodynamic stress of 48 days duration was provoked for Chinchilla rabbits (n = 20) by placing them in metal hutches. Every day (48 days) 10 rabbits, which had intervention received 0.3 mg/kg body wt. doses of Zn (in form of Zn acetate). The rabbits (n = 10) of the control group, which had no intervention were kept in vivarium conditions. Concentration of bioelements in the lenses of rabbits was detected by atomic absorption spectrophotometry 503 "Perkin-Elmer" (USA). The investigation revealed that hypodynamic stress of 48 days duration caused the increase in amount of Ca, Zn, Mn in lenses as compared with that in control rabbits and in rabbits receiving Zn. The concentration of bioelements (Ca, Zn, Mg, Cu, Mn) in lenses of rabbits receiving Zn in case of hypodynamic stress did not change significantly.

  11. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsib, Mohamed Faouzi, E-mail: Mohamed.faouzi.ncib@gmail.com; National School of Engineers; Naffati, Naima

    2015-10-15

    Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM aremore » used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.« less

  12. Synthesis and electrochemical properties of 4LiF-NiMn2O4 composite as a cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Tomita, Yasumasa; Kimura, Noritaka; Izumi, Yusuke; Arai, Juichi; Kohno, Yoshiumi; Kobayashi, Kenkichiro

    2017-06-01

    4LiF-NiMn2O4 composites are synthesized by the mechanical milling of LiF and NiMn2O4 in a molar ratio of 4: 1 for 36-192 h. The synthesized composites are investigated by XRD, charge-discharge measurements, and XPS. A broad XRD peak of 4LiF-NiMn2O4 was observed and those of LiF and NiMn2O4 disappear after the milling of 144 h and more. The discharge capacity of the 4LiF-NiMn2O4 composites changes with the milling time, with the composite prepared by milling for 144 h exhibiting a discharge capacity of 256 mA h g-1 at 0.1 C for voltages of 2.0-4.8 V. With a cut-off voltage of 4.8 V or more, decomposition of the electrolyte proceeds along with the charge process, so the charge-discharge current efficiency deteriorates and the discharge voltage decreases. In the charge-discharge measurement without the capacity limit, although the charge-discharge efficiency was low due to the decomposition of the electrolyte, the high discharge capacity of 310 mA h g-1 was obtained. The XPS data suggests that the Ni2+ ion and Mn3+ ion are oxidized to Ni3+ and Mn4+ ion in charge process up to 4.8 V and are reduced to Ni2+ ion and Mn3+ ion during the discharge process.

  13. Magnetically retrievable nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) spinel nanocatalyst for alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Bhat, Pooja B.; Bhat, Badekai Ramachandra

    2016-03-01

    Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.

  14. Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-02-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  15. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; ...

    2017-07-28

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006more » ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.« less

  16. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  17. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.

    PubMed

    Gao, Xue; Tang, Guangchao; Su, Xingguang

    2012-01-01

    In this paper, we report a sensitive and selective method for detection of organophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogen peroxide (H(2)O(2)) fluorescence quenching system. Acetylcholine esterase (AChE) can hydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx) oxidizes choline to generate H(2)O(2). The enzyme-generated H(2)O(2) can quench the fluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it can interact with the active centers of AChE and decrease the enzyme activity. This leads to the decrease of the H(2)O(2) production and then the fluorescence quenching rate of Mn:ZnSe d-dots. Experimental results showed that the enzyme inhibition percentage of Mn:ZnSe d-dots-ChOx-AChE-ACh system was proportional to the logarithm of paraoxon in the range 4.84×10(-11) to 4.84×10(-6) mol/L with the detection limit (S/N=3) of 1.31×10(-11) mol/L. The proposed biosensor has been employed for quick determination of paraoxon in tap water and milk samples with satisfactory reproducibility and accuracy. This nano-biosensor was proved to be sensitive, rapid, simple and tolerance of most interfering substances. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Bioaccumulation of Zn, Cu and Mn in the caviar and muscle of Persian sturgeon (Acipenser persicus) from the Caspian Sea, Iran.

    PubMed

    Mashroofeh, Abdulreza; Bakhtiari, Alireza Riyahi; Pourkazemi, Mohammad

    2012-12-01

    Concentrations of Zn, Cu and Mn were examined in caviar and muscle of the Persian sturgeon (Acipenser persicus) collected from coastal waters of south Caspian Sea during March and April, 2011. Mean Zn, Cu and Mn concentrations in caviar samples were 21.48, 2.05 and 1.66 μg g(-1) wet weight basis, respectively. The mean Zn, Cu and Mn concentrations in muscle tissues were 7.49, 1.00 and 0.34 μg g(-1) wet weight basis, respectively. The mean concentrations of Zn and Cu in caviar and muscle samples were under the permissible limits proposed by the United Kingdom's Ministry of Agriculture, Fisheries and Food (2000).

  19. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  20. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. Themore » FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.« less

  1. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com; Kotnala, R.K., E-mail: rkkotnala@gmail.com

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+},more » Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long

  2. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  3. Electronic structure and exchange interactions in diluted semimagnetic semiconductors (Zn,Co)Se and (Zn,Mn)Se

    NASA Astrophysics Data System (ADS)

    Mašek, J.

    1991-05-01

    A comparative study of the electronic structure of (Zn,Co)Se and (Zn,Mn)Se is done by using a tight-binding version of the coherent potential approximation. The densities of states, relevant for a photoemission experiment, are calculated for a magnetically disordered phase. The exchange constant Jpd is obtained from the splitting of the valence band top in the ferromagnetic phase of the mixed crystal; Jdd is estimated from the energy of a spin reversal. We explain the large exchange constant in the Co-based systems as a result of efficient hybridization of the d-states with the valence band.

  4. Effect of calcination temperature on the photodegradation efficiency of Ni/ZnO composite in removal of organic dye

    NASA Astrophysics Data System (ADS)

    Thein, Myo Thuya; Pung, Swee-Yong; Aziz, Azizan; Lockman, Zainovia; Itoh, Mitsuru

    2017-07-01

    ZnO based composite is an attractive UV light driven semiconductor photocatalyst to degrade organic compounds attributed to its wide bandgap (3.37 eV). In this study, Ni/ZnO composites were synthesized via solution precipitation method. The composites were calcinated at various temperature, i.e. from 250 °C to 700 °C and subsequently annealed at 500°C in reductive environment (hydrogen atmosphere). The diffraction peaks of all samples could be indexed to the hexagonal wurtzite ZnO. No diffraction peaks from Ni could be observed in all samples, suggesting that the amount of Ni in the composites were below the detection limit of X-ray diffraction (XRD). The field emission scanning electron microscope (FESEM) images confirm that all samples were rod-like structure with hexagonal tips. In addition, small Ni particles were homogeneously deposited on the surface of ZnO rods. This observation is supported by energy dispersive X-ray spectroscopy (EDX) analysis, showing present of Zn, O and Ni elements. It is noted that ZnO rods coupled with Ni experienced quenching of visible emission and enhancing of UV emission in room temperature photoluminescence (RTPL) analysis. The photodegradation efficiency of Ni/ZnO rods was improved when a higher calcination temperature was used. The removal of RhB dye under UV light (352 nm) by these photocatalysts followed pseudo first-order kinetic reaction. The Ni/ZnO composites synthesized at calcination temperature of 500 °C demonstrated the highest photodegradation efficiency of 37 % and the largest rate constant of 0.0053 min-1 after 75 min UV irradiation.

  5. High temperature ferromagnetism in Ni doped ZnO nanoparticles: Milling time dependence

    NASA Astrophysics Data System (ADS)

    Pal, Bappaditya; Giri, P. K.; Sarkar, D.

    2014-04-01

    We report on the room temperature ferromagnetism (RT FM) in the Zn1-xNixO (x = 0, 0.03, and 0.05) nanoparticles (NPs) synthesized by a ball milling technique. X-ray diffraction analysis confirms the single crystalline ZnO wurtzite structure with presence of small intensity secondary phase related peak which disappear with increasing milling time for Ni doped samples. HRTEM lattice images show that the doped NPs are single crystalline with a dspacing of 2.44 Å. Energy-dispersive X-ray spectroscopy analysis confirms the presence of Ni ions in the ZnO matrix. Magnetic measurement (RT) exhibits the hysteresis loop with saturation magnetization (Ms) of 1.6-2.56 (emu/g) and coercive field (Hc) of 296-322 Oe. M-T measurement shows a Curie temperature of the order of 325°C for 3% Ni doped sample. Micro -Raman studies show doping/disorder induced additional modes at ˜510, 547, 572 cm-1 in addition to 437 cm-1 peak of pure ZnO. UV-Vis absorption spectra illustrate band gap shift due to doping. Alteration of Ms value with the variation of doping concentration and milling time has been studied and discussed.

  6. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite

    PubMed Central

    Dasan, Y. K.; Guan, B. H.; Zahari, M. H.; Chuan, L. K.

