Sample records for zn-porphyrin tweezer host-guest

  1. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    PubMed

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  2. Sequential energy and charge transfer processes in mixed host-guest complexes of subphthalocyanine, porphyrin and phthalocyanine chromophores.

    PubMed

    Menting, Roel; Ng, Dennis K P; Röder, Beate; Ermilov, Eugeny A

    2012-11-14

    Porphyrins, phthalocyanines and subphthalocyanines are three attractive classes of chromophores with intriguing properties making them suitable for the design of artificial photosynthetic systems. The assembly of these components by a supramolecular approach is of particular interest as it provides a facile means to build multi-chromophoric arrays with various architectures and tuneable photophysical properties. In this paper, we show the formation of mixed host-guest supramolecular complexes that consist of a β-cyclodextrin-conjugated subphthalocyanine, a tetrasulfonated porphyrin and a series of silicon(IV) phthalocyanines substituted axially with two β-cyclodextrins via different spacers. We found that the three components form supramolecular complexes held by host-guest interactions in aqueous solution. Upon excitation of the subphthalocyanine part of the complex, the excitation energy is delivered to the phthalocyanine unit via excitation energy transfer and the porphyrin chromophore acts as an energy transfer bridge enabling this process. It was shown that photo-induced charge transfer also takes place. A sequential electron transfer process from the porphyrin unit to the phthalocyanine moiety and subsequently from the subphthalocyanine moiety to the porphyrin unit takes place, and the probability of this process is controlled by the linker between β-cyclodextrin and phthalocyanine. The lifetime of the charge-separated state was found to be 1.7 ns by transient absorption spectroscopy.

  3. Cyclic Bis-porphyrin-Based Flexible Molecular Containers: Controlling Guest Arrangements and Supramolecular Catalysis by Tuning Cavity Size.

    PubMed

    Mondal, Pritam; Sarkar, Sabyasachi; Rath, Sankar Prasad

    2017-05-23

    Three cyclic zinc(II) bis-porphyrins (CB) with highly flexible linkers are employed as artificial molecular containers that efficiently encapsulate/coordinate various aromatic aldehydes within their cavities. Interestingly, the arrangements of guests and their reactivity inside the molecular clefts are significantly influenced by the cavity size of the cyclic containers. In the presence of polycyclic aromatic aldehydes, such as 3-formylperylene, as a guest, the cyclic bis-porphyrin host with a smaller cavity (CB1) forms a 1:1 sandwich complex. Upon slightly increasing the spacer length and thereby the cavity size, the cyclic host (CB2) encapsulates two molecules of 3-formylperylene that are also stacked together due to strong π-π interactions between them and CH-π interactions with the porphyrin rings. However, in the cyclic host (CB3) with an even larger cavity, two metal centers of the bis-porphyrin axially coordinate two molecules of 3-formylperylene within its cavity. Different arrangements of guest inside the cyclic bis-porphyrin hosts are investigated by using UV/Vis, ESI-MS, and 1 H NMR spectroscopy, along with X-ray structure determination of the host-guest complexes. Moreover, strong binding of guests within the cyclic bis-porphyrin hosts support the robust nature of the host-guest assemblies in solution. Such preferential binding of the bis-porphyrinic cavity towards aromatic aldehydes through encapsulation/coordination has been employed successfully to catalyze the Knoevenagel condensation of a series of polycyclic aldehydes with active methylene compounds (such as Meldrum's acid and 1, 3-dimethylbarbituric acid) under ambient conditions. Interestingly, the yields of the condensed products significantly increase upon increasing spacer lengths of the cyclic bis-porphyrins because more substrates can then be encapsulated within the cavity. Such controllable cavity size of the cyclic containers has profound implications for constructing highly

  4. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chao; Long, Hai; Jin, Yinghua

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  5. Host-Guest Assembly of a Molecular Reporter with Chiral Cyanohydrins for Assignment of Absolute Stereochemistry.

    PubMed

    Gholami, Hadi; Anyika, Mercy; Zhang, Jun; Vasileiou, Chrysoula; Borhan, Babak

    2016-06-27

    The absolute stereochemistry of cyanohydrins, derived from ketones and aldehydes, is obtained routinely, in a microscale and derivatization-free manner, upon their complexation with Zn-MAPOL, a zincated porphyrin host with a binding pocket comprised of a biphenol core. The host-guest complex leads to observable exciton-coupled circular dichroism (ECCD), the sign of which is easily correlated to the absolute stereochemistry of the bound cyanohydrin. A working model, based on the ECCD signal of cyanohydrins with known configuration, is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of multiple pathways on excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2006-10-05

    Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant Förster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.

  7. Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework.

    PubMed

    Larsen, Randy W; Wojtas, Lukasz

    2015-02-21

    An attractive strategy for the development of photocatalytic metal organic framework (MOF) materials is to co-encapsulate a photoactive electron donor with a catalytic electron acceptor within the MOF. Here we report the co-encapsulation of both Zn(ii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Zn4SP) and Fe(iii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Fe4SP) into an HKUST-1 (Zn) MOF and demonstrate photoinduced electron transfer (ET) between the co-encapsulated guest. Photo-excitation of the Zn4SP results in fixed-distance inter-molecular ET between the encapsulated (3)Zn4SP and the Fe(iii)4SP as evident by the reduction in the encapsulated (3)Zn4SP lifetime from 890 μs (kobs = 1.1 × 10(3) s(-1)) to 83 μs (kobs = 1.2 × 10(4) s(-1)) in the presence of Fe4SP giving a kET ∼ 1.1 × 10(4) s(-1). The data are consistent with ET taking place between encapsulated porphyrins that are two cages apart in distance with a reorganizational energy of ∼1.65 eV, β = 1.25 and ΔG° = -0.97 eV (within a semi-classical Marcus theory framework).

  8. Mechanisms, pathways, and dynamics of excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2006-10-05

    Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively Förster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.

  9. Molecular tweezers with varying anions: a comparative study.

    PubMed

    Dutt, Som; Wilch, Constanze; Gersthagen, Thomas; Talbiersky, Peter; Bravo-Rodriguez, Kenny; Hanni, Matti; Sánchez-García, Elsa; Ochsenfeld, Christian; Klärner, Frank-Gerrit; Schrader, Thomas

    2013-07-05

    Selective binding of the phosphate-substituted molecular tweezer 1a to protein lysine residues was suggested to explain the inhibition of certain enzymes and the aberrant aggregation of amyloid petide Aβ42 or α-synuclein, which are assumed to be responsible for Alzheimer's and Parkinson's disease, respectively. In this work we systematically investigated the binding of four water-soluble tweezers 1a-d (substituted by phosphate, methanephosphonate, sulfate, or O-methylenecarboxylate groups) to amino acids and peptides containing lysine or arginine residues by using fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry (ITC). The comparison of the experimental results with theoretical data obtained by a combination of QM/MM and ab initio(1)H NMR shift calculations provides clear evidence that the tweezers 1a-c bind the amino acid or peptide guest molecules by threading the lysine or arginine side chain through the tweezers' cavity, whereas in the case of 1d the guest molecule is preferentially positioned outside the tweezer's cavity. Attractive ionic, CH-π, and hydrophobic interactions are here the major binding forces. The combination of experiment and theory provides deep insight into the host-guest binding modes, a prerequisite to understanding the exciting influence of these tweezers on the aggregation of proteins and the activity of enzymes.

  10. How the guest molecules in nanoporous Zn(II) metal-organic framework can prevent agglomeration of ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeinian, Maryam; Akhbari, Kamran, E-mail: akhbari.k@khayam.ut.ac.ir

    The host and the apohost framework of [Zn{sub 2}(BDC){sub 2}(H{sub 2}O){sub 2}·(DMF){sub 2}]{sub n} (1·2H{sub 2}O·2DMF), (BDC{sup 2−}=benzene-1,4-dicarboxylate and DMF=N,N-Dimethylformamide), were synthesized and subsequently used for preparation of ZnO nanomaterials. With calcination of the host framework of 1·2H{sub 2}O·2DMF, ZnO nanoparticles were obtained. By the same process on the apohost framework of 1, agglomerated nanoparticles of ZnO were formed. These nano-structures were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). These results indicate that with removal of the guest DMF and coordinated H{sub 2}O molecules from the one-dimensional channels of 1·2H{sub 2}O·2DMF, the tendency of nanoparticles tomore » agglomerate increases and the role of this MOF in preparation of ZnO nanoparticles from this precursor was reduced. - Graphical abstract: Nano-porous zinc(II) MOF with guest DMF and coordinated H{sub 2}O molecules has been synthesized and characterized. The host and the apohost framework of it were used for preparation of ZnO nanomaterials. The role of these species in preparation of ZnO nanoparticles from the host framework is probably similar to the role of polymeric stabilizers in formation of nanoparticles. - Highlights: • Nanoparticles of ZnO were fabricated from nanoporous metal-organic framework. • The effect of guest DMF and coordinated H{sub 2}O molecules on this process was studied. • The effect of them in formation nanoparticle is similar to polymeric stabilizers.« less

  11. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    PubMed

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  12. Guest Chain ``Melting'' in Incommensurate Host-Guest Potassium

    NASA Astrophysics Data System (ADS)

    McBride, Emma; Munro, Keith; McMahon, Malcolm

    2013-06-01

    Upon increasing pressure the group-I elements transform from close-packed structures (bcc and fcc) to a series of low-symmetry complex structures. Residing in the middle of the group, potassium (K) has numerous structures in common with its neighbours, and, in fact, is remarkably structurally similar to sodium (Na) and rubidium (Rb). For example, the post-fcc transition in K is to a composite incommensurate host-guest structure (tI19), and the host structure of this phase is isostructural with that found in Na and Rb. Previously we have reported that below 16.7GPa, the Bragg peaks from the guest component of tI19-Rb broaden considerably, signalling a loss of the inter-chain correlation, or a ``melting'' of the chains. Furthermore, in tI19-Na above 125 GPa, the Bragg peaks from the guest component are also broadened, suggesting that the guest chains are also nearly ``melted.'' During studies of the melting curve of K, we observed that the guest peaks from tI19-K broaden dramatically on heating. Here we report single-crystal, quasi-single-crystal, and powder synchrotron x-ray diffraction measurements of tI19-K to 50 GPa and 800 K, which allowed a detailed study of this chain ``melting'' transition. The order-disorder transition is clearly visible over a 30 GPa pressure range, and there are significant changes in the gradient of the phase boundary, which may be influenced by the nature of the guest structure. Furthermore, data extending the melting curve will also be presented.

  13. Construction of Discrete Pentanuclear Platinum(II) Stacks with Extended Metal-Metal Interactions by Using Phosphorescent Platinum(II) Tweezers.

    PubMed

    Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah

    2017-11-20

    Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Environment-Dependent Guest Exchange in Supramolecular Hosts

    PubMed Central

    2015-01-01

    Dynamic exchange of guest molecules, encapsulated in host assemblies, is a phenomenon in supramolecular chemistry that has important implications in several applications. While the mechanism of exchange in micellar assemblies has been previously investigated, the effect of host and guest environment upon the guest-exchange dynamics has received little attention, if any. In this paper, we study the guest-exchange mechanism in pH-sensitive nanogels along with pH-insensitive nanogels as a control. By systematically comparing the behavior of these nanogels, we show that size, concentration, and hydrophobicity can all play a critical role in guest-exchange dynamics. More importantly, these studies reveal that the dominant mechanism of guest exchange can intimately depend on environmental factors. PMID:25244305

  15. Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.

    PubMed

    Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado

    2017-04-01

    Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.

  16. Supramolecular complex of a fused zinc phthalocyanine-zinc porphyrin dyad assembled by two imidazole-C60 units: ultrafast photoevents.

    PubMed

    Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela

    2018-03-14

    A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.

  17. Equilibrium isotope effects on noncovalent interactions in a supramolecular host-guest system.

    PubMed

    Mugridge, Jeffrey S; Bergman, Robert G; Raymond, Kenneth N

    2012-02-01

    The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs. © 2011 American Chemical Society

  18. Solvent effects on the fluorescence and effective three-photon absorption of a Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Xue, Yuxiong; Sheng, Ning; Rui, Guanghao; Lv, Changgui; He, Jun; Gu, Bing; Cui, Yiping

    2018-06-01

    The fluorescence and effective three-photon absorption (3PA) properties of Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin] (labeled Zn(II)-porphyrin) dissolved in three different polar solvents were systematically investigated. The electrochemical and photophysical properties of Zn(II)-porphyrin were investigated by 1H NMR spectra, IR spectra, mass spectroscopy, and electronic absorption spectra. The fluorescence emission of Zn(II)-porphyrin in three different solvents excited at the wavelengths of 420 nm (Soret band) and 550 nm (Q-band) were analyzed. By performing Z-scan experiments with femtosecond laser pulses at a wavelength of 800 nm, the effective 3PA process of Zn(II)-porphyrin in three different solvents was observed and the underlying mechanism was discussed in detail. It is found that the fluorescence spectra slightly depend on the polarity of the solvent. Interestingly, the effective 3PA properties of Zn(II)-porphyrin strongly depend on the solvent polarity. The lower the solvent polarity is, the larger effective 3PA cross-section is. Low polar solvents are beneficial to applications of Zn(II)-porphyrin in optical limiting, photodynamic therapy, etc.

  19. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces.

    PubMed

    Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito

    2017-05-16

    Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest

  20. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    PubMed

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  1. Switchable host-guest systems on surfaces.

    PubMed

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli

  2. DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions.

    PubMed

    Shelton, Alexander H; Rodger, Alison; McMillin, David R

    2007-08-07

    Cationic porphyrins have an affinity for DNA and potential for applications in the fields of photodynamic therapy and cellular imaging. This report describes a new dicationic porphyrin, 5,15-dimethyl-10,20-di(N-methylpyridinium-4-yl)porphyrin, abbreviated H2tMe2D4. Although tetrasubstituted, H2tMe2D4 presents modest steric requirements and forms in reasonable yield by a "2+2" synthetic method. Accordingly, studies of the zinc(II)- and copper(II)-containing derivatives, Zn(tMe2D4) and Cu(tMe2D4), have also been possible. Methods used to characterize DNA-binding motifs include absorption, emission, linear, and circular dichroism spectroscopies, as well as viscometry. An unusually detailed picture of porphyrin uptake emerges. As the ratio of DNA to porphyrin increases during a typical titration, H2tMe2D4 or Cu(tMe2D4) initially aggregates on the host and then shifts to intercalative binding at close quarters before finally dispersing into non-interacting intercalation sites of the host. Emission studies of the copper(II) porphyrin have been very valuable. The existence of a measurable signal is diagnostic of intercalative binding, and the saturation behavior establishes that internalization typically monopolizes approximately three base pairs. In the moderate loading regime, emission data are most telling because dipole-dipole interactions between near-neighbor porphyrins tend to confuse other spectroscopic assays. The third ligand, Zn(tMe2D4), behaves differently in that the uptake is a strictly cooperative process. The mode of binding also varies with the base content of the DNA host. When the DNA is rich in A=T base pairs, the porphyrin remains five-coordinate and binds externally; however, Zn(tMe2D4) loses its axial ligand and binds by intercalation if the host contains only G[triple bond]C base pairs.

  3. The SAMPL4 host-guest blind prediction challenge: an overview.

    PubMed

    Muddana, Hari S; Fenley, Andrew T; Mobley, David L; Gilson, Michael K

    2014-04-01

    Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host-guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host-guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host-guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host-guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others' studies, and to systematically explore

  4. Rotaxane and catenane host structures for sensing charged guest species.

    PubMed

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an

  5. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  6. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.

    PubMed

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja

    2013-07-14

    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  7. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    PubMed

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  8. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation ofmore » 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.« less

  9. The synthesis and host-guest applications of synthetic receptor molecules

    NASA Astrophysics Data System (ADS)

    Osner, Zachary R.

    2011-12-01

    Host-guest chemistry involves the complimentary binding between two molecules. Host molecules have been synthesized to bind negative, positive, and neutral molecules such as proteins and enzymes, and have been used as optical sensors, electrochemical sensors, supramolecular catalysts, and in the pharmaceutical industry as anti-cancer agents.1 The field of nanoscience has exploited guest-host interactions to create optical sensors with colloidal gold and Dip-Pen nanolithography technologies. Gold nanoparticles, have been functionalized with DNA, and have been developed as a selective colorimetric detection system, that upon binding turns the solution from a red to blue in color.2 Cyclotriveratrylene (CTV) 1 is a common supramolecular scaffold that has been previously employed in guest-host chemistry, and the construction of CTV involves the cyclic trimerization of veratryl alcohol via the veratryl cation.3 Due to the rigid bowl shaped structure of CTV, CTV has been shown to act as a host molecule for fullerene-C60.4 Lectin binding receptor proteins are a specific class of proteins found in bacteria, viruses, plants, and animals that can bind to complimentary carbohydrates. It is these lectins that are believed to be responsible for cell-cell interactions and the formation of biofilms in pathenogenic bacteria.5 P. aeruginosa is a pathenogenic bacterium, shown to have a high resistance to many antibiotics, which can form biofilms in human lung tissue, causing respiratory tract infections in patients with compromised immune systems. 5 I will exploit guest-host interactions to create synthetic supramolecular and carbohydrate receptor molecules to that will be of use as biological sensing devices via self-assembled monolayers on solid surfaces and nanoparticle technologies. *Please refer to dissertation for references/footnotes.

  10. Vibrational Dynamics and Guest-Host Coupling in Clathrate Hydrates

    NASA Astrophysics Data System (ADS)

    Koza, Michael M.; Schober, Helmut

    Clathrate hydrates may turn out either a blessing or a curse for mankind. On one hand, they constitute a huge reservoir of fossil fuel. On the other hand, their decomposition may liberate large amounts of green house gas and have disastrous consequences on sea floor stability. It is thus of paramount importance to understand the formation and stability of these guest-host compounds. Neutron diffraction has successfully occupied a prominent place on the stage of these scientific investigations. Complete understanding, however, is not achieved without an explanation for the thermal properties of clathrates. In particular, the thermal conductivity has a large influence on clathrate formation and conservation. Neutron spectroscopy allows probing the microscopic dynamics of clathrate hydrates. We will show how comparative studies of vibrations in clathrate hydrates give insight into the coupling of the guest to the host lattice. This coupling together with the anharmonicity of the vibrational modes is shown to lay the foundations for the peculiar thermodynamic properties of clathrate hydrates. The results obtained reach far beyond the specific clathrate system. Similar mechanisms are expected to be at work in any guest-host complex.

  11. Mechanism of host-guest complexation by cucurbituril.

    PubMed

    Márquez, César; Hudgins, Robert R; Nau, Werner M

    2004-05-12

    The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.

  12. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  13. Aniline-containing guests recognized by α,α',δ,δ'-tetramethyl-cucurbit[6]uril host.

    PubMed

    Lin, Rui-Lian; Fang, Guo-Sheng; Sun, Wen-Qi; Liu, Jing-Xin

    2016-12-13

    The host-guest complexation of symmetrical α,α',δ,δ'-tetramethyl-cucurbit[6]uril (TMeQ[6]) and cucurbit[7]uril (Q[7]) with a series of aniline-containing guests has been investigated by various experimental techniques including NMR, ITC, and X-ray crystallography. Experimental results indicate that both TMeQ[6] and Q[7] hosts can encapsulate aniline-containing guests to form stable inclusion complexes. However, the oval cavity of TMeQ[6] is more complementary in size and shape to the aromatic ring of the guests than the spherical cavity of Q[7]. Shielding and deshielding effects of the aromatic ring on guests lead to the remarkable chemical shifts of the TMeQ[6] host protons. The rotational restriction of the guests in the oval cavity of TMeQ[6] results in the large negative values of entropy. The X-ray crystal structure of the 1:1 inclusion complex between TMeQ[6] and N,N'-diethyl-benzene-1,4-diamine unambiguously reveals that the aromatic ring of the guest resides in the oval cavity of TMeQ[6].

  14. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    PubMed Central

    Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine

    2017-01-01

    This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117

  15. Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.

    PubMed

    Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu

    2016-11-09

    Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.

  16. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    PubMed

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  17. Adsorption behavior of Zn porphyrins on a (1 0 1) face of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Bodek, Lukasz; Such, Bartosz

    2018-06-01

    The adsorption behavior of porphyrin molecules on anatase TiO2(1 0 1) has been investigated with scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) at room temperature. At low coverage, the ZnTPP molecules have a tendency to adsorb on the one type of step edges forming molecular chains. Due to relatively high mobility of molecules stable assemblies appear only close to a monolayer coverage. Zn porphyrins in self-assembled molecular domains form a commensurate structure. In-plane rotation of the molecules leads to formation of two domains of different chirality.

  18. The Design of Molecular Hosts, Guests, and Their Complexes.

    ERIC Educational Resources Information Center

    Cram, Donald J.

    1988-01-01

    Describes the origins, definitions, tools, and principles of host-guest chemistry. Gives examples of chiral recognition in complexation, of partial transacylase mimics, of caviplexes, and of a synthetic molecular cell. (Author/RT)

  19. Multifunctional guest-host particles engineered by reversal nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut

    2018-03-01

    Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.

  20. Hydrogen bonding assemblies in host guest complexes with 18-crown-6

    NASA Astrophysics Data System (ADS)

    Fonari, M. S.; Simonov, Yu. A.; Kravtsov, V. Ch.; Lipkowski, J.; Ganin, E. V.; Yavolovskii, A. A.

    2003-02-01

    Recent X-ray crystal structural data for two novel 1:2 host-guest complexes of 18-crown-6 with neutral organic molecules, thiaamide hydrazide of 2-aminobenzoic acid and thiaamide hydrazide of 4-amino-1,2,5-thiadiazole-3-carbonic acid are reported. The supramolecular structures of these two and five relative complexes are discussed from the point of view of participation of donor groups in coordination with the crown ether, and donor and acceptor groups in the self-assembly of the guest molecules. Guest molecules have incorporated amine and hydrazine moieties as proton donors and carbonyl oxygen and sulfur (in thiadiazole and in thiaamine moieties) as proton acceptors. The guest-guest interactions appeared to be crucial in the final architecture.

  1. Host-guest capability of a three-dimensional heterometallic macrocycle.

    PubMed

    Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin

    2018-02-13

    A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.

  2. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    PubMed

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  3. Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine.

    PubMed

    Cook, Peter L; Yang, Wanli; Liu, Xiaosong; García-Lastra, Juan María; Rubio, Angel; Himpsel, F J

    2011-05-28

    Copper and zinc phthalocyanines and porphyrins are used in organic light emitting diodes and dye-sensitized solar cells. Using near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Cu 2p and Zn 2p edges, the unoccupied valence states at the Cu and Zn atoms are probed and decomposed into 3d and 4s contributions with the help of density functional calculations. A comparison with the N 1s edge provides the 2p states of the N atoms surrounding the metal, and a comparison with inverse photoemission provides a combined density of states. © 2011 American Institute of Physics

  4. 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei

    2015-07-01

    Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity

  5. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    PubMed

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A structural model of polyglutamine determined from a host-guest method combining experiments and landscape theory.

    PubMed

    Finke, John M; Cheung, Margaret S; Onuchic, José N

    2004-09-01

    Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method

  7. Host-guest complexes of local anesthetics with cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state

    NASA Astrophysics Data System (ADS)

    Danylyuk, Oksana; Butkiewicz, Helena; Coleman, Anthony W.; Suwinska, Kinga

    2017-12-01

    Here we describe the host-guest inclusion complexes of local anesthetic drugs with two macrocyclic hosts cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state. The anesthetic agents used in the co-crystallization with the supramolecular hosts are lidocaine, procaine, procainamide, prilocaine and proparacaine. Both macrocycles encapsulate the alkylammonium moieties of anestetics guests into their cavities although the mechanism of complexation, host-guest stoichiometry and geometry differ depending on the nature of the supramolecular host.

  8. External and internal guest binding of a highly charged supramolecular host in water: deconvoluting the very different thermodynamics.

    PubMed

    Sgarlata, Carmelo; Mugridge, Jeffrey S; Pluth, Michael D; Tiedemann, Bryan E F; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N

    2010-01-27

    NMR, UV-vis, and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga(4)L(6)](12-) supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.

  9. Tunable Two-color Luminescence and Host-guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  10. Two novel self-assemblies of supramolecular solar cells using N-heterocyclic-anchoring porphyrins.

    PubMed

    Zhang, Qian; Wu, Fang-Yuan; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Neng-Zhi

    2018-02-15

    Two novel N-substituted anchoring porphyrins (ZnPAtz and ZnPAim) have been devised and synthesized. Moreover, these two anchoring porphyrins were linked to the TiO 2 semiconductor through carboxyl groups and then a zinc porphyrin ZnP was bound to the anchoring porphyrin using a zinc-to-ligand axial coordination approach. The different performances of these assemblies were compared with single anchoring porphyrin devices ZnPAtz and ZnPAim. The photoelectric conversion efficiency of the new supramolecular solar cells sensitized by ZnP-ZnPAx (x=tz, im) has been improved. The ZnP-ZnPAtz-based DSSCs provided the highest photovoltaic efficiency (1.86%). Fundamental studies showed that incorporation of these assemblies promote light-harvesting efficiency. Copyright © 2017. Published by Elsevier B.V.

  11. Temperature-Dependent Conformations of a Membrane Supported ‘Zinc Porphyrin Tweezer’ by 2D Fluorescence Spectroscopy

    PubMed Central

    Widom, Julia R.; Lee, Wonbae; Perdomo-Ortiz, Alejandro; Rappoport, Dmitrij; Molinski, Tadeusz F.; Aspuru-Guzik, Alán; Marcus, Andrew H.

    2013-01-01

    We studied the equilibrium conformations of a ‘zinc porphyrin tweezer’ composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4 butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of ‘folded’ and ‘extended’ conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17 – 85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes. PMID:23480874

  12. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  13. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    PubMed

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  14. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement

    PubMed Central

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2017-01-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4′-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions. PMID:28246642

  15. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.

    PubMed

    Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C; Bhargava, Rohit; Pan, Dipanjan

    2016-08-22

    Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC 50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Overview of the SAMPL5 host-guest challenge: Are we doing better?

    PubMed

    Yin, Jian; Henriksen, Niel M; Slochower, David R; Shirts, Michael R; Chiu, Michael W; Mobley, David L; Gilson, Michael K

    2017-01-01

    The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein-ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host-guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host-guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host-guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.

  17. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    PubMed

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  18. Force-field and quantum-mechanical binding study of selected SAMPL3 host-guest complexes

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Nobuko; Fusti-Molnar, Laszlo; Wlodek, Stanislaw

    2012-05-01

    A Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs. All four binding enthalpy predictions with the DFT/PCM method suffered 70% or larger deviations from the calorimetry data. Results are discussed in terms of the molecular models used for guest-host complexation and the quality of the intermolecular potentials.

  19. Towards the fluorogenic detection of peroxide explosives through host-guest chemistry.

    PubMed

    Almenar, Estefanía; Costero, Ana M; Gaviña, Pablo; Gil, Salvador; Parra, Margarita

    2018-04-01

    Two dansyl-modified β-cyclodextrin derivatives ( 1 and 2 ) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP.

  20. A Zn-porphyrin complex contributes to bright red color in Parma ham.

    PubMed

    Wakamatsu, J; Nishimura, T; Hattori, A

    2004-05-01

    The Italian traditional dry-cured ham (Parma ham) shows a stable bright red color that is achieved without the use of nitrite and/or nitrate. In this study we examined the pigment spectroscopically, fluoroscopically and by using HPLC and ESI-HR-MASS analysis. Porphyrin derivative other than acid hematin were contained in the HCl-containing acetone extract from Parma ham. A strong fluorescence peak at 588 nm and a weak fluorescence peak at 641 nm were observed. By HPLC analysis the acetone extract of Parma ham was observed at the single peak, which eluted at the same time as Zn-protoporphyrin IX and emitted fluorescence. The results of ESI-HR-MS analysis showed both agreement with the molecular weight of Zn-protoporphyrin IX and the characteristic isotope pattern caused by Zn isotopes. These results suggest that the bright red color in Parma ham is caused by Zn-protoporphyrin IX.

  1. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    PubMed

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modeling and characterization of dye-doped guest-host liquid crystal eyewear

    NASA Astrophysics Data System (ADS)

    Coutino, Pedro Coutino

    This thesis explores the use of dye-doped guest-host liquid crystals in variable transmission eyewear devices that protect against rapid and abrupt changes in lighting conditions. Some of their unique characteristics such as millisecond time response, low power consumption, fail-safe operation, and wide color palette make them the only available technology that meets the basic requirements for fast, adaptative eyewear applications. Despite these unique features, there are limitations in the technology which have hindered its use for more advanced eyewear applications. It is the aim of this dissertation to explore these limitations and provide experimental and numerical characterization tools necessary to surpass them. First, several techniques are described to evaluate materials and devices performance in terms of their photopic transmission, haze, birefringence, and distortion. The results are used to demonstrate that by choosing and combining the right materials, it is possible to improve the optical quality of the eyewear. Then, a simulation instrument which combines and integrates all the necessary elements to model the electro-optical response of dye-doped guest-host liquid crystal eyewear was constructed. This program is capable of reproducing with high accuracy experimental results, to predict the performance of devices, and to mimic the spectral curve of a target color. Numerical experiments were performed to study some of the most common limitations of the e-Tint mode or single cell technology including photopic transmission window, and polarization dependence and demonstrate that optimizing parameters such as birefringence, d/p, and concentration of dyes helps to overcome these limitations and enhance system performance. A guest-host double cell system is proposed as a new alternative mode for most advanced eyewear applications. Particular attention was placed on a switchable crossed polarizers configuration which offered superior optical characteristics

  3. Untangling the Diverse Interior and Multiple Exterior Guest Interactions of a Supramolecular Host by the Simultaneous Analysis of Complementary Observables.

    PubMed

    Sgarlata, Carmelo; Raymond, Kenneth N

    2016-07-05

    The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.

  4. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex.

    PubMed

    Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl

    2018-01-15

    The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  5. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    PubMed

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  6. Sensitive and Specific Guest Recognition through Pyridinium-Modification in Spindle-Like Coordination Containers.

    PubMed

    Bhuvaneswari, Nagarajan; Dai, Feng-Rong; Chen, Zhong-Ning

    2018-05-02

    An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn 2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H 2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Robust multi-responsive supramolecular hydrogel based on a mono-component host-guest gelator.

    PubMed

    Cheng, Weinan; Zhao, Dongxu; Qiu, Yuan; Hu, Haisi; Wang, Hong; Wang, Qin; Liao, Yonggui; Peng, Haiyan; Xie, Xiaolin

    2018-05-29

    Supramolecular hydrogels have been widely investigated, but the construction of stimuli-responsive mono-component host-guest hydrogels remains a challenge in that it is still hard to balance the solubility and gelation ability of the gelator. In this work, three azobenzene-modified β-cyclodextrin derivatives with different alkyl lengths (β-CD-Azo-Cn) have been synthesized. The length of the alkyl chain dramatically influences the solubility and gelation ability of β-CD derivatives in water. Among these derivatives, β-CD-Azo-C8 possesses the lowest minimum gelation concentration (MGC). Based on the host-guest interaction between β-CD and azobenzene units in aqueous solution, which is confirmed by UV-visible and ROESY NMR spectra, the gelators self-assemble and further interwine into networks through the hydrogen bonds on the surface of β-CD cavities. Hydrogels formed by mono-component gelators can collapse under external stimuli such as heating, competition guests and hosts, and UV irradiation. When the concentration of the gelator is more than 8 wt%, the hydrogel exhibits good self-supporting ability with a storage modulus higher than 104 Pa. The gel-sol transition temperature of the hydrogel is near body temperature, indicating its potential applications in biological materials.

  8. High-brightness blue organic light emitting diodes with different types of guest-host systems

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Jing-shuang; Peng, Cui-yun; Guo, Kun-ping; Wei, Bin; Zhang, Hao

    2016-03-01

    We demonstrate high-brightness blue organic light emitting diodes (OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene (perylene), di(4-fluorophenyl) amino-di (styryl) biphenyl (DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl (BCzVBi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl (CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.10), (0.15, 0.15) and (0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.

  9. Tweezering the core of dendrimers: medium effect on the kinetic and thermodynamic properties.

    PubMed

    Giansante, Carlo; Mazzanti, Andrea; Baroncini, Massimo; Ceroni, Paola; Venturi, Margherita; Klärner, Frank-Gerrit; Vögtle, Fritz

    2009-10-02

    We have investigated the complex formation between dendritic guests and a molecular tweezer host by NMR, absorption, and emission spectroscopy as well as electrochemical techniques. The dendrimers are constituted by an electron-acceptor 4,4'-bipyridinium core appended with one (DnB(2+)) or two (Dn(2)B(2+)) polyaryl-ether dendrons. Tweezer T comprises a naphthalene and four benzene components bridged by four methylene groups. Medium effects on molecular recognition phenomena are discussed and provide insight into the conformation of dendrimers: change in solvent polarity from pure CH(2)Cl(2) to CH(2)Cl(2)/CH(3)CN mixtures and addition of tetrabutylammonium hexafluorophosphate (NBu(4)PF(6), up to 0.15 M), the supporting electrolyte used in the electrochemical measurements, have been investigated. The association constants measured in different media show the following trend: (i) they decrease upon increasing polarity of the solvent, as expected for host-guest complexes stabilized by electron donor-acceptor interactions; (ii) no effect of generation and number of dendrons (one for the DnB(2+) family and two for the Dn(2)B(2+) family) appended to the core is observed in higher polarity media; and (iii) in a low-polarity solvent, like CH(2)Cl(2), the stability of the inclusion complexes is higher for DnB(2+) dendrimers than for Dn(2)B(2+) ones, while within each dendrimer family it increases by decreasing dendron generation, and upon addition of NBu(4)PF(6). The last result has been ascribed to a partial dendron unfolding. Kinetic investigations performed in lower polarity media evidence that the rate constants of complex formation are slower for symmetric Dn(2)B(2+) dendrimers than for the nonsymmetric DnB(2+) ones, and that within the Dn(2)B(2+) family, they decrease by increasing dendron generation. The dependence of the rate constants for the formation and dissociation of the complexes upon addition of NBu(4)PF(6) has also been investigated and discussed.

  10. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    PubMed

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  11. Improved Optical and Morphological Properties of Vinyl-Substituted Hybrid Silica Materials Incorporating a Zn-Metalloporphyrin.

    PubMed

    Dudás, Zoltán; Fagadar-Cosma, Eugenia; Len, Adél; Románszki, Loránd; Almásy, László; Vlad-Oros, Beatrice; Dascălu, Daniela; Krajnc, Andraž; Kriechbaum, Manfred; Kuncser, Andrei

    2018-04-06

    This work is focused on a novel class of hybrid materials exhibiting enhanced optical properties and high surface areas that combine the morphology offered by the vinyl substituted silica host, and the excellent absorption and emission properties of 5,10,15,20-tetrakis( N -methyl-4-pyridyl)porphyrin-Zn(II) tetrachloride as a water soluble guest molecule. In order to optimize the synthesis procedure and the performance of the immobilized porphyrin, silica precursor mixtures of different compositions were used. To achieve the requirements regarding the hydrophobicity and the porous structure of the gels for the successful incorporation of porphyrin, the content of vinyltriacetoxysilane was systematically changed and thoroughly investigated. Substitution of the silica gels with organic groups is a viable way to provide new properties to the support. An exhaustive characterization of the synthesized silica samples was realised by complementary physicochemical methods, such as infrared spectroscopy (FT-IR), absorption spectroscopy (UV-Vis) and photoluminescence, nuclear magnetic resonance spectroscopy ( 29 Si-MAS-NMR) transmission and scanning electron microscopy (TEM and SEM), nitrogen absorption (BET), contact angle (CA), small angle X ray and neutron scattering (SAXS and SANS). All hybrids showed an increase in emission intensity in the wide region from 575 to 725 nm (Q bands) in comparison with bare porphyrin. By simply tuning the vinyltriacetoxysilane content, the hydrophilic/hydrophobic profile of the hybrid materials was changed, while maintaining a high surface area. Good control of hydrophobicity is important to enhance properties such as dispersion, stability behaviour, and resistance to water, in order to achieve highly dispersible systems in water for biomedical applications.

  12. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  13. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-07

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.

  14. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    PubMed

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical

  15. Encapsulation of a rhodamine dye within a bile acid binding protein: toward water processable functional bio host-guest materials.

    PubMed

    Tomaselli, Simona; Giovanella, Umberto; Pagano, Katiuscia; Leone, Giuseppe; Zanzoni, Serena; Assfalg, Michael; Meinardi, Francesco; Molinari, Henriette; Botta, Chiara; Ragona, Laura

    2013-10-14

    New strategies are requested for the preparation of bioinspired host-guest complexes to be employed in technologically relevant applications, as sensors and optoelectronic devices. We report here a new approach employing a single monomeric protein as host for the strongly fluorescent rhodamine dye. The selected protein, belonging to the intracellular lipid binding protein family, fully encapsulates one rhodamine molecule inside its cavity forming a host-guest complex stabilized by H and π-hydrogen bonds, a salt bridge, and favorable hydrophobic contacts, as revealed by the NMR derived structural model. The protein-dye solutions are easily processable and form homogeneous thin films exhibiting excellent photophysical and morphological properties, as derived from photoluminescence and AFM data. The obtained results represent the proof of concept of the viability of this bio host-guest system for the development of bioinspired optoelectronic devices.

  16. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  17. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Host-guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units.

    PubMed

    Buaki-Sogo, Mireia; Montes-Navajas, Pedro; Alvaro, Mercedes; Garcia, Hermenegildo

    2013-06-01

    2-(Propylamino)acetamide of aniline (1a), and bis-2-(propylamino)acetamide of ortho- (1b) and para-(1c) phenylenediamine form host-guest complexes with CB[6], CB[7] and CB[8] as evidenced by the variations in the (1)H NMR spectroscopy chemical shifts and observation in MALDI-TOF-MS and ESI-MS of ions at the corresponding mass. Binding constants for the 1:1 complexes were estimated from fluorescence titrations and were in the range 10(5)-10(6)M(-1). Models based on molecular mechanics for these supramolecular complexes are provided. In spite of the different geometries arising from the ortho- or para-substitution, phenylenediamides form complexes of similar strength in which the hydrophobic alkyl chains are accommodated inside the host cavity. Formation of these host-guest complexes in the solid state was also achieved by modifying an aminopropyl silica with chloroacetanilides and preparing three silica having analogues of compounds 1a-c anchored to the solid particles. Titrations showed, however, that these solids can adsorb a large percentage of CBs by unselective interactions that are not related to the formation of inclusion complexes. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads.

    PubMed

    Zervaki, Galateia E; Roy, Mahesh S; Panda, Manas K; Angaridis, Panagiotis A; Chrissos, Emmanouel; Sharma, Ganesh D; Coutsolelos, Athanassios G

    2013-09-03

    Two novel porphyrin-porphyrin dyads, the symmetrical Zn[Porph]-Zn[Porph] (2) and unsymmetrical Zn[Porph]-H2[Porph] (4), where Zn[Porph] and H2[Porph] are the metalated and free-base forms of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, respectively, in which two porphyrin units are covalently bridged by 1,3,5-triazine, have been synthesized via the stepwise amination of cyanuric chloride. The dyads are also functionalized by a terminal carboxylic acid group of a glycine moiety attached to the triazine group. Photophysical measurements of 2 and 4 showed broaden and strengthened absorptions in their visible spectra, while electrochemistry experiments and density functional theory calculations revealed negligible interaction between the two porphyrin units in their ground states but appropriate frontier orbital energy levels for use in dye-sensitized solar cells (DSSCs). The 2- and 4-based solar cells have been fabricated and found to exhibit power conversion efficiencies (PCEs) of 3.61% and 4.46%, respectively (under an illumination intensity of 100 mW/cm(2) with TiO2 films of 10 μm thickness). The higher PCE value of the 4-based DSSC, as revealed by photovoltaic measurements (J-V curves) and incident photon-to-current conversion efficiency (IPCE) spectra of the two cells, is attributed to its enhanced short-circuit current (J(sc)) under illumination, high open-circuit voltage (V(oc)), and fill factor (FF) values. Electrochemical impedance spectra demonstrated shorter electron-transport time (τd), longer electron lifetime (τe), and high charge recombination resistance for the 4-based cell, as well as larger dye loading onto TiO2.

  20. Stimulation of Cysteine-Coated CdSe/ZnS Quantum Dot Luminescence by meso-Tetrakis (p-sulfonato-phenyl) Porphyrin

    NASA Astrophysics Data System (ADS)

    Parra, Gustavo G.; Ferreira, Lucimara P.; Gonçalves, Pablo J.; Sizova, Svetlana V.; Oleinikov, Vladimir A.; Morozov, Vladimir N.; Kuzmin, Vladimir A.; Borissevitch, Iouri E.

    2018-02-01

    Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

  1. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    PubMed

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation

    PubMed Central

    Sadjadpour, Susan; Safarian, Shahrokh; Zargar, Seyed Jalal; Sheibani, Nader

    2016-01-01

    In photodynamic therapy (PDT) of cancer both the light and the photosensitizing agent are normally harmless, but in combination they could result in selective tumor killing. Zinc oxide nanoparticles were synthesized and coated with the amino acid cysteine to provide an adequate arm for conjugation with porphyrin photosensitizers (meso-tetra (4-carboxyphenyl) porphyrin [MTCP] and CuMTCP). Porphyrin-conjugated nanoparticles were characterized by TEM, FTIR, and UV–vis, and fluorescence spectrophotometry. The 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability in the presence or absence of porphyrin conjugates following UV and X-ray irradiation. The uptake of the porphyrin-conjugated ZnO nanoparticles by cells was detected using fluorescence microscopy. Our results indicated that the survival of T-47D cells was significantly compromised in the presence of ZnO-MTCP-conjugated nanostructures with UV light exposure. Exhibition of cytotoxic activity of ZnO-MTCP for human prostate cancer (Du145) cells occurred at a higher concentration, indicating the more resistant nature of these tumor cells. ZnO-CuMTCP showed milder cytotoxic effects in human breast cancer (T-47D) and no cytotoxic effects in Du145 with UV light exposure, consistent with its lower cytotoxic potency as well as cellular uptake. Surprisingly, none of the ZnO-porphyrin conjugates exhibited cytotoxic effects with X-ray irradiation, whereas ZnO alone exerted cytotoxicity. Thus, ZnO and ZnO-porphyrin nanoparticles with UV or X-ray irradiation may provide a suitable treatment option for various cancers. PMID:25581219

  3. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    NASA Astrophysics Data System (ADS)

    Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.

    2017-01-01

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  4. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-06-30

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  5. Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure

    NASA Astrophysics Data System (ADS)

    Tian, Yongming; M. Beavers, Christine; Busani, Tito; Martin, Kathleen E.; Jacobsen, John L.; Mercado, Brandon Q.; Swartzentruber, Brian S.; van Swol, Frank; Medforth, Craig J.; Shelnutt, John A.

    2012-02-01

    Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room

  6. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carriedmore » out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.« less

  7. Enhanced photobactericidal activity of ZnO nanorods modified by meso-tetrakis(4-sulfonatophenyl)porphyrin under visible LED lamp irradiation.

    PubMed

    Rahimi, Rahmatollah; Shokraiyan, Javad; Rabbani, Mahboubeh; Fayyaz, Fatemeh

    2015-01-01

    In this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy. In addition, the photobactericidal activity of TPPS/ZnO composite, TPPS and ZnO nanorods was tested against the pathogenic bacterium of Escherichia coli under visible LED lamp irradiation. The results indicate that the photobactericidal activity of TPPS-loaded ZnO nanorods was better than TPPS or ZnO nanorods, separately.

  8. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs.

    PubMed

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J

    2016-12-01

    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by 1 H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Electrochemiluminescence aptasensor for adenosine triphosphate detection using host-guest recognition between metallocyclodextrin complex and aptamer.

    PubMed

    Chen, Hong; Chen, Qiong; Zhao, Yingying; Zhang, Fan; Yang, Fan; Tang, Jie; He, Pingang

    2014-04-01

    A sensitive and label-free electrochemiluminescence (ECL) aptasensor for the detection of adenosine triphosphate (ATP) was successfully designed using host-guest recognition between a metallocyclodextrin complex, i.e., tris(bipyridine)ruthenium(II)-β-cyclodextrin [tris(bpyRu)-β-CD], and an ATP-binding aptamer. In the protocol, the NH2-terminated aptamer was immobilized on a glassy carbon electrode (GCE) by a coupling interaction. After host-guest recognition between tris(bpyRu)-β-CD and aptamer, the tris(bpyRu)-β-CD/aptamer/GCE produced a strong ECL signal as a result of the photoactive properties of tris(bpyRu)-β-CD. However, in the presence of ATP, the ATP/aptamer complex was formed preferentially, which restricted host-guest recognition, and therefore less tris(bpyRu)-β-CD was attached to the GCE surface, resulting in an obvious decrease in the ECL intensity. Under optimal determination conditions, an excellent logarithmic linear relationship between the ECL decrease and ATP concentration was obtained in the range 10.0-0.05 nM, with a detection limit of 0.01 nM at the S/N ratio of 3. The proposed ECL-based ATP aptasensor exhibited high sensitivity and selectivity, without time-consuming signal-labeling procedures, and is considered to be a promising model for detection of aptamer-specific targets. Copyright © 2014. Published by Elsevier B.V.

  10. Conjugated Porphyrin Dimers: Cooperative Effects and Electronic Communication in Supramolecular Ensembles with C60.

    PubMed

    Moreira, Luis; Calbo, Joaquín; Aragó, Juan; Illescas, Beatriz M; Nierengarten, Iwona; Delavaux-Nicot, Béatrice; Ortí, Enrique; Martín, Nazario; Nierengarten, Jean-François

    2016-11-30

    Two new conjugated porphyrin-based systems (dimers 3 and 4) endowed with suitable crown ethers have been synthesized as receptors for a fullerene-ammonium salt derivative (1). Association constants in solution have been determined by UV-vis titration experiments in CH 2 Cl 2 at room temperature. The designed hosts are able to associate up to two fullerene-based guest molecules and present association constants as high as ∼5 × 10 8 M -1 . Calculation of the allosteric cooperative factor α for supramolecular complexes [3·1 2 ] and [4·1 2 ] showed a negative cooperative effect in both cases. The interactions accounting for the formation of the associates are based, first, on the complementary ammonium-crown ether interaction and, second, on the π-π interactions between the porphyrin rings and the C 60 moieties. Theoretical calculations have evidenced a significant decrease of the electron density in the porphyrin dimers 3 and 4 upon complexation of the first C 60 molecule, in good agreement with the negative cooperativity found in these systems. This negative effect is partially compensated by the stabilizing C 60 -C 60 interactions that take place in the more stable syn-disposition of [4·1 2 ].

  11. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents.

    PubMed

    Camus, Marie-Stéphanie; Dos Santos, Sonia; Chandravarkar, Arunan; Mandal, Bhubaneswar; Schmid, Adrian W; Tuchscherer, Gabriele; Mutter, Manfred; Lashuel, Hilal A

    2008-09-01

    Several amyloid-forming proteins are characterized by the presence of hydrophobic and highly amyloidogenic core sequences that play critical roles in the initiation and progression of amyloid fibril formation. Therefore targeting these sequences represents a viable strategy for identifying candidate molecules that could interfere with amyloid formation and toxicity of the parent proteins. However, the highly amyloidogenic and insoluble nature of these sequences has hampered efforts to develop high-throughput fibrillization assays. Here we describe the design and characterization of host-guest switch peptides that can be used for in vitro mechanistic and screening studies that are aimed at discovering aggregation inhibitors that target highly amyloidogenic sequences. These model systems are based on a host-guest system where the amyloidogenic sequence (guest peptide) is flanked by two beta-sheet-promoting (Leu-Ser)(n) oligomers as host sequences. Two host-guest peptides were prepared by using the hydrophobic core of Abeta comprising residues 14-24 (HQKLVFFAEDV) as the guest peptide with switch elements inserted within (peptide 1) or at the N and C termini of the guest peptide (peptide 2). Both model peptides can be triggered to undergo rapid self-assembly and amyloid formation in a highly controllable manner and their fibrillization kinetics is tuneable by manipulating solution conditions (for example, peptide concentration and pH). The fibrillization of both peptides reproduces many features of the full-length Abeta peptides and can be inhibited by known inhibitors of Abeta fibril formation. Our results suggest that this approach can be extended to other amyloid proteins and should facilitate the discovery of small-molecule aggregation inhibitors and the development of more efficacious anti-amyloid agents to treat and/or reverse the pathogenesis of neurodegenerative and systemic amyloid diseases.

  12. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un

    2018-04-01

    Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.

  13. Selectivity and stoichiometry boosting of beta-cyclodextrin in cationic/anionic surfactant systems: when host-guest equilibrium meets biased aggregation equilibrium.

    PubMed

    Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin

    2010-02-18

    Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.

  14. Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires.

    PubMed

    Chu, Guang; Wang, Xuesi; Chen, Tianrui; Gao, Jianxiong; Gai, Fangyuan; Wang, Yu; Xu, Yan

    2015-06-10

    Plasmonic materials with large chiroptical activity at visible wavelength have attracted considerable attention due to their potential applications in metamaterials. Here we demonstrate a novel guest-host chiral nematic liquid crystal film composed of bulk self-co-assembly of the dispersed plasmonic silver nanowires (AgNWs) and cellulose nanocrystals (CNCs). The AgNWs-CNCs composite films show strong plasmonic optical activities, that are dependent on the chiral photonic properties of the CNCs host medium and orientation of the guest AgNWs. Tunable chiral distribution of the aligned anisotropic AgNWs with long-range order is obtained through the CNCs liquid crystal mediated realignment. The chiral plasmonic optical activity of the AgNWs-CNCs composite films can be tuned by changing the interparticle electrostatic repulsion between the CNCs nanorods and AgNWs. We also observe an electromagnetic energy transfer phenomena among the plasmonic bands of AgNWs, due to the modulation of the photonic band gap of the CNCs host matrix. This facile approach for fabricating chiral macrostructured plasmonic materials with optically tunable property is of interest for a variety of advanced optics applications.

  15. Electronegative Guests in CoSb 3

    DOE PAGES

    Duan, Bo; Yang, Jiong; Salvador, James R.; ...

    2016-04-19

    Introducing guests into a host framework to form a so called inclusion compound can be used to design materials with new and fascinating functionalities. The vast majority of inclusion compounds have electropositive guests with neutral or negatively charged frameworks. Here, we show a series of electronegative guest filled skutterudites with inverse polarity. The strong covalent guest-host interactions observed for the electronegative group VIA guests, i.e., S and Se, feature a unique localized cluster vibration which significantly influences the lattice dynamics, together with the point-defect scattering caused by element substitutions, resulting in very low lattice thermal conductivity values. The findings ofmore » electronegative guests provide a new perspective for guest-filling in skutterudites, and the covalent filler/lattice interactions lead to an unusual lattice dynamics phenomenon which can be used for designing high-efficiency thermoelectric materials and novel functional inclusion compounds with open structures.« less

  16. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin.

    PubMed

    Bhattacharjee, Amlan J; Ahluwalia, Karan; Taylor, Scott; Jin, Ou; Nicoludis, John M; Buscaglia, Robert; Brad Chaires, J; Kornfilt, David J P; Marquardt, David G S; Yatsunyk, Liliya A

    2011-08-01

    G-quadruplexes (GQ) are formed by the association of guanine-rich stretches of DNA. Certain small molecules can influence kinetics and thermodynamics of this association. Understanding the mechanism of ligand-assisted GQ folding is necessary for the design of more efficient cancer therapeutics. The oligonucleotide d(TAGGG)(2) forms parallel bimolecular GQ in the presence of ≥66 mM K(+); GQs are not formed under Na(+), Li(+) or low K(+) conditions. The thermodynamic parameters for GQ folding at 60 μM oligonucleotide and 100 mM KCl are ΔH = -35 ± 2 kcal mol(-1) and ΔG(310) = -1.4 kcal mol(-1). Quadruplex [d(TAGGG)(2)](2) binds 2-3 K(+) ions with K(d) of 0.5 ± 0.2 mM. Our work addresses the question of whether metal free 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) and its Zn(II), Cu(II), and Pt(II) derivatives are capable of facilitating GQ folding of d(TAGGG)(2) from single stranded, or binding to preformed GQ, using UV-vis and circular dichroism (CD) spectroscopies. ZnTMPyP4 is unique among other porphyrins in its ability to induce GQ structure of d(TAGGG)(2), which also requires at least a low amount of potassium. ZnTMPyP4 binds with 2:1 stoichiometry possibly in an end-stacking mode with a ~10(6) M(-1) binding constant, determined through UV-vis and ITC titrations. This process is entropically driven and has ΔG(298) of -8.0 kcal mol(-1). TMPyP4 binds with 3:1 stoichiometry and K(a) of ~10(6) M(-1). ZnTMPyP4 and TMPyP4 are efficient stabilizers of [d(TAGGG)(2)](2) displaying ΔT(1/2) of 13.5 and 13.8 °C, respectively, at 1:2 GQ to porphyrin ratio; CuTMPyP4 shows a much weaker effect (ΔT(1/2) = 4.7 °C) and PtTMPyP4 is weakly destabilizing (ΔT(1/2) = -2.9 °C). The selectivity of ZnTMPyP4 for GQ versus dsDNA is comparable to that of TMPyP4. The ability of ZnTMPyP4 to bind and stabilize GQ, to induce GQ formation, and speed up its folding may suggest an important biological activity for this molecule. Copyright © 2011 Elsevier Masson SAS

  17. 4D-π-1A type β-substituted ZnII-porphyrins: ideal green sensitizers for building-integrated photovoltaics.

    PubMed

    Covezzi, A; Orbelli Biroli, A; Tessore, F; Forni, A; Marinotto, D; Biagini, P; Di Carlo, G; Pizzotti, M

    2016-10-18

    Two novel green β-substituted Zn II -porphyrins, G1 and G2, based on a 4D-π-1A type substitution pattern have been synthesized. Their enhanced push-pull character, by reduction of H-L energy gaps, promotes broadening and red-shifting of absorption bands. The effective synthetic pathway and the remarkable spectroscopic properties make G2 ideal for BIPV application.

  18. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry.

    PubMed

    Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony

    2011-05-26

    A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.

  19. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.

    PubMed

    Muddana, Hari S; Gilson, Michael K

    2012-06-12

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.

  20. Synthesis and in vitro phototoxicity of multifunctional Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin-coated gold nanoparticles assembled via axial coordination with imidazole ligands.

    PubMed

    Alea-Reyes, María E; Penon, Oriol; García Calavia, Paula; Marín, María J; Russell, David A; Pérez-García, Lluïsa

    2018-07-01

    Metalloporphyrins are extensively investigated for their ability to form reactive oxygen species and as potent photosensitisers for use in photodynamic therapy. However, their hydrophobicity generally causes solubility issues concerning in vivo delivery due to lack of distribution and low clearance from the body. Immobilising porphyrins on carriers, such as gold nanoparticles (GNP), can overcome some of these drawbacks. The mode of assembling the porphyrins to the carrier influences the properties of the resulting drug delivery systems. We describe the synthesis and characterisation of new porphyrin decorated water soluble GNP and we explore Zn-imidazole axial coordination as the mode of linking the porphyrin to the metallic core of the nanoparticles. Quantification of singlet oxygen production, toxicity in dark, cellular uptake by SK-BR-3 cells and phototoxicity have been assessed. Axial coordination limits the number of porphyrins on the gold surface, reduces the formation of aggregates, and diminishes metal exchange in the porphyrin, all of which contribute to enhance the efficiency of singlet oxygen generation from the immobilised porphyrin. In vitro experiments on SK-BR-3 cells reveal a fast uptake followed by more than 80% cell death after irradiation with low doses of light. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Highly Efficient Chirality Transfer from Diamines Encapsulated within a Self-Assembled Calixarene-Salen Host.

    PubMed

    Martínez-Rodríguez, Luis; Bandeira, Nuno A G; Bo, Carles; Kleij, Arjan W

    2015-05-04

    A calix[4]arene host equipped with two bis-[Zn(salphen)] complexes self-assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix-salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×10(11)  M(-2) for the assembled host-guest ensemble has been determined with a substantial cooperativity factor α of 6.4. Density functional calculations are used to investigate the origin of the stability of the host-guest system and the experimental CD spectrum compared with those calculated for both possible diastereoisomers showing that the M,M isomer is the one that is preferentially formed. The current system holds promise for the chirality determination of diamines, as evidenced by the investigated substrate scope and the linear relationship between the ee of the diamine and the amplitude of the observed Cotton effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.

    PubMed

    Feldblyum, Jeremy I; Liu, Ming; Gidley, David W; Matzger, Adam J

    2011-11-16

    There are several compounds for which there exists a disconnect between porosity as predicted by crystallography and porosity measured by gas sorption analysis. In this paper, the Zn-based analogue of Cu(3)(btc)(2) (HKUST-1), Zn(3)(btc)(2) (Zn-HKUST-1; btc = 1,3,5-benzenetricarboxylate) is investigated. Conventional analysis of Zn-HKUST-1 by powder X-ray diffraction and gas sorption indicates retention of crystalline structure but negligible nitrogen uptake at 77 K. By using positron annihilation lifetime spectroscopy, a densified surface layer preventing the entry of even small molecular species into the crystal framework is revealed. The material is shown to have inherent surface instability after solvent removal, rendering it impermeable to molecular guests irrespective of handling and processing methods. This previously unobserved surface instability may provide insight into the failure of other microporous coordination polymers to exhibit significant porosity despite crystal structures indicative of regular, interconnected, microporous networks.

  3. Panchromatic Sensitization Using Zn(II) Porphyrin-Based Photosensitizers for Light-Driven Hydrogen Production in Water.

    PubMed

    Ho, Po-Yu; Mark, Michael F; Wang, Yi; Yiu, Sze-Chun; Yu, Wai-Hong; Ho, Cheuk-Lam; McCamant, David W; Eisenberg, Richard; Huang, Shuping

    2018-06-19

    Three molecular photosensitizers (PSs) with carboxylic acid anchors for attachment to platinized titanium dioxide nanoparticles were studied for light-driven hydrogen production from a fully aqueous medium with ascorbic acid (AA) as the sacrificial electron donor. Two zinc(II) porphyrin (ZnP) based PSs (ZnP-dyad and YD2-o-C8) were used to examine the effect of panchromatic sensitization in promoting photocatalytic H2 generation. A dyad molecular design was used to construct the Bodipy-conjugated ZnP PS (ZnP-dyad) and another one was featured with an electron-donating diarylamino moiety (YD2-o-C8). In order to probe the good use of the ZnP scaffold in this particular energy conversion process, an organic PS without the ZnP moiety (Bodipy-dye) was also synthesized for comparison. Ultrafast transient absorption spectroscopy was adopted to map out the energy transfer processes occurring in the dyad and establish the Bodipy-based antenna effect. In particular, the systems with YD2-o-C8 and ZnP-dyad achieve a remarkable initial activity in H2 production with an initial turnover frequency (TOFi) larger than 300 h-1 under white light irradiation. In brief, the use of ZnP PSs in dye-sensitized photocatalysis for H2 evolution reaction in this study indicates the importance of panchromatic sensitization capability for the development of light absorbing PSs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    PubMed

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma < 250 fs) modulation components arising from intermolecular modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of

  5. Host-guest chemistry of dendrimer-drug complexes: 7. Formation of stable inclusions between acetylated dendrimers and drugs bearing multiple charges.

    PubMed

    Fang, Min; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-03-15

    Drug molecules bearing multiple charges usually form precipitates with cationic dendrimers, which presents a challenge during the preparation of dendrimer inclusions for these drugs. In the present study, fully acetylated polyamidoamine (PAMAM) dendrimers were proposed as stable vehicles for drug molecules bearing two negative charges such as Congo red and indocyanine green. NMR techniques including (1)H NMR and (1)H-(1)H NOESY were used to characterize the host-guest chemistry of acetylated dendrimer and these guest molecules. The cationic PAMAM dendrimer was found to form a precipitate with Congo red and indocyanine green, but the acetylated one avoided the formation of cross-linking structures in aqueous solutions. NOESY studies revealed the encapsulation of Congo red and indocyanine green within the interior cavities of PAMAM dendrimers at mild acidic conditions and acetylated dendrimers show much stronger ability to encapsulate the guest molecules than cationic ones. Also, UV-vis-NIR studies suggest that acetylated dendrimers significantly improve the photostability of indocyanine green and prevent the formation of indocyanine green J-aggregates in aqueous solutions. The present study provides a new insight into dendrimer-based host-guest systems, especially for those guest molecules bearing multiple charges. © 2012 American Chemical Society

  6. Electrochemically driven host-guest interactions on patterned donor/acceptor self-assembled monolayers.

    PubMed

    Maglione, Maria Serena; Casado-Montenegro, Javier; Fritz, Eva-Corinna; Crivillers, Núria; Ravoo, Bart Jan; Rovira, Concepció; Mas-Torrent, Marta

    2018-03-25

    Here, on ITO//Au patterned substrates SAMs of ferrocene (Fc) on the Au regions and of anthraquinone (AQ) on the ITO areas are prepared, exhibiting three stable redox states. Furthermore, by selectively oxidizing or reducing the Fc or AQ units, respectively, the surface properties are locally modified. As a proof-of-concept, such a confinement of the properties is exploited to locally form host-guest complexes with β-cyclodextrin on specific surface regions depending on the applied voltage.