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles. PMID:28081257

  7. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    PubMed

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  8. Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, D.; Leygraf, C.

    Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less

  9. Template-based synthesis and magnetic properties of Mn-Zn ferrite nanotube and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Wang, Xiaohui; Zhong, Caifu; Li, Longtu

    2012-01-01

    Template-based electrophoretic deposition of Mn-Zn ferrite nanotubes (NTs) and nanowires (NWs) were achieved using anodic alumina oxide (AAO) membranes. The effect of electrophoretic current and deposition time on the morphology of the tubes was investigated. The samples show cubic spinel structure with no preferred orientation. Room-temperature magnetic properties of the Mn-Zn ferrite NT/NW arrays were studied. The magnetic easy axis parallels the NT/NW's channel axis attributing to the large shape anisotropy in this direction, especially for the NTs with a small wall thickness. Magnetocrystalline anisotropy and magnetostatic interactions were found dominant in the samples when applied field was perpendicular to the channel axis.

  10. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.

    PubMed

    Wang, Hsin-Yi; Xiao, Fang-Xing; Yu, Le; Liu, Bin; Lou, Xiong Wen David

    2014-08-13

    A facile two-step solution-phase method has been developed for the preparation of hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures. Ultralong α-MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1-x Mnx Oy nanoflakes were grown on α-MnO2 nanowires to form core-shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution-phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one-dimensional (1D) α-MnO2 nanowires in hierarchical core-shell nanostructures offer a stable and efficient backbone for charge transport; while the two-dimensional (2D) Ni1-x Mnx Oy nanoflakes on α-MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core-shell α-MnO2 @Ni1-x Mnx Oy nanostructures (x = 0.75) is as high as 657 F g(-1) at a current density of 250 mA g(-1) , and stable charging-discharging cycling over 1000 times at a current density of 2000 mA g(-1) has been realized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter

    2018-03-01

    Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.

  12. Enhanced photodegradation of o-cresol in aqueous Mn(1%)-doped ZnO suspensions.

    PubMed

    Abdollahi, Y; Abdullah, A H; Gaya, U I; Zainal, Z; Yusof, N A

    2012-06-01

    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.

  13. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed

  14. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  15. Emission spectra from ZnS:Mn due to low velocity impacts

    NASA Astrophysics Data System (ADS)

    Hollerman, W. A.; Goedeke, S. M.; Bergeron, N. P.; Moore, R. J.; Allison, S. W.; Lewis, L. A.

    2005-09-01

    Triboluminescence (TL) is the emission of light due to crystal fracture and has been known for centuries. One of the most common examples of TL is the flash created from chewing wintergreen Lifesavers. Since 2003, the authors have been measuring triboluminescent properties of phosphors, of which zinc sulfide doped with manganese (ZnS:Mn) is an example. Preliminary results indicate that impact velocities greater than 0.5 m/s produce measurable TL from ZnS:Mn. To extend this research, the investigation of the emission spectrum was chosen. This differs from using filtered photodetectors in that the spectral composition of fluorescence can be ascertained. Previous research has utilized a variety of schemes that include scratching, crushing, and grinding to generate TL. In our case, the material is activated by a short duration interaction of a dropped mass and a small number of luminescence centers. This research provides a basis for the characterization and selection of materials for future spacecraft impact detection schemes.

  16. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadeesha Angadi, V.; Anupama, A.V.; Choudhary, Harish K.

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiatingmore » the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable Zn

  17. Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.

    2018-04-01

    Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.

  18. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  19. Magnetostructural phase transitions and magnetocaloric effects in MnNiGe1-xAlx

    NASA Astrophysics Data System (ADS)

    Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel; Temple, Samuel; Stadler, Shane; Ali, Naushad

    2012-01-01

    The thermomagnetic and magnetocaloric properties of the MnNiGe1-xAlx system have been investigated by magnetization and differential scanning calorimetry (DSC) measurements. The presence of first-order magnetostructural transitions (MSTs) from hexagonal ferromagnetic to orthorhombic antiferromagnetic phases has been detected for x = 0.085 and 0.09 at 193 K and 186 K, respectively. The values of latent heat (L = 6.6 J/g) and corresponding total entropy changes (ΔST = 35 J/kg K) have been evaluated for the MST (x = 0.09) from DSC measurements. The magnetic entropy change for x = 0.09 (ΔSM = 17.6 J/kg K for 5 T) was found to be comparable with well-known giant magnetocaloric materials, such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13.

  20. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  1. Synthesis and Thermoluminescence of ZnS:Mn2+ Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Taghavinia, N.; Aminpour, M.

    2007-08-01

    The controlled chemical method has been used for synthesis of Mn doped ZnS nanoparticles. Optical absorption studies showed that increasing of surfactant density, from 0.0001 to 0.5 mol/lit., causes the size of nanoparticles to decrease from 4.8 nm to about 3 nm and the band gap width to increase from 4.15 to 4.50 eV. Also increasing the temperature during the synthesis process caused the nanoparticle size to be increased. As a new result we observed a thermoluminescence (TL) glow peak at about 475 K, with its intensity depending on concentration of the Mn dopant. Activation energy of this glow peak was obtained to be about 0.6eV. A discussion of the obtained results is also presented.

  2. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    NASA Astrophysics Data System (ADS)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  3. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  4. Magnetic Phase Diagram of Heusler Alloy System Ni2Mn1-xCrxGa

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiya; Kouta, Ryuji; Fujio, Mitsuhiro; Kanomata, Takeshi; Umetsu, Rie Y.; Xu, Xiao; Kainuma, Ryosuke

    The temperature dependence of the electrical resistivity ρ of Ni2Mn1-xCrxGa (x=0.05∼0.25) was measured. Two anomalies corresponding to the magnetic and structural phase transitions at TC and TM were observed on the ρ-T curves for each sample, respectively. The kinks corresponding to the premartensitic transition at Tp were observed for all samples except x=0.25. On the basis of the experimental results, the T vs. x phase diagram of Ni2Mn1-xCrxGa was determined.

  5. Properties of NiZnO Thin Films with Different Amounts of Al Doping

    NASA Astrophysics Data System (ADS)

    Kayani, Zohra N.; Fatima, Gulnaz; Zulfiqar, Bareera; Riaz, Saira; Naseem, Shahzad

    2017-10-01

    Transparent Al-doped NiZnO thin films have been fabricated by sol-gel dip coating and investigated using scanning electron microscopy, x-ray diffraction analysis, ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometry, vibrating-sample magnetometry, and Fourier-transform infrared spectroscopy. The Al-doped NiZnO films consisted of ZnO hexagonal and α-Al2O3 rhombohedral phases as the Al incorporation was gradually increased from 1 at.% up to 3 at.%. A decrease in the optical bandgap from 3.90 eV to 3.09 eV was observed for films grown with Al content of 1 at.% to 2.5 at.%, but at 3 at.% Al, the bandgap increased to 3.87 eV. Optical transmittance of 96% was achieved for these transparent oxide films. Study of their magnetic properties revealed that increasing Al percentage resulted in enhanced ferromagnetism. The saturated magnetization increased with increasing Al percentage. The ferromagnetic properties of Al-doped NiZnO are mediated by electrons. The surface of the deposited thin films consisted of nanowires, nanorods, porous surface, and grains.

  6. Photoluminescence and applications of Ni:ZnS in photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kalya Tulasidas, Vadiraj; Belagali, Shiddappa L.; Palakkandy, Arun; Kumar, Kuldeep

    2018-05-01

    An enormous amount of development has been made in the field of photovoltaics in the last 50 odd years. In recent years, the uses of semiconductor nanoparticles have given a new impetus and direction to research in the field of solar cells. This is due to the excellent photoemission properties shown by semiconductors in the quantum dot (QD) state. ZnS QDs show a further interesting feature where their photoemission properties show perceivable changes on adding dopants such as nickel. In the present work, we describe the characterization studies made on Ni:ZnS thin films using photoluminescence (PL), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), and further reports their performance as an absorbing layer in a hybrid solar cell along with poly(3-hexylthiophene) (P3HT). Fabricated Ni:ZnS cell showed a conversion efficiency of 0.25 ± 0.05% with V OC and J SC of 560 mV and 0.11 mA/cm2, respectively. Although the absolute conversion efficiency appears low (only 0.25%), the addition of nickel was found to have improved the efficiency by a hundredfold compared with undoped ZnS.

  7. Synthesis of Mn doped ZnS nanocrystals: Crystallographic and morphological study

    NASA Astrophysics Data System (ADS)

    Shaikh, Azharuddin Z.; Shirsath, Narendra B.; Sonawane, Prabhakar S.