  7. Study on luminescence characteristics of blue OLED with phosphor-doped host-guest structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Liu, Fei; Zheng, Xin; Chen, Ai; Xie, Jia-feng; Zhang, Wen-xia

    2018-05-01

    In this study, we design and fabricate phosphor-doped host-guest structure organic light-emitting diodes (OLEDs), where the blue-ray iridium complex electrophosphorescent material FIrpic acts as object material. Properties of the device can be accommodated by changing the host materials, dopant concentration and thickness of the light-emitting layer. The study shows that the host material N,N'-dicarbazolyl-3,5-benzene (mCP) has a higher triplet excited state energy level, which can effectively prevent FIrpic triplet excited state energy backtracking to host material, thus the luminous efficiency is improved. When mCP is selected as the host material, the thickness of the light-emitting layer is 30 nm and the dopant concentration is 8 wt%, the excitons can be effectively confined in the light-emitting region. As a result, the maximum current efficiency and the maximum brightness of the blue device can reach 15.5 cd/A and 7 196.3 cd/m2, respectively.

  8. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.

    PubMed

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Eskandari, Mortaza

    2015-03-07

    We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of

  9. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi

    2016-06-22

    To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance.

  10. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.

    PubMed

    Tian, Jia; Chen, Lan; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-05-11

    The development of homogeneous, water-soluble periodic self-assembled structures comprise repeating units that produce porosity in two-dimensional (2D) or three-dimensional (3D) spaces has become a topic of growing interest in the field of supramolecular chemistry. Such novel self-assembled entities, known as supramolecular organic frameworks (SOFs), are the result of programmed host-guest interactions, which allows for the thermodynamically controlled generation of monolayer sheets or a diamondoid architecture with regular internal cavities or pores under mild conditions. This feature article aims at propagating the conceptually novel SOFs as a new entry into conventional supramolecular polymers. In the first section, we will describe the background of porous solid frameworks and supramolecular polymers. We then introduce the self-assembling behaviour of several multitopic flexible molecules, which is closely related to the design of periodic SOFs from rigid multitopic building blocks. This is followed by a brief discussion of cucurbit[8]uril (CB[8])-encapsulation-enhanced aromatic stacking in water. The three-component host-guest pattern based on this stacking motif has been utilized to drive the formation of most of the new SOFs. In the following two sections, we will highlight the main advances in the construction of 2D and 3D SOFs and the related functional aspects. Finally, we will offer our opinions on future directions for both structures and functions. We hope that this article will trigger the interest of researchers in the field of chemistry, physics, biology and materials science, which should help accelerate the applications of this new family of soft self-assembled organic frameworks.

  11. Host-guest complexes of 2-hydroxypropyl-β-cyclodextrin/β-cyclodextrin and nifedipine: 1H NMR, molecular modeling, and dissolution studies

    NASA Astrophysics Data System (ADS)

    de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria

    2017-12-01

    Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.

  12. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h

  13. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands

    PubMed Central

    Wanjari, Piyush P.; Gibb, Bruce C.; Ashbaugh, Henry S.

    2013-01-01

    Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied. PMID:24359375

  14. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells.

    PubMed

    Stangel, Christina; Bagaki, Anthi; Angaridis, Panagiotis A; Charalambidis, Georgios; Sharma, Ganesh D; Coutsolelos, Athanasios G

    2014-11-17

    Two novel "spider-shaped" porphyrins, meso-tetraaryl-substituted 1PV-Por and zinc-metalated 1PV-Zn-Por, bearing four oligo(p-phenylenevinylene) (oPPV) pyridyl groups with long dodecyloxy chains on the phenyl groups, have been synthesized. The presence of four pyridyl groups in both porphyrins, which allow them to act as anchoring groups upon coordination to various Lewis acid sites, the conjugated oPPV bridges, which offer the possibility of electronic communication between the porphyrin core and the pyridyl groups, and the dodecyloxy groups, which offer the advantage of high solubility in a variety of organic solvents of different polarities and could prevent porphyrin aggregation, renders porphyrins 1PV-Por and 1PV-Zn-Por very promising sensitizers for dye-sensitized solar cells (DSSCs). Photophysical measurements, together with electrochemistry experiments and density functional theory calculations, suggest that both porphyrins have frontier molecular orbital energy levels that favor electron injection and dye regeneration in DSSCs. Solar cells sensitized by 1PV-Por and 1PV-Zn-Por were fabricated, and it was found that they show power conversion efficiencies (PCEs) of 3.28 and 5.12%, respectively. Photovoltaic measurements (J-V curves) together with incident photon-to-electron conversion efficiency spectra of the two cells reveal that the higher PCE value of the DSSC based on 1PV-Zn-Por is ascribed to higher short-circuit current (Jsc), open-circuit voltage (Voc), and dye loading values. Emission spectra and electrochemistry experiments suggest a greater driving force for injection of the photogenerated electrons into the TiO2 conduction band for 1PV-Zn-Por rather than its free-base analogue. Furthermore, electrochemical impedance spectroscopy measurements prove that the utilization of 1PV-Zn-Por as a sensitizer offers a high charge recombination resistance and, therefore, leads to a longer electron lifetime.

  15. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-11-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.

  16. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency.

    PubMed

    Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng

    2015-04-08

    A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.

  17. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads. The role of the porphyrin-bridging molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.G.; Niemczyk, M.P.; Minsek, D.W.

    1993-06-30

    The photochemistry of four chlorophyll-porphyrin-naphthoquinone molecules possessing both fixed distances and orientations between the three components is described. These molecules consist of a methyl pyropheophorbide a or pyrochlorophyllide a that is directly bonded at its 3-position to the 5-position of a 2,8,12,18-tetraethyl-3,7,13,-17-tetramethylporphyrin, which is in turn bonded at its 15-position to a 2-triptycenenaphthoquinone. In addition, porphyrin-quinone compounds in which the chlorins are replaced by a p-tolyl group were also prepared as reference compounds. Selective metalation of the macrocycles with zinc gives the series ZCHPNQ, ZCZPNQ, HCZPNQ, HCHPNQ, HPNQ, and ZPNQ, where H, Z, C, P, and NQ denote free base,more » Zn derivative, chlorophyll, porphyrin, and naphthoquinone, respectively. Selective excitation of ZC in ZCZPNQ and ZCHPNQ, and HC in HCHPNQ dissolved in butyronitrile yields ZC[sup +]ZPNQ[sup [minus

  18. Thermosensitive Triterpenoid-Appended Polymers with Broad Temperature Tunability Regulated by Host-Guest Chemistry.

    PubMed

    Hao, Jie; Gao, Yuxia; Li, Ying; Yan, Qiang; Hu, Jun; Ju, Yong

    2017-09-05

    Thermoresponsive water-soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)-based methacrylate and N,N'-dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β-cyclodextrin (β-CD), a side-chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1-admantylcarboxylate. This work illustrates a simple and effective approach to endow water-soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host-guest complementary β-CD/GA pair on the thermoresponsive process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ;Host-guest; interactions in Captisol®/Coumestrol inclusion complex: UV-vis, FTIR-ATR and Raman studies

    NASA Astrophysics Data System (ADS)

    Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico

    2017-10-01

    The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.

  20. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    NASA Astrophysics Data System (ADS)

    Chui, Tin Ki

    of hydrogen bonds involved in the binding between the nucleotide phosphate moiety and the tweezer amides, triazole protons and guanidinium groups. In summary, this thesis reported a new class of branched peptidomimetics that were constructed from conventional peptide and non-classical triazole linkages. The resulting peptidomimetics exhibited very rich supramolecular chemistry, ranging from gel formation, self-association, host.guest complexation and anion recognition. All these properties were due to the presence of multiple hydrogen bonding units in the form of amide and triazole units along the tweezer backbone. Through hydrogen bonding interaction with various guest molecules, the multiple-arm architecture could fold itself into a complementary conformation that could bind to the guest molecules in a much more efficient manner.

  1. Femtosecond fluorescence dynamics of porphyrin in solution and solid films: the effects of aggregation and interfacial electron transfer between porphyrin and TiO2.

    PubMed

    Luo, Liyang; Lo, Chen-Fu; Lin, Ching-Yao; Chang, I-Jy; Diau, Eric Wei-Guang

    2006-01-12

    The excited-state relaxation dynamics of a synthetic porphyrin, ZnCAPEBPP, in solution, coated on a glass substrate as solid films, mixed with PMMA and coated on a glass substrate as solid films, and sensitized on nanocrystalline TiO2 films were investigated by using femtosecond fluorescence up-conversion spectroscopy with excitation in the Soret band, S2. We found that the S2--> S1 electronic relaxation of ZnCAPEBPP in solution and on PMMA films occurs in 910 and 690 fs, respectively, but it becomes extremely rapid, <100 fs, in solid films and TiO2 films due to formation of porphyrin aggregates. When probed in the S1 state of porphyrin, the fluorescence transients of the solid films show a biphasic kinetic feature with the rapid and slow components decaying in 1.9-2.4 and 19-26 ps, respectively. The transients in ZnCAPEBPP/TiO2 films also feature two relaxation processes but they occur on different time scales, 100-300 fs and 0.8-4.1 ps, and contain a small offset. According to the variation of relaxation period as a function of molecular density on a TiO2 surface, we assigned the femtosecond component of the TiO2 films as due to indirect interfacial electron transfer through a phenylethynyl bridge attached to one of four meso positions of the porphyrin ring, and the picosecond component arising from intermolecular energy transfer among porphyrins. The observed variation of aggregate-induced relaxation periods between solid and TiO2 films is due mainly to aggregation of two types: J-type aggregation is dominant in the former case whereas H-type aggregation prevails in the latter case.

  2. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  3. Charge-transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad.

    PubMed

    Fortage, Jérôme; Scarpaci, Annabelle; Viau, Lydie; Pellegrin, Yann; Blart, Errol; Falkenström, Magnus; Hammarström, Leif; Asselberghs, Inge; Kellens, Ruben; Libaers, Wim; Clays, Koen; Eng, Mattias P; Odobel, Fabrice

    2009-09-14

    We report the synthesis and the characterizations of a novel dyad composed of a zinc porphyrin (ZnP) linked to a gold porphyrin (AuP) through an ethynyl spacer. The UV/Vis absorption spectrum and the electrochemical properties clearly reveal that this dyad exhibits a strong electronic coupling in the ground state as evidenced by shifted redox potentials and the appearance of an intense charge-transfer band localized at lambda = 739 nm in dichloromethane. A spectroelectrochemical study of the dyad along with the parent homometallic system (i.e., ZnP-ZnP and AuP-AuP) was undertaken to determine the spectra of the reduced and oxidized porphyrin units. Femtosecond transient absorption spectroscopic analysis showed that the photoexcitation of the heterometallic dyad leads to an ultrafast formation of a charge-separated state ((+)ZnP-AuP(*)) that displays a particularly long lifetime (tau = 4 ns in toluene) for such a short separation distance. The molecular orbitals of the dyad were determined by DFT quantum-chemical calculations. This theoretical study confirms that the observed intense band at lambda = 739 nm corresponds to an interporphyrin charge-transfer transition from the HOMO orbital localized on the zinc porphyrin to LUMO orbitals localized on the gold porphyrin. Finally, a Hyper-Rayleigh scattering study shows that the dyad possesses a large first molecular hyperpolarizability coefficient (beta = 2100x10(-30) esu at lambda = 1064 nm), thus highlighting the valuable nonlinear optical properties of this new type of push-pull porphyrin system.

  4. Ratiometric Fluorescent Detection of Pb2+ by FRET-Based Phthalocyanine-Porphyrin Dyads.

    PubMed

    Zhang, Dongli; Zhu, Mengliang; Zhao, Luyang; Zhang, Jinghui; Wang, Kang; Qi, Dongdong; Zhou, Yang; Bian, Yongzhong; Jiang, Jianzhuang

    2017-12-04

    Sensitive and selective detection of Pb 2+ is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine-porphyrin (Pc-Por) heterodyads, namely, H 2 Pc-α-ZnPor (1) and H 2 Pc-β-ZnPor (2), by connecting a zinc(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb 2+ in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb 2+ can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (F 605 /F 703 for 1 and F 605 /F 700 for 2). The emission intensity ratio increased as a linear function to the concentration of Pb 2+ in the range of 0-4.0 μM, whereas the detection limits were determined to be 3.4 × 10 -9 and 2.2 × 10 -8 M for 1 and 2, respectively. Furthermore, by comparative study of 1 and 2, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems.

  5. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    PubMed

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

    NASA Astrophysics Data System (ADS)

    Nicolai, H. T.; Hof, A. J.; Lu, M.; Blom, P. W. M.; de Vries, R. J.; Coehoorn, R.

    2011-11-01

    The charge transport in a polyspirobifluorene derivative with copolymerized N,N,N',N'-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5%, guest-to-guest transport is observed. It is demonstrated that in this regime the charge carrier density dependent mobility can be described consistently with the extended Gaussian disorder model, with a density of hopping sites which is proportional to the TAD concentration and comparable to the molecular density.

  7. The Delicate Balance of Preorganisation and Adaptability in Multiply Bonded Host-Guest Complexes.

    PubMed

    von Krbek, Larissa K S; Achazi, Andreas J; Schoder, Stefan; Gaedke, Marius; Biberger, Tobias; Paulus, Beate; Schalley, Christoph A

    2017-02-24

    Rigidity and preorganisation are believed to be required for high affinity in multiply bonded supramolecular complexes as they help reduce the entropic penalty of the binding event. This comes at the price that such rigid complexes are sensitive to small geometric mismatches. In marked contrast, nature uses more flexible building blocks. Thus, one might consider putting the rigidity/high-affinity notion to the test. Multivalent crown/ammonium complexes are ideal for this purpose as the monovalent interaction is well understood. A series of divalent complexes with different spacer lengths and rigidities has thus been analysed to correlate chelate cooperativities and spacer properties. Too long spacers reduce chelate cooperativity compared to exactly matching ones. However, in contrast to expectation, flexible guests bind with chelate cooperativities clearly exceeding those of rigid structures. Flexible spacers adapt to small geometric host-guest mismatches. Spacer-spacer interactions help overcome the entropic penalty of conformational fixation during binding and a delicate balance of preorganisation and adaptability is at play in multivalent complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formation of a Fluorous/Organic Biphasic Supramolecular Octopus Assembly for Enhanced Porphyrin Phosphorescence in Air

    DOE PAGES

    Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.; ...

    2015-03-03

    The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

  9. Guest Controlled Nonmonotonic Deep Cavity Cavitand Assembly State Switching.

    PubMed

    Tang, Du; Barnett, J Wesley; Gibb, Bruce C; Ashbaugh, Henry S

    2017-11-30

    Octa-acid (OA) and tetra-endo-methyl octa-acid (TEMOA) are water-soluble, deep-cavity cavitands with nanometer-sized nonpolar pockets that readily bind complementary guests, such as n-alkanes. Experimentally, OA exhibits a progression of 1:1 to 2:2 to 2:1 host/guest complexes (X:Y where X is the number of hosts and Y is the number of guests) with increasing alkane chain length from methane to tetradecane. Differing from OA only by the addition of four methyl groups ringing the portal of the pocket, TEMOA exhibits a nonmonotonic progression of assembly states from 1:1 to 2:2 to 1:1 to 2:1 with increasing guest length. Here we present a systematic molecular simulation study to parse the molecular and thermodynamic determinants that distinguish the succession of assembly stoichiometries observed for these similar hosts. Potentials of mean force between hosts and guests, determined via umbrella sampling, are used to characterize association free energies. These free energies are subsequently used in a reaction network model to predict the equilibrium distributions of assemblies. Our models accurately reproduce the experimentally observed trends, showing that TEMOA's endo-methyl units constrict the opening of the binding pocket, limiting the conformations available to bound guests and disrupting the balance between monomeric complexes and dimeric capsules. The success of our simulations demonstrate their utility at interpreting the impact of even simple chemical modifications on supramolecular assembly and highlight their potential to aid bottom-up design.

  10. Preparation, characterization and binding behaviors of host-guest inclusion complexes of metoclopramide hydrochloride with α- and β-cyclodextrin molecules

    NASA Astrophysics Data System (ADS)

    Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath

    2018-03-01

    The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.

  11. Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films and guest-host molecular systems

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2013-12-01

    A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.

  12. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  13. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    PubMed

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron

  14. Investigation of hydrophobic interactions mediating the self-assembly of supramolecular host/guest polymer complexes utilizing Simultaneous Multiple Sample Light Scattering (SMSLS)

    NASA Astrophysics Data System (ADS)

    Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne

    While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.

  15. Excitation energy migration processes in various multi-porphyrin assemblies.

    PubMed

    Yang, Jaesung; Kim, Dongho

    2012-08-13

    The electronic interactions and excitation energy transfer (EET) processes of a variety of multi-porphyrin arrays with linear, cyclic and box architectures have been explored. Directly meso-meso linked linear arrays (Z(N)) exhibit strong excitonic coupling with an exciton coherence length of approximately 6 porphyrin units, while fused linear arrays (T(N)) exhibit extensive π-conjugation over the whole array. The excitonic coherence length in directly linked cyclic porphyrin rings (CZ(N)) was determined to be approximately 2.7 porphyrin units by simultaneous analysis of fluorescence intensities and lifetimes at the single-molecule level. By performing transient absorption (TA) and TA anisotropy decay measurements, the EET rates in m-phenylene linked cyclic porphyrin wheels C12ZA and C24ZB were determined to be 4 and 36 ps(-1), respectively. With increasing the size of C(N)ZA, the EET efficiencies decrease owing to the structural distortions that produce considerable non-radiative decay pathways. Finally, the EET rates of self-assembled porphyrin boxes consisting of directly linked diporphyrins, B1A, B2A and B3A, are 48, 98 and 361 ps(-1), respectively. The EET rates of porphyrin boxes consisting of alkynylene-bridged diporphyrins, B2B and B4B, depend on the conformation of building blocks (planar or orthogonal) rather than the length of alkynylene linkers.

  16. Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications

    NASA Astrophysics Data System (ADS)

    Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki

    2002-07-01

    We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.

  17. Host-guest chemistry of dendrimer-drug complexes. 4. An in-depth look into the binding/encapsulation of guanosine monophosphate by dendrimers.

    PubMed

    Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2010-06-03

    In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.

  18. Dynamic Electrochemical Control of Cell Capture-and-Release Based on Redox-Controlled Host-Guest Interactions.

    PubMed

    Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi

    2016-10-18

    Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.

  19. Scanning holographic optical tweezers.

    PubMed

    Shaw, L A; Panas, Robert M; Spadaccini, C M; Hopkins, J B

    2017-08-01

    The aim of this Letter is to introduce a new optical tweezers approach, called scanning holographic optical tweezers (SHOT), which drastically increases the working area (WA) of the holographic-optical tweezers (HOT) approach, while maintaining tightly focused laser traps. A 12-fold increase in the WA is demonstrated. The SHOT approach achieves its utility by combining the large WA of the scanning optical tweezers (SOT) approach with the flexibility of the HOT approach for simultaneously moving differently structured optical traps in and out of the focal plane. This Letter also demonstrates a new heuristic control algorithm for combining the functionality of the SOT and HOT approaches to efficiently allocate the available laser power among a large number of traps. The proposed approach shows promise for substantially increasing the number of particles that can be handled simultaneously, which would enable optical tweezers additive fabrication technologies to rapidly assemble microgranular materials and structures in reasonable build times.

  20. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    PubMed

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  1. Hierarchically Self-Assembled Supramolecular Host-Guest Delivery System for Drug Resistant Cancer Therapy.

    PubMed

    Cheng, Hongwei; Fan, Xiaoshan; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Li, Zibiao; Wu, Yun-Long

    2018-06-11

    In this report, a new star-like copolymer β-CD- g-(PNIPAAm- b-POEGA) x , consisting of a β-CD core, grafted with temperature-responsive poly( N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(oligo(ethylene glycol) acrylate) (POEGA) in a block copolymer of the arms, was used to deliver chemotherapeutics to drug resistant cancer cells and tumors. The first step of the self-assembly process involves the encapsulation of chemotherapeutics through host-guest inclusion complexation between the β-cyclodextrin cavity and the anticancer drug. Next, the chain interaction of the PNIPAAm segment at elevated temperature drives the drug-loaded β-CD- g-(PNIPAAm- b-POEGA) x /PTX inclusion complex to hierarchically self-assemble into nanosized supramolecular assemblies at 37 °C, whereas the presence of poly(ethylene glycol) (PEG) chains in the distal end of the star-like copolymer arms impart enhanced stability to the self-assembled structure. More interestingly, this supramolecular host-guest nanocomplex promoted the enhanced cellular uptake of chemotherapeutics in MDR-1 up-regulated drug resistant cancer cells and exhibited high therapeutic efficacy for suppressing drug resistant tumor growth in an in vivo mouse model, due to the increased stability, improvement in aqueous solubility, enhanced cellular uptake, and partial membrane pump impairment by taking the advantage of PEGylation and supramolecular complex between this star-like copolymer and chemotherapeutics. This work signifies that temperature-sensitive PEGylated supramolecular nanocarriers with good biocompatibility are effective in combating MDR-1 mediated drug resistance in both in vitro and in vivo models, which is of significant importance for the advanced drug delivery platform designed to combat drug resistant cancer.

  2. Templated synthesis of cyclic [4]rotaxanes consisting of two stiff rods threaded through two bis-macrocycles with a large and rigid central plate as spacer.

    PubMed

    Collin, Jean-Paul; Durola, Fabien; Frey, Julien; Heitz, Valérie; Reviriego, Felipe; Sauvage, Jean-Pierre; Trolez, Yann; Rissanen, Kari

    2010-05-19

    Two related cyclic [4]rotaxanes consisting of double macrocycles and rigid rods incorporating two bidentate chelates have each been prepared in high yield. The first step is a multigathering and threading reaction driven by coordination of two different bidentate chelates (part of either the rings or the rods) to each copper(I) center so as to afford the desired precursor. In both cases, the assembly step is done under very mild conditions, and it is quantitative. The second key reaction is the stopper-attaching reaction, based on click chemistry. Even if the quadruple stoppering reaction is not quantitative, it is relatively high-yielding (60% and 95%), and the copper-driven assembly process is carried out at room temperature without any aggressive reagent. The final copper-complexed [4]rotaxanes obtained contain two aromatic plates roughly parallel to one another located at the center of each bis-macrocycle. In the most promising case in terms of host-guest properties, the plates are zinc(II) porphyrins of the tetra-aryl series. The compounds have been fully characterized by various spectroscopic techniques ((1)H NMR, mass spectrometry, and electronic absorption spectroscopy). Unexpectedly, the copper-complexed porphyrinic [4]rotaxane could be crystallized as its 4PF(6)(-) salt to afford X-ray quality crystals. The structure obtained is in perfect agreement with the postulated chemical structure of the compound. It is particularly attractive in terms of symmetry and molecular aesthetics. The distance between the zinc atoms of the two porphyrins is 8.673 A, which is sufficient to allow insertion between the two porphyrinic plates of small ditopic basic substrates able to interact with the central porphyrinic Zn atoms. This prediction has been confirmed by absorption spectroscopy measurements in the presence of various organic substrates. However, large substrates cannot be introduced in the corresponding recognition site and are thus complexed mostly in an exo

  3. Interferometer Control of Optical Tweezers

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.

  4. Calixarene capped ZnS quantum dots as an optical nanoprobe for detection and determination of menadione.

    PubMed

    Joshi, Kuldeep V; Joshi, Bhoomika K; Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K

    2012-10-21

    In this communication we report a p-sulfonatocalix[4]arene coated ZnS quantum dots "cup type" highly stable optical probe for the detection and determination of menadione (VK(3)) with high sensitivity and selectivity. The detection of VK(3) depends on supramolecular host-guest chemistry.

  5. Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest–Host Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Ying; Chen, Hsin-Lung; Do, Changwoo

    2016-08-09

    Using the electrostatic complex of G4 poly(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest–host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. Here, the insights into the spatial location of the guest moleculesmore » as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest–host system for biomedical applications.« less

  6. Investigation of photodynamic activity of water-soluble porphyrins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Arsenyan, Flora H.; Gyulkhandanyan, Aram G.

    2006-02-01

    Photodynamic therapy (PDT) is the method of photosensitized tumor treatment. It is based on the photosensitizer (PS) selective accumulation in tumors, its subsequent activation under the light influence and oxygen active form formation that results in tumor destruction. Photodynamic action of some new water-soluble porphyrins was investigated in our laboratory. Dose-dependent effect of these porphyrins was shown on PC-12 murine pheochromocytoma cell line. The results revealed that the efficiency of the investigated porphyrins decreased in the following way: TOEPyP (meso-tetra-(4-N-oxyethylpyridyl)porphyrin) > Zn-TOEPyP > Ag-TOEPyP. It was shown that TOEPyP possessed nearly the same photodynamic activity (LD50) as well-known photosensitizer chlorin e6. These porphyrins have also demonstrated quite high photodynamic activity in vivo. The results were obtained in the experiments on white mice with engrafted C-180 (Croker's sarcoma). Antitumor activity of these porphyrins in the dark was 30-40%, whereas photodynamic activity was 45-60%.

  7. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  8. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.

    We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less

  9. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials

    DOE PAGES

    Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.; ...

    2017-11-06

    We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less

  10. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range.

    PubMed

    Buccolieri, Alessandro; Hasan, Mohammed; Bettini, Simona; Bonfrate, Valentina; Salvatore, Luca; Santino, Angelo; Borovkov, Victor; Giancane, Gabriele

    2018-06-05

    Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.

  11. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  12. Large scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process

    PubMed Central

    Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.

    2013-01-01

    Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485

  13. Host–guest complexes between cryptophane-C and chloromethanes revisited

    PubMed Central

    Takacs, Z; Soltesova, M; Kowalewski, J; Lang, J; Brotin, T; Dutasta, J-P

    2013-01-01

    Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH2CH2O linkers in an anti arrangement. Host–guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynamic processes, such as guest exchange and host conformational transitions. The guest exchange was studied quantitatively by exchange spectroscopy measurements or by line-shape analysis. The conformational preferences of the guest-containing host were interpreted through cross-relaxation measurements, providing evidence of the gauche+2 and gauche−2 conformations of the linkers. In addition, the mobility of the chloroform guest inside the cavity was studied by carbon-13 relaxation experiments. Combining different types of evidence led to a detailed picture of molecular recognition, interpreted in terms of conformational selection. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23132654

  14. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host-Guest Recognition or Hydrophilic-Hydrophobic Interaction?

    PubMed

    Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei

    2015-09-03

    Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.

  15. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    PubMed

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  16. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  17. Driving Forces Controlling Host-Guest Recognition in Supercritical Carbon Dioxide Solvent.

    PubMed

    Ingrosso, Francesca; Altarsha, Muhannad; Dumarçay, Florence; Kevern, Gwendal; Barth, Danielle; Marsura, Alain; Ruiz-López, Manuel F

    2016-02-24

    The formation of supramolecular host-guest complexes is a very useful and widely employed tool in chemistry. However, supramolecular chemistry in non-conventional solvents such as supercritical carbon dioxide (scCO2 ), one of the most promising sustainable solvents, is still in its infancy. In this work, we explored a successful route to the development of green processes in supercritical CO2 by combining a theoretical approach with experiments. We were able to synthesize and characterize an inclusion complex between a polar aromatic molecule (benzoic acid) and peracetylated-β-cyclodextrin, which is soluble in the supercritical medium. This finding opens the way to wide, environmental friendly, applications of scCO2 in many areas of chemistry, including supramolecular synthesis, reactivity and catalysis, micro and nano-particle formation, molecular recognition, as well as enhanced extraction processes with increased selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  19. A Highly Selective and Strong Anti-Interference Host-Guest Complex as Fluorescent Probe for Detection of Amantadine by Indicator Displacement Assay.

    PubMed

    Zhu, Linzhao; Zhao, Zhiyong; Zhang, Xiongzhi; Zhang, Haijun; Liang, Feng; Liu, Simin

    2018-04-18

    Amantadine (AMA) and its derivatives are illicit veterinary drugs that are hard to detect at very low concentrations. Developing a fast, simple and highly sensitive method for the detection of AMA is highly in demand. Here, we designed an anthracyclic compound (ABAM) that binds to a cucurbit[7]uril (CB[7]) host with a high association constant of up to 8.7 × 10⁸ M −1 . The host-guest complex was then used as a fluorescent probe for the detection of AMA. Competition by AMA for occupying the cavity of CB[7] allows ABAM to release from the CB[7]-ABAM complex, causing significant fluorescence quenching of ABAM (indicator displacement assay, IDA). The linear range of the method is from 0.000188 to 0.375 μg/mL, and the detection limit can be as low as 6.5 × 10 −5 μg/mL (0.35 nM). Most importantly, due to the high binding affinity between CB[7] and ABAM, this fluorescence host-guest system shows great anti-interference capacity. Thus, we are able to accurately determine the concentration of AMA in various samples, including pharmaceutical formulations.

  20. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  1. Bioadhesive Polymersome for Localized and Sustained Drug Delivery at Pathological Sites with Harsh Enzymatic and Fluidic Environment via Supramolecular Host-Guest Complexation.

    PubMed

    Zhu, Meiling; Wei, Kongchang; Lin, Sien; Chen, Xiaoyu; Wu, Chia-Ching; Li, Gang; Bian, Liming

    2018-02-01

    Targeted and sustained delivery of drugs to diseased tissues/organs, where body fluid exchange and catabolic activity are substantial, is challenging due to the fast cleansing and degradation of the drugs by these harsh environmental factors. Herein, a multifunctional and bioadhesive polycaprolactone-β-cyclodextrin (PCL-CD) polymersome is developed for localized and sustained co-delivery of hydrophilic and hydrophobic drug molecules. This PCL-CD polymersome affords multivalent crosslinking action via surface CD-mediated host-guest interactions to generate a supramolecular hydrogel that exhibits evident shear thinning and efficient self-healing behavior. The co-delivery of small molecule and proteinaceous agents by the encapsulated PCL-CD polymersomes enhances the differentiation of stem cells seeded in the hydrogel. Furthermore, the PCL-CD polymersomes are capable of in situ grafting to biological tissues via host-guest complexation between surface CD and native guest groups in the tissue matrix both in vitro and in vivo, thereby effectively extending the retention of loaded cargo in the grafted tissue. It is further demonstrated that the co-delivery of small molecule and proteinaceous drugs via PCL-CD polymersomes averts cartilage degeneration in animal osteoarthritic (OA) knee joints, which are known for their biochemically harsh and fluidically dynamic environment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection.

    PubMed

    Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe

    2018-05-08

    Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.

  3. Visible light-driven O2 reduction by a porphyrin-laccase system.

    PubMed

    Lazarides, Theodore; Sazanovich, Igor V; Simaan, A Jalila; Kafentzi, Maria Chrisanthi; Delor, Milan; Mekmouche, Yasmina; Faure, Bruno; Réglier, Marius; Weinstein, Julia A; Coutsolelos, Athanassios G; Tron, Thierry

    2013-02-27

    Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 μmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.