    2018-05-01

    The influence of doping concentration on the physical properties of ZnS nanocrystals synthesized using coprecipitation method at room temperature is reported in this paper. In particular, we have studied the structural properties of Zn1-xMnxS where (x=0.01, 0.03, 0.05) by X-ray diffraction. X-ray peak broadening analysis used to calculate the crystalline sizes, lattice parameters, number of unit cell per particle and volume of unit cell. Crystalline ZnS with a cubic structure is confirmed by XRD results. The grain size of pure and Mn doped samples were found in the range of 7nm to 9nm. All the physical parameters of cubic ZnS nanocrystals were calculated are similar with standard values. The scanning electron microscope (SEM) which revealed that the synthesized nanocrystals are well-crystalline and possessing cubic phase.

  8. Interplay of phase sequence and electronic structure in the modulated martensites of Mn2NiGa from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kundu, Ashis; Gruner, Markus E.; Siewert, Mario; Hucht, Alfred; Entel, Peter; Ghosh, Subhradip

    2017-08-01

    We investigate the relative stability, structural properties, and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn2NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way to that established for the prototype system Ni2MnGa . In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with the same symmetry. In addition, we also find energetically favorable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridization of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn2NiGa would be larger than in Ni2MnGa . However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni2MnGa .

  9. Mechanisms responsible for two possible electrochemical reactions in Li1.2Ni0.13Mn0.54Co0.13O2 used for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa

    2018-02-01

    Two electrochemical reactions are possible in regard to Li1.2Ni0.13Mn0.54Co0.13O2 (0.5Li2MnO3-0.5LiNi0.33Mn0.33Co0.33O2), viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like reactions. The open circuit potential (OCP) and changes in crystal structure during the charge-discharge process of Li1.2Ni0.13Mn0.54Co0.13O2 were investigated to clarify the mechanism responsible for the two reactions. Li2MnO3 and LiNi0.33Mn0.33Co0.33O2 were separately prepared for the investigation, and the OCPs and crystal structures in these cathodes were measured and then compared with those for Li1.2Ni0.13Mn0.54Co0.13O2. The results obtained using X-ray diffraction (XRD) indicated that two phases existed in Li1.2Ni0.13Mn0.54Co0.13O2. The changes in crystal structure of the two phases during the charge-discharge process were similar to those in Li2MnO3 and LiNi0.33Mn0.33Co0.33O2. This indicated that two phases, viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like, existed in Li1.2Ni0.13Mn0.54Co0.13O2. Li2MnO3-like, LiNi0.33Mn0.33Co0.33O2-like, and Li2MnO3-like phases were found to contribute mainly to electrochemical reactions in the low, middle, and high state of charge (SOC) ranges during the charge process from the results obtained using XRD and electrochemical measurements carried out on Li1.2Ni0.13Mn0.54Co0.13O2. In contrast, the Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like phases mainly contributed to electrochemical reactions in the low and high SOC ranges during the discharge process. Furthermore, the high polarization and potential decay during the charge-discharge cycling of Li1.2Ni0.13Mn0.54Co0.13O2 were mainly attributed to the Li2MnO3-like phase.

  10. A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions

    DOE PAGES

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...

    2015-01-26

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less

  11. Magneto Caloric Effect in Ni-Mn-Ga alloys: First Principles and Experimental studies

    NASA Astrophysics Data System (ADS)

    Odbadrakh, Khorgolkhuu; Nicholson, Don; Brown, Gregory; Rusanu, Aurelian; Rios, Orlando; Hodges, Jason; Safa-Sefat, Athena; Ludtka, Gerard; Eisenbach, Markus; Evans, Boyd

    2012-02-01

    Understanding the Magneto-Caloric Effect (MCE) in alloys with real technological potential is important to the development of viable MCE based products. We report results of computational and experimental investigation of a candidate MCE materials Ni-Mn-Ga alloys. The Wang-Landau statistical method is used in tandem with Locally Self-consistent Multiple Scattering (LSMS) method to explore magnetic states of the system. A classical Heisenberg Hamiltonian is parametrized based on these states and used in obtaining the density of magnetic states. The Currie temperature, isothermal entropy change, and adiabatic temperature change are then calculated from the density of states. Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Fe-Ni-Mn-Ga-Cu. Data from the observations are discussed in comparison with the computational studies. This work was sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (US DOE), and by the Materials Sciences and Engineering Division; Office of Basic Energy Sciences (US DOE).

  12. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    PubMed Central

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of −285.23 × 10−6 K−1 (192–305 K) and −1167.09 × 10−6 K−1 (246–305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K) to −4.73 × 10−6 K−1 (173–229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment. PMID:29468152

  13. Electrochemical performance of all-solid-state Li batteries based LiMn 0.5Ni 0.5O 2 cathode and NASICON-type electrolyte

    NASA Astrophysics Data System (ADS)

    Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Zhao, X. B.; Cao, G. S.

    LiNi 0.5Mn 0.5O 2 thin films have been deposited on the NASICON-type glass ceramics, Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 (LATSP), by radio frequency (RF) magnetron sputtering followed by annealing. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. All-solid-state Li/PEO 18-Li(CF 3SO 2) 2N/LATSP/LiNi 0.5Mn 0.5O 2/Au cells are fabricated using the LiNi 0.5Mn 0.5O 2 thin films and the LATSP electrolyte. The electrochemical performance of the cells is investigated by galvanostatic cycling, cyclic voltammetry (CV), potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS). Interfacial reactions between LiNi 0.5Mn 0.5O 2 and LATSP occur at a temperature as low as 300 °C with the formation of Mn 3O 4, resulting in an increased obstacle for Li-ion diffusion across the LiNi 0.5Mn 0.5O 2/LATSP interface. The electrochemical performance of the cells is limited by the interfacial resistance between LATSP and LiNi 0.5Mn 0.5O 2 as well as the Li-ion diffusion kinetics in LiNi 0.5Mn 0.5O 2 bulk.

  14. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Shassere, Benjamin

    2014-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system are explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering method. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy are investigated using differential scanning calorimetry and superconducting quantum interference device. Experiments are performed at the Spallation Neutron Source at Oak Ridge National Laboratory to observe the structural and magnetic phase transformations.

  15. The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System.

    PubMed

    Chen, Yuan-Tsung

    2009-01-01

    Exchange-biasing phenomenon can induce an evident unidirectional hysteresis loop shift by spin coupling effect in the ferromagnetic (FM)/antiferromagnetic (AFM) interface which can be applied in magnetoresistance random access memory (MRAM) and recording-head applications. However, magnetic properties are the most important to AFM texturing. In this work, top-configuration exchange-biasing NiFe/IrMn(x A) systems have been investigated with three different conditions. From the high-resolution cross-sectional transmission electron microscopy (HR X-TEM) and X-ray diffraction results, we conclude that the IrMn (111) texture plays an important role in exchange-biasing field (H(ex)) and interfacial exchange energy (J(k)). H(ex) and J(k) tend to saturate when the IrMn thickness increases. Moreover, the coercivity (H(c)) dependence on IrMn thickness is explained based on the coupling or decoupling effect between the spins of the NiFe and IrMn layers near the NiFe/IrMn interface. In this work, the optimal values for H(ex) and J(k) are 115 Oe and 0.062 erg/cm(2), respectively.

  16. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.

    PubMed

    Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

    2013-06-03

    Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    PubMed

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  18. Magnetic studies of Co2+, Ni2+, and Zn2+-modified DNA double-crossover lattices

    NASA Astrophysics Data System (ADS)

    Dugasani, Sreekantha Reddy; Oh, Young Hoon; Gnapareddy, Bramaramba; Park, Tuson; Kang, Won Nam; Park, Sung Ha

    2018-01-01

    We fabricated divalent-metal-ion-modified DNA double-crossover (DX) lattices on a glass substrate and studied their magnetic characteristics as a function of ion concentrations [Co2+], [Ni2+] and [Zn2+]. Up to certain critical concentrations, the DNA DX lattices with ions revealed discrete S-shaped hysteresis, i.e. characteristics of strong ferromagnetism, with significant changes in the coercive field, remanent magnetization, and susceptibility. Induced magnetic dipoles formed by metal ions in DNA duplex in the presence of a magnetic field imparted ferromagnetic behaviour. By considering hysteresis and the magnitude of magnetization in a magnetization-magnetic field curve, Co2+-modified DNA DX lattices showed a relatively strong ferromagnetic nature with an increasing (decreasing) trend of coercive field and remanent magnetization when [Co2+] ≤ 1 mM ([Co2+] > 1 mM). In contrast, Ni2+ and Zn2+-modified DNA DX lattices exhibited strong and weak ferromagnetic behaviours at lower (≤1 mM for Ni2+ and ≤0.5 mM for Zn2+) and higher (>1 mM for Ni2+ and >0.5 mM for Zn2+) concentrations of ions, respectively. About 1 mM of [Co2+], [Ni2+] and [Zn2+] in DNA DX lattices was of special interest with regard to physical characteristics and was identified to be an optimum concentration of each ion. Finally, we measured the temperature-dependent magnetic characteristics of the metal-ion-modified DNA DX lattices. Nonzero magnetization and inverse susceptibility with almost constant values were observed between 25 and 300 K, with no indication of a magnetic transition. This indicated that the magnetic Curie temperatures of Co2+, Ni2+ and Zn2+-modified DNA DX lattices were above 300 K.