  4. Host-guest encapsulation of materials by assembled virus protein cages

    NASA Astrophysics Data System (ADS)

    Douglas, Trevor; Young, Mark

    1998-05-01

    Self-assembled cage structures of nanometre dimensions can be used as constrained environments for the preparation of nanostructured materials, and the encapsulation of guest molecules, with potential applications in drug delivery and catalysis. In synthetic systems the number of subunits contributing to cage structures is typically rather small,. But the protein coats of viruses (virions) commonly comprise hundreds of subunits that self-assemble into a cage for transporting viral nucleic acids. Many virions, moreover, can undergo reversible structural changes that open or close gated pores to allow switchable access to their interior. Here we show that such a virion - that of the cowpea chlorotic mottle virus - can be used as a host for the synthesis of materials. We report the mineralization of two polyoxometalate species (paratungstate and decavanadate) and the encapsulation of an anionic polymer inside this virion, controlled by pH-dependent gating of the virion's pores. The diversity in size and shape of such virus particles make this a versatile strategy for materials synthesis and molecular entrapment.

  5. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  6. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis.

    PubMed

    Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O

    2017-03-05

    The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized

  7. DNA-binding studies of a tetraalkyl-substituted porphyrin and the mutually adaptive distortion principle.

    PubMed

    Ghimire, Srijana; Fanwick, Phillip E; McMillin, David R

    2014-10-20

    This investigation explores DNA-binding interactions of various forms of an alkyl-substituted cationic porphyrin, H2TC3 (5,10,15,20-tetra[3-(3'-methylimidazolium-1'-yl)]porphyrin). The motivating idea is that incorporating alkyl rather than aryl substituents in the meso positions will enhance the prospects for intercalative as well as external binding to DNA hosts. The ligands may also be applicable for photodynamic and/or anticancer therapy. Methods employed include absorbance, circular dichroism, and emission spectroscopies, as well as viscometry and X-ray crystallography. By comparison with the classical H2T4 system, H2TC3 exhibits a higher molar extinction coefficient but is more prone to self-association. Findings of note include that the copper(II)-containing form Cu(TC3) is adept at internalizing into single-stranded as well as B-form DNA, regardless of the base composition. Surprisingly, however, external binding of H2TC3 occurs within domains that are rich in adenine-thymine base pairs. The difference in the deformability of H2TC3 versus Cu(TC3) probably accounts for the reactivity difference. Finally, Zn(TC3) binds externally, as the metal center remains five-coordinate.

  8. Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage

    NASA Astrophysics Data System (ADS)

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.

    2017-03-01

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.

  9. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery

    NASA Astrophysics Data System (ADS)

    Fahmy, Sherif Ashraf; Ponte, Fortuna; Abd El-Rahman, Mohamed K.; Russo, Nino; Sicilia, Emilia; Shoeib, Tamer

    2018-03-01

    Macromolecules including macrocyclic species have been reported to have the potential to encapsulate biologically active compounds such as drugs through host-guest complexation to increase their solubility, stability and bioavailability. In this paper the first experimental and theoretical investigation of the complexation between nedaplatin, a second generation antineoplastic drug, and p-4-sulfocalix[4]arene, a macromolecule possessing a bipolar amphiphilic structure with good biocompatibility and relatively low haemolytic toxicity for potential use as a drug delivery system is presented. Data from 1H NMR, UV, Job's plot analysis, HPLC and DFT calculations are detailed and suggest the formation of a 1:1 complex. The stability constant of the complex was experimentally estimated to be 3.6 × 104 M- 1 and 2.1 × 104 M- 1 which correspond to values of - 6.2 and - 5.9 kcal mol- 1, respectively for the free energy of complexation while the interaction free energy is calculated to be - 4.9 kcal mol- 1. The formed species is shown to be stabilised in solution through hydrogen bonding between the host and the guest which may allow for this strategy to be effective for potential use in drug delivery.

  10. Synthesis and self-organization of zinc β-(dialkoxyphosphoryl)porphyrins in the solid state and in solution.

    PubMed

    Vinogradova, Ekaterina V; Enakieva, Yulia Y; Nefedov, Sergey E; Birin, Kirill P; Tsivadze, Aslan Y; Gorbunova, Yulia G; Bessmertnykh Lemeune, Alla G; Stern, Christine; Guilard, Roger

    2012-11-19

    The first synthesis and self-organization of zinc β-phosphorylporphyrins in the solid state and in solution are reported. β-Dialkoxyphosphoryl-5,10,15,20-tetraphenylporphyrins and their Zn(II) complexes have been synthesized in good yields by using Pd- and Cu-mediated carbon-phosphorous bond-forming reactions. The Cu-mediated reaction allowed to prepare the mono-β-(dialkoxyphosphoryl)porphyrins 1 Zn-3 Zn starting from the β-bromo-substituted zinc porphyrinate ZnTPPBr (TPP = tetraphenylporphyrin) and dialkyl phosphites HP(O)(OR)(2) (R = Et, iPr, nBu). The derivatives 1 Zn-3 Zn were obtained in good yields by using one to three equivalents of CuI. When the reaction was carried out in the presence of catalytic amounts of palladium complexes in toluene, the desired zinc derivative 1 Zn was obtained in up to 72% yield. The use of a Pd-catalyzed C-P bond-forming reaction was further extended to the synthesis of β-poly(dialkoxyphosphoryl)porphyrins. An unprecedented one-pot sequence involving consecutive reduction and phosphorylation of H(2)TPPBr(4) led to the formation of a mixture of the 2,12- and 2,13-bis(dialkoxy)phosphorylporphyrins 5 H(2) and 6 H(2) in 81% total yield. According to the X-ray diffraction studies, 1 Zn and 3 Zn are partially overlapped cofacial dimers formed through the coordination of two Zn centers by two phosphoryl groups belonging to the adjacent molecules. The equilibrium between the monomeric and the dimeric species exists in solutions of 1 Zn and 3 Zn in weakly polar solvents according to spectroscopic data (UV/Vis absorption and NMR spectroscopy). The ratio of each form is dependent on the concentration, temperature, and traces of water or methanol. These features demonstrated that zinc β-phosphorylporphyrins can be regarded as new model compounds for the weakly coupled chlorophyll pair in the photosynthesis process. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diffusion of vaporous guests into a seemingly non-porous organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.

    2014-10-07

    In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.

  12. Observation of Zn-photoprotoporphyrin red Autofluorescence in human bronchial cancer using color-fluorescence endoscopy.

    PubMed

    Ohsaki, Yoshinobu; Sasaki, Takaaki; Endo, Satoshi; Kitada, Masahiro; Okumura, Shunsuke; Hirai, Noriko; Kazebayashi, Yoshihiro; Toyoshima, Eri; Yamamoto, Yasushi; Takeyama, Kaneyoshi; Nakajima, Susumu; Sakata, Isao

    2017-04-26

    We observed red autofluorescence emanating from bronchial cancer lesions using a sensitive color-fluorescence endoscopy system. We investigated to clarify the origin of the red autofluorescence. The wavelengths of the red autofluorescence emanating from lesions were measured in eight patients using a spectrum analyzer and compared based on pathologic findings. Red autofluorescence at 617.3, 617.4, 619.0, and 617.1 nm was emitted by normal bronchus, inflamed tissue, tissue exhibiting mild dysplasia, and malignant lesions, respectively. Protoporphyrin, uroporphyrin, and coproporphyrin, the major porphyrin derivatives in human blood, were purchased to determine which porphyrin derivative is the source of red fluorescence when acquired de novo. We synthesized photoporphyrin, Zn-protoporphyrin and Zn-photoprotoporphyrin from protoporphyrin. Coproporphyrin and uroporphyrin emitted only weak fluorescence. Fluorescence was emitted by our synthesized Zn-photoprotoporphyrin at 625.5 nm and by photoprotoporphyrin at 664.0 nm. From these results, we conclude that Zn-photoprotoporphyrin was the source of the red autofluorescence observed in bronchial lesions. Zn-protoporphyrin is converted to Zn-photoprotoporphyrin by radiation with excitation light. Our results suggest that red autofluorescence emanating from Zn-photoprotoporphyrin in human tissues could interfere with photodynamic diagnosis using porphyrin derivatives such as Photofrin® and Lazerphyrin® with a sensitive endoscopy system, because color cameras cannot differentiate Zn-photoprotoporphyrin red fluorescence from that of other porphyrin derivatives.

  13. Resolving the problem of trapped water in binding cavities: prediction of host-guest binding free energies in the SAMPL5 challenge by funnel metadynamics

    NASA Astrophysics Data System (ADS)

    Bhakat, Soumendranath; Söderhjelm, Pär

    2017-01-01

    The funnel metadynamics method enables rigorous calculation of the potential of mean force along an arbitrary binding path and thereby evaluation of the absolute binding free energy. A problem of such physical paths is that the mechanism characterizing the binding process is not always obvious. In particular, it might involve reorganization of the solvent in the binding site, which is not easily captured with a few geometrically defined collective variables that can be used for biasing. In this paper, we propose and test a simple method to resolve this trapped-water problem by dividing the process into an artificial host-desolvation step and an actual binding step. We show that, under certain circumstances, the contribution from the desolvation step can be calculated without introducing further statistical errors. We apply the method to the problem of predicting host-guest binding free energies in the SAMPL5 blind challenge, using two octa-acid hosts and six guest molecules. For one of the hosts, well-converged results are obtained and the prediction of relative binding free energies is the best among all the SAMPL5 submissions. For the other host, which has a narrower binding pocket, the statistical uncertainties are slightly higher; longer simulations would therefore be needed to obtain conclusive results.

  14. Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.

    PubMed

    Velez-Vega, Camilo; Gilson, Michael K

    2012-03-13

    The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.

  15. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  16. Undergraduate Construction of Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Hubbell, Lawrence

    2012-10-01

    I will present a poster on the construction of optical tweezers. This will demonstrate the full process one must go through when working on a research project. First I sifted through the internet for papers and information pertaining to the tweezers. Afterwards I discussed the budget with the lab manager. Next I made purchases, however some items, such as the sample mount, needed to be custom made. These I built in the machine shop. Once the tweezers were operational I spent some time ensuring that the mirrors and lenses were adjusted just right, so that the trap performed at full strength. Finally, I used video data of the Brownian motion of trapped silica microspheres to get a reasonable estimate of the trapping stiffness with such particles. As a general note, all of this was done with the intent of leaving the tweezers for future use by other undergraduates. Because of this extra effort was taken to ensure the tweezers were as safe to use as possible. For this reason a visible LASER was chosen over an infrared LASER, in addition, the LASER was oriented parallel to the surface of the table in order to avoid stray upwards beams.

  17. Magnetic tweezers for the measurement of twist and torque.

    PubMed

    Lipfert, Jan; Lee, Mina; Ordu, Orkide; Kerssemakers, Jacob W J; Dekker, Nynke H

    2014-05-19

    Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a "conventional" magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the "conventional" magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.

  18. Contrasting guest binding interaction of cucurbit[7-8]urils with neutral red dye: controlled exchange of multiple guests.

    PubMed

    Shaikh, Mhejabeen; Choudhury, Sharmistha Dutta; Mohanty, Jyotirmayee; Bhasikuttan, Achikanath C; Pal, Haridas

    2010-07-14

    Interactions among macrocyclic hosts and dyes/drugs have been explored extensively for their direct usage in controlled uptake and release of large number of potential drug molecules. In this paper we report the non-covalent interaction of cucurbit[8]uril macrocycle (CB8) with a biologically important dye, neutral red, by absorption and fluorescence spectroscopy. A comparative analysis with the complexation behaviour of the dye with CB7, the lower homologue of CB8, indicates contrasting guest binding behaviour with significant changes in the photophysical characteristics of the dye. While CB7 interaction leads to a 1 ratio 1 stoichiometry resulting in approximately 6 fold enhancement in the fluorescence emission of the dye, CB8 displays signatures for a 1 ratio 2 host-guest stoichiometry with drastic reduction in the fluorescence emission. Apart from the evaluation of approximately 2 unit shift in the protolytic equilibrium on complexation (pK(a) shift), the measurements with tryptophan established a selective guest exchange to favour a co-localized dimer inside the CB8 cavity. In a protein medium (BSA), the 1 ratio 2 complex was converted to a 1 ratio 1 ratio 1 CB8-NRH(+)-BSA complex. The finding that NRH(+) can be transferred from CB8 to BSA, even though the binding constant for NRH(+)-CB8 is much higher than NRH(+)-BSA, is projected for a controlled slow release of NRH(+) towards BSA. Since the release and activity of drugs can be controlled by regulating the protolytic equilibrium, the macromolecular encapsulation and release of NRH(+) demonstrated here provide information relevant to host-guest based drug delivery systems and its applications.

  19. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  20. Photophysical study of meso-phenothiazinyl-porphyrins metallocomplexes

    NASA Astrophysics Data System (ADS)

    Starukhin, Aleksander; Gorski, Aleksander; Knyukshto, Valery; Panarin, Andrei; Pavich, Tatiana; Gaina, Luiza; Gal, Emese

    2017-10-01

    Photophysical parameters of a set of metallocomplexes of meso-phenylthiazinylporphyrins with Zn (II), Pd (II) and Cu (II) ions were studied in different organic solvents, solid solutions and polymeric matrices at room and liquid nitrogen temperatures. The dependence of the spectral and photophysical parameters on changing the molecular structure with increasing number of branched substituents attached to aryl groups in different positions of the porphyrin macrocycle has been established.

  1. Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes

    NASA Astrophysics Data System (ADS)

    Sehgal, Preeti; Narula, Anudeep Kumar

    2018-05-01

    Porphyrin sensitized solar cells (PSSC) has been successfully fabricated composed of graphene quantum dots (GQD) functionalized ZnO photoanodes, zinc tetrakis (4-carboxy phenyl)porphyrin (TCPPZn) as sensitizer and polypyrrole coated oxidised multiwalled carbon nanotubes (PPy/OMWCNT) as counter electrode. The effect of the concentration of GQD on the structural, morphological, photophysical and photovoltaic properties of GQD@ZnO, and GQD@ZnO/TCPPZn nanocomposites has also been investigated. Studies indicate that TCPPZn adsorbed on the surface on GQD@ZnO. Hot electron injection mechanism and multiple exciton generation from GQD to ZnO were mainly responsible for the photoexcitation response in PSSC. This study indicates that GQD can play role of sensitizer to some extent. The time decay measurements reveals the evidences of FRET mechanism, and synergistic interaction between GQD and TCPPZn. The Jsc, Voc, PCE of the corresponding PSSC devices enhanced initially and then decreased. Among all the devices fabricated, the PSSC with a 40% amount of GQD (GQD@ZnO/TCPPZn 40%) attains the best performance with the Jsc = 10.1 mA/cm2, Voc = 0.48, PCE = 2.45% FF = 0.507 higher than ZnO@TCPPZn device fabricated without GQD. Overall, this design provides a new concept for the development of photoanodes which derive better efficiency for dye sensitized solar cell (DSSC) and PSSC at economical low cost.

  2. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  3. Redox-responsive self-healing materials formed from host–guest polymers

    PubMed Central

    Nakahata, Masaki; Takashima, Yoshinori; Yamaguchi, Hiroyasu; Harada, Akira

    2011-01-01

    Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host–guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol−gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces. PMID:22027591

  4. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  5. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    PubMed

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  6. Two dimensional self-assembly zinc porphyrins and zinc phthalocyanines heterojunctions with record high power conversion efficiencies.

    PubMed

    Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun

    2018-05-15

    Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D Zinc-porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and band levels between those 2D ZnPors and our previous proposed ZnPcs, eleven type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cell. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which prevails all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells. © 2018 IOP Publishing Ltd.

  7. Two dimensional self-assembly zinc porphyrin and zinc phthalocyanine heterojunctions with record high power conversion efficiencies

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun

    2018-06-01

    Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D zinc porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and molecular energy levels between those 2D ZnPors and our previous proposed zinc phthalocyanines (ZnPcs), 11 type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cells. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which exceeds all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells.

  8. Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule.

    PubMed

    Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika

    2016-03-15

    The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.

  9. What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.

    2003-07-01

    Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.

  10. White Light Emission from Cucurbituril-Based Host-Guest Interaction in the Solid State: New Function of the Macrocyclic Host.

    PubMed

    Xia, Yu; Chen, Shiyan; Ni, Xin-Long

    2018-04-18

    Energy transfer and interchange are central for fabricating white light-emitting organic materials. However, increasing the efficiency of light energy transfer remains a considerable challenge because of the occurrence of "cross talk". In this work, by exploiting the unique photophysical properties of cucurbituril-triggered host-guest interactions, the two complementary luminescent colors blue and yellow for white light emission were independently obtained from a single fluorophore dye rather than energy transfer. Further study suggested that the rigid cavity of cucurbiturils efficiently prevented the aggregation of the dye and improved its thermal stability in the solid state by providing a regular nanosized fence for each encapsulated dye molecule. As a result, a novel macrocycle-assisted supramolecular approach for obtaining solid, white light-emitting organic materials with low cost, high efficiency, and easy scale-up was successfully demonstrated.

  11. Effect of solvent on the electronic absorption spectral properties of some mixed β-octasubstituted Zn(II)-tetraphenylporphyrins

    NASA Astrophysics Data System (ADS)

    Bhyrappa, P.; Sankar, M.

    2018-01-01

    A series of mixed β-octasubstituted Zn(II)-porphyrins, 2,3,12,13-tetra(chloro/cyano/methyl)-5,7,8,10,15,17,18,20-octaphenylporphinato zinc(II), ZnTPP(Ph)4X4 (X = CN, Cl and CH3) have been examined by electronic absorption spectroscopy in various solvents. These Zn(II)-porphyrins exhibited varying degree of red-shift of absorption bands as high as 20-30 nm in 'B' band and 50-60 nm in longest wavelength band, 'Q(0,0)' band in polar solvents relative to that found in nonpolar solvents. The red-shift of B and Q(0,0) bands showed an unusual trend, ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4(CH3)4 > ZnTPP(Ph)4Cl4 but fails to follow an anticipated anodic shift in first porphyrin ring oxidation (vs Ag/AgCl) potential: ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Cl4 (0.74 V) > ZnTPP(Ph)4(CH3)4 (0.38 V). Such a trend suggests the combined effect of non-planarity of the macrocycle and electronic effect of the peripheral substituents. The equilibrium constants for the binding of nitrogenous bases with the Zn(II)-porphyrins showed as high as twenty fold increase for ZnTPP(Ph)4X4 (X = Br and CN) relative to ZnTPP(Ph)4(CH3)4 and follow the order: ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4Br4 > ZnTPP(Ph)4(CH3)4 ≤ ZnTPP which is approximately in line with an increase in anodic shift of their first ring redox potentials (ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Br4 (0.72 V) > ZnTPP (0.84 V) > ZnTPP(Ph)4(CH3)4) (0.38 V).

  12. Intracellular guest exchange between dynamic supramolecular hosts.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; McCaughan, Bridgeen; Cusido, Janet; Callan, John F; Raymo, Françisco M

    2014-06-04

    Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 μg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.

  13. Micro magnetic tweezers for nanomanipulation inside live cells.

    PubMed

    de Vries, Anthony H B; Krenn, Bea E; van Driel, Roel; Kanger, Johannes S

    2005-03-01

    This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.

  14. Analysis of the phosphorescent dye concentration dependence of triplet-triplet annihilation in organic host-guest systems

    NASA Astrophysics Data System (ADS)

    Zhang, L.; van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2016-10-01

    Using a novel method for analyzing transient photoluminescence (PL) experiments, a microscopic description is obtained for the dye concentration dependence of triplet-triplet annihilation (TTA) in phosphorescent host-guest systems. It is demonstrated that the TTA-mechanism, which could be a single-step dominated process or a diffusion-mediated multi-step process, can be deduced for any given dye concentration from a recently proposed PL intensity analysis. A comparison with the results of kinetic Monte Carlo simulations provides the TTA-Förster radius and shows that the TTA enhancement due to triplet diffusion can be well described in a microscopic manner assuming Förster- or Dexter-type energy transfer.

  15. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  16. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  17. Colligative thermoelectric transport properties in n-type filled CoSb{sub 3} determined by guest electrons in a host lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Young Soo, E-mail: yslim@pknu.ac.kr, E-mail: wsseo@kicet.re.kr, E-mail: pmoka@lgchem.com; Park, Kwan-Ho; Tak, Jang Yeul

    2016-03-21

    Among many kinds of thermoelectric materials, CoSb{sub 3} has received exceptional attention for automotive waste heat recovery. Its cage structure provides an ideal framework for the realization of phonon-glass electron-crystal strategy, and there have been numerous reports on the enhanced thermoelectric performance through the independent control of the thermal and electrical conductivity by introducing fillers into its cage sites. Herein, we report colligative thermoelectric transport properties in n-type CoSb{sub 3} from the viewpoint of “guest electrons in a host lattice.” Both the Seebeck coefficient and the charge transport properties are fundamentally determined by the concentration of the guest electrons, whichmore » are mostly donated by the fillers, in the conduction band of the host CoSb{sub 3}. Comparing this observation to our previous results, colligative relations for both the Seebeck coefficient and the mobility were deduced as functions of the carrier concentration, and thermoelectric transport constants were defined to predict the power factor in filled CoSb{sub 3}. This discovery not only increases the degree of freedom for choosing a filler but also provides the predictability of power factor in designing and engineering the n-type filled CoSb{sub 3} materials.« less

  18. Converging free energies of binding in cucurbit[7]uril and octa-acid host-guest systems from SAMPL4 using expanded ensemble simulations

    NASA Astrophysics Data System (ADS)

    Monroe, Jacob I.; Shirts, Michael R.

    2014-04-01

    Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.

  19. Converging free energies of binding in cucurbit[7]uril and octa-acid host-guest systems from SAMPL4 using expanded ensemble simulations.

    PubMed

    Monroe, Jacob I; Shirts, Michael R

    2014-04-01

    Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein-ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host-guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.

  20. Push-pull quinoidal porphyrins.

    PubMed

    Smith, Martin J; Blake, Iain M; Clegg, William; Anderson, Harry L

    2018-05-01

    A family of push-pull quinoidal porphyrin monomers has been prepared from a meso-formyl porphyrin by bromination, thioacetal formation, palladium-catalyzed coupling with malononitrile and oxidation with DDQ. Attempts at extending this synthesis to a push-pull quinoidal/cumulenic porphyrin dimer were not successful. The crystal structures of the quinoidal porphyrins indicate that there is no significant contribution from singlet biradical or zwitterionic resonance forms. The crystal structure of an ethyne-linked porphyrin dimer shows that the torsion angle between the porphyrin units is only about 3°, in keeping with crystallographic results on related compounds, but contrasting with the torsion angle of about 35° predicted by computational studies. The free-base quinoidal porphyrin monomers form tightly π-stacked layer structures, despite their curved geometries and bulky aryl substituents.

  1. Nurses as 'guests'--a study of a concept in light of Jacques Derrida's philosophy of hospitality.

    PubMed

    Oresland, Stina; Lutzén, Kim; Norberg, Astrid; Rasmussen, Birgit H; Määttä, Sylvia

    2013-04-01

    As revealed in previous empirical research, nurses describe their position in home-based nursing care (HBNC) as that of 'guests' in the patient's home. Such a description is problematic as 'guests' might not be considered to belong to the realm of professionalism. As Jacques Derrida's work on hospitality has received wide publicity, sparking theoretical and philosophical discussion about host and guest, the aim of this study was to explore how the concept 'guests' can be understood in the light of Derrida's philosophy of hospitality. The study revealed that (a) guest must be considered a binary concept; and (b) hospitality should be regarded as an exchange of giving and receiving between a host and a guest. The present study demonstrated that it is important to reflect on the meaning of the concepts used by nurses in HBNC. Further theoretical and empirical exploration of the concept 'hospitality' would be fruitful, i.e. what is patients' understanding of 'hospitality' and 'hostility' related to nurses' descriptions of themselves as 'guests' in the patient's home. © 2013 Blackwell Publishing Ltd.

  2. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    PubMed

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  3. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  4. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  5. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  6. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  7. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The energy provided at the tip of the tweezer used to remove hair may be radio frequency, galvanic (direct...

  8. Photochemical modification of polymeric materials and the polarization of light in ionomeric guest/host systems

    NASA Astrophysics Data System (ADS)

    Pan, Bo

    Photochemical methods were introduced to develop important extrusion processes, through which polymers can either be functionalized or modified by altering molecular weight characteristics. Therefore, poly(methyl methacrylate) (PMMA) incorporated with a small amount of light-reactive functional groups was synthesized. These functional groups can be activated by UV irradiation in a post extrusion process to produce high molecular weight polymer and/or crosslinked polymer. Environmental stress cracking resistance of these polymers was examined and correlated to damping using dynamic mechanic analysis. To improve industrial reactive extrusion process of preparing maleic anhydride grafted polypropylene (MAR-g-PP), photografting was proposed and studied. Using benzophenone (BP) as the initiator, grafting efficiency was significantly improved compared to peroxide initiated grafting. Moreover, nearly constant conversion of maleic anhydride was observed in photografting. The high efficiency of benzophenone initiated photografting was attributed to the formation of the excited triplet state maleic anhydride. A rate constant of 6.0*109 M-1*sec-1 for the quenching of triplet state BP with MAH was obtained using laser photolysis spectroscopy. In a comparison, the hydrogen abstraction process from polypropylene by the triplet state BP molecules has a rate constant of 4.1*105 M-1*sec-1. In solution grafting with the use of benzene as the solvent, a facile triplet state energy transfer process may also occur leading to the formation of the excited triplet state MAH. Spectroscopic methods involving light were also used for the study of the guest-host interactions in polymer systems. The use of ionomers as the matrix for the oriented guest/host systems, cationic dye systems in particular, was shown to enhance polarization efficiency as well as dye uptake as comparing to conventional polymers, such as poly(vinyl alcohol). It was found that the dye molecules in carboxylated EVOH

  9. Stabilized nonlinear optical chromophore alignment in high-? guest - host polycarbonates

    NASA Astrophysics Data System (ADS)

    Healy, D.; Bloor, D.; Gray, D.; Cross, G. H.

    1997-11-01

    Electric-field-poling studies of two polycarbonates doped with 2-(N,N dimethylamino)-5-nitroacetanilide revealed a long-term room-temperature alignment stability. This stability at room temperature is compared with that of similarly doped poly(methyl methacrylate) (PMMA) which displays short-term relaxation. Despite several previous suggestions that hydrogen bonding between guest and host plays a major role in these effects, infra-red spectroscopic studies refuted the idea that stronger hydrogen bond formation in the polycarbonate rather than in PMMA is the dominant influence. Rather we show, using an examination of the poling currents during poling, that the re-orientation dynamics in the polycarbonate systems are markedly different. In the case of PMMA-doped films, the deposited surface charge is compensated by poling currents at a rate at least comparable to the rate of deposition of corona charge. The compensation rate for polycarbonate-doped systems was markedly lower, however, suggesting that polar re-orientation is slower. Studies of the second-order optical nonlinearities of poled thin films using second-harmonic generation revealed an apparent enhancement of the second-harmonic coefficient compared with the predictions of conventional theories. However, we note that the use of microscopic parameters (the dipole moment and the first hyperpolarizability) obtained from measurements in non-dipolar media may give rise to the apparent anomaly since high reaction fields in polycarbonate films may act to modify these parameters.

  10. Bioorganometallic chemistry. 5. Molecular recognition of aromatic amino acid guests by Cp{sup *} Rh-nucleobase/nucleoside/nucleotide cyclic trimer hosts in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Maestre, M.F.; Fish, R.H.

    We report what we believe is the first example of bioorganometallic hosts, 1-4, [Cp{sup *}Rh(9-methyladenine)]{sub 3}(OTf){sub 3} (1), [Cp{sup *}Rh(Me-5`-AMP)]{sub 3} (4), being able to recognize aromatic amino acid guests L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) in aqueous media at pH 7. Results show that the molecular recognition of aromatic amino acids with bioorganometallic hosts 1-4 in aqueous solution, as studied by {sup 1}H NMR and NOE techniques, occurs predominately via a {pi}-{pi} interaction, and, in the case of L-Trp, additional electronic/hydrophobic interactions with hosts are possible. 7 refs., 1 fig., 1 tab.

  11. Structural investigation of the β-cyclodextrin complexes with chiral bicyclic monoterpenes - Influence of the functionality group on the host-guest stoichiometry

    NASA Astrophysics Data System (ADS)

    Ceborska, Magdalena

    2017-10-01

    The crystal structures of the complexes of β-cyclodextrin with (+)- and (-)-camphors are presented. The comparison of the obtained crystal structures with available data for other complexes of β-cyclodextrin with chiral bicyclic monoterpenes (hydrocarbon (+)-fenchene and alcohols: (-)-isopinocampheol, and (+)-, and (-)-borneols) obtained from Cambridge Structural Database (CSD) shows the trend of alcohols to form dimeric complexes of 2:3 stoichiometry, while hydrocarbons and ketones prefer to form 2:2 host-guest inclusion complexes.

  12. Resource Letter: LBOT-1: Laser-based optical tweezers

    PubMed Central

    Lang, Matthew J.; Block, Steven M.

    2006-01-01

    This Resource Letter provides a guide to the literature on optical tweezers, also known as laser-based, gradient-force optical traps. Journal articles and books are cited for the following main topics: general papers on optical tweezers, trapping instrument design, optical detection methods, optical trapping theory, mechanical measurements, single molecule studies, and sections on biological motors, cellular measurements and additional applications of optical tweezers. PMID:16971965

  13. Resource Letter: LBOT-1: Laser-based optical tweezers.

    PubMed

    Lang, Matthew J; Block, Steven M

    2003-03-01

    This Resource Letter provides a guide to the literature on optical tweezers, also known as laser-based, gradient-force optical traps. Journal articles and books are cited for the following main topics: general papers on optical tweezers, trapping instrument design, optical detection methods, optical trapping theory, mechanical measurements, single molecule studies, and sections on biological motors, cellular measurements and additional applications of optical tweezers.

  14. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface.

    PubMed

    Gao, Rui; Yan, Dongpeng

    2017-01-01

    Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.

  15. Spectrofluorimetric study of host-guest complexation of ibuprofen with β-cyclodextrin and its analytical application

    NASA Astrophysics Data System (ADS)

    Manzoori, Jamshid L.; Amjadi, Mohammad

    2003-03-01

    The characteristics of host-guest complexation between β-cyclodextrin (β-CD) and two forms of ibuprofen (protonated and deprotonated) were investigated by fluorescence spectrometry. 1:1 stoichiometries for both complexes were established and their association constants at different temperatures were calculated by applying a non-linear regression method to the change in the fluorescence of ibuprofen that brought about by the presence of β-CD. The thermodynamic parameters (Δ H, Δ S and Δ G) associated with the inclusion process were also determined. Based on the obtained results, a sensitive spectrofluorimetric method for the determination of ibuprofen was developed with a linear range of 0.1-2 μg ml -1 and a detection limit of 0.03 μg ml -1. The method was applied satisfactorily to the determination of ibuprofen in pharmaceutical preparations.

  16. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets.