  19. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  20. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  1. Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Wei, Longsha; Zhang, Xuexi; Liu, Jian; Geng, Lin

    2018-05-01

    High-performance elastocaloric materials require a large reversible elastocaloric effect and long life cyclic stability. Here, we fabricated textured polycrystalline Ni50.4Mn27.3Ga22.3 alloys by cost-effective casting method to create a <001> texture. A strong correlation between the cyclic stability and the crystal orientation was demonstrated. A large reversible adiabatic temperature change ΔT ˜6 K was obtained when the external stress was applied parallel to <001> direction. However, the ΔT decreased rapidly after 50 cycles, showing an unstable elastocaloric effect (eCE). On the other hand, when the external stress was applied perpendicular to <001>, the adiabatic ΔT was smaller ˜4 K, but was stable over 100 cycles. This significantly enhanced eCE stability was related to the high yield strength, low transformation strain and much higher crack initiation-propagation resistances perpendicular to <001> direction. This study provides a feasible strategy for optimizing the eCE property by creation of the texture structure in polycrystalline Ni-Mn-Ga and Ni-Mn-X (X= In, Sn, Sb) alloys.

  2. A comparative study of Ni-Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors.

    PubMed

    Li, M; Liu, F; Zhang, X B; Cheng, J P

    2016-11-02

    A variety of carbon materials varying from 0D to 2D, i.e. 0D nanoparticles, 1D carbon nanotubes (CNTs) and 2D reduced graphene oxide (rGO) are selected to in situ combine with Ni-Mn layered double hydroxide (LDH) to prepare electrode materials for supercapacitors. Through a simple solution method, hierarchical Ni-Mn LDH/carbon composites can be easily fabricated. A comparative study is carried out on the sandwich-like LDH/rGO, flower-like LDH/carbon black, turbostratic-structured LDH/CNTs and ternary LDH/CNTs/rGO for their structure, morphology, porous properties and electrochemical performances. The results show that the ternary Ni-Mn LDH/CNTs/rGO composite yields the highest specific capacitance of 1268 F g -1 in 2 M KOH electrolyte and a long lifespan, exhibiting great potential for supercapacitor applications. Meanwhile, investigation on the influence of the cation species of MOH (M = Li + , Na + or K + ) and the alkali concentration of the KOH electrolyte illustrates that increasing the concentration of the KOH electrolyte can benefit the capacitive performance of the electrode and that NaOH shows great advantages as an electrolyte for the Ni-Mn LDH/CNTs/rGO electrode due to its high capacitance and small resistance.

  3. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    PubMed

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  4. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2010-09-01

    The crystallographic and magnetic structures of the Ni2XGa (X=Mn, Fe, Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The formation energies of several kinds of defects (atomic exchange, antisite, vacancy) are estimated. The Ga atoms stabilize the cubic structure, and the effect of X atoms on the structural stability is opposite. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Ga-rich Ni-deficient type. The magnitude of the variation in Ni moments is much larger than that of Mn in defective Ni2XGa. The value of Ni magnetic moment sensitively depends on the distance between Ni and X. Excess Mn could be ferromagnetic or antiferromagnetic, depending on the distance between the neighboring Mn atoms.

  5. Observation of self-regulating response in Li xM yMn 2-yO 4 (M=Mn, Ni): A study using density functional theory

    NASA Astrophysics Data System (ADS)

    Ragavendran, K.; Sherwood, Daniel; Emmanuel, Bosco

    2009-02-01

    Density functional theory is used to understand the response of the transition metal-oxygen octahedra in Li xMn 2O 4 and Li xNi 0.5Mn 1.5O 4 to lithium intercalation and de-intercalation. Electronic structure computations on these compounds for x=0, 0.5 and 1 indicate that the 3d DOS of Mn is almost unaffected to variations in x. On the other hand, the oxygen 2p-DOS and to a lesser extent Ni 3d DOS are found to be sensitive to perturbation. The observations are explained on the grounds of self-regulating response, characteristic of systems having localized d states that communicate with a covalent manifold.

  6. Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1 +xSb solid solutions

    NASA Astrophysics Data System (ADS)

    Levin, Emily E.; Bocarsly, Joshua D.; Wyckoff, Kira E.; Pollock, Tresa M.; Seshadri, Ram

    2017-12-01

    Materials with a large magnetocaloric response are associated with a temperature change upon the application of a magnetic field and are of interest for applications in magnetic refrigeration and thermomagnetic power generation. The usual metric of this response is the gravimetric isothermal entropy change Δ SM . The use of a simple proxy for the Δ SM that is based on density functional theory (DFT) calculations of the magnetic electronic structure suggests that half-Heusler MnNiSb should be a better magnetocaloric than the corresponding Heusler compound MnNi2Sb . Guided by this observation, we present a study of MnNi1 +xSb (x =0 , 0.25, 0.5, 0.75, and 1.0) to evaluate relevant structural and magnetic properties. DFT stability calculations suggest that the addition of Ni takes place at a symmetrically distinct Ni site in the half-Heusler structure and support the observation using synchrotron x-ray diffraction of a homogeneous solid solution between the half-Heusler and Heusler end members. There is a maximum in the saturation magnetization at x =0.5 and the Curie temperature systematically decreases with increasing x . Δ SM for a maximum magnetic field change of Δ H =5 T monotonically decreases in magnitude from -2.93 J kg-1K-1 in the half-Heusler to -1.35 J kg-1K-1 in the Heusler compound. The concurrent broadening of the magnetic transition results in a maximum in the refrigerant capacity at x =0.75 . The Curie temperature of this system is highly tunable between 350 K and 750 K, making it ideal for low grade waste heat recovery via thermomagnetic power generation. The increase in Δ SM with decreasing x may be extendable to other MnNi2Z Heusler systems that are currently under investigation for use in magnetocaloric refrigeration applications.

  7. Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Nickel (Ni)-doped zinc oxide (ZnO) nanorod array films were synthesised using sonicated sol-gel immersion method. The FESEM images showed that the Ni-doped ZnO nanorod arrays possess hexagonal shape with average diameter about 120 nm and thickness about 1.10 µm. The Ni-doped ZnO nanorod arrays possess better transmittance properties with 3.27 eV of optical band gap energy and 40 meV of urbach energy. The current-voltage (I-V) measurement indicated that the conductivity of ZnO film slightly improved with Ni-doping. The doped film displayed good humidity sensing performance with sensitivity of 1.21.

  8. Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4

    NASA Astrophysics Data System (ADS)

    Liu, Guoqiang; Park, Kyu-Sung; Song, Jie; Goodenough, John B.

    2013-12-01

    The oxygen-stoichiometric spinel Li[Ni0.5Mn1.5]O4 is an insulator with ordered Ni(II) and Mn(IV). Although it delivers 4.7 V versus Li, the ordered phase gives poor performance as the cathode of a Li-ion battery. Here we demonstrate control of the degree of cation order by adjusting the oxygen stoichiometry with thermal history of the synthesis rather than by doping 2M(III) for Ni(II) + Mn(IV) (M = Cr, Mn, Fe, Co, Al, Ga). We report retention of capacity near 100 mAh g-1 at room temperature at 10C/10C charge/discharge rate with little capacity fade; at 55 °C, a capacity fade occurs as a result of reaction with the electrolyte, but it is reduced to a level comparable to that obtained by doping.

  9. Raman studies of nanocomposites catalysts: temperature and pressure effects of CeAl, CeMn and NiAl oxides

    NASA Astrophysics Data System (ADS)

    da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano

    2018-06-01

    High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.

  10. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors.

    PubMed

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-25

    Known as an excellent energy storage material, ZnMn 2 O 4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn 2 O 4 /C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn 2 O 4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (∼5% loss) and high specific capacitance of 1786 F g -1 .

  11. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-01

    Known as an excellent energy storage material, ZnMn2O4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn2O4/C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn2O4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (˜5% loss) and high specific capacitance of 1786 F g-1.

  12. Citrate, in collaboration with a guanidinium ion, as a generator of cubane-like complexes with a range of metal cations: synthesis, structures, and magnetic properties of [C(NH2)3]8[(M(II))4(cit)4].8H2O (M = Mg, Mn, Fe, Co, Ni, and Zn; cit = Citrate).

    PubMed

    Hudson, Timothy A; Berry, Kevin J; Moubaraki, Boujemaa; Murray, Keith S; Robson, Richard

    2006-05-01

    Aqueous reaction mixtures containing citric acid, guanidinium carbonate, and a range of metal cations (Mg2+, Mn2+, Fe2+, Co2+, Ni2+, and Zn2+) at room temperature give crystalline products of composition [C(NH2)3]8[(M(II))4(cit)4].8H2O (cit = citrate). In all cases, the crystals are suitable for single-crystal X-ray diffraction studies, which reveal that the compounds are isostructural (space group P4(2)/n; a approximately 16.2 A, and c approximately 11.5 A). As was intended, cubane-like [M4(cit)4]8- complex anions are present. The individual citrate units are chiral, but each cubane unit contains two of one hand and two of the other, related around an S4 axis. The cubane units are involved in no less than 40 H-bonding interactions with guanidinium cations and lattice water molecules. Detailed susceptibility and magnetization studies show that the intracluster magnetic coupling within the Mn(II), Fe(II), Co(II), and Ni(II) cubanes is very weak in all cases with J values of -0.82, -0.43, and -0.09 cm(-1) for the Mn, Fe, and Co species, respectively. A two-J model gave the best agreement with the susceptibility and high-field magnetization data for the Ni(II) case, over the whole temperature range studied, and the sign of the parameters, J12 = -0.3 cm(-1) and J13 = +2.97 cm(-1), correlated with the two Ni-(mu3-O)-Ni angles observed in the cluster structure. All members of the 3d-block [M4(cit)4]8- family have spin ground states, ST, of zero, with the higher ST levels just a few reciprocal centimeters away in energy.

  13. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  14. Relation Between Crystal Structure and Electrochemical Performance of LiNi1/3Zn x Co1/3-xMn1/3O₂ (0.000 ≤ x ≤ 0.133).

    PubMed

    Wang, Xujun; Wan, Yong; Wang, Ruiqi; Xu, Xiantang; Wang, He; Chang, Mingning; Yuan, Feng; Ge, Xiaohui; Shao, Weiquan; Xu, Sheng

    2018-04-01

    LiNi1/3ZnxCo1/3-xMn1/3O2 (0.000 ≤ x ≤ 0.133) hollow microspheres are synthesized using MnO2 hollow microspheres both as a self-template and Mn source. These hollow microspheres, ~4 μm in diameter, are composed of approximately 300 nm basic nanoparticles. The XRD patterns of LiNi1/3ZnxCo1/3-xMn1/3O2 were analyzed by the RIETAN-FP program, and the obtained samples have a layered α-NaFeO2 structure. Electrochemical performances of the samples were carried out between 2.5 V and 4.5 V. The behavior of the lattice parameters is consistent with Cycling performance and rate performance change with increase of x. Compared with the others, the sample of x = 0.133 exhibits a relatively superior electrochemical performance. The specific capacity of x = 0.133 was increased by 10.7% than no-doped. In addition, the cyclic voltammograms curves of the second cycle show no significant alteration compared with the first cycle and the electrochemical impedance of zinc doping sample showed smaller transfer resistance than the no-doping sample.

  15. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  16. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  17. Photoelectrochemical performance of NiO-coated ZnO-CdS core-shell photoanode

    NASA Astrophysics Data System (ADS)

    Iyengar, Pranit; Das, Chandan; Balasubramaniam, K. R.

    2017-03-01

    A nano-structured core-shell ZnO-CdS photoanode device with a mesoporous NiO co-catalyst layer was fabricated using solution-processing methods. The growth of the sparse ZnO nano-rod film with a thickness of ca. 930 nm was achieved by optimizing parameters such as the thickness of the ZnO seed layer, choice of Zn precursor salt and the salt concentration. CdS was then coated by a combination of spin coating and spin SILAR (Successive Ionic Layer Adsorption and Reaction) methods to completely fill the interspace of ZnO nano-rods. The uniform CdS surface facilitated the growth of a continuous mesoporous NiO layer. Upon illumination of 100 mW·cm-2 AM 1.5 G radiation the device exhibits stable photocurrents of 2.15 mA·cm-2 at 1.23 V and 0.92 mA·cm-2 at 0.00 V versus RHE, which are significantly higher as compared to the bare ZnO-CdS device. The excellent performance of the device can be ascribed to the higher visible region absorption by CdS, and effective separation of the photogenerated charge carriers due to the suitable band alignment and nanostructuring. Additionally, the mesoporous NiO overlayer offered a larger contact area with the electrolyte and promoted the kinetics enabling higher and stable photocurrent even till the 35th min. of testing.

  18. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.

    2018-05-01

    In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.

  19. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  20. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.

    PubMed

    Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B

    2012-05-01

    Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.

  1. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, Carol J.

    1987-01-01

    Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  2. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  3. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit.

    PubMed

    Liu, Chang; Zhao, Liupeng; Wang, Boqun; Sun, Peng; Wang, Qingji; Gao, Yuan; Liang, Xishuang; Zhang, Tong; Lu, Geyu

    2017-06-01

    NiO/ZnO composites were synthesized by decorating numerous NiO nanoparticles on the surfaces of well dispersed ZnO hollow spheres using a facile solvothermal method. Various kinds of characterization methods were utilized to investigate the structures and morphologies of the hybrid materials. The results revealed that the NiO nanoparticles with a size of ∼10nm were successfully distributed on the surfaces of ZnO hollow spheres in a discrete manner. As expected, the NiO/ZnO composites demonstrated dramatic improvements in sensing performances compared with pure ZnO hollow spheres. For example, the response of NiO/ZnO composites to 100ppm acetone was ∼29.8, which was nearly 4.6 times higher than that of primary ZnO at 275°C, and the response/recovery time were 1/20s, respectively. Meanwhile, the detection limit could extend down to ppb level. The likely reason for the improved gas sensing properties was also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Room temperature ferromagnetism and luminescent behavior of Ni doped ZnO nanoparticles prepared by coprecipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Deepawali; Mahajan, Aman; Kaur, Parvinder

    2016-05-23

    The samples of Zn{sub 1-x}Ni{sub x}O (x= 0.00 and 0.05) were prepared using coprecipitation method and annealed at different temperatures. The effect of Ni ion substitution on the structural and optical properties has been studied using X-ray Diffraction, UV-Visible, Photoluminescence and Magnetic measurements. XRD measurements demonstrate that all the prepared samples are wurtzite polycrystalline single phase in nature, ruling out the presence of any secondary phase formation. Ultraviolet visible measurements showed a decrease in band gap with the increase in annealing temperature and doping concentration. The PL data shows the red shift in all the samples and luminescence quenching withmore » Ni doping. Compared to undoped ZnO, Ni doped ZnO showed room temperature ferromagnetism.« less

  5. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy.

    PubMed

    Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih

    2018-07-15

    Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors.

    PubMed

    Singh, Saurabh; Shinde, Nanasaheb M; Xia, Qi Xun; Gopi, Chandu V V M; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho

    2017-10-14

    Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg -1 at 749.9 W kg -1 ) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

  7. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.

    PubMed

    Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei

    2016-09-14

    Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.

  8. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  9. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less

  10. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  11. Theoretical study of local structure for Ni2+ ions at tetragonal sites in K2ZnF4:Ni2+ system.

    PubMed

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-15

    A theoretical method for studying the local lattice structure of Ni2+ ions in (NiF6)(4-) coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 x 45 complete energy matrices for d8 (d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters (R perpendicular and R || ) of Ni2+ ions in K2ZnF4:Ni2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K2ZnF4:Ni2+ system at 78 and 290 K are reported first.

  12. Theoretical study of local structure for Ni 2+ ions at tetragonal sites in K 2ZnF 4:Ni 2+ system

    NASA Astrophysics Data System (ADS)

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-01

    A theoretical method for studying the local lattice structure of Ni 2+ ions in (NiF 6) 4- coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 × 45 complete energy matrices for d8 ( d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters ( R⊥ and R||) of Ni 2+ ions in K 2ZnF 4:Ni 2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K 2ZnF 4:Ni 2+ system at 78 and 290 K are reported first.

  13. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  14. Non-chromate Passivation for LHE ZnNi

    DTIC Science & Technology

    2017-03-01

    control of coatings and processes. Development of an alternative methodology that is simple, repeatable, non -destructive, and capable of scanning across...FINAL REPORT Non -chromate Passivation for LHE ZnNi SERDP Project WP-2527 JANUARY 2017 Matt O’Keefe Missouri S&T...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From

  15. Magnetic Susceptibility and Spin Exchange Interactions of the Hexagonal Perovskite-Type Oxides Sr 4/3(Mn 2/3Ni 1/3)O 3

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.

    2002-02-01

    Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.

  16. Structural and catalytic characterization of a heterovalent Mn(II)Mn(III) complex that mimics purple acid phosphatases.