    PubMed

    Slenczka, Alkwin

    2017-07-25

    Phthalocyanine and porphyrin were among the first organic compounds investigated by means of electronic spectroscopy in superfluid helium nanodroplets. Superfluid helium nanodroplets serve as a very gentle host system for preparing cold and isolated molecules. The uniqueness of helium nanodroplets is with respect to the superfluid phase which warrants the vanishing viscosity and, thus, minimal perturbation of the dopant species at a temperature as low as 0.37 K. These are ideal conditions for the study of molecular spectra in order to analyze structures as well as dynamic processes. Besides the investigation of the dopant species itself, molecular spectroscopy in helium droplets provides information on the helium droplet and in particular on microsolvation. This article, as part of a special issue on phthalocyanines and porphyrins, reviews electronic spectroscopy of phthalocyanine and porphyrin compounds in superfluid helium nanodroplets. In addition to the wide variety of medical as well as technical and synthetical aspects, this article discusses electronic spectroscopy of phthalocyanines and porphyrins in helium droplets in order to learn about both the dopant and the helium environment.

  17. Inexpensive optical tweezers for undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Smith, Stephen P.; Bhalotra, Sameer R.; Brody, Anne L.; Brown, Benjamin L.; Boyda, Edward K.; Prentiss, Mara

    1999-01-01

    Single beam gradient force optical traps, or tweezers, are a powerful tool for a wide variety of experiments in physics, chemistry, and biology. We describe how to build an optical tweezer with a total cost of ≈6500 using only commercially available optics and mounts. We also suggest measurements that could be made using the apparatus.

  18. Modular magnetic tweezers for single-molecule characterizations of helicases.

    PubMed

    Kemmerich, Felix E; Kasaciunaite, Kristina; Seidel, Ralf

    2016-10-01

    Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  20. Tying Knots in DNA with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn; Foster, David; Seddon, Annela; Phillips, David; Carberry, David; Padgett, Miles; Dennis, Mark

    It has been demonstrated that holographic optical tweezers can be used to tie a trefoil knot in double-stranded DNA. We have developed an advanced holographic optical tweezers system with several types of intuitive control interfaces. It has been used in a range of research projects including the characterization and assembly of structures. Here the process of tying increasingly complex knots with holographic tweezers will be described. The DNA is of the order of 50 μ m in length and is fluorescently labeled, in order that it can be visualized in the optical microscope of the tweezers system. With a knot was tied, the effect of increasing the persistence length of the DNA by partial methylation of the DNA molecule was investigated. Leverhulme Trust.

  1. Spectrofluorimetric study of host-guest complexation of ibuprofen with beta-cyclodextrin and its analytical application.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad

    2003-03-15

    The characteristics of host-guest complexation between beta-cyclodextrin (beta-CD) and two forms of ibuprofen (protonated and deprotonated) were investigated by fluorescence spectrometry. 1:1 stoichiometries for both complexes were established and their association constants at different temperatures were calculated by applying a non-linear regression method to the change in the fluorescence of ibuprofen that brought about by the presence of beta-CD. The thermodynamic parameters (deltaH, deltaS and deltaG) associated with the inclusion process were also determined. Based on the obtained results, a sensitive spectrofluorimetric method for the determination of ibuprofen was developed with a linear range of 0.1-2 microg ml(-1) and a detection limit of 0.03 microg ml(-1). The method was applied satisfactorily to the determination of ibuprofen in pharmaceutical preparations. Copyright 2002 Elsevier Science B.V.

  2. Dielectric anomaly and relaxation natures in a Zn-Cr pillar-layered metal-organic framework with cages and channels

    NASA Astrophysics Data System (ADS)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin; Zou, Yang; Li, Li; Ren, Xiao-Ming

    2017-06-01

    A bimetallic metal-organic framework (MOF) with the formula [Zn3btc2{Cr3O(isonic)6(H2O)2(OH)}]·(DMF)15.5(H2O)8 (H3btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic)2(btc)2] tetrahedral and the consecutive monolayers are pillared by trigonal-prismatic clusters of [Cr3O(isonic)6(H2O)2(OH)]through the remaining binding sites of the Zn2+ ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the range of 173-363 K and 1-107 Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host-guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs-based dielectric materials.

  3. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  4. Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface.

    PubMed

    Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito

    2018-05-29

    We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.

  5. Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing

    PubMed Central

    Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin

    2015-01-01

    We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation. PMID:26729116

  6. Self-Assembly of Porphyrin J-Aggregates

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  7. Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface

    NASA Astrophysics Data System (ADS)

    Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena

    2016-01-01

    UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

  8. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-07

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  9. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    NASA Astrophysics Data System (ADS)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  10. Unusual near-white electroluminescence of light emitting diodes based on saddle-shaped porphyrins.

    PubMed

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Mohajerani, Ezeddin; Mahmoudi, Malek

    2015-05-14

    In contrast to the red electroluminescence emission frequently observed in porphyrins based OLED devices, the present devices exhibit a nearly white emission with greenish yellow, yellowish green and blue green hues in the case of Fe(II)(TCPPBr6) (TCPPBr6 = β-hexabromo-meso-tetrakis-(4-phenyl carboxyl) porphyrinato), Zn(II)(TPPBr6) and Co(II)(TPPBr6), respectively.

  11. Poly(carboxylic acid)-Cyclodextrin/Anionic Porphyrin Finished Fabrics as Photosensitizer Releasers for Antimicrobial Photodynamic Therapy.

    PubMed

    Castriciano, Maria Angela; Zagami, Roberto; Casaletto, Maria Pia; Martel, Bernard; Trapani, Mariachiara; Romeo, Andrea; Villari, Valentina; Sciortino, Maria Teresa; Grasso, Laura; Guglielmino, Salvatore; Scolaro, Luigi Monsù; Mazzaglia, Antonino

    2017-04-10

    In the development of new antibacterial therapeutic approaches to fight multidrug-resistant bacteria, antimicrobial photodynamic therapy (aPDT) represents a well-known alternative to treat local infections caused by different microorganisms. Here we present a polypropylene (PP) fabric finished with citrate-hydroxypropyl-βCD polymer (PP-CD) entrapping the tetra-anionic 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (TPPS) as photosensitizer-eluting scaffold (PP-CD/TPPS) for aPDT. The concept is based on host-guest complexation of porphyrin in the cavities of CDs immobilized on the PP fibers, followed by its sustained and controlled delivery in release medium and simultaneous photoinactivation of microorganisms. Morphology of fabric was characterized by optical (OM) and scanning electron microscopies (SEM). Optical properties were investigated by UV-vis absorption, steady- and time-resolved fluorescence emission spectroscopy. X-ray photoelectron spectroscopy (XPS) and FT-IR revealed the surface chemical composition and the distribution map of the molecular components on the fabric, respectively. Direct 1 O 2 determination allowed to assess the potential photodynamic activity of the fabric. Release kinetics of TPPS in physiological conditions pointed out the role of the CD cavity to control the TPPS elution. Photoantimicrobial activity of the porphyrin-loaded textile was investigated against both Gram-positive Staphylococcus aureus ATCC 29213 (S. aureus) and Gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Optical microscopy coupled with UV-vis extinction and fluorescence spectra aim to ascertain the uptake of TPPS to S. aureus bacterial cells. Finally, PP-CD/TPPS fabric-treated S. aureus cells were photokilled of 99.98%. Moreover, low adhesion of S. aureus cells on textile was established. Conversely, no photodamage of fabric-treated P. aeruginosa cells was observed, together with their satisfying adhesion.

  12. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    NASA Astrophysics Data System (ADS)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  13. Characterization of the host-guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin-gemini surfactant and evaluation of its anticancer activity.

    PubMed

    Poorghorban, Masoomeh; Das, Umashankar; Alaidi, Osama; Chitanda, Jackson M; Michel, Deborah; Dimmock, Jonathan; Verrall, Ronald; Grochulski, Pawel; Badea, Ildiko

    2015-01-01

    Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host-guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin-gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host-guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100-200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. The formation of host-guest complexes of NC 2067 with CD or

  14. Photoinduced Electron Transfer of PAMAM Dendrimer-Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces.

    PubMed

    Nagatani, Hirohisa; Sakae, Hiroki; Torikai, Taishi; Sagara, Takamasa; Imura, Hisanori

    2015-06-09

    The heterogeneous photoinduced electron-transfer reaction of the ion associates between NH2-terminated polyamidoamine (PAMAM) dendrimers and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato zinc(II) (ZnTPPS(4-)) was studied at the polarized water|1,2-dichloroethane (DCE) interface. The positive photocurrent arising from the photoreduction of ZnTPPS(4-) by a lipophilic quencher, decamethylferrocene, in the interfacial region was significantly enhanced by the ion association with the PAMAM dendrimers. The photocurrent response of the dendrimer-ZnTPPS(4-) associates was dependent on the pH condition and on the generation of dendrimer. A few cationic additives such as polyallylamine and n-octyltrimethyammonium were also examined as alternatives to the PAMAM dendrimer, but the magnitude of the photocurrent enhancement was rather small. The high photoreactivity of the dendrimer-ZnTPPS(4-) associates was interpreted mainly as a result of the high interfacial concentration of photoreactive porphyrin units associated stably with the dendrimer which was preferably adsorbed at the polarized water|DCE interface. The photochemical data observed in the second and fourth generation PAMAM dendrimer systems demonstrated that the higher generation dendrimer which can incorporate a porphyrin molecule more completely in the interior is less efficient for the photocurrent enhancement at the interface. These results indicated that the photoreactivity of ionic reactant at a polarized liquid|liquid interface can readily be modified via ion association with the charged dendrimer.

  15. β-cyclodextrin-ferrocene host-guest complex multifunctional labeling triple amplification strategy for electrochemical immunoassay of subgroup J of avian leukosis viruses.

    PubMed

    Shang, Kun; Wang, Xindong; Sun, Bing; Cheng, Ziqiang; Ai, Shiyun

    2013-07-15

    A novel sandwich-type electrochemical immunosensor was fabricated for ultrasensitive detection of subgroup J of avian leukosis virus (ALVs-J) by employing β-cyclodextrin-ferrocene (CD-Fc) host-guest complex multifunctional Fe3O4 nanospheres as labels and β-cyclodextrin functional graphene sheets (CD-GS) nanocomposite as sensor platform. The sensitivity was greatly improved based on the triple amplification strategy. Firstly, the CD-GS improved the electron transfer rate as well as increasing the surface area to capture a large amount of primary antibodies (Ab1). Secondly, the CD on the Fe3O4 surface with strong recognition capability could form stable CD-Fc host-guest inclusion complex and provided larger free room for the conjugation of secondary antibodies (Ab2) and glucose oxidase (GOD). Finally, the conjugated GOD exhibited extraordinary electrochemical biocatalysis towards the reduction reaction of Fc(+) by glucose. Under the optimized conditions, the electrochemical immunosensor exhibited a wide working range from 10(2.27)-10(3.50) TCID50/mL (TCID50: 50% tissue culture infective dose) with a low detection limit of 10(2.19) TCID50/mL (S/N=3). The selectivity, reproducibility, and stability are acceptable. The assay was evaluated for real avian serum sample, receiving satisfactory results. This new type of triple amplification strategy may provide potential applications for the clinic application. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Cationic Zn-Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates.

    PubMed

    Jayakumar, Sanjeevi; Li, He; Chen, Jian; Yang, Qihua

    2018-01-24

    The development of solid catalysts containing multiple active sites that work cooperatively is very attractive for biomimetic catalysis. Herein, we report the synthesis of bifunctional catalysts by supporting cationic porphyrin-based polymers on carbon nanotubes (CNTs) using the direct reaction of 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), di(1H-imidazol-1-yl)methane, and 1,4-bis(bromomethyl)benzene in the presence of CNTs. The bifunctional catalysts could efficiently catalyze the cycloaddition reaction of epoxides and CO 2 under solvent-free conditions with porphyrin zinc(II) as the Lewis acid site and a bromine anion as a nucleophilic agent working in a cooperative way. Furthermore, a relative amount of porphyrin zinc(II) and quaternary ammonium bromide could be facilely adjusted for facilitating cooperative behavior. The bifunctional catalyst with a TOF up to 2602 h -1 is much more active than the corresponding homogeneous counterpart and is one of the most active heterogeneous catalysts ever reported under cocatalyst-free conditions. The high activity is mainly attributed to the enhanced cooperation effect of the bifunctional catalyst. With a wide substrate scope, the bifunctional catalyst could be stably recycled. This work demonstrates a new approach for the generation of a cooperative activation effect for solid catalysts.

  17. A hybrid ruthenium alkynyl/zinc porphyrin "Cross Fourchée" with large cubic NLO properties.

    PubMed

    Merhi, Areej; Grelaud, Guillaume; Green, Katy A; Minh, Ngo Hoang; Reynolds, Michael; Ledoux, Isabelle; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G; Paul, Frédéric; Paul-Roth, Christine O

    2015-05-07

    A new Zn(ii) porphyrin-cored ruthenium alkynyl dendrimer (2) containing twelve Ru(κ(2)-dppe)2 bis-alkynyl fragments has been prepared in two steps from 5,10,15,20-tetra(4-ethynylphenyl)porphyrinatozinc(ii) and shown to be highly active for third-harmonic generation (THG) at 1907 nm.

  18. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  19. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  20. Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Grier, David

    2004-03-01

    An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.

  1. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  2. Infrared spectroscopic study of SO₄²⁻ ions included in M'₂M''(SeO₄)₂⋅6H₂O (Me'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn) and NH₄⁺ ions included in K₂M(XO₄)₂⋅6H₂O (X=S, Se; M''=Mg, Co, Ni, Cu, Zn).

    PubMed

    Marinova, D; Karadjova, V; Stoilova, D

    2015-01-05

    Infrared spectra of Tutton compounds, M'₂M''(SeO₄)₂⋅6H₂O (M'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn; X=S, Se), as well as those of SO₄²⁻ guest ions included in selenate host lattices and of NH4(+) guest ions included in potassium host lattices are presented and discussed in the regions of ν₃ and ν₁ of SO₄²⁻ guest ions, ν₄ of NH₄⁺ guest ions and water librations. The SO₄²⁻ guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν₃ and one band corresponding to ν₁ in good agreement with the low site symmetry C₁ of the host selenate ions. When the larger SO₄²⁻ ions are replaced by the smaller SO₄²⁻ ions the mean values of the asymmetric stretching modes ν₃ of the included SO₄²⁻ ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν₃ and Δν₃/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO₄²⁻ guest ions with both the water molecules in the host compounds and the NH₄⁺ host ions (for example, Δν₃ of the sulfate guest ions have values of 30 and 51 cm(-1) in the nickel potassium and ammonium compounds, and 33 and 49 cm(-1) in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν₄ of the included ammonium ions in agreement with the low site symmetry C₁ of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands

  3. The study of adhesive forces between the type-3 fimbriae of Klebsiella pneumoniae and collagen-coated surfaces by using optical tweezers

    NASA Astrophysics Data System (ADS)

    Chan, Chiahan; Fan, Chia-chieh; Huang, Ying-Jung; Peng, Hwei-Ling; Long, Hsu

    2004-10-01

    Adherence to host cells by a bacterial pathogen is a critical step for establishment of infection. It will contribute greatly to the understanding of bacterial pathogenesis by studying the biological force between a single pair of pathogen and host cell. In our experiment, we use a calibrated optical tweezers system to detach a single Klebsiella pneumoniae, the pathogen, from collagen, the host. By gradually increasing the laser power of the optical tweezers until the Klebsiella pneumoniae is detached from the collagen, we obtain the magnitude of the adhesive force between them. This happens when the adhesive force is barely equal to the trapping force provided by the optical tweezers at that specific laser power. This study is important because Klebsiella pneumoniae is an opportunistic pathogen which causes suppurative lesions, urinary and respiratory tract infections. It has been proved that type 3 fimbrial adhesin (mrkD) is strongly associated with the adherence of Klebsiella pneumoniae. Besides, four polymorphic mrkD alleles: namely, mrkDv1, v2, v3, and v4, are typed by using RFLP. In order to investigate the relationship between the structure and the function for each of these variants, DNA fragments encoding the major fimbrial proteins mrkA, mrkB, mrkC are expressed together with any of the four mrkD adhesins in E. coli JM109. Our study shows that the E. coli strain carrying the mrkDv3 fimbriae has the strongest binding activity. This suggests that mrkDv3 is a key factor that enhances the adherence of Klebsiella Pneumoniae to human body.

  4. How safe is gamete micromanipulation by laser tweezers?

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  5. A porphyrin-based fluorescence method for zinc determination in commercial propolis extracts without sample pretreatment.

    PubMed

    Pierini, Gastón Darío; Pinto, Victor Hugo A; Maia, Clarissa G C; Fragoso, Wallace D; Reboucas, Julio S; Centurión, María Eugenia; Pistonesi, Marcelo Fabián; Di Nezio, María Susana

    2017-11-01

    The quantification of zinc in over-the-counter drugs as commercial propolis extracts by molecular fluorescence technique using meso-tetrakis(4-carboxyphenyl)porphyrin (H 2 TCPP 4 ) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L -1 of Zn 2+ . The detection and quantification limits were 6.22 nmol L -1 and 19.0 nmol L -1 , respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329-0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn-porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy.

    PubMed

    Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao

    2018-06-05

    A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.

  7. Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study

    NASA Astrophysics Data System (ADS)

    Manna, Arun K.; Dunietz, Barry D.

    2014-09-01

    We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime.

  8. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  9. Perspectives of host faculty and trainees on international visiting faculty to paediatric academic departments in East Africa

    PubMed Central

    Russ, Christiana M; Ganapathi, Lakshmi; Marangu, Diana; Silverman, Melanie; Kija, Edward; Bakeera-Kitaka, Sabrina; Laving, Ahmed

    2016-01-01

    Background Investments in faculty exchanges to build physician workforce capacity are increasing. Little attention has been paid to the expectations of host institution faculty and trainees. This prospective qualitative research study explored faculty and resident perspectives about guest faculty in paediatric departments in East Africa, asking (1) What are the benefits and challenges of hosting guest faculty, (2) What factors influence the effectiveness of faculty visits and (3) How do host institutions prepare for faculty visits? Methods We recruited 36 faculty members and residents from among four paediatric departments in East Africa to participate in semistructured interviews which were audio recorded and transcribed. Data were qualitatively analysed using principles of open coding and thematic analysis. We achieved saturation of themes. Results Benefits of faculty visits varied based on the size and needs of host institutions. Emergent themes included the importance of guest faculty time commitment, and mutual preparation to ensure that visit goals and scheduling met host needs. We documented conflicts that developed around guest emotional responses and ethical approaches to clinical resource limitations, which some hosts tried to prepare for and mitigate. Imbalance in resources led to power differentials; some hosts sought partnerships to re-establish control over the process of having guests. Conclusions We identified that guest faculty can assist paediatric institutions in building capacity; however, effective visits require: (1) mutually agreed on goals with appropriate scheduling, visit length and commitment to ensure that the visits meet the host's needs, (2) careful selection and preparation of guest faculty to meet the host's goals, (3) emotional preparation by prospective guests along with host orientation to clinical work in the host's setting and (4) attention to funding sources for the visit and mitigation of resulting power differentials. PMID

  10. Dimerization of tetracationic porphyrins: ionic strength dependence.

    PubMed

    Dixon, D W; Steullet, V

    1998-02-01

    Cationic porphyrins are under study in a number of contexts including their interaction with biological targets, as possible therapeutic agents and as building blocks for molecular devices such as molecular photodiodes and solar cells. Many cationic porphyrins dimerize readily in aqueous solution. Dimerization in turn can control the properties of the porphyrin as well as its binding to its target. The propensity of a porphyrin to dimerize in aqueous solution can be estimated by recording the optical spectrum of the solution as a function of the concentration of added salt. Analysis of the data in terms of the Debye-Hückel formalism gives an estimate of the extent of dimerization as a function of ionic strength. Data for TMPyP4 [meso-tetrakis(4-N-methylpyridinium)porphyrin] and its butyl and octyl homologs; TMAP [meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin]; T theta PP [meso-tetrakis[4-N-[(3-(trimethyl-ammonio)propyl)oxy]phenyl]porphyrin] and the ferrocenyl porphyrin P3Fc are discussed. Dimerization may affect binding of the cationic porphyrins to their targets, e.g., DNA.

  11. Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films

    PubMed Central

    Castillero, Pedro; Roales, Javier; Lopes-Costa, Tânia; Sánchez-Valencia, Juan R.; Barranco, Angel; González-Elipe, Agustín R.; Pedrosa, José M.

    2016-01-01

    Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film. PMID:28025570

  12. Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design

    PubMed Central

    Moghaddam, Sarvin; Inoue, Yoshihisa

    2009-01-01

    It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781

  13. Infrared spectroscopic study of SO42- ions included in M‧2M‧‧(SeO4)2ṡ6H2O (Me‧ = K, NH4+; M‧‧ = Mg, Co, Ni, Cu, Zn) and NH4+ ions included in K2M(XO4)2ṡ6H2O (X = S, Se; M‧‧ = Mg, Co, Ni, Cu, Zn)

    NASA Astrophysics Data System (ADS)

    Marinova, D.; Karadjova, V.; Stoilova, D.

    2015-01-01

    Infrared spectra of Tutton compounds, M‧2M‧‧(XO4)2ṡ6H2O (M‧ = K, NH4+; M‧‧ = Mg, Co, Ni, Cu, Zn; X = S, Se), as well as those of SO42- guest ions included in selenate host lattices and of NH4+ guest ions included in potassium host lattices are presented and discussed in the regions of ν3 and ν1 of SO42- guest ions, ν4 of NH4+ guest ions and water librations. The SO42- guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν3 and one band corresponding to ν1 in good agreement with the low site symmetry C1 of the host selenate ions. When the larger SeO42- ions are replaced by the smaller SO42- ions the mean values of the asymmetric stretching modes νbar3 of the included SO42- ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν3 and Δν3/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO42- guest ions with both the water molecules in the host compounds and the NH4+ host ions (for example, Δν3 of the sulfate guest ions have values of 30 and 51 cm-1 in the nickel potassium and ammonium compounds, and 33 and 49 cm-1 in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν4 of the included ammonium ions in agreement with the low site symmetry C1 of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands in the region of ν4. At that stage of our knowledge we assume

  14. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  15. Temperature-regulated guest admission and release in microporous materials

    DOE PAGES

    Li, Gang; Shang, Jin; Gu, Qinfen; ...

    2017-06-09

    While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group’s thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with Hmore » 2, N 2, Ar and CH 4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We also demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. Our findings also open new avenues for gas sensing and isotope separation.« less

  16. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    NASA Astrophysics Data System (ADS)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  17. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    PubMed

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  18. Optical tweezers force measurements to study parasites chemotaxis

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  19. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  20. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties.

    PubMed

    Feese, Elke; Sadeghifar, Hasan; Gracz, Hanna S; Argyropoulos, Dimitris S; Ghiladi, Reza A

    2011-10-10

    Adherence and survival of pathogenic bacteria on surfaces leading to concomitant transmission to new hosts significantly contributes to the proliferation of pathogens, which in turn considerably increases the threat to human health, particularly by antibiotic-resistant bacteria. Consequently, more research into effective surface disinfection and alternative materials (fabrics, plastics, or coatings) with antimicrobial and other bioactive characteristics is desirable. This report describes the synthesis and characterization of cellulose nanocrystals that were surface-modified with a cationic porphyrin. The porphyrin was appended onto the cellulose surface via the Cu(I)-catalyzed Huisgen-Meldal-Sharpless 1,3-dipolar cycloaddition having occurred between azide groups on the cellulosic surface and porphyrinic alkynes. The resulting, generally insoluble, crystalline material, CNC-Por (5), was characterized by infrared and diffusion (1)H NMR spectroscopies, gel permeation chromatography, and thermogravimetric analysis. Although only suspended, and not dissolved, in an aqueous system, CNC-Por (5) showed excellent efficacy toward the photodynamic inactivation of Mycobacterium smegmatis and Staphylococcus aureus , albeit only slight activity against Escherichia coli . The synthesis, properties, and activity of CNC-Por (5) described herein serve as a benchmark toward our overall objectives of developing novel, potent, bioactive, photobactericidal materials that are effective against a range of bacteria, with potential utilization in the health care and food preparation industries.

  1. Lithium Ion Recognition with Nanofluidic Diodes through Host-Guest Complexation in Confined Geometries.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Mafe, Salvador; Niemeyer, Christof M; Ensinger, Wolfgang

    2018-05-15

    The lithium ion recognition is receiving significant attention because of its application in pharmaceuticals, lubricants and, especially, in energy technology. We present a nanofluidic device for specific lithium ion recognition via host-guest complexation in a confined environment. A lithium-selective receptor molecule, the aminoethyl-benzo-12-crown-4 (BC12C4-NH 2 ), is designed and functionalized on single conical nanopores in polyethylene terephthalate (PET) membranes. The native carboxylic acid groups on the pore walls are covalently linked with the crown ether moieties and the process is monitored from the changes in the current-voltage ( I- V) curves. The B12-crown-4 moieties are known to specifically bind with lithium ions and when the modified pore is exposed to different alkali metal chloride solutions separately, significant changes in the ion current and rectification are only observed for lithium chloride. This fact suggests the generation of positively charged B12C4-Li + complexes on the pore surface. Furthermore, the nanofluidic diode is able to recognize the lithium ion even in the presence of high concentrations of potassium ions in the external electrolyte solution. Thus, this nanodevice suggests a strategy to miniaturize nanofluidic porous systems for efficient recognition, extraction, and separation of lithium from raw materials.

  2. Dielectric anomaly and relaxation natures in a Zn-Cr pillar−layered metal−organic framework with cages and channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian

    A bimetallic metal–organic framework (MOF) with the formula [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8} (H{sub 3}btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic){sub 2}(btc){sub 2}] tetrahedral and the consecutive monolayers are pillared by trigonal–prismatic clusters of [Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH)]through the remaining binding sites of the Zn{sup 2+} ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the rangemore » of 173–363 K and 1–10{sup 7} Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host–guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs–based dielectric materials. - Graphical abstract: The bimetallic MOF [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8}1, shows a pillar-layered open-framework structure. The dielectric spectra of 1 are almost identical in the last two thermal cycles, whereas significantly different from that observed in the first thermal cycle. The novel dielectric anomaly associated with a stacked structure transformation of the disordered guests. - Highlights: • A bimetallic metal-organic framework shows a pillar

  3. New porphyrins bearing positively charged peripheral groups linked by a sulfonamide group to meso-tetraphenylporphyrin: interactions with calf thymus DNA.

    PubMed

    Manono, Janet; Marzilli, Patricia A; Marzilli, Luigi G

    2009-07-06

    New water-soluble cationic meso-tetraarylporphyrins (TArP, Ar = 4-C(6)H(4)) and some metal derivatives have been synthesized and characterized. One main goal was to assess if N-methylpyridinium (N-Mepy) groups must be directly attached to the porphyrin core for intercalative binding of porphyrins to DNA. The new porphyrins have the general formula, [T(R(2)R(1)NSO(2)Ar)P]X(4/8) (R(1) = CH(3) or H and R(2) = N-Mepy-n-CH(2) with n = 2, 3, or 4; or R(1) = R(2) = Et(3)NCH(2)CH(2)). Interactions of selected porphyrins and metalloporphyrins (Cu(II), Zn(II)) with calf thymus DNA were investigated by visible circular dichroism (CD), absorption, and fluorescence spectroscopies. The DNA-induced changes in the porphyrin Soret region (a positive induced CD feature and, at high DNA concentration, increases in the Soret band and fluorescence intensities) indicate that the new porphyrins interact with DNA in an outside, non-self-stacking binding mode. Several new metalloporphyrins did not increase DNA solution viscosity and thus do not intercalate, confirming the conclusion drawn from spectroscopic studies. Porphyrins known to intercalate typically bear two or more N-Mepy groups directly attached to the porphyrin ring, such as the prototypical meso-tetra(N-Mepy)porphyrin tetracation (TMpyP(4)). The distances between the nitrogens of the N-Mepy group are estimated to be approximately 11 A (cis) and 16 A (trans) for the relatively rigid TMpyP(4). For the new flexible porphyrin, [T(N-Mepy-4-CH(2)(CH(3))NSO(2)Ar)P]Cl(4), the distances between the nitrogens are estimated to be able to span the range from approximately 9 to approximately 25 A. Thus, the N-Mepy groups in the new porphyrins can adopt the same spacing as in known intercalators such as TMpyP(4). The absence of intercalation by the new porphyrins indicates that the propensity for the N-Mepy group to facilitate DNA intercalation of cationic porphyrins requires direct attachment of N-Mepy groups to the porphyrin core.

  4. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  5. Amphiphilic inclusion spaces for various guests and regulation of fluorescence intensity of 1,8-bis(4-aminophenyl)anthracene crystals.

    PubMed

    Sugino, Misa; Hatanaka, Keisuke; Araki, Yusuke; Hisaki, Ichiro; Miyata, Mikiji; Tohnai, Norimitsu

    2014-03-10

    A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8-bis(4-aminophenyl)anthracene (1,8-BAPA) with organic solvents. X-ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8-BAPA and eight guest molecules including both non-polar (benzene) and polar guests (N,N-dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature-dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.

  6. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  7. Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Ha, Wei; Kang, Yang; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-12-01

    We have developed a kind of gold nanoparticle (AuNP) in which polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) are attached on the surface of a gold nanocrystal through the host-guest inclusion between adamantane groups (ADA) and β-cyclodextrin (β-CD). The resulting AuNPs become amphiphilic in water above body temperature and self-assemble into vesicles. It is found that these vesicles can load doxorubicin (Dox) effectively. With a decrease in temperature, the PNIPAM shifted from hydrophobic to hydrophilic, causing Au vesicles to disassemble into stable small AuNPs, triggering the release of Dox. These hybrid vesicles, combining polymer functionality with the intriguing properties of AuNPs, can first release free Dox and AuNP/Dox at a site of a tumor through the application of either simple ice packs or deeply penetrating cryoprobes, then the AuNP/Dox can be taken in by tumor cells and destroy them like miniature munitions. Furthermore, these vesicles showed other therapeutic possibilities due to the presence of gold. We believe that the development of such multi-functional vesicles will provide new and therapeutically useful means for medical applications.

  8. Three Short Stories about Hexaarylbenzene-Porphyrin Scaffolds.

    PubMed

    Lungerich, Dominik; Hitzenberger, Jakob F; Donaubauer, Wolfgang; Drewello, Thomas; Jux, Norbert

    2016-11-14

    A feasible two-step synthesis and characterization of a full series of hexaarylbenzene (HAB) substituted porphyrins and tetrabenzoporphyrins is presented. Key steps represent the microwave-assisted porphyrin condensation and the statistical Diels-Alder reaction to the desired HAB-porphyrins. Regarding their applications, they proved to be easily accessible and effective high molecular mass calibrants for (MA)LDI mass spectrometry. The free-base and zinc(II) porphyrin systems, as well as the respective tetrabenzoporphyrins, demonstrate in solid state experiments strong red- and near-infrared-light emission and are potentially interesting for the application in "truly organic" light-emitting devices. Lastly, they represent facile precursors to large polycyclic aromatic hydrocarbon (PAH) substituted porphyrins. We prepared the first tetra-hexa-peri-hexabenzocoronene substituted porphyrin, which represents the largest prepared PAH-porphyrin conjugate to date. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals.

    PubMed

    Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V

    2015-12-09

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  10. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60 : Synthesis, Supramolecular Formation and Excited-State Processes.

    PubMed

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis

    2017-09-18

    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H 2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 10 4  m -1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H 2 P, and electron transfer to the coordinated ImC 60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×10 9  s -1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex

  11. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  12. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  13. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNiporphyrins and their metal complexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  15. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  16. Photocaged Competitor Guests: A General Approach Toward Light-Activated Cargo Release From Cucurbiturils.

    PubMed

    Romero, Miguel A; Basílio, Nuno; Moro, Artur J; Domingues, Mara; González-Delgado, José A; Arteaga, Jesús F; Pischel, Uwe

    2017-09-21

    A general approach toward the light-induced guest release from cucurbit[7]uril by means of a photoactivatable competitor was devised. An o-nitrobenzyl-caged competitor is photolyzed to generate a competitive guest that can displace cargo from the host macrocycle solely based on considerations of chemical equilibrium. With this method the release of terpene guests from inclusion complexes with cucurbit[7]uril was demonstrated. The binding of the herein investigated terpenes, all being lead fragrant components in essential oils, has been characterized for the first time. They feature binding constants of up to 10 8  L mol -1 and a high differential binding selectivity (spanning four orders of magnitude for the binding constants for the particular set of terpenes). By fine-tuning the photoactivatable competitor guest, selective and also sequential release of the terpenes was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Stepwise syntheses of bisporphyrins, bischlorins, and biscorroles and of porphyrin-chlorin and porphyrin-corrole heterodimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolesse, R.; Pandey, R.K.; Forsyth, T.P.

    The stepwise syntheses and characterization of a series of symmetrical and unsymmetrical bisporphyrins, bischlorins, and biscorroles, and of porphyrin-chlorin and porphyrin-corrole dyads possessing ethylene, phenyl, and stilbene linking units are described. The methodology for synthesis of 10-substituted corroles 2 and their cobalt complexes 9 via a,c-biladiene salts 1 was first developed, and then extended to provide biscorroles (e.g., 4 and 5) linked through the 10-positions with phenyl linker units. Using a similar methodology, phenyl-linked corrole-porphyrin dyads 28 and 30 were also prepared. By way of intermediate phenyl-linked unsymmetrical bisdipyrromethanes, a completely unsymmetrical heterobimetallic bisporphyrin system, 45, was synthesized. Low-valent titaniummore » coupling (McMurry) reactions were used to prepare stilbene-linked bisdipyrromethanes (e.g., 46) which were subsequently transformed into stilbene-linked bisporphyrins (e.g., 48). McMurry cross-coupling reactions of porphyrins bearing p-formylphenyl substituents also afforded an unsymmetrically substituted bisporphyrinylstilbene, 60, as well as the corresponding homodimers 56 and 59. Likewise, McMurry cross-coupling of a p-formylphenyl-substituted porphyrin, 62, with a formylchlorin, 63, afforded a stilbene-linked bisporphyrin, 64, a bischlorin, 66, and a novel porphyrin-chlorin heterodimer, 65. 54 refs., 1 fig., 1 tab.« less

  18. Origin and Future of Plasmonic Optical Tweezers

    PubMed Central

    Huang, Jer-Shing; Yang, Ya-Tang

    2015-01-01

    Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field. PMID:28347051

  19. Origin and Future of Plasmonic Optical Tweezers.

    PubMed

    Huang, Jer-Shing; Yang, Ya-Tang

    2015-06-12

    Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field.

  20. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  1. Moiré deflectometry-based position detection for optical tweezers.

    PubMed

    Khorshad, Ali Akbar; Reihani, S Nader S; Tavassoly, Mohammad Taghi

    2017-09-01

    Optical tweezers have proven to be indispensable tools for pico-Newton range force spectroscopy. A quadrant photodiode (QPD) positioned at the back focal plane of an optical tweezers' condenser is commonly used for locating the trapped object. In this Letter, for the first time, to the best of our knowledge, we introduce a moiré pattern-based detection method for optical tweezers. We show, both theoretically and experimentally, that this detection method could provide considerably better position sensitivity compared to the commonly used detection systems. For instance, position sensitivity for a trapped 2.17 μm polystyrene bead is shown to be 71% better than the commonly used QPD-based detection method. Our theoretical and experimental results are in good agreement.

  2. The molecular transport and intercalation of guest molecules into hydrogen-bonded metal-organic frameworks (HMOFs)

    NASA Astrophysics Data System (ADS)

    Hogan, Greg Anthony

    The process of molecular transport and intercalation has been widely studied for many years, resulting in the discovery of molecular frameworks that are capable of hosting guest molecules or ions. Layered and porous metal-organic frameworks (MOFs) have been found to have applications in the field of catalysis, storage, separations, and ion-exchange. More recently, molecular components with peripheral hydrogen-bonding moieties have been used to affect the synthesis of hydrogen-bonded metal-organic frameworks (HMOFs) as an alternative to MOFs, which are interconnected via coordinate-covalent bonds. While MOFs are perhaps stronger materials, HMOFs have the advantage of being easily modifiable and more flexible. Because HMOFs have not been extensively studied for their ability to host molecules, and because their ability to withstand guest loss and guest exchange is essentially unknown, here we report the synthesis and molecular transport properties of both close-packed and porous HMOFs. Layered materials can mimic the behavior of naturally occurring clays, where guest molecules are absorbed and the layer will expand to accommodate the entering guest molecule. We have created a clay mimic composed of a metal pyridine-dicarboxylates and ammonium counterions (a layered HMOF), which is suitable for studying the ability of such materials to absorb guest molecules. We can control the distance of the interlayer region, as well as the chemical nature (hydrophobic or hydrophilic) by varying the organic amine. The metal complex contains axial water ligands that are replaceable, and such ligand exchange has precedence in coordination polymer (MOF) systems, and has been termed "coordinative intercalation". Using the synthesized layered material we examined the process of intercalation, having chosen a variety of guest molecules ranging from alkyl to aryl molecules, each of which have substituents varying in size, shape and electronics. The first set of guest molecules are non

  3. Probing structural transition and guest dynamics of hydroquinone clathrates by temperature-dependent terahertz time-domain spectroscopy.

    PubMed

    Lee, Eui Su; Han, Kyu Won; Yoon, Ji-Ho; Jeon, Tae-In

    2011-01-13

    The structural transition from hydroquinone clathrates to crystalline α-form hydroquinone was observed up to the range of 3 THz frequency as a function of temperatures. We found that all three hydroquinone clathrates, CO(2)-, CH(4)-, and CO(2)/CH(4)-loaded hydroquinone clathrates, transform into the α-form hydroquinone at around 102 ± 7 °C. The resonance peak of the CO(2)-loaded hydroquinone clathrate at 2.15 THz decreases with increasing temperature, indicating that CO(2) guest molecules are readily released from the host framework prior to the structural transformation. This reveals that the hydroquinone clathrates may transform into the stable α-form hydroquinone via the metastable form of guest-free clathrate, which depends on guest molecules enclathrated in the cages of the host frameworks. A strong resonance of the α-form hydroquinone at 1.18 THz gradually shifts to the low frequency with increasing temperature and shifts back to the high frequency with decreasing temperature.

  4. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  5. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  6. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide.

    PubMed

    Kim, Yeon-Hwan; Hong, Jong-In

    2002-03-07

    Synthesis and complexation behavior of ditopic neutral receptors composed of both a Lewis-acidic binding site (zinc porphyrin moiety) and a Lewis-basic binding site (crown ether moiety) are reported; the receptors bound only NaCN in a ditopic fashion with a color change, and in contrast other sodium salts bound to the receptors in a monotopic fashion without a color change.

  7. Syntheses and Functionalizations of Porphyrin Macrocycles

    PubMed Central

    Vicente, Maria da G.H.; Smith, Kevin M.

    2014-01-01

    Porphyrin macrocycles have been the subject of intense study in the last century because they are widely distributed in nature, usually as metal complexes of either iron or magnesium. As such, they serve as the prosthetic groups in a wide variety of primary metabolites, such as hemoglobins, myoglobins, cytochromes, catalases, peroxidases, chlorophylls, and bacteriochlorophylls; these compounds have multiple applications in materials science, biology and medicine. This article describes current methodology for preparation of simple, symmetrical model porphyrins, as well as more complex protocols for preparation of unsymmetrically substituted porphyrin macrocycles similar to those found in nature. The basic chemical reactivity of porphyrins and metalloporphyrin is also described, including electrophilic and nucleophilic reactions, oxidations, reductions, and metal-mediated cross-coupling reactions. Using the synthetic approaches and reactivity profiles presented, eventually almost any substituted porphyrin system can be prepared for applications in a variety of areas, including in catalysis, electron transport, model biological systems and therapeutics. PMID:25484638

  8. A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides

    PubMed Central

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-01-01

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. PMID:21320454

  9. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    NASA Astrophysics Data System (ADS)

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-02-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

  11. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  12. Metal-porphyrin: a potential catalyst for direct decomposition of N(2)O by theoretical reaction mechanism investigation.

    PubMed

    Maitarad, Phornphimon; Namuangruk, Supawadee; Zhang, Dengsong; Shi, Liyi; Li, Hongrui; Huang, Lei; Boekfa, Bundet; Ehara, Masahiro

    2014-06-17

    The adsorption of nitrous oxide (N2O) on metal-porphyrins (metal: Ti, Cr, Fe, Co, Ni, Cu, or Zn) has been theoretically investigated using density functional theory with the M06L functional to explore their use as potential catalysts for the direct decomposition of N2O. Among these metal-porphyrins, Ti-porphyrin is the most active for N2O adsorption in the triplet ground state with the strongest adsorption energy (-13.32 kcal/mol). Ti-porphyrin was then assessed for the direct decomposition of N2O. For the overall reaction mechanism of three N2O molecules on Ti-porphyrin, two plausible catalytic cycles are proposed. Cycle 1 involves the consecutive decomposition of the first two N2O molecules, while cycle 2 is the decomposition of the third N2O molecule. For cycle 1, the activation energies of the first and second N2O decompositions are computed to be 3.77 and 49.99 kcal/mol, respectively. The activation energy for the third N2O decomposition in cycle 2 is 47.79 kcal/mol, which is slightly lower than that of the second activation energy of the first cycle. O2 molecules are released in cycles 1 and 2 as the products of the reaction, which requires endothermic energies of 102.96 and 3.63 kcal/mol, respectively. Therefore, the O2 desorption is mainly released in catalytic cycle 2 of a TiO3-porphyrin intermediate catalyst. In conclusion, regarding the O2 desorption step for the direct decomposition of N2O, the findings would be very useful to guide the search for potential N2O decomposition catalysts in new directions.

  13. Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests.

    PubMed

    Garcia, Chantal; Humilière, Delphine; Riva, Nathalie; Collet, André; Dutasta, Jean-Pierre

    2003-06-21

    To investigate the origin of the high selectivity of cryptophane-E (1) towards Me3NH+, Me4N+, and CHCl3, and particularly to discriminate the different contributions that stabilize the supramolecular complexes, we have synthesized the new cryptophane 2 bearing six MeS groups instead of MeO groups in 1. This led to a decrease of the negative charge density in the equatorial region of 2 without affecting notably the size of the molecular cavity. The binding properties of 1 and 2 towards the three guests were examined in solution and showed a slight decrease of the deltaGa favoring the complexes of 1, accompanied by a significant modification of the deltaHa vs. deltaSa balance. The binding of the ammonium guests to 1 and 2 was strongly entropy driven, while that of CHCl3 was purely enthalpy driven. A combination of spectroscopic and computational techniques was used to assign the main intermolecular interactions that occurred during the inclusion process. The neutral CHCl3 molecule is more stabilized in the less negatively charged CTV cap of 1. The different behavior towards the ammonium cations can be explained in term of interactions with the electronegative heteroatoms and cation-pi interactions. Moreover, this study revealed a considerable slowing down of the guest exchange kinetics with host 2, for which the association and dissociation rates are reduced by a factor 10(3) to 10(4) with respect to 1. For example, at room temperature, the Me4N+@2 complex exhibits a half-life of ca. 2 years, instead of a few hours for the corresponding complex of 1.

  14. Urinary porphyrin excretion in neurotypical and autistic children.

    PubMed

    Woods, James S; Armel, Sarah E; Fulton, Denise I; Allen, Jason; Wessels, Kristine; Simmonds, P Lynne; Granpeesheh, Doreen; Mumper, Elizabeth; Bradstreet, J Jeffrey; Echeverria, Diana; Heyer, Nicholas J; Rooney, James P K

    2010-10-01

    Increased urinary concentrations of pentacarboxyl-, precopro- and copro-porphyrins have been associated with prolonged mercury (Hg) exposure in adults, and comparable increases have been attributed to Hg exposure in children with autism (AU). This study was designed to measure and compare urinary porphyrin concentrations in neurotypical (NT) children and same-age children with autism, and to examine the association between porphyrin levels and past or current Hg exposure in children with autism. This exploratory study enrolled 278 children 2-12 years of age. We evaluated three groups: AU, pervasive developmental disorder-not otherwise specified (PDD-NOS), and NT. Mothers/caregivers provided information at enrollment regarding medical, dental, and dietary exposures. Urine samples from all children were acquired for analyses of porphyrin, creatinine, and Hg. Differences between groups for mean porphyrin and Hg levels were evaluated. Logistic regression analysis was conducted to determine whether porphyrin levels were associated with increased risk of autism. Mean urinary porphyrin concentrations are naturally high in young children and decline by as much as 2.5-fold between 2 and 12 years of age. Elevated copro- (p < 0.009), hexacarboxyl- (p < 0.01) and pentacarboxyl- (p < 0.001) porphyrin concentrations were significantly associated with AU but not with PDD-NOS. No differences were found between NT and AU in urinary Hg levels or in past Hg exposure as determined by fish consumption, number of dental amalgam fillings, or vaccines received. These findings identify disordered porphyrin metabolism as a salient characteristic of autism. Hg exposures were comparable between diagnostic groups, and a porphyrin pattern consistent with that seen in Hg-exposed adults was not apparent.

  15. Urinary Porphyrin Excretion in Neurotypical and Autistic Children

    PubMed Central

    Woods, James S.; Armel, Sarah E.; Fulton, Denise I.; Allen, Jason; Wessels, Kristine; Simmonds, P. Lynne; Granpeesheh, Doreen; Mumper, Elizabeth; Bradstreet, J. Jeffrey; Echeverria, Diana; Heyer, Nicholas J.; Rooney, James P.K.

    2010-01-01

    Background Increased urinary concentrations of pentacarboxyl-, precopro- and copro-porphyrins have been associated with prolonged mercury (Hg) exposure in adults, and comparable increases have been attributed to Hg exposure in children with autism (AU). Objectives This study was designed to measure and compare urinary porphyrin concentrations in neurotypical (NT) children and same-age children with autism, and to examine the association between porphyrin levels and past or current Hg exposure in children with autism. Methods This exploratory study enrolled 278 children 2–12 years of age. We evaluated three groups: AU, pervasive developmental disorder-not otherwise specified (PDD-NOS), and NT. Mothers/caregivers provided information at enrollment regarding medical, dental, and dietary exposures. Urine samples from all children were acquired for analyses of porphyrin, creatinine, and Hg. Differences between groups for mean porphyrin and Hg levels were evaluated. Logistic regression analysis was conducted to determine whether porphyrin levels were associated with increased risk of autism. Results Mean urinary porphyrin concentrations are naturally high in young children and decline by as much as 2.5-fold between 2 and 12 years of age. Elevated copro- (p < 0.009), hexacarboxyl- (p < 0.01) and pentacarboxyl- (p < 0.001) porphyrin concentrations were significantly associated with AU but not with PDD-NOS. No differences were found between NT and AU in urinary Hg levels or in past Hg exposure as determined by fish consumption, number of dental amalgam fillings, or vaccines received. Conclusions These findings identify disordered porphyrin metabolism as a salient characteristic of autism. Hg exposures were comparable between diagnostic groups, and a porphyrin pattern consistent with that seen in Hg-exposed adults was not apparent. PMID:20576582

  16. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  17. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  18. Catching TFSI: A Computational-Experimental Approach to β-Cyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries.

    PubMed

    Jeschke, Steffen; Jankowski, Piotr; Best, Adam S; Johansson, Patrik

    2018-03-12

    Cyclodextrins (CDs) are pyranoside-based macromolecules with a hydrophobic cavity to encapsulate small molecules. They are used as molecular vehicles, for instance in pharmaceutical drug delivery or as solubility enhancer of monomers for their polymerization in aqueous solution. In this context, it was discovered about 10 years ago that the bis(trifluoromethylsulonyl)imide (TFSI) anion forms host-guest complexes with βCD in aqueous media. This sparked interest in using the TFSI anion in lithium-based battery electrolytes open for its encapsulation by βCD as an attractive approach to increase the contribution of the cation to the total ion conductivity. By using semi-empirical quantum mechanical (SQM) methods and the conductor-like screening model for a real solvent (COSMO-RS), a randomly methylated βCD (RMβCD) is here identified as a suitable host for TFSI when using organic solvents often used in battery technology. By combining molecular dynamics (MD) simulations with different NMR and FTIR experiments, the formation of the corresponding RMβCD-TFSI complex was investigated. Finally, the effects of the addition RMβCD to a set of electrolytes on the ion conductivity are measured and explained using three distinct scenarios. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic Field Effects on Photoelectrochemical Reactions of Porphyrin-Viologen Linked Compounds in an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Tahara, Hironobu; Yonemura, Hiroaki; Harada, Satoko; Yamada, Sunao

    2011-08-01

    Magnetic field effects (MFEs) on photoelectrochemical reactions of three porphyrin-viologen linked compounds with various methylene groups [ZnP(n)V (n=4,6,8)] were examined in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) as an ionic liquid using a two-electrode cell. Stable anodic photocurrents are produced by irradiating ZnP(n)V (n=4,6,8) in [BMIM][BF4] with visible light, and the MFEs on photocurrents were clearly observed in ZnP(n)V (n=4,6,8). The MFEs on photocurrents increase with magnetic field for lower magnetic fields (B ≤200 mT) and are constant for higher magnetic fields (B > 200 mT). The magnitude of the MFEs in ZnP(n)V (n=6,8) are larger than that in ZnP(4)V. The MFEs can be explained by radical pair mechanism. The magnitude of the MFEs is larger than those in electrodes modified with ZnP(n)V (n=4,6,8) as Langmuir-Blodgett films. The results are most likely attributable to the properties of [BMIM][BF4] and the mechanism of photoelectrochemical reaction.

  20. Photoinduced oxidation of a water-soluble manganese(III) porphyrin

    PubMed Central

    Maliyackel, Anthony C.; Otvos, John W.; Spreer, Larry O.; Calvin, Melvin

    1986-01-01

    The photoinduced oxidation of tetra(N-methyl-4-pyridyl)porphyrinmanganese(III) has been achieved in homogeneous solution. The manganese porphyrin was used as an electron donor in a three-component system with tris-(2,2′-bipyridine)ruthenium(II) as the photosensitizer and chloropentaamminecobalt(III) as the electron acceptor. The photooxidized manganese porphyrin is unstable in aqueous solution, reverting to the starting manganese(III) porphyrin. The oxidation of manganese(III) porphyrin and the subsequent reduction of the oxidized porphyrin can be cycled repeatedly. PMID:16593699

  1. A statistical analysis of the PPII propensity of amino acid guests in proline-rich peptides.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-02-16

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar[5]arene

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Dong; Shi, Lin; Guo, Li-Hui; Wang, Jun-Wen; Zhang, Xiang

    2017-02-01

    The supramolecular interaction between the water-soluble pillar[5]arene (WP[5]) as host and dopamine hydrochloride (DH) as guest was studied by spectrofluorometry. The fluorescence intensity of DH gradually decreased with increasing WP[5] concentration, and the possible interaction mechanism between WP[5] and DH was confirmed by 1H NMR, 2D NOESY, and molecular modelling. Based on significant DH fluorescence, a highly sensitive and selective method for DH determination was developed for the first time. The fluorescence intensity was measured at 312 nm, with excitation at 285 nm. The effects of pH, temperature, and reaction time on the fluorescence spectra of the WP[5]-DH complex were investigated. A linear relationship between fluorescence intensity and DH concentration in the range of 0.07-6.2 μg mL- 1 was obtained. The corresponding linear regression equation is ΔF = 25.76 C + 13.56 (where C denotes the concentration in μg mL- 1), with the limit of detection equal to 0.03 μg mL- 1 and the correlation coefficient equal to 0.9996. This method can be used for the determination of dopamine in injection and urine samples. In addition, the WP[5]-DH complex has potential applications in fluorescent sensing and pharmacokinetics studies of DH.

  3. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  4. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes.

    PubMed

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-11

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  5. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    PubMed

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nickel porphyrins for memory optical applications

    DOEpatents

    Shelnutt, John A.; Jia, Songling; Medforth, Craig; Holten, Dewey; Nelson, Nora Y.; Smith, Kevin M.

    2000-01-01

    The present invention relates to a nickel-porphyrin derivative in a matrix, the nickel-porphyrin derivative comprising at least two conformational isomers, a lower-energy-state conformer and a higher-energy-state conformer, such that when the higher-energy-state conformer is generated from the lower-energy-state conformer following absorption of a photon of suitable energy, the time to return to the lower-energy-state conformer is greater than 40 nanoseconds at approximately room temperature. The nickel-porphyrin derivative is useful in optical memory applications.

  7. In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives

    PubMed Central

    Kurniawan, Fransiska; Miura, Youhei; Kartasasmita, Rahmana Emran; Mutalib, Abdul

    2018-01-01

    Five known porphyrins, 5,10,15,20-tetrakis(p-tolyl)porphyrin (TTP), 5,10,15,20-tetrakis(p-bromophenyl)porphyrin (TBrPP), 5,10,15,20-tetrakis(p-aminophenyl)porphyrin (TAPP), 5,10,15-tris(tolyl)-20-mono(p-nitrophenyl)porphyrin (TrTMNP), 5,10,15-tris(tolyl)-20-mono(p-aminophenyl)porphyrin (TrTMAP), and three novel porphyrin derivatives, 5,15-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-10,20-di(p-tolyl)porphyrin (DBECPDTP), 5,10-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-15,20-di-(methylpyrazole-4-yl)porphyrin (cDBECPDPzP), 5,15-di-[bis(3,4-ethylcarboxymethylenoxy)phenyl]-10,20-di-(methylpyrazole-4-yl)porphyrin (DBECPDPzP), were used to study their interaction with protein targets (in silico study), and were synthesized. Their cytotoxic activities against cancer cell lines were tested using 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay. The interaction of porphyrin derivatives with carbonic anhydrase IX (CAIX) and REV-ERBβ proteins were studied by molecular docking and molecular dynamic simulation. In silico study results reveal that DBECPDPzP and TrTMNP showed the highest binding interaction with REV- ERBβ and CAIX, respectively, and both complexes of DBECPDPzP-REV-ERBβ and TrTMNP-CAIX showed good and comparable stability during molecular dynamic simulation. The studied porphyrins have selective growth inhibition activities against tested cancer cells and are categorized as marginally active compounds based on their IC50. PMID:29361701

  8. Fiber optical tweezers for microscale and nanoscale particle manipulation and force sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang

    2011-12-01

    Optical tweezers have been an important tool in biology and physics for studying single molecules and colloidal systems. Most of current optical tweezers are built with microscope objectives, which are: i) expensive, ii) bulky and hard to integrate, iii) sensitive to environmental fluctuations, iv) limited in terms of working distances from the substrate, and v) rigid with the requirements on the substrate (transparent substrate made with glass and with a fixed thickness). These limitations of objective-based optical tweezers prevent them from being miniaturized. Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these optical tweezers can be potentially used in microfluidic systems. However, the existing fiber optical tweezers have the following limitations: i) low trapping efficiency due to weakly focused beams, ii) lack of the ability to control the positions of multiple particles simultaneously, and iii) limited functionalities. The overall objective of this dissertation work is to further the fundamental understanding of fiber optical tweezers through experimental study and modeling, and to develop novel fiber optical tweezers systems to enhance the capability and functionalities of fiber optical tweezers as microscale and nanoscale manipulators/sensors. The contributions of this dissertation work are summarized as follows. i) An enhanced understanding of the inclined dual-fiber optical tweezers (DFOTs) system has been achieved. Stable three dimensional (3D) optical trapping of a single micron-sized particle has been experimentally demonstrated. This is the first time that the trapping efficiency has been calibrated and the stiffness of the trap has been obtained in the experiments, which has been carried out by using two methods: the drag force method and power spectrum analysis. Such calibration enables the system to be used as a picoNewton-level force sensor in addition to a particle manipulator. The influence of

  9. High-force magnetic tweezers with force feedback for biological applications.

    PubMed

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100 nN onto 5 microm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  10. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  11. Quantifying noise in optical tweezers by allan variance.

    PubMed

    Czerwinski, Fabian; Richardson, Andrew C; Oddershede, Lene B

    2009-07-20

    Much effort is put into minimizing noise in optical tweezers experiments because noise and drift can mask fundamental behaviours of, e.g., single molecule assays. Various initiatives have been taken to reduce or eliminate noise but it has been difficult to quantify their effect. We propose to use Allan variance as a simple and efficient method to quantify noise in optical tweezers setups.We apply the method to determine the optimal measurement time, frequency, and detection scheme, and quantify the effect of acoustic noise in the lab. The method can also be used on-the-fly for determining optimal parameters of running experiments.

  12. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  13. Photoconductivity in DNA-Porphyrin Complexes

    NASA Astrophysics Data System (ADS)

    Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.

    2015-03-01

    We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.

  14. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.

    PubMed

    Gong, Yuan; Ye, Ai-Yan; Wu, Yu; Rao, Yun-Jiang; Yao, Yao; Xiao, Song

    2013-07-01

    Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

  15. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    NASA Astrophysics Data System (ADS)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  16. Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase.

    PubMed Central

    Dailey, H A; Smith, A

    1984-01-01

    The mechanism of porphyrin accumulation by tumours is not yet established. If metabolism aids porphyrin elimination, tumours, unlike normal tissues, may not metabolize porphyrins used clinically, such as proto-, haemato-, OO'-diacetyl-haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin. Proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are substrates for the mitochondrial enzyme ferrochelatase (EC 4.99.1.1), which can form haem analogues from exogenous porphyrins. The Km values for proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are 11, 22 and 23 microM respectively. However, OO'-diacetyl-haematoporphyrin is an effective competitive inhibitor with Ki of 11 microM. Hepatic ferrochelatase specific activity is 5.9 and 5.5 nmol of haem/h per mg of protein respectively in normal Buffalo rat and in those bearing the extrahepatic Morris 7288C hepatoma, and is only 0.13 nmol/h per mg in the hepatomas. Therefore low ferrochelatase activity in cancerous cells may provide one means whereby some porphyrins accumulate in tumours, and the ability of certain porphyrins to act as ferrochelatase inhibitors may provide another. PMID:6497856

  17. Automatic real time evaluation of red blood cell elasticity by optical tweezers

    NASA Astrophysics Data System (ADS)

    Moura, Diógenes S.; Silva, Diego C. N.; Williams, Ajoke J.; Bezerra, Marcos A. C.; Fontes, Adriana; de Araujo, Renato E.

    2015-05-01

    Optical tweezers have been used to trap, manipulate, and measure individual cell properties. In this work, we show that the association of a computer controlled optical tweezers system with image processing techniques allows rapid and reproducible evaluation of cell deformability. In particular, the deformability of red blood cells (RBCs) plays a key role in the transport of oxygen through the blood microcirculation. The automatic measurement processes consisted of three steps: acquisition, segmentation of images, and measurement of the elasticity of the cells. An optical tweezers system was setup on an upright microscope equipped with a CCD camera and a motorized XYZ stage, computer controlled by a Labview platform. On the optical tweezers setup, the deformation of the captured RBC was obtained by moving the motorized stage. The automatic real-time homemade system was evaluated by measuring RBCs elasticity from normal donors and patients with sickle cell anemia. Approximately 150 erythrocytes were examined, and the elasticity values obtained by using the developed system were compared to the values measured by two experts. With the automatic system, there was a significant time reduction (60 × ) of the erythrocytes elasticity evaluation. Automated system can help to expand the applications of optical tweezers in hematology and hemotherapy.

  18. Acid-base-controlled stereoselective metalation of overhanging carboxylic acid porphyrins: consequences for the formation of heterobimetallic complexes.

    PubMed

    Le Gac, Stéphane; Najjari, Btissam; Dorcet, Vincent; Roisnel, Thierry; Fusaro, Luca; Luhmer, Michel; Furet, Eric; Halet, Jean-François; Boitrel, Bernard

    2013-08-12

    Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so-called hanging-atop (HAT) Pb(II) cation to regular Pb(II) porphyrin complexes allowed a stereoselective incorporation of the N-core bound cation, and an allosterically controlled Newton's cradle-like motion of the two Pb(II) ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT Pb(II) coordination. The nature of the N-core bound metal ion (Zn(II), Cd(II)), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through (1)H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis-strap ligands have been considered. They all incorporate a COOH group hung over the N-core on one side. For the bis-strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear Zn(II) or Cd(II) complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT Pb(II). An allosteric effector (e.g., 4-dimethylaminopyridine (DMAP), in the case of a single-strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO(-), is required to switch the N-core bound cation to the opposite side with concomitant release of the COO(-), thereby allowing HAT Pb(II) complexation. In the absence of a base, Zn(II) or Cd(II) binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the

  19. Complexation of imidazopyridine-based cations with a 24-crown-8 ether host: [2]pseudorotaxane and partially threaded structures.

    PubMed

    Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge

    2013-11-01

    A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.

  20. Direct protein photoinduced conformational changes using porphyrins.

    NASA Astrophysics Data System (ADS)

    Brancaleon, Lorenzo; Silva, Ivan; Fernandez, Nicholas; Johnson, Eric; Sansone, Samuel

    2008-03-01

    Most proteins functions depend on the interaction with other ligands. These interactions depend on uniquely structured binding sites formed by the folding of the proteins. Ligands can often prompt intended as well as ``accidental'' protein structural changes. One can foresee that the ability to prompt and control post-translational protein folding could be a powerful tool to investigate protein folding mechanisms but also to inhibit certain proteins or induce new properties to proteins. One possible way to produce such structural disruption is the combination of light and photoactive ligands. This option has been investigated in recent years by exploiting photoisomerization and other properties of non-physiological dyes. We used an alternative approach which uses porphyrins as the ``triggers'' of structural changes. The advantage of porphyrins is that they can be found naturally in living cells. The photophysical properties of porphyrins can induce local as well as long range effects on the structure of the bound protein. Porphyrins are known to produce structural changes in porphyrin-specific proteins, however the novelty of our results is that we demonstrated that these dyes can also produce structural changes in non-porphyrin-specific globular proteins. We will present an overview of our research to-date in this field and its potential applications.

  1. A chemosensor showing discriminating fluorescent response for highly selective and nanomolar detection of Cu²⁺ and Zn²⁺ and its application in molecular logic gate.