    PubMed

    Smith, Sarah J; Riley, Mark J; Noble, Christopher J; Hanson, Graeme R; Stranger, Robert; Jayaratne, Vidura; Cavigliasso, Germán; Schenk, Gerhard; Gahan, Lawrence R

    2009-11-02

    The binuclear heterovalent manganese model complex [Mn(II)Mn(III)(L1)(OAc)(2)] ClO(4) x H(2)O (H(2)L1 = 2-(((3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)-methyl)phenol) has been prepared and studied structurally, spectroscopically, and computationally. The magnetic and electronic properties of the complex have been related to its structure. The complex is weakly antiferromagnetically coupled (J approximately -5 cm(-1), H = -2J S(1) x S(2)) and the electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra identify the Jahn-Teller distortion of the Mn(III) center as predominantly a tetragonal compression, with a significant rhombic component. Electronic structure calculations using density functional theory have confirmed the conclusions derived from the experimental investigations. In contrast to isostructural M(II)Fe(III) complexes (M = Fe, Mn, Zn, Ni), the Mn(II)Mn(III) system is bifunctional possessing both catalase and hydrolase activities, and only one catalytically relevant pK(a) (= 8.2) is detected. Mechanistic implications are discussed.

  17. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay.

    PubMed

    Pazos, M; Gouveia, S; Sanroman, M A; Cameselle, C

    2008-07-01

    Metal reactivity, speciation and solubility have an important influence in its transportation through a porous matrix by electrokinetics and, therefore, they dramatically affect the removal efficiency. This work deals with the effect of solubility and transport competition among several metals (Mn, Fe, Cu and Zn) during their transport through polluted clay. The unenhancement electrokinetic treatment results in a limited removal of the tested metals because they were retained into the kaolinite sample by the penetration of the alkaline front. Metals showed a removal degree in accordance with the solubility of the corresponding hydroxide and its formation pH. In 7 days of treatment, the removal results were: 75.6% of Mn; 68.5% of Zn, 40.6% of Cu and 14.8% of Fe. In order to avoid the negative effects of the basic front generated at the cathode, two different techniques were proposed and tested: the addition of citric acid as complexing agent to the polluted kaolinite sample and the use of citric acid to control de pH on the cathode chamber. Both techniques are based on the capability of citric acid to act as a complexing and neutralizing agent. Almost complete removal of Mn, Cu and Zn was achieved when citric acid was used (as neutralizing or complexing agent). But Fe only reached 33% of removal because it formed a negatively charged complex with citrate that retarded its transportation to the cathode.

  18. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  19. Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6

    NASA Astrophysics Data System (ADS)

    Masud, Md G.; Ghosh, Arijit; Sannigrahi, J.; Chaudhuri, B. K.

    2012-07-01

    We report a diffuse phase transition (extending over a finite temperature range of ˜50 K) in sol-gel derived nanoparticles (˜25 nm) of the ferromagnetic double perovskite La2NiMnO6. The macroscopic polarization (P-E hysteresis loop), validity of the Vogel-Fulcher relation and high dielectric permittivity (˜9 × 102) confirm relaxor ferroelectric phenomena in these magnetic nanoparticles. Compared to the corresponding bulk sample, appreciably large enhancement of the magnetocapacitive effect (MC ˜ 30%) is observed even under low magnetic field (0.5 T) around the broad relaxor dielectric peak temperature (˜220 K), which is close to the ferromagnetic transition temperature (θf ˜ 196 K). All of these features establish the multiferroic character of the La2NiMnO6 nanoparticles. The inhomogeneities arising from chemical and valence mixing in the present La2NiMnO6 nanoparticles and the inter-site, Ni/Mn-site disorder along with surface disorder of the individual nanoparticles resulting in local polar regions are attributed to the observed dielectric behaviour of the nanoparticles. The wave vector dependent spin-pair correlation is considered to be the plausible cause of the colossal magnetocapacitive response near the transition temperature. High permittivity and large magnetocapacitive properties make these ferromagnetic La2NiMnO6 nanoparticles technologically important.

  20. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    NASA Astrophysics Data System (ADS)

    Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin

    2011-12-01

    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.

  1. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging.

    PubMed

    Lai, Pei-Yu; Huang, Chih-Ching; Chou, Tzung-Han; Ou, Keng-Liang; Chang, Jia-Yaw

    2017-03-01

    Here, we present the microwave-assisted synthesis of In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + altered the optical properties of the host QDs, whereas the spin magnetic moment (S=5/2) of Mn 2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In 2 S 3 /ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s -1 mM -1 ), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In 2 S 3 /ZnS conjugated to hyaluronic acid (referred to as AgMn:In 2 S 3 /ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In 2 S 3 /ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. In this manuscript, we reported a facial and rapid method to prepare In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + dopants were used to alter the optical properties of the In 2 S 3 host, whereas Mn 2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In 2 S 3 /Zn

  2. Moessbauer studies in Zn(2+)0.3 Mn(2+)0.7 Mn(3+) (2-y) Fe(3+) (2-y) O4

    NASA Technical Reports Server (NTRS)

    Gupta, R. G.; Mendiratta, R. G.; Escue, W. T.

    1975-01-01

    The Mossbauer effect has proven to be effective in the study of nuclear hyperfine interactions. Ferrite systems having the formula (Zn(2+)0.3)(Mn(2+)0.7)(Mn(3+)y)(Fe(3+)2-y)(O4) were prepared and studied. These systems can be interpreted as mangacese-doped zinc and a part of iron ions. A systematic study of these systems is presented to promote an understanding of their microstructure for which various theories were proposed.

  3. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    NASA Astrophysics Data System (ADS)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  4. Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability.

    PubMed

    Ouyang, Yu; Xia, Xifeng; Ye, Haitao; Wang, Liang; Jiao, Xinyan; Lei, Wu; Hao, Qingli

    2018-01-31

    In this work, we synthesized the hierarchical ZnO@C@NiO core-shell nanorods arrays (CSNAs) grown on a carbon cloth (CC) conductive substrate by a three-step method involving hydrothermal and chemical bath methods. The morphology and chemical structure of the hybrid nanoarrays were characterized in detail. The combination and formation mechanism was proposed. The conducting carbon layer between ZnO and NiO layers can efficiently enhance the electric conductivity of the integrated electrodes, and also protect the corrosion of ZnO in an alkaline solution. Compared with ZnO@NiO nanorods arrays (NAs), the NiO in CC/ZnO@C@NiO electrodes, which possess a unique multilevel core-shell nanostructure exhibits a higher specific capacity (677 C/g at 1.43 A/g) and an enhanced cycling stability (capacity remain 71% after 5000 cycles), on account of the protection of carbon layer derived from glucose. Additionally, a flexible all-solid-state supercapacitor is readily constructed by coating the PVA/KOH gel electrolyte between the ZnO@C@NiO CSNAs and commercial graphene. The energy density of this all-solid-state device decreases from 35.7 to 16.0 Wh/kg as the power density increases from 380.9 to 2704.2 W/kg with an excellent cycling stability (87.5% of the initial capacitance after 10000 cycles). Thereby, the CC/ ZnO@C@NiO CSNAs of three-dimensional hierarchical structure is promising electrode materials for flexible all-solid-state supercapacitors.

  5. Fermi Level shifting, Charge Transfer and Induced Magnetic Coupling at La0.7Ca0.3MnO3/LaNiO3 Interface

    PubMed Central

    Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong

    2015-01-01

    A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088

  6. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  7. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    NASA Astrophysics Data System (ADS)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  8. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole

  9. Preparation of a nanosized as(2)o(3)/mn(0.5)zn(0.5)fe(2)o(4) complex and its anti-tumor effect on hepatocellular carcinoma cells.

    PubMed

    Zhang, Jia; Zhang, Dongsheng

    2009-01-01

    Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles in vitro was tested by the MTT assay. A nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex was made by an impregnation process. The complex's shape, component, envelop rate and release rate of As(2)O(3) were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn(0.5)Zn(0.5)Fe(2)O(4) and nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex were both prepared successfully. The Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn(0.5)Zn(0.5)Fe(2)O(4) didn't show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex can significantly inhibit the growth of hepatoma carcinoma cells.

  10. Insight into the Atomic Structure of High-Voltage Spinel LiNi 0.5Mn 1.5O4 Cathode Material in the First Cycle

    DOE PAGES

    Huang, Xuejie; Yu, Xiqian; Lin, Mingxiang; ...