    PubMed

    Fegade, Umesh A; Sahoo, Suban K; Singh, Amanpreet; Singh, Narinder; Attarde, Sanjay B; Kuwar, Anil S

    2015-05-04

    A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu(2+) and Zn(2+) in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn(2+) and Cu(2+) ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu(2+) and Zn(2+) ions, respectively. Further, we have effectively utilized the two metal ions (Cu(2+) and Zn(2+)) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Porphyrin Tests

    MedlinePlus

    ... variability can occur due to differences in testing equipment, chemical reagents, and techniques. This is a reason ... healthcare practitioner's office? No. Porphyrin tests require specialized equipment and technical skills. Some tests may be performed ...

  3. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  4. Optical manipulation of lipid and polymer nanotubes with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Kishore, Rani; Pfefferkorn, Candace; Wells, Jeffrey; Helmerson, Kristian; Howell, Peter; Vreeland, Wyatt; Forry, Samuel; Locascio, Laurie; Reyes-Hernandez, Darwin; Gaitan, Michael

    2004-10-01

    Using optical tweezers and microfluidics, we stretch either the lipid or polymer membranes of liposomes or polymersomes, respectively, into long nanotubes. The membranes can be grabbed directly with the optical tweezers to produce sub-micron diameter tubes that are several hundred microns in length. We can stretch tubes up to a centimeter in length, limited only by the travel of our microscope stage. We also demonstrate the cross linking of a pulled polymer nanotube.

  5. Post-synthetic transformation of a Zn(ii) polyhedral coordination network into a new supramolecular isomer of HKUST-1.

    PubMed

    Chen, Yao; Wojtas, Lukasz; Ma, Shengqian; Zaworotko, Michael J; Zhang, Zhenjie

    2017-08-03

    A Zn-based porphyrin containing metal-organic material (porphMOM-1) was transformed into a novel Cu-based porphyrin-encapsulating metal-organic material (porph@HKUST-1-β) via a one-pot post-synthetic modification (PSM) process involving both metal ion exchange and linker installation of trimesic acid. HKUST-1-β is the first example of yao topology and is to our knowledge the first supramolecular isomer of the archetypal coordination network HKUST-1.

  6. Interaction of metallo- and free base meso-tetrakis(N-methylpyridium-4-yl)porphyrin with a G-quadruplex: effect of the central metal ions.

    PubMed

    Kim, Yun-Hwa; Lee, Changyun; Kim, Seog K; Jeoung, Sae Chae

    2014-06-01

    The effects of the central metal ion on complex formation between meso-tetrakis(N-methylpyridium-4-yl)porphyrin (TMPyP) and the thrombin-binding aptamer G-quadruplex, 5'G2T2G2TGTG2T2G2, were examined in this study. The central metal ions were vanadium and zinc. At a [porphyrin]/[G-quadruplex] ratio of less than one, the absorption and CD spectra were unaffected by the mixing ratio for all three porphyrins, suggesting that the binding mode is homogeneous. Relatively small changes in the absorption spectrum when forming the complexes with the G-quadruplex, the positive CD signal, and the large accessibility of the I(-) quencher, suggested that all these porphyrins are not intercalated between the G-quartet. Stabilization of the G-quadruplex by ZnTMPyP was most effective. The effect of VOTMPyP on G-quadruplex stabilization was moderate, whereas TMPyP slightly destabilized G-quadruplex. From this observation, the involvement of the ligation of one G-quartet component to the central metal ion in G-quadruplex stabilization by metallo-TMPyP is suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Optical tweezers study life under tension.

    PubMed

    Fazal, Furqan M; Block, Steven M

    2011-05-31

    Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.

  8. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  9. Inducing tunable host luminescence in Zn2GeO4 tetrahedral materials via doping Cr3+

    NASA Astrophysics Data System (ADS)

    Bai, Qiongyu; Li, Panlai; Wang, Zhijun; Xu, Shuchao; Li, Ting; Yang, Zhiping; Xu, Zheng

    2018-06-01

    Zn2GeO4 consisting of tetrahedron, and it is a self-luminescent material due to the presence of the native defects and shows a bluish white emission excited by ultraviolet. Although Cr3+ doped in a tetrahedron generally cannot show luminescence, in this research, new defects are formed as Cr3+ doped in Zn2GeO4, hence a green emission band can be obtained. Meanwhile, the intensity of host emission is also decreased. Therefore, Zn2GeO4:Cr3+ are synthesized using a high-temperature solid-phase method. Thermoluminescence (TL) and luminescence decay curves are used to investigate the variation of native defects. The emission colour can be tuned from bluish white to green when Cr3+ doped in Zn2GeO4. This result has guidance for controlling the native emission of self-luminescent material.

  10. Spectroscopic investigation of the noncovalent association of the nerve agent simulant diisopropyl methylphosphonate (DIMP) with zinc(II) porphyrins.

    PubMed

    Maza, William A; Vetromile, Carissa M; Kim, Chungsik; Xu, Xue; Zhang, X Peter; Larsen, Randy W

    2013-11-07

    Organophosphonates pose a significant threat as chemical warfare agents, as well as environmental toxins in the form of pesticides. Thus, methodologies to sense and decontaminate these agents are of significant interest. Porphyrins and metalloporphyrins offer an excellent platform to develop chemical threat sensors and photochemical degradation systems. These highly conjugated planar molecules exhibit relatively long-lived singlet and triplet states with high quantum yields and also form self-associated complexes with a wide variety of molecules. A significant aspect of porphyrins is the ability to functionalize the peripheral ring system either directly to the pyrrole rings or to the bridging methine carbons. In this report, steady-state absorption and fluorescence are utilized to probe binding affinities of a series of symmetric and asymmetric zinc(II) metalloporphyrins for the nerve agent simulant diisopropyl methylphosphonate (DIMP) in hexane. The red shifts in the absorption and emission spectra observed for all of the metalloporphyrins probed are discussed in the frame of Gouterman's four orbital model and a common binding motif involving coordination between the metalloporphyrin and DIMP via interaction between the zinc metal center of the porphyrin and phosphoryl oxygen of DIMP (Zn-O═P) is proposed.

  11. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells.

    PubMed

    Rezvani, M; Darvish Ganji, M; Jameh-Bozorghi, S; Niazi, A

    2018-04-05

    In the present work density functional theory (DFT) and time-dependent semiempirical ZNIDO/S (TD-ZNIDO/S) methods have been used to investigate the ground state geometries, electronic structures and excited state properties of triad systems. The influences of the type of metal in the porphyrin ring, change in bridge position and porphyrine-ZnP duplicate on the energies of frontier molecular orbital and UV-Vis spectra has been studied. Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), chemical hardness (η), electrophilicity index (ω), electron accepting power (ω + ) were calculated using ZINDO/S method to predict which molecule is the most efficient with a great capability to be used as a triad molecule in solar industry. Moreover the light harvesting efficiency (LHE) was calculated by means of the oscillator strengths which are obtained by TD-ZINDO/S calculation. Theoretical studies of the electronic spectra by ZINDO/S method were helpful in interpreting the observed electronic transitions. This aspect was systematically explored in a series of C 60 -Porphyrine-Metalloporphyrine (C 60 -P-Mp) triad system with M being Fe, Co, Ni, Ti, and Zn. Generally, transition metal coordination compounds are used as effective sensitizers, due to their intense charge-transfer absorption over the whole visible range and highly efficient metal-to-ligand charge transfer. We aim to optimize the performance of the title solar cells by altering the frontier orbital energy gaps. The results reveal that cell efficiency can be enhanced by metal functionalization of the free base porphyrin. Ti-porphyrin was found to be the most efficient dye sensitizer for dye sensitized solar cells (DSSCs) based on C 60 -P-Mptriad system due to C 60 -Por-TiP complex has lower chemical hardness, gap energy and chemical potential as well as higher electron accepting power among other complexes

  12. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rezvani, M.; Darvish Ganji, M.; Jameh-Bozorghi, S.; Niazi, A.

    2018-04-01

    In the present work density functional theory (DFT) and time-dependent semiempirical ZNIDO/S (TD-ZNIDO/S) methods have been used to investigate the ground state geometries, electronic structures and excited state properties of triad systems. The influences of the type of metal in the porphyrin ring, change in bridge position and porphyrine-ZnP duplicate on the energies of frontier molecular orbital and UV-Vis spectra has been studied. Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), chemical hardness (η), electrophilicity index (ω), electron accepting power (ω+) were calculated using ZINDO/S method to predict which molecule is the most efficient with a great capability to be used as a triad molecule in solar industry. Moreover the light harvesting efficiency (LHE) was calculated by means of the oscillator strengths which are obtained by TD-ZINDO/S calculation. Theoretical studies of the electronic spectra by ZINDO/S method were helpful in interpreting the observed electronic transitions. This aspect was systematically explored in a series of C60-Porphyrine-Metalloporphyrine (C60-P-Mp) triad system with M being Fe, Co, Ni, Ti, and Zn. Generally, transition metal coordination compounds are used as effective sensitizers, due to their intense charge-transfer absorption over the whole visible range and highly efficient metal-to-ligand charge transfer. We aim to optimize the performance of the title solar cells by altering the frontier orbital energy gaps. The results reveal that cell efficiency can be enhanced by metal functionalization of the free base porphyrin. Ti-porphyrin was found to be the most efficient dye sensitizer for dye sensitized solar cells (DSSCs) based on C60-P-Mptriad system due to C60-Por-TiP complex has lower chemical hardness, gap energy and chemical potential as well as higher electron accepting power among other complexes. In

  13. [Disorder of porphyrin metabolism in thallium intoxication (author's transl)].

    PubMed

    Graben, N; Doss, M; Klöppel, H A

    1978-08-04

    A 19-year old male ingested in suicidal attempt 750 mg of thallium. He developed the characteristic symptoms of thallium intoxication. During the acute phase the urinary excretion of porphyrins and porphyrin precursors was largely increased. The percentage distribution of the individual metabolites of heme synthesis revealed a preponderance of kopro- and uroporphyrin. This constellation (kopro- greater than uro- greater than tricarboxylic porphyrin) differs appreciably from that one in lead intoxication. The observation of increased urinary excretion of porphyrins and their precursors in a possibly particular spectrum in thallium intoxication is of special interest for differential-diagnostic reasoning. In each case of a toxic disorder of porphyrin metabolism thallium intoxication ought to be considered a possible cause.

  14. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  15. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.

    PubMed

    Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej

    2015-07-29

    A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework.

  16. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  17. Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium.

    PubMed

    Deng, Heng; Dong, Yuan; Su, Jheng-Wun; Zhang, Cheng; Xie, Yunchao; Zhang, Chi; Maschmann, Matthew R; Lin, Yuyi; Lin, Jian

    2017-09-13

    Responsive materials with functions of forming three-dimensional (3D) origami and/or kirigami structures have a broad range of applications in bioelectronics, metamaterials, microrobotics, and microelectromechanical (MEMS) systems. To realize such functions, building blocks of actuating components usually possess localized inhomogeneity so that they respond differently to external stimuli. Previous fabrication strategies lie in localizing nonswellable or less-swellable guest components in their swellable host polymers to reduce swelling ability. Herein, inspired by ice plant seed capsules, we report an opposite strategy of implanting swellable guest medium inside nonswellable host polymers to locally enhance the swelling inhomogeneity. Specifically, we adopted a skinning effect induced surface polymerization combined with direct laser writing to control gradient of swellable cyclopentanone (CP) in both vertical and lateral directions of the nonswellable SU-8. For the first time, the laser direct writing was used as a novel strategy for patterning programmable polymer gel films. Upon stimulation of organic solvents, the dual-gradient gel films designed by origami or kirigami principles exhibit reversible 3D shape transformation. Molecular dynamics (MD) simulation illustrates that CP greatly enhances diffusion rates of stimulus solvent molecules in the SU-8 matrix, which offers the driving force for the programmable response. Furthermore, this bioinspired strategy offers unique capabilities in fabricating responsive devices such as a soft gripper and a locomotive robot, paving new routes to many other responsive polymers.

  18. Sensing interactions in the microworld with optical tweezers

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Bowman, Richard; Gibson, Graham; Sinan, Haliyo D.; Bergander, Arvid; Carberry, David; Régnier, Stéphane; Padgett, Miles

    2009-08-01

    Optical Tweezers have become a widespread tool in Cell Biology, microengineering and other fields requiring delicate micromanipulation. But for those sensitive tasks, it remains difficult to handle objects without damaging them. As the precision in position and force measurement increase, the richness of information cannot be fully exploited with simple interfaces such as a mouse or a common joystick. For this reason, we propose a haptic force-feedback optical tweezer command and a force-feedback system controlled by one hand. The system combines accurate force measurement using a fast camera and the coupling of these measured forces with a human operator. The overall transparency allows even the feeling of the Brownian motion.

  19. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  20. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    PubMed Central

    2017-01-01

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  1. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE PAGES

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe; ...

    2017-07-26

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  2. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  3. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center ismore » critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  4. Porphyrins blood test

    MedlinePlus

    Chernecky CC, Berger BJ. Porphyrins, quantitative - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:891-892. ...

  5. Anion-π aromatic neutral tweezers complexes: are they stable in polar solvents?

    PubMed

    Sánchez-Lozano, Marta; Otero, Nicolás; Hermida-Ramón, Jose M; Estévez, Carlos M; Mandado, Marcos

    2011-03-17

    The impact of the solvent environment on the stabilization of the complexes formed by fluorine (T-F) and cyanide (T-CN) substituted tweezers with halide anions has been investigated theoretically. The study was carried out using computational methodologies based on density functional theory (DFT) and symmetry adapted perturbation theory (SAPT). Interaction energies were obtained at the M05-2X/6-31+G* level. The obtained results show a large stability of the complexes in solvents with large dielectric constant and prove the suitability of these molecular tweezers as potential hosts for anion recognition in solution. A detailed analysis of the effects of the solvent on the electron withdrawing ability of the substituents and its influence on the complex stability has been performed. In particular, the interaction energy in solution was split up into intermonomer and solvent-complex terms. In turn, the intermonomer interaction energy was partitioned into electrostatic, exchange, and polarization terms. Polar resonance structures in T-CN complexes are favored by polar solvents, giving rise to a stabilization of the intermonomer interaction, the opposite is found for T-F complexes. The solvent-complex energy increases with the polarity of the solvent in T-CN complexes, nonetheless the energy reaches a maximum and then decreases slowly in T-F complexes. An electron density analysis was also performed before and after complexation, providing an explanation to the trends followed by the interaction energies and their different components in solution.

  6. A Single Crystalline Porphyrinic Titanium MetalOrganic Framework

    DTIC Science & Technology

    2015-04-28

    22, which was synthesized from preformed titanium -oxo carboxylate clusters and porphyrinic ligands. PCN-22 possesses high porosity and photocatalytic...DOI: 10.1039/c5sc00916b www.rsc.org/chemicalscience 3926 | Chem. Sci., 2015, 6, 3926–3930e porphyrinic titanium metal– organic framework† Shuai Yuan...Scott J. Dalgarnoc and Hong-Cai Zhou*a We successfully assembled the photocatalytic titanium -oxo cluster and photosensitizing porphyrinic linker into a

  7. [Cu,Zn]-Superoxide Dismutase Mutants of the Swine Pathogen Actinobacillus pleuropneumoniae Are Unattenuated in Infections of the Natural Host

    PubMed Central

    Sheehan, Brian J.; Langford, Paul R.; Rycroft, Andrew N.; Kroll, J. Simon

    2000-01-01

    Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, contains a periplasmic Cu- and Zn-cofactored superoxide dismutase ([Cu,Zn]-SOD, or SodC) which has the potential, realized in other pathogens, to promote bacterial survival during infection by dismutating host-defense-derived superoxide. Here we describe the construction of a site-specific, [Cu,Zn]-SOD-deficient A. pleuropneumoniae serotype 1 mutant and show that although the mutant is highly sensitive to the microbicidal action of superoxide in vitro, it remains fully virulent in experimental pulmonary infection in pigs. PMID:10899887

  8. BaHigh-force magnetic tweezers with force feedback for biological applications

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  9. Soft magnetic tweezers: a proof of principle.

    PubMed

    Mosconi, Francesco; Allemand, Jean François; Croquette, Vincent

    2011-03-01

    We present here the principle of soft magnetic tweezers which improve the traditional magnetic tweezers allowing the simultaneous application and measurement of an arbitrary torque to a deoxyribonucleic acid (DNA) molecule. They take advantage of a nonlinear coupling regime that appears when a fast rotating magnetic field is applied to a superparamagnetic bead immersed in a viscous fluid. In this work, we present the development of the technique and we compare it with other techniques capable of measuring the torque applied to the DNA molecule. In this proof of principle, we use standard electromagnets to achieve our experiments. Despite technical difficulties related to the present implementation of these electromagnets, the agreement of measurements with previous experiments is remarkable. Finally, we propose a simple way to modify the experimental design of electromagnets that should bring the performances of the device to a competitive level.

  10. Manipulation of cells with laser microbeam scissors and optical tweezers: a review

    NASA Astrophysics Data System (ADS)

    Greulich, Karl Otto

    2017-02-01

    The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.

  11. Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host-Guest Complexes

    NASA Astrophysics Data System (ADS)

    Carroy, Glenn; Lemaur, Vincent; Henoumont, Céline; Laurent, Sophie; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2018-01-01

    Supramolecular mass spectrometry has emerged in the last decade as an orthogonal method to access, at the molecular level, the structures of noncovalent complexes extracted from the condensed phase to the rarefied gas phase using electrospray ionization. It is often considered that the soft nature of the ESI source confers to the method the capability to generate structural data comparable to those in the condensed phase. In the present paper, using the ammonium ion/cucurbituril combination as a model system, we investigate using ion mobility and computational chemistry the influence of the instrumental parameters on the topology, i.e., internal versus external association, of gaseous host/guest complex ions. MS and theoretical data are confronted to condensed phase data derived from nuclear magnetic resonance spectroscopy to assess whether the instrumental parameters can play an insidious role when trying to derive condensed phase data from mass spectrometry results. [Figure not available: see fulltext.

  12. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  13. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    PubMed

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  14. Porphyrin network materials: Chemical exploration in the supramolecular solid-state

    NASA Astrophysics Data System (ADS)

    Kosal, Margaret Elizabeth

    Rational design of solid-state materials from molecular building blocks possessing desired physical and chemical characteristics remains among the most challenging tasks for the synthetic chemist. Using p-carboxylic acid tetraphenyl porphyrin molecules, H2T(p-CO 2H)PP, as the organic building block, the synthesis of novel microporous coordination framework materials has been pursued for this work. The self-assembly of the anionic carboxylate with divalent alkaline earth or transition metal cations yielded clathrate, lamellar and three-dimensional network materials. The solvothermal synthesis, characterization, and selective sorption properties of a 3-dimensional metalloporphyrin network solid, [CoT( p-CO2)PPCo1.5], named PIZA-1 for Porphyrinic Illinois Zeolite Analogue 1, have been investigated. The extended structure reveals a single, independent, neutral network with large, bi-directional oval-shaped channels (9 x 7 A) along the crystallographic b - and c-axes and another set of channels (14 x 7 A) along the a-axis. At the intersection of channels, an internal chamber (31 x 31 x 10 A) is realized. Channel-shape is attributable to ruffling of the metalloporphyrin macrocycles when coordinated to the bridging trinuclear Co(II)-carboxylate clusters. The void volume of the stable, thermally robust, solvate-free material is calculated to be 74% of the total unit cell volume. Size-, shape- and functional-group-selective sorption indicates a preference for water and amines. This organic zeolite analogue also demonstrates remarkable ability as a molecular sieve for removal of water from common organic solvents. By powder X-ray diffraction, BET gas adsorption studies and FTIR, this material has been shown to maintain its porous structure as a guest-free solid when heated under vacuum to 250°C. PIZA-1 demonstrates extremely high capacity for repeated selective sorption of water. In comparison to 4A molecular sieves, PIZA-1 exhibits higher capacity and faster response for

  15. Ratiometric fluorescent receptors for both Zn2+ and H2PO4(-) ions based on a pyrenyl-linked triazole-modified homooxacalix[3]arene: a potential molecular traffic signal with an R-S latch logic circuit.

    PubMed

    Ni, Xin-long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko

    2011-07-15

    A ratiometric fluorescent receptor with a C(3) symmetric structure based on a pyrene-linked triazole-modified homooxacalix[3]arene (L) was synthesized and characterized. This system exhibited an interesting ratiometric detection signal output for targeting cations and anions through switching the excimer emission of pyrene from the "on-off" to the "off-on" type in neutral solution. (1)H NMR titration results suggested that the Zn(2+) center of receptor L·Zn(2+) provided an excellent pathway of organizing anion binding groups for optimal host-guest interactions. It is thus believed that this receptor has potential application in sensing, detection, and recognition of both Zn(2+) and H(2)PO(4)(-) ions with different optical signals. In addition, the fluorescence emission changes by the inputs of Zn(2+) and H(2)PO(4)(-) ions can be viewed as a combinational R-S latch logic circuit at the molecular level.

  16. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, Jr., Paul E.; Langdale, Wayne A.

    1997-01-01

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  17. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, P.E. Jr.; Langdale, W.A.

    1997-08-19

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  18. Sediment-hosted Pb-Zn Deposits: a global perspective

    USGS Publications Warehouse

    Leach, David L.; Sangster, Donald F.; Kelley, Karen D.; Large, R; Garven, G.; Allen, Craig R.

    2005-01-01

    Sediment-hosted Pb-Zn deposits contain the world's greatest lead and zinc resources and dominate world production of these metals. They are a chverse group of ore deposits hosted by a wide variety of carbonate and siliciclastic roch that have no obviolls genetic association with igneous activity. A nmge of ore-fortl1ing processes in a vmiety of geologic and tectonic environments created these deposits over at least two billion years of Earth history. The metals were precipitated by basinal brines in synsedimentary and early diagenetic to low-grade metamorphic environments. The deposits display a broad range of relationships to enclosing host rocks that includes stratiform, strata-bound, and discordant ores. These ores are divided into two broad subt)1Jes: Mississippi Valley-type (MVT) and sedimentmy exhalative (SEDEX), Despite the "exhalative" component inherent in the term "SEDEX," in this manusclipt, direct evidence of an exhalite in the ore or alteration component is not essential for a deposit to be classified as SEDEX. The presence of laminated sulfides parallel to bedding is assumed to be permissive evidence for exhalative ores. The chstinction between some SEDEX and MVT depOSits can be quite subjective because some SEDEX ores replaced carbonate, whereas some MVT depOSits formed in an early diagenetic environment and display laminated ore textures. Geologic and resource information are presented for 248 depositS that provide a framework to describe ,mel compare these deposits. Nine of tlle 10 largest sediment-hosted Pb-Zn deposits are SEDEX, Of the deposits that contain at least 2.5 million metric tons (Mt), there are 35 SEDEX (excluding Broken Hill-type) deposits and 15 MVT (excluding Iris-type) deposits. Despite the skewed distribution of the deposit size, the two deposits types have an excellent correlation between total tonnage and tonnage of contained metal (Pb + Zn), with a fairly consistent ratio of about lO/l, regardless of the size of the deposit or

  19. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be

  20. Chemically bonded stationary phases that use synthetic hosts containing aromatic binding clefts: HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons.

    PubMed Central

    Zimmerman, S C; Saionz, K W; Zeng, Z

    1993-01-01

    The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981

  1. Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

    PubMed Central

    Godlewski, Szymon; Such, Bartosz; Pawlak, Rémy; Hinaut, Antoine; Jöhr, Res; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2017-01-01

    Zn(II)phthalocyanine molecules (ZnPc) were thermally deposited on a rutile TiO2(011) surface and on Zn(II)meso-tetraphenylporphyrin (ZnTPP) wetting layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM) at room temperature and their geometrical arrangement and degree of ordering are compared with the previously studied copper phthalocyanine (CuPc) and ZnTPP heterostructures. It was found that the central metal atom may play some role in ordering and growth of phthalocyanine/ZnTPP heterostructures, causing differences in stability of upright standing ZnPc versus CuPc molecular chains at given thermal annealing conditions. PMID:28144569

  2. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  3. Triplet exciton confinement for enhanced fluorescent organic light-emitting diodes using a co-host system

    NASA Astrophysics Data System (ADS)

    Yoo, Han Kyu; Lee, Ho Won; Lee, Song Eun; Kim, Young Kwan; Kim, Se Hyun; Yoon, Seung Soo; Park, Jaehoon

    2016-05-01

    In this work, the co-host system within an emitting layer (EML) consists of the host and triplet managing (TM) host materials. A set of EML structures was fabricated with various concentrations of the TM host (0, 10, 30, 50, and 70%). The TM host triplet energy level is lower than the energy levels of the host and the guest, which leads to a reduction in the triplet exciton density and the singlet-triplet annihilation of the guest. Blue fluorescent organic light-emitting diodes exhibit a maximum luminous efficiency (LE) and an external quantum efficiency (EQE) of 9.74 cd/A and 4.92%, respectively. In addition, the efficiency roll-off ratios of the LE and the EQE are 14.25 and 13.16%, respectively.

  4. Complexation of triptycene-derived macrotricyclic polyether with paraquat derivatives, diquat, and a 2,7-diazapyrenium salt: guest-induced conformational changes of the host.

    PubMed

    Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng

    2013-04-05

    Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.

  5. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    PubMed

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  6. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  7. A compact holographic optical tweezers instrument

    NASA Astrophysics Data System (ADS)

    Gibson, G. M.; Bowman, R. W.; Linnenberger, A.; Dienerowitz, M.; Phillips, D. B.; Carberry, D. M.; Miles, M. J.; Padgett, M. J.

    2012-11-01

    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated.

  8. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    PubMed

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  9. Design of a flexible organometallic tecton: host-guest chemistry with picric acid and self-assembly of platinum macrocycles.

    PubMed

    Jana, Achintya; Bhowmick, Sourav; Kaur, Supreet; Kashyap, Hemant K; Das, Neeladri

    2017-02-14

    The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA) 2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.

  10. Gate-opening gas adsorption and host-guest interacting gas trapping behavior of porous coordination polymers under applied AC electric fields.

    PubMed

    Kosaka, Wataru; Yamagishi, Kayo; Zhang, Jun; Miyasaka, Hitoshi

    2014-09-03

    The gate-opening adsorption behavior of the one-dimensional chain compound [Ru2(4-Cl-2-OMePhCO2)4(phz)] (1; 4-Cl-2-OMePhCO2(-) = 4-chloro-o-anisate; phz = phenazine) for various gases (O2, NO, and CO2) was electronically monitored in situ by applying ac electric fields to pelletized samples attached to a cryostat, which was used to accurately control the temperature and gas pressure. The gate-opening and -closing transitions induced by gas adsorption/desorption, respectively, were accurately monitored by a sudden change in the real part of permittivity (ε'). The transition temperature (TGO) was also found to be dependent on the applied temperature and gas pressure according to the Clausius-Clapeyron equation. This behavior was also observed in the isostructural compound [Rh2(4-Cl-2-OMePhCO2)4(phz)] (2), which exhibited similar gate-opening adsorption properties, but was not detected in the nonporous gate-inactive compound [Ru2(o-OMePhCO2)4(phz)] (3). Furthermore, the imaginary part of permittivity (ε″) effectively captured the electronic perturbations of the samples induced by the introduced guest molecules. Only the introduction of NO resulted in the increase of the sample's electronic conductivity for 1 and 3, but not for 2. This behavior indicates that electronic host-guest interactions were present, albeit very weak, at the surface of sample 1 and 3, i.e., through grain boundaries of the sample, which resulted in perturbation of the conduction band of this material's framework. This technique involving the in situ application of ac electric fields is useful not only for rapidly monitoring gas sorption responses accompanied by gate-opening/-closing structural transitions but also potentially for the development of molecular framework materials as chemically driven electronic devices.

  11. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  12. Mn-porphyrin derivatives as an antioxidant for medical devices.

    PubMed

    Ohse, T; Kawakami, H; Morita, A; Nagaoka, S

    1999-01-01

    It is well known that reactive oxygen species such as O*2- and H2O2 induce the biodegradation or cracking of medical devices in vivo or that they are released from inflammatory cells activated by devices to oxidize low-density lipoprotein. Therefore, the development of a novel antioxidant is required to eliminate the reactive oxygen species. In this paper, we report that Mn-porphyrin derivatives containing a macromolecular Mn-porphyrin are relatively stable compounds that can eliminate O*2- and/or H2O2. The dismutation of O*2- in the porphyrins was determined using a cytochrome c-assay by the xanthine/xanthine oxidase system and using the stopped-flow kinetic analysis technique. The possibility of porphyrins as scavengers of H2O2 was evaluated by in situ measurement with a Clark electrode. As a result, it has been found that Mn-porphyrin derivatives may be a vastly better scavenger of reactive oxygen species in vivo.

  13. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    PubMed

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  14. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  15. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  16. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  17. Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with supramolecular ({eta}{sup 5}-pentamethylcyclopentadienyl)rhodium - nucleobase, nucleoside, and nucleotide cyclic trimer hosts via non-covalent {pi}-{pi} and hydrophobic interactions in water: Steric, electronic, and conformational parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Ogo, Seiji; Fish, R.H.

    Molecular recognition, via non-covalent processes such as hydrogen bonding, {pi}-{pi}, and hydrophobic interactions, is an important biological phenomenon for guests, such as drugs, proteins, and other important biological molecules with, for example, host DNA/RNA. We have studied a novel molecular recognition process using guests that encompass aromatic and aliphatic amino acids [L-alanine, L-glutamine (L-Gln), L-histidine, L-isoleucine(L-Ile), L-leucine(L-Leu), L-phenylalanine(L-Phe), L-proline, L-tryptophan(L-Trp), L-valine(L-Val)], substituted aromatic carboxylic acids o-, m-, p-aminobenzoic acids (G1-3), benzoic acid (G4), phenylacetic acid (G5), p-methoxyphenylacetic acid (G6), o-methyoxybenozoic acid (G9), o-nitrobenzoic acid (G10), and aliphatic carboxylic acids [cyclohexylacetic acid (G7), 1-adamantanecarboxylic acid (G8)] with supramolecular, bioorganometallic hosts, ({eta}{supmore » 5}-pentamethylcyclopentadienyl)rhodium (Cp{sup *}Rh)-nucleobase, nucleoside, and nucleotide cyclic trimer complexes in aqueous solution at pH 7, utilizing {sup 1}H NMR, NOE, and molecular modeling techniques, and, as well, determining association constants (K{sub a}) and free energies of complexation ({Delta}{degree}G). The host-guest complexation occurs predominantly via non-covalent {pi}-{pi}, hydrophobic, and possible subtle H-bonding interactions, with steric, electronic, and molecular conformational parameters as important criteria. 8 refs., 6 figs., 3 tabs.« less

  18. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging.

    PubMed

    Simmert, Steve; Abdosamadi, Mohammad Kazem; Hermsdorf, Gero; Schäffer, Erik

    2018-05-28

    Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.