    2014-12-22

    Application of high-voltage spinel LiNi 0.5Mn 1.5O4 cathode material is the closest and the most realistic approach to meeting the midterm goal of lithium-ion batteries for electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs). However, this application has been hampered by long-standing issues, such as capacity degradation and poor first-cycle Coulombic efficiency of LiNi 0.5Mn 1.5O4 cathode material. Although it is well-known that the structure of LiNi 0.5Mn 1.5O4 into which Li ions are reversibly intercalated plays a critical role in the above issues, performance degradation related to structural changes, particularly in the first cycle, are not fully understood.more » Here, we report detailed investigations of local atomic-level and average structure of LiNi 0.5Mn 1.5O4 during first cycle (3.5–4.9 V) at room temperature. We observed two types of local atomic-level migration of transition metals (TM) ions in the cathode of a well-prepared LiNi 0.5Mn 1.5O4//Li half-cell during first charge via an aberration-corrected scanning transmission electron microscopy (STEM). Surface regions (~2 nm) of the cycled LiNi 0.5Mn 1.5O4 particles show migration of TM ions into tetrahedral Li sites to form a Mn 3O 4-like structure. However, subsurface regions of the cycled particles exhibit migration of TM ions into empty octahedral sites to form a rocksalt-like structure. The migration of these TM ions are closely related to dissolution of Ni/Mn ions and building-up of charge transfer impedance, which contribute significantly to the capacity degradation and the poor first-cycle Coulombic efficiency of spinel LiNi 0.5Mn 1.5O4 cathode material. Accordingly, we provide suggestions of effective stabilization of LiNi 0.5Mn 1.5O4 structure to obtain better electrochemical performance.« less

  11. Magnetostructural transitions and magnetocaloric effects in Ni50Mn35In14.25B0.75 ribbons

    NASA Astrophysics Data System (ADS)

    Pandey, Sudip; Quetz, Abdiel; Ibarra-Gaytan, P. J.; Sánchez-Valdés, C. F.; Aryal, Anil; Dubenko, Igor; Sanchez Llamazares, Jose Luis; Stadler, Shane; Ali, Naushad

    2018-05-01

    The structural, thermal, and magnetic behaviors, as well as the martensitic phase transformation and related magnetocaloric response of Ni50Mn35In14.25B0.75 annealed ribbons have been investigated using room-temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC), and magnetization measurements. Ni50Mn35In14.25B0.75 annealed ribbons show a sharper change in magnetization at the martensitic transition, resulting in larger magnetic entropy changes in comparison to bulk Ni50Mn35In14.25B0.75. A drastic shift in the martensitic transformation temperature (TM) of 70 K to higher temperature was observed for the annealed ribbons relative to that of the bulk (TM = 240 K). The results obtained for magnetic, thermal, structural, and magnetocaloric properties of annealed ribbons have been compared to those of the corresponding bulk alloys.

  12. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-01

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  13. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  14. Influence of a NiO intermediate layer on the properties of ZnO grown on Si by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.

    2018-04-01

    In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.

  15. Cation Distribution and Local Configuration of Fe 2+ Ions in Structurally Nonequivalent Lattice Sites of Heterometallic Fe(II)/ M(II) ( M = Mn, Co, Ni, Cu, Zn) Diaquadiformato Complexes

    NASA Astrophysics Data System (ADS)

    Devillers, M.; Ladrière, J.

    1993-03-01

    57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.

  16. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  17. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.

    PubMed

    Abid Charef, S; Affoune, A M; Caballero, A; Cruz-Yusta, M; Morales, J

    2017-10-01

    A parallel study of acidic and alkaline leaching for the recovery of Mn and Zn from spent alkaline batteries is outlined. Using H 2 SO 4 as solvent and selecting appropriate conditions of temperature and concentration, all residues were dissolved except carbon. The separation and recovery of the two components were performed by electrodeposition with satisfactory results at pH values above 4 (current efficiency above 70% for Zn and Mn) but rather lower efficiencies as the pH decreased. Most of the Zn was selectively dissolved by alkaline leaching using a 6.5M NaOH solution, and its recovery was examined by means of both electrochemical and chemical processes. The expected formation of pure Zn by electrowinning failed due to the formation of ZnO, the content of which was highly dependent on the electrodeposition time. For short periods, Zn was the main component. For longer periods the electrodeposit consisted of agglomerated microparticles of ZnO with a minor fraction of Zn metal (barely 3% as measured by X-ray diffraction). A chemical reaction of the element with oxygen released at the anode surface might be responsible for its conversion to ZnO. A simple chemical route is described for the first time for the direct conversion of Zn(OH) 4 2- solution to nanostructured ZnO by lowering the pH to values around 12 using 2M HCl solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  19. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  20. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni-Mn-Ga alloys: Experiment and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.

    2016-08-01

    In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.

  1. New Fluoride-arsenide Diluted Magnetic Semiconductor (Ba,K)F(Zn,Mn)As with Independent Spin and Charge Doping

    NASA Astrophysics Data System (ADS)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing

    2016-11-01

    We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.

  2. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  3. Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots.

    PubMed

    Li, Chenghui; Wu, Peng; Hou, Xiandeng

    2016-02-21

    Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn(2+) dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.

  4. Structural, vibrational and morphological properties of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra, Débora M.

    2017-03-15

    Layered double hydroxides are anionic clays with formula [M{sup II}{sub 1−x} M{sup III}{sub x}(OH){sub 2}]{sup q+}[A{sup n−}]{sub q/n}·mH{sub 2}O, finding possible uses as catalyst support, adsorbents and so on. In this paper, we address the phase formation of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations, namely, NiZn-Al, NiZn-AlZr and NiZn-Zr compositions obtained by the coprecipitation method. Such systems were characterized by X-ray diffraction, confirming the phase formation for NiZn-Al and NiZn-AlZr samples. Infrared and Raman spectroscopies elucidated the anion and water molecules occurrence in the interlayer. Nitrogen physisorption (BET method) determined the presencemore » of pores and specific surface area. The isotherm shapes were Type IV, according to the IUPAC, and represent a mesoporous structure. A morphological study was performed by means of scanning and transmission electron microscopies, and particle size values of 120, 131 and 235 nm for NiZn-Al, NiZn-AlZr and NiZn-Zr, respectively, were determined. Thermogravimetric analysis of the decomposition of the systems revealed that their complete disintegration occurred at ~ 450 °C and resulted in mixed oxides.« less

  5. Large tensile superelasticity from intermartensitic transformations in Ni49Mn28Ga23 single crystal

    NASA Astrophysics Data System (ADS)

    Chernenko, V. A.; Villa, E.; Salazar, D.; Barandiaran, J. M.

    2016-02-01

    A multistep superelastic behavior, with up to a 12% strain, is reported in a <001>P-oriented Ni49Mn28Ga23 single crystal. The observed behavior is produced by intermartensitic transformations during the tensile stress-strain measurements at temperatures between -140 °C and +60 °C. The tensile stress-temperature phase diagram and the stress dependence of the intermartensitic transformation entropies have been obtained. These results provide important input for theoretical modeling of the phase transformations in these alloys and show promising mechanical properties of the classical Ni-Mn-Ga ferromagnetic shape memory alloys.

  6. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    NASA Astrophysics Data System (ADS)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  7. Study of the structure of 3D-ordered macroporous GaN-ZnS:Mn nanocomposite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurdyukov, D. A., E-mail: kurd@gvg.ioffe.ru; Shishkin, I. I.; Grudinkin, S. A.

    A film-type 3D-ordered macroporous GaN-ZnS:Mn nanocomposite with the structure of an inverted opal is fabricated. Structural studies of the nanocomposite are performed, and it is shown that GaN and ZnS:Mn introduced into the pores of the silica opal are nanocrystallites misoriented with respect to each other. It is shown that the nanocomposite is a structurally perfect 3D photonic crystal. The efficiency of using a buffer of GaN crystallites to preclude interaction between the surface of the spherical a-SiO{sub 2} particles forming the opal matrix and chemically active substances introduced into the pores is demonstrated.

  8. Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La(2)NiMnO(6).

    PubMed

    Masud, Md G; Ghosh, Arijit; Sannigrahi, J; Chaudhuri, B K

    2012-07-25

    We report a diffuse phase transition (extending over a finite temperature range of ∼50 K) in sol-gel derived nanoparticles (∼25 nm) of the ferromagnetic double perovskite La(2)NiMnO(6). The macroscopic polarization (P-E hysteresis loop), validity of the Vogel-Fulcher relation and high dielectric permittivity (∼9 × 10(2)) confirm relaxor ferroelectric phenomena in these magnetic nanoparticles. Compared to the corresponding bulk sample, appreciably large enhancement of the magnetocapacitive effect (MC  ∼ 30%) is observed even under low magnetic field (0.5 T) around the broad relaxor dielectric peak temperature (∼220 K), which is close to the ferromagnetic transition temperature (θ(f) ∼ 196 K). All of these features establish the multiferroic character of the La(2)NiMnO(6) nanoparticles. The inhomogeneities arising from chemical and valence mixing in the present La(2)NiMnO(6) nanoparticles and the inter-site, Ni/Mn-site disorder along with surface disorder of the individual nanoparticles resulting in local polar regions are attributed to the observed dielectric behaviour of the nanoparticles. The wave vector dependent spin-pair correlation is considered to be the plausible cause of the colossal magnetocapacitive response near the transition temperature. High permittivity and large magnetocapacitive properties make these ferromagnetic La(2)NiMnO(6) nanoparticles technologically important.

  9. Influence of growth conditions on exchange bias of NiMn-based spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction onmore » Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.« less

  10. Magnetic and thermodynamic properties of Heusler alloys Ni55Mn26Al19

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Onda, Keijiro; Taira, Atsushi; Sonoda, Kazuki; Hiroi, Masahiko; Uwatoko, Yoshiya

    2018-05-01

    The temperature dependence of magnetization, M(T), specific heat, Cp(T), and thermal expansion, ΔL/L300K(T) were investigated for the Heusler compound Ni55Mn26Al19 with B2 structure. M(T) has a cusp-type anomaly for the antiferromagnetic (AF) transition at the Néel temperature TN = 280 K that is irreversible between the field-cooled and zero-field-cooled processes below Tf ˜ 60 K, which is characteristic of spin glass. Cp(T) also has an anomaly at TN = 280 K. For temperatures T < 280 K, Cp(T) shows no anomaly without indicating any phase transition. These results mean that with decreasing T Ni55Mn26Al19 has a reentrant spin glass below Tf from the AF state. ΔL/L300K(T) shows no discontinuity indicating a structural transition in the range 5 < T < 300 K, i.e., Ni55Mn26Al19 has no martensitic transformation. TN increases proportionally with pressure, P, because of the enhancement of the AF interaction. The value of its initial rate is estimated to be d/TN d P = 5.25 K/GPa. Tf also increases proportionally with P with d/Tf d P = 2.21 K/GPa, and hence magnetic frustration, which promotes the spin glass system, is enhanced under pressurization.

  11. Large low-field magnetocaloric effect in directionally solidified Ni55Mn18+xGa27-x (x = 0, 1, 2) alloys

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhuang; Li, Zongbin; Yang, Bo; Yang, Yiqiao; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2018-01-01

    The magnetostructural transformation and magnetocaloric effect of directionally solidified polycrystalline Ni55Mn18+xGa27-x (x = 0, 1, 2) alloys were studied. It is shown the directionally solidified alloys form coarse columnar-shaped grains with strong 〈0 0 1〉A (the subscript A refers to austenite) preferred orientation along the solidification direction. Through Mn substitution for Ga, a coupled magnetostructural transformation was realized in Ni55Mn19Ga26 and Ni55Mn20Ga25 alloys. Large adiabatic temperature variation (ΔTad) of 1.47 K and 1.57 K under the low field change of 1.5 T were achieved in these two alloys, respectively. Such ΔTad values are obviously higher than that obtained from a single martensitic transformation and magnetic transition. The present results demonstrate that proper composition tuning to achieve magnetostructural transformation as well as increasing the grain size and preferential orientation degree through directional solidification could be an economical processing route to optimize magnetocaloric properties in polycrystalline Ni-Mn-Ga based alloys.

  12. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  13. Manipulating the magnetism and resistance state of Mn:ZnO/Pb(Zr0.52Ti0.48)O3 heterostructured films through electric fields

    NASA Astrophysics Data System (ADS)

    Li, Yong-Chao; Wu, Jun; Pan, Hai-Yang; Wang, Jue; Wang, Guang-Hou; Liu, Jun-Ming; Wan, Jian-Guo

    2018-05-01

    Mn:ZnO/Pb(Zr0.52Ti0.48)O3 (PZT) heterostructured films have been prepared on Pt/Ti/SiO2/Si wafers by a sol-gel process. Nonvolatile and reversible manipulation of the magnetism and resistance by electric fields has been realized. Compared with the saturation magnetic moment (Ms) in the +3.0 V case, the modulation gain of Ms can reach 270% in the -3.0 V case at room temperature. The resistance change is attributed to the interfacial potential barrier height variation and the formation of an accumulation (or depletion) layer at the Mn:ZnO/PZT interface, which can be regulated by the ferroelectric polarization direction. The magnetism of Mn:ZnO originates from bound magnetic polarons. The mobile carrier variation in Mn:ZnO, owing to interfacial polarization coupling and the ferroelectric field effect, enables the electric manipulation of the magnetism in the Mn:ZnO/PZT heterostructured films. This work presents an effective method for modulating the magnetism of magnetic semiconductors and provides a promising avenue for multifunctional devices with both electric and magnetic functionalities.

  14. Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure

    NASA Astrophysics Data System (ADS)

    Sun, Jingchang; Li, Peida; Gao, Ruixue; Lu, Xue; Li, Chengren; Lang, Yueyi; Zhang, Xiwen; Bian, Jiming

    2018-01-01

    A photo-detector with n-ZnO nano-arrays/p-NiO film structure was synthesized on flexible Ni foil substrate. In contrast to conventional detectors that detect only the photon energies greater than the band gap of working materials, the visible light with smaller photon energies (3.0 eV) than the band gap of both ZnO (3.3 eV) and NiO (3.7 eV) can be sensitively detected by this detector due to the spatially indirect type-II transition between ZnO nano-arrays and NiO film. The increase in output currents of the photo-detector with illumination density was observed at both forward and reverse bias, and it can be further enhanced by exerting external compressive strain along the c axis of ZnO nano-arrays by piezo-phototronic effect. A maximum enhancement of 1020% of the responsivity (R) was achieved under external compressive strain. The similar behaviors were demonstrated at four different excitation wavelengths (325, 365, 388 and 405 nm), providing compelling evidence that the responses performance of the photo-detector can be effectively enhanced using piezo-phototronic effect. Moreover, the piezo-phototronic effect enhanced performance can be well elucidated by the corresponding energy band diagram.

  15. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol

    NASA Astrophysics Data System (ADS)

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-01

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.

  16. Using complimentary microscopy methods to examine Ni-Mn-Si-precipitates in highly-irradiated reactor pressure vessel steels

    DOE PAGES

    Edmondson, P. D.; Parish, C. M.; Nanstad, R. K.

    2017-05-29

    Nano-scale Ni-Mn-Si-rich precipitates formed in a reactor pressure vessel steel under high neutron fluence have been characterized using highly complimentary atom probe tomography (APT) and scanning transmission electron microscopy with energy dispersive spectroscopy (STEM-EDS) combined with STEM-EDS modeling. Using these techniques in a synergistic manner to overcome the well-known trajectory aberrations in APT data, the average upper limit Fe concentration within the precipitates was found to be ~6 at.%. Using this knowledge, accurate compositions of the precipitates was determined and it was found that the spread of precipitate compositions was large, but mostly centered around the Γ2-and G-phases. The usemore » of STEM-EDS also allowed for larger areas to be examined, and segregation of minor solutes was observed to occur on grain boundaries, along with Ni-Mn-Si-rich precipitates that were smaller in size than those in the matrix. Solute segregation at the grain boundaries is proposed to occur through a radiation induced segregation or radiation enhanced diffusion mechanism due to the presence of a denuded zone about the grain boundary. It is also proposed that the reduced precipitate size at the grain boundaries is due to the structure of the grain boundary. The lack of Ni-Mn-Si precipitates observed in larger Mo-rich precipitates is also discussed, and the absence of the minor solutes required to form the Ni-Mn-Si precipitates results in the lack of nucleation. This is in contrast to cementite phases in which Ni-Mn-Si precipitates have been seen to be formed. It was also determined through this work that the exclusion of all the Fe ions during atom probe analysis is a reasonable approximation.« less

  17. 3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xue, Qing; Wei, Lei; Wu, Feng; Chen, Renjie

    2017-01-18

    In this study, a hard-templating route was developed to synthesize a 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g -1 at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 . A high discharge capacity of 135.7 mA h g -1 even at a high current of 1000 mA g -1 was also obtained. This excellent electrochemical performance of the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.

  18. Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay

    2017-06-01

    Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.

  19. Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

    NASA Astrophysics Data System (ADS)

    Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd

    2018-05-01

    New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

  20. First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path

    NASA Astrophysics Data System (ADS)

    Zelený, M.; Sozinov, A.; Straka, L.; Björkman, T.; Nieminen, R. M.

    2014-05-01

    The influence of Co and Cu doping on Ni-Mn-Ga Heusler alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. Single-element doping and simultaneous doping by both elements are investigated in Ni50-xCoxMn25-yGa25-zCuy+z alloys, with dopant concentrations x ,y, and z up to 7.5 at. %. Doping with Co in the Ni sublattice decreases the (c/a)NM ratio of the nonmodulated (NM) martensite, but it simultaneously increases the cubic phase stability with respect to the NM phase. Doping with Cu in the Mn or in Ga sublattices does not change the (c/a)NM ratio significantly and it decreases the cubic phase stability. For simultaneous doping by Co in the Ni sublattice and Cu in the Mn or Ga sublattices, the effects of the individual dopants are independent and about the same as for the single-element doping. Thus, the (c/a)NM ratio can be adjusted by Co doping while the phase stability can be balanced by Cu doping, resulting in stable martensite with a reduced (c/a)NM. The local stability of the cubic phase with respect to the tetragonal deformation can be understood on the basis of a density-of-states analysis.