  19. Optical tweezers theory near a flat surface: a perturbative method

    NASA Astrophysics Data System (ADS)

    Flyvbjerg, Henrik; Dutra, Rafael S.; Maia Neto, Paolo A.; Nussenzveig, H. Moyses

    We propose a perturbative calculation of the optical force exercised by a focused laser beam on a microsphere of arbitrary radius that is localized near a flat glass surface in a standard optical tweezers setup. Starting from the Mie-Debye representation for the electric field of a Gaussian laser beam, focused by an objective of high numerical aperture, we derive a recursive series that represents the multiple reflections that describe the reverberation of laser light between the microsphere and the glass slide. We present numerical results for the axial component of the optical force and the axial trap stiffness. Numerical results for a configuration typical in biological applications--a microsphere of 0.5 µm radius at a distance around 0.25 µm from the surface--show a 37 [1] Viana N B, Rocha M S. Mesquita O N, et al. (2007) Towards absolute calibration of optical tweezers. Phys Rev E 75:021914-1-14. [2] Dutra R S, Viana N B, Maia Neto P A, et al. (2014) Absolute calibration of forces in optical tweezers. Phys Rev A 90:013825-1-13. Rafael S. Dutra thanks the Brazilian ``Science without Borders'' program for a postdoctoral scholarship.

  20. New Horizons Pluto Flyby Guest Operations

    NASA Astrophysics Data System (ADS)

    Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.

    2015-12-01

    On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.

  1. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    NASA Astrophysics Data System (ADS)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  2. Cobalt-cadmium bimetallic porphyrin coordination polymers for electrochemistry application

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Cui, G. Y.; Ding, D.; Zhou, B.

    2018-01-01

    In this paper, we used tetra (4-carboxyphenyl) porphyrin (H2TCPP) and metal cadmium, cobalt as reactants to synthesize metal porphyrin coordination polymers that they had different metal ratio. They were expressed as Co1Cd3TCPP, Co1Cd1TCPP, Co3Cd1TCPP, respectively. The results were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma atomic emission spectrometer (ICP). Herein, a series of metal porphyrin coordination polymers has multiple metal active centers and constructs electrochemistry sensors. In order to increase the conductivity, multi-walled carbon nanotubes (MWCNTs) can be used to modify the electrodes. The polymer/MWCNTs/GCE electrode was studied by cyclic voltammetry and chronoamperometry as sensor for sodium nitrite. The performance of Co1Cd1TCPP/MWCNTs/GCE electrode is best, the sensitivity for sodium nitrite is 350.95 mA M-1 cm-2 and the. The results indicate that metal porphyrin coordination polymers have excellent performance. It also enriches the application of metal porphyrin coordination polymer in electrochemistry sensor.

  3. Induction of endogenic porphyrin production in bacteria and subsequent photoinactivation by various light sources

    NASA Astrophysics Data System (ADS)

    Nitzan, Yeshayahu; Malik, Zvi; Kauffman, Merav; Ehrenberg, Benjamin

    1997-12-01

    (delta) -aminolevulinic acid (ALA) induces the production of very high amounts of porphyrins in Gram-positive and Gram- negative bacteria. Accumulation of the porphyrins in the bacterial cell is a consequence of the high porphyrin production but most of the porphyrins are excreted from the cells into the medium. By fluorescence, measurements of the endogenic and of the exogenic content of the produced porphyrins can be determined. Bacteria loaded by their own accumulated porphyrins can undergo photoinactivation by various light sources. Killing of S. aureus cells by its endogenic porphyrins can be achieved by illumination with intense blue lights or by HeNe laser. E. coli cells loaded with endogenic porphyrins can be photoinactivated by intense blue and red light.

  4. The effect of host relaxation and dynamics on guest molecule dynamics in H2/tetrahydrofuranhydrate.

    PubMed

    Peterson, Vanessa K; Shoko, Elvis; Kearley, Gordon J

    2011-01-01

    We use ab initio molecular dynamics simulations to obtain classically the effects of H2O cage motions on the potential-energy surface (PES) of encapsulated H2 in the H2/tetrahydrofuran-hydrate system. The significant differences between the PES for the H2 in rigid and flexible cages that we find will influence calculation of the quantum dynamics of the H2. Part of these differences arises from the relaxation of the H2O cage around the classical H2, with a second part arising from the coupling of both translational and rotational motions of H2 with the H20 cage. We find that isotopic substitution of 2H for 1H of the H2O cage affects the coupling, which has implications for experiments that require the use of 2H2O, including inelastic neutron scattering that uses 2H2O cages in order to focus on the H2 guest dynamics. Overall, this work emphasizes the importance of taking into account cage dynamics in any approach used to understand the dynamics of H2 guests in porous framework materials.

  5. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.

    PubMed

    Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar

    2017-12-26

    Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.

  6. The Smallest Tweezers in the World

    ERIC Educational Resources Information Center

    Lewalle, Alexandre

    2008-01-01

    A pair of fine tweezers and a steady hand may well be enough to pick up a grain of sand, but what would you use to hold something hundreds of times smaller still, the size of only one micron? The answer is to use a device that is not mechanical in nature but that relies instead on the tiny forces that light exerts on small particles: "optical…

  7. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOEpatents

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  8. [Renal excretion of total porphyrins and hippuric acid in rats].

    PubMed

    Gartzke, J; Burck, D

    1986-09-01

    The amounts of total porphyrins, hippuric acid and creatinine, excreted in urine by adult male Wistar rats, exhibited normal distributions for hippuric acid and creatinine, but a bimodal distribution for total porphyrins. This typical distribution of total porphyrins was still observed when creatinine was used as reference parameter. In biochemical and toxicological experiments in rats, the tested parameters should be therefore be investigated for homogeneity.

  9. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  10. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor.

    PubMed

    Parayil, Sreenivasan Koliyat; Lee, Jooran; Yoon, Minjoong

    2013-05-01

    Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.

  11. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  13. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  14. Photochemistry of porphyrins: a model for the origin of photosynthesis

    NASA Technical Reports Server (NTRS)

    Mercer-Smith, J. A.; Mauzerall, D. C.

    1984-01-01

    A series of porphyrins and catalysts has been prepared as a model for the origin of photosynthesis on the primordial earth. These compounds have been used to test the hypotheses that (1) the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis, and (2) the proto-photosythetic function of biogenetic porphyrins (biosynthetic chlorophyll precursors) was the oxidation of organic molecules by photoexcited porphyrins with the attendant emission of molecular hydrogen. This paper describes experiments in which photoexcited biogenetic porphyrins oxidize ethylenediamine tetraacetic acid (EDTA). The concomitant reduction of protons to hydrogen gas occurs in the presence of a colloidal platinum catalyst. The addition of methyl viologen, a one-electron shuttle, increases the amount of molecular hydrogen generated during long irradiations and the quantum yield of hydrogen production. When the porphyrin and catalyst are held in association by molecular complexes, the increased efficiency of electron transfer produces higher yields of hydrogen gas.

  15. Hydrophobic effect as a driving force for host-guest chemistry of a multi-receptor Keplerate-type capsule.

    PubMed

    Watfa, Nancy; Melgar, Dolores; Haouas, Mohamed; Taulelle, Francis; Hijazi, Akram; Naoufal, Daoud; Avalos, Josep Bonet; Floquet, Sébastien; Bo, Carles; Cadot, Emmanuel

    2015-05-06

    The effectiveness of the interactions between various alkylammonium cations and the well-defined spherical Keplerate-type {Mo132} capsule has been tracked by (1)H DOSY NMR methodology, revealing a strong dependence on the self-diffusion coefficient of the cationic guests balanced between the solvated and the plugging situations. Analysis of the data is fully consistent with a two-site exchange regime involving the 20 independent {Mo9O9} receptors of the capsule. Furthermore, quantitative analysis allowed us to determine the stability constants associated with the plugging process of the pores. Surprisingly, the affinity of the capsule for a series of cationic guests increases continuously with its apolar character, as shown by the significant change of the stability constant from 370 to 6500 for NH4(+) and NEt4(+), respectively. Such observations, supported by the thermodynamic parameters, evidence that the major factor dictating selectivity in the trapping process is the so-called "hydrophobic effect". Computational studies, using molecular dynamics simulations, have been carried out in conjunction with the experiments. Analysis of the radial distribution functions g(r) reveals that NH4(+) and NMe4(+) ions behave differently in the vicinity of the capsule. The NH4(+) ions do not exhibit well-defined distributions when in close vicinity. In contrast, the NMe4(+) ions displayed sharp distributions related to different scenarios, such as firmly trapped or labile guest facing the {Mo9O9} pores. Together, these experimental and theoretical insights should aid in the exploitation of these giant polyoxometalates in solution for various applications.

  16. Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma.

    PubMed

    Karagianis, G; Hill, J S; Stylli, S S; Kaye, A H; Varadaxis, N J; Reiss, J A; Phillips, D R

    1996-02-01

    A series of monomeric porphyrins (2-8) based on porphyrin C (1) have been tested as sensitisers for photodynamic therapy (PDT) of cerebral glioma using the in vitro/in vivo C6 intracerebral animal tumour model. The in vivo screening, consisting of cytotoxicity, phototoxicity (red light) and subcellular localisation studies, revealed two sensitisers (porphyrin 7, molecular weight 863 Da and porphyrin 8, molecular weight 889 Da), which had greater photoactivity than porphyrin C and similar photoactivity to haematoporphyrin derivative (HpD) although at a 5-fold higher dose than HpD. Both sensitisers showed intracellular localisation to discrete organelle sites and exhibited considerably less 'dark' cytotoxicity than HpD. The kinetics of uptake of porphyrins 7 and 8 was studied in the mouse C6 glioma model as well as in biopsy samples from normal brain, liver, spleen and blood. Maximal drug uptake levels in tumour occurred 9 and 6 h after intraperitoneal injection for 7 and 8 respectively, at which time the tumour to normal brain ratios were 15:1 and 13:1 respectively. The effect of PDT using porphyrin 7 activated by the gold metal vapour laser tuned to 627.8 nm was studied in Wistar rats bearing intracerebral C6 glioma. At a drug dose of 10 mg porphyrin 7 kg-1 body weight and laser doses of up to 400 J cm-2 light, selective tumour kill with sparing of normal brain was achieved, with a maximal depth of tumour kill of 1.77+/-0.40. mm. Irradiation following a higher drug dose of 75 mg porphyrin 7 kg-1 body weight resulted in a greater depth of tumour kill, but also significantly increased the likelihood and extent of necrosis in normal brain.

  17. Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release.

    PubMed

    Seftel, E M; Cool, P; Lutic, D

    2013-12-01

    Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400°C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic-mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6h with Phe solution. A delivery test in PBS of pH=7.4 showed the release of the Phe in several steps up to 25 h indicating different host-guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer. © 2013.

  18. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  19. Dynamic properties of bacterial pili measured by optical tweezers

    NASA Astrophysics Data System (ADS)

    Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2004-10-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.

  20. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    PubMed

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  1. Bioconjugatable Porphyrins Bearing a Compact Swallowtail Motif for Water Solubility

    PubMed Central

    Borbas, K. Eszter; Mroz, Pawel; Hamblin, Michael R.; Lindsey, Jonathan S.

    2011-01-01

    A broad range of applications requires access to water-soluble, bioconjugatable porphyrins. Branched alkyl groups attached at the branching site to the porphyrin meso position are known to impart high organic solubility. Such “swallowtail” motifs bearing a polar group (hydroxy, dihydroxyphosphoryl, dihydroxyphosphoryloxy) at the terminus of each branch have now been incorporated at a meso site in trans-AB-porphyrins. The incorporation of the swallowtail motif relies on rational synthetic methods whereby a 1,9-bis(N-propylimino)dipyrromethane (bearing a bioconjugatable tether at the 5-position) is condensed with a dipyrromethane (bearing a protected 1,5-dihydroxypent-3-yl unit at the 5-position). The two hydroxy groups in the swallowtail motif of each of the resulting zinc porphyrins can be transformed to the corresponding diphosphate or diphosphonate product. A 4-(carboxymethyloxy)phenyl group provides the bioconjugatable tether. The six such porphyrins reported here are highly water-soluble (≥20 mM at room temperature in water at pH 7) as determined by visual inspection, UV–vis absorption spectroscopy, or 1H NMR spectroscopy. Covalent attachment was carried out in aqueous solution with the unprotected porphyrin diphosphonate and a monoclonal antibody against the T-cell receptor CD3ε. The resulting conjugate performed comparably to a commercially available fluorescein isothiocyanate-labeled antibody with Jurkat cells in flow cytometry and fluorescence microscopy assays. Taken together, this work enables preparation of useful quantities of water-soluble, bioconjugatable porphyrins in a compact architecture for applications in the life sciences. PMID:16704201

  2. Peripherally Metalated Porphyrins with Applications in Catalysis, Molecular Electronics and Biomedicine.

    PubMed

    Longevial, Jean-François; Clément, Sébastien; Wytko, Jennifer A; Ruppert, Romain; Weiss, Jean; Richeter, Sébastien

    2018-04-24

    Porphyrins are conjugated, stable chromophores with a central core that binds a variety of metal ions and an easily functionalized peripheral framework. By combining the catalytic, electronic or cytotoxic properties of selected transition metal complexes with the binding and electronic properties of porphyrins, enhanced characteristics of the ensemble are generated. This review article focuses on porphyrins bearing one or more peripheral transition metal complexes and discusses their potential applications in catalysis or biomedicine. Modulation of the electronic properties and intramolecular communication through coordination bond linkages in bis-porphyrin scaffolds is also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porphyrin as an ideal biomarker in the search for extraterrestrial life.

    PubMed

    Suo, Zhiyong; Avci, Recep; Schweitzer, Mary Higby; Deliorman, Muhammedin

    2007-08-01

    A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.

  4. Novel drug delivery strategies for porphyrins and porphyrin precursors

    NASA Astrophysics Data System (ADS)

    Morrow, D. I. J.; Donnelly, R. F.

    2009-06-01

    superficial lesions, such as actinic keratosis. In addition, photodynamic antimicrobial chemotherapy (PACT) is attracting increasing interest for the treatment of infection. However, delivery strategies for topical PDT and PACT are still based on application of rather simplistic cream and solution formulations, with little consideration given to thermodynamics, targeting or the physicochemical properties of the active agent. Purpose-designed dosage forms for topical delivery of aminolevulinic acid or its esters include creams containing penetration enhancers and/or iron chelators, pressure sensitive patches and bioadhesive patches. Such systems aim to enhance drug delivery across the stratum corneum and keratinised debris overlying neoplastic lesions and improve subsequent protoporphyrin IX (PpIX) production. The alternative to using porphyrin precursors is the use of pre-formed photosensitisers. However, owing to their relatively high molecular weights, conventional topical application is not appropriate. Innovative strategies, such as the use of needle-free injections and microneedle arrays, bypass the stratum corneum, enabling rapid and targeted delivery not only porphyrin precursors but also pre-formed photosensitisers. This presentation will review drug delivery work published to date in the fields of PDT and PACT. In addition, the benefits of employing the latest advances in pharmaceutical technology will be highlighted.

  5. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium

  6. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    PubMed

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Porphyrin involvement in redshift fluorescence in dentin decay

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  8. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  9. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  10. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  11. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  12. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.

    PubMed

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

  13. Measurement of macrophage adhesion using optical tweezers with backward-scattered detection

    NASA Astrophysics Data System (ADS)

    Wei, Sung-Yang; Su, Yi-Jr; Shih, Po-Chen; Yang, Shih-Mo; Hsu, Long

    2010-08-01

    Macrophages are members of the leukocyte family. Tissue damage causes inflammation and release of vasoactive and chemotactic factors, which trigger a local increase in blood flow and capillary permeability. Then, leukocytes accumulate quickly to the infection site. The leukocyte extravasation process takes place according to a sequence of events that involve tethering, activation by a chemoattractant stimulus, adhesion by integrin binding, and migrating to the infection site. The leukocyte extravasation process reveals that adhesion is an important part of the immune system. Optical tweezers have become a useful tool with broad applications in biology and physics. In force measurement, the trapped bead as a probe usually uses a polystyrene bead of 1 μm diameter to measure adhesive force between the trapped beads and cell by optical tweezers. In this paper, using the ray-optics model calculated trapping stiffness and defined the linear displacement ranges. By the theoretical values of stiffness and linear displacement ranges, this study attempted to obtain a proper trapped particle size in measuring adhesive force. Finally, this work investigates real-time adhesion force measurements between human macrophages and trapped beads coated with lipopolysaccharides using optical tweezers with backscattered detection.

  14. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.

    PubMed

    Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo

    2015-08-19

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.

  15. Synthesis, spectral, and structural studies of porphyrins having sterically hindered [η(5)-CpCo(η(4)-C4Ph4)] cobalt sandwich units at the meso positions.

    PubMed

    Keshav, Karunesh; Kumar, Dheeraj; Elias, Anil J

    2013-11-04

    Synthesis, spectral, and structural studies of the first examples of porphyrins substituted at the meso positions with sterically hindered η(5)-CpCo(η(4)-C4Ph4) cobalt sandwich units are described. The novel dipyrromethane derived cobalt sandwich compound {η(5)-[(C4H4N)2CH]C5H4}Co(η(4)-C4Ph4) 1, as well as its parent aldehyde, η(5)-[C5H4(CHO)]Co(η(4)-C4Ph4), were used in the synthesis of porphyrins having one or two η(5)-CpCo(η(4)-C4Ph4) groups at their meso positions. 1,9-Diformyldipyrromethane derived η(5)-CpCo(η(4)-C4Ph4) 2 was synthesized using dipyrromethane 1 under Vilsmeier conditions. A reaction of 2 with unsubstituted dipyrromethane under basic conditions in the presence of Pd(C6H5CN)2Cl2 yielded an A-type palladium coordinated porphyrin 3 [where A = η(5)-CpCo(η(4)-C4Ph4)]. A similar reaction of 2 with meso aryl and ferrocenyl-substituted dipyrromethanes yielded trans-AB type palladium coordinated porphyrins 4-6 [where A = η(5)-CpCo(η(4)-C4Ph4) and B = 4-tert-butylphenyl 4, ferrocenyl 5, and pentafluorophenyl 6]. Reactions of 2 with 5-ferrocenyl dipyrromethane under the same reaction conditions in the presence of Ni(acac)2 and Zn(OAc)2 gave the trimetallic nickel(II) and zinc(II) complexed trans-AB type porphyrins 7 and 8 having both cobalt and iron sandwich units at the meso positions. Crystal structure of the Pd(II) porphyrin 5 and nickel(II) porphyrin 7 showed nonplanar structures having distinct ruffle type distortion of the porphyrin ring. Demetalation of the zinc(II) trans-AB type porphyrin 8 in the presence of trifluoroacetic acid gave the metal free base porphyrin 9. Reactions of the cobalt sandwich aldehyde [(η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically hindered dipyrromethane derivatives under acid-catalyzed condensation reactions gave trans-A2B2 type porphyrins [where A = η(5)-CpCo(η(4)-C4Ph4) and B = pentafluorophenyl, 10 mesityl 11]. In contrast, reactions of [η(5)-C5H4(CHO)]Co(η(4)-C4Ph4) with sterically unhindered meso-4

  16. A molecular dynamics study of model SI clathrate hydrates: the effect of guest size and guest-water interaction on decomposition kinetics.

    PubMed

    Das, Subhadip; Baghel, Vikesh Singh; Roy, Sudip; Kumar, Rajnish

    2015-04-14

    One of the options suggested for methane recovery from natural gas hydrates is molecular replacement of methane by suitable guests like CO2 and N2. This approach has been found to be feasible through many experimental and molecular dynamics simulation studies. However, the long term stability of the resultant hydrate needs to be evaluated; the decomposition rate of these hydrates is expected to depend on the interaction between these guest and water molecules. In this work, molecular dynamics simulation has been performed to illustrate the effect of guest molecules with different sizes and interaction strengths with water on structure I (SI) hydrate decomposition and hence the stability. The van der Waals interaction between water of hydrate cages and guest molecules is defined by Lennard Jones potential parameters. A wide range of parameter spaces has been scanned by changing the guest molecules in the SI hydrate, which acts as a model gas for occupying the small and large cages of the SI hydrate. All atomistic simulation results show that the stability of the hydrate is sensitive to the size and interaction of the guest molecules with hydrate water. The increase in the interaction of guest molecules with water stabilizes the hydrate, which in turn shows a slower rate of hydrate decomposition. Similarly guest molecules with a reasonably small (similar to Helium) or large size increase the decomposition rate. The results were also analyzed by calculating the structural order parameter to understand the dynamics of crystal structure and correlated with the release rate of guest molecules from the solid hydrate phase. The results have been explained based on the calculation of potential energies felt by guest molecules in amorphous water, hydrate bulk and hydrate-water interface regions.

  17. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  18. Flexible particle manipulation techniques with conical refraction-based optical tweezers

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Henderson, Robert; Carnegie, David J.; Sokolovskii, Grigorii S.; Rafailov, Edik U.; McGloin, David

    2012-10-01

    We present an optimized optical tweezers system based upon the conical refraction of circularly polarized light in a biaxial crystal. The described optical arrangement avoids distortions to the Lloyd plane rings that become apparent when working with circularly polarized light in conventional optical tweezers. We demonstrate that the intensity distribution of the conically diffracted light permits optical manipulation of high and low refractive index particles simultaneously. Such trapping is in three dimensions and not limited to the Lloyd plane rings. By removal of a quarter waveplate the system also permits the study of linearly polarized conical refraction. We show that particle position in the Raman plane is determined by beam power, and indicates that true optical tweezing is not taking place in this part of the beam.

  19. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  20. Reduced graphene oxide and porphyrin. An interactive affair in 2-D.

    PubMed

    Wojcik, Aleksandra; Kamat, Prashant V

    2010-11-23

    Photoexcited cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) undergoes charge-transfer interaction with chemically reduced graphene oxide (RGO). Formation of the ground-state TMPyP-RGO complex in solution is marked by the red-shift of the porphyrin absorption band. This complexation was analyzed by Benesi-Hildebrand plot. Porphyrin fluorescence lifetime reduced from 5 to 1 ns upon complexation with RGO, indicating excited-state interaction between singlet excited porphyrin and RGO. Femtosecond transient absorption measurements carried out with TMPyP adsorbed on RGO film revealed fast decay of the singlet excited state, followed by the formation of a longer-living product with an absorption maximum around 515 nm indicating the formation of a porphyrin radical cation. The ability of TMPyP-RGO to undergo photoinduced charge separation was further confirmed from the photoelectrochemical measurements. TMPyP-RGO coated conducting glass electrodes are capable of generating photocurrent under visible excitation. These results are indicative of the electron transfer between photoexcited porphyrin and RGO. The role of graphene in accepting and shuttling electrons in light-harvesting assemblies is discussed.

  1. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-05

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    NASA Astrophysics Data System (ADS)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  3. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

  4. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE PAGES

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.; ...

    2017-12-24

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

  5. A concept for the removal of microplastics from the marine environment with innovative host-guest relationships.

    PubMed

    Herbort, Adrian Frank; Schuhen, Katrin

    2017-04-01

    Environmental pollution caused by inert anthropogenic stressors such as microplastics in aquatic media is constantly increasing. Through the proliferating use of plastic products in daily life, more and more plastic particles enter waters as primary microplastics. Even though large scale plastic items such as plastic bottles and bags represent the highest percentage of plastic waste, their degeneration also generates microparticles and nanoparticles (secondary microplastics). Modern sewage treatment plants require innovative ideas in order to deal with this man-made problem. State-of-the-art technology offers approaches to minimise the amount of microplastics in aquatic systems. These technologies, however, are either insufficient or very costly, as well as time-consuming in both cases. The conceptual idea presented here is to apply innovative inorganic-organic hybrid silica gels which provide a cost-effective and straightforward approach. Currently, the synthesis of preorganised bioinspired compounds is advancing in order to produce functionalised hybrid silica gels in a further step. These gels have the ability to remove stressors such as microplastics from waste water. By means of the sol-gel process, bioinspired silane compounds are currently being permuted to macromolecules and examined with respect to their properties as fixation and filter material in order to remove the hydrophobic anthropogenic stressors sustainably. Here, the reproduction of biological systems plays a significant role. In particular in material sciences, this approach is becoming increasingly important. Among other concepts, new biomimetic molecules form the basis for the investigation of innovative host-guest relationships for anthropogenic stressors in the environment and their implementation in technical processes.

  6. Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host-guest chemistry

    NASA Astrophysics Data System (ADS)

    Rohit, Jigneshkumar V.; Kailasa, Suresh Kumar

    2014-11-01

    We have developed a simple and rapid colorimetric method for on-site analysis of thiram and paraquat using cyclen dithiocarbamate-functionalized silver nanoparticles (CN-DTC-Ag NPs) as a colorimetric probe. The synthesized CN-DTC-Ag NPs were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopic techniques. The CN-DTC molecules provide good supramolecular self assembly on the surfaces of Ag NPs to encapsulate thiram and paraquat selectively via "host-guest" chemistry, resulting in red-shift in surface plasmon resonance peak of CN-DTC-Ag NPs from 396 to 530 nm and 510 nm and color change from yellow to pink for thiram and to orange for paraquat, which can be naked-eye detected. The present method shows good linearity in the range of 10.0-20.0 µM and of 50.0-250 µM with limits of detection 2.81 × 10-6 M and 7.21 × 10-6 M for thiram and paraquat, respectively. This method was proved as a promising tool for on-site and real-time monitoring of thiram and paraquat in environmental water, potato, and wheat samples.

  7. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence.

    PubMed Central

    Leitz, Guenther; Fällman, Erik; Tuck, Simon; Axner, Ove

    2002-01-01

    Optical tweezers have emerged as a powerful technique for micromanipulation of living cells. Although the technique often has been claimed to be nonintrusive, evidence has appeared that this is not always the case. This work presents evidence that near-infrared continuous-wave laser light from optical tweezers can produce stress in Caenorhabditis elegans. A transgenic strain of C. elegans, carrying an integrated heat-shock-responsive reporter gene, has been exposed to laser light under a variety of illumination conditions. It was found that gene expression was most often induced by light of 760 nm, and least by 810 nm. The stress response increased with laser power and irradiation time. At 810 nm, significant gene expression could be observed at 360 mW of illumination, which is more than one order of magnitude above that normally used in optical tweezers. In the 700-760-nm range, the results show that the stress response is caused by photochemical processes, whereas at 810 nm, it mainly has a photothermal origin. These results give further evidence that the 700-760-nm wavelength region is unsuitable for optical tweezers and suggest that work at 810 nm at normal laser powers does not cause stress at the cellular level. PMID:11916877

  8. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.

    PubMed

    Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa

    2017-11-01

    This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    PubMed Central

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  10. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  11. Challenging Density Functional Theory Calculations with Hemes and Porphyrins.

    PubMed

    de Visser, Sam P; Stillman, Martin J

    2016-04-07

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  12. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    PubMed Central

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  13. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    PubMed

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  14. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  15. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts

    DTIC Science & Technology

    2015-01-05

    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium -Porphyrin and NHC-Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...Stanford University Grant/Contract Title The full title of the funded effort. (NII)-Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold

  16. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage

    NASA Astrophysics Data System (ADS)

    Lebedeva, Natalya Sh.; Yurina, Elena S.; Gubarev, Yury A.; Syrbu, Sergey A.

    2018-06-01

    The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3‧,3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4‧,4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).

  17. All substituted nickel porphyrins are highly nonplanar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelnutt, J.A.; Song, X.Z.; Jentzen, W.

    1996-12-31

    X-ray crystallographic and resonance Raman studies show that only un-substituted Ni porphine is planar in solution; all substituted Ni porphyrin derivatives either are nonplanar or exist as a mixture of planar and nonplanar conformers in solution. Recent modifications in a molecular mechanics force field improve the ability the MM calculations to predict the X-ray structures of porphyrins and also the planar-nonplanar conformational equilibria in many cases. Calculations using the new force field suggests that all geoporphyrins will be highly nonplanar, especially those having meso substituents. The nonplanarity is expected to influence properties such as solubility and metallation/dematallation reactions. Further, amore » method of quantifying these nonplanar structures has been devised; any porphyrin structure can be decomposed into displacements along the out-of-plane normal coordinates. However, usually distortions along only the lowest-frequency normal modes of each symmetry type are required to adequately describe the structure. The lowest-frequency normal coordinates of b{sub lu}, a{sub 2u}, b{sub 2u}, and e{sub g} symmetries correspond to commonly observed symmetric distortions called ruffling (ruf), doming(dom), saddling (sad), and waving (wav(x), wav(y)). The application of this structural decomposition method to several problems including the influences of steric crowding and protein folding on porphyrin conformation will be described.« less

  18. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  19. Probing the electronic structure of β,β‧-fused quinoxalino porphyrins and tetraazaanthracene-bridged bis-porphyrins with resonance Raman spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Elliott, Anastasia B. S.; Gordon, Keith C.; Khoury, Tony; Crossley, Maxwell J.

    2012-12-01

    A number of π-extended porphyrins and bis-porphyrins were characterised by resonance Raman spectroscopy and density functional theory (DFT) calculations, using both B3LYP and CAM-B3LYP functionals. Single porphyrin species, incorporating a β,β'-fused quinoxalino unit, and tetraazaanthracene-bridged bis-porphyrins were investigated. Geometry optimisation predicted all species were planar with respect to the porphyrin core(s). Comparison of experimental with simulated vibrational spectra, obtained via DFT calculations [B3LYP/6-31G(d)], verified the modelling; demonstrated by a mean absolute deviation (MAD) between experimental and calculated band positions of less than 10 cm-1. Simulated electronic transitions obtained via time-dependent DFT [TD-DFT, B3LYP and CAM-B3LYP/6-31G(d)] lay within 0.4 eV of experimental bands and calculations showed perturbation of the frontier molecular orbitals (FMOs) following substitution of the porphyrin core. The nature of transitions that were investigated experimentally via resonance Raman enhancement showed consistency with the character of calculated transitions. A wavepacket analysis of the resonance Raman intensities provided electronic parameters, such as reorganisation energy, as well as normal mode displacements (Δi) that were also consistent with the nature of the specific vibrational modes and probed optical transitions. The largest vibrational reorganisation value obtained was for the Bsh band of compound (1). This result is consistent with the greater electron density shift of the transition found from DFT and resonance Raman and also the less symmetrical nature of (1).

  20. Synthesis and binding properties of arylethyne-linked porphyrin-zinc complexes for organic electronics applications.

    PubMed

    Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W

    2013-05-01

    Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.

  1. Dual fluorescence from two erbium(III) porphyrins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaizu, Y.; Asano, M.; Kobayashi, H.

    1986-08-14

    TPPErOH (TPP, 5,10,15,20-tetraphenylporphin) as well as TPPEr(dpm)(dpm, 2,2,6,6-tetramethyl-3,5-heptanedione) fluoresces not only from the lowest excited singlet (S/sub 1/) state but also from the second excited singlet (S/sub 2/) state, while OEPErOH (OEP, 2,3,7,8,12,13,17,18-octaethylporphin) emits only from S/sub 1/ state. TPPEr(dpm) is in two different conformations in methanol/ethanol (7:3 v/v) glass at 77 K; the conformer with the central metal ion displaced out of the porphyrin plane emits no S/sub 2/ fluorescence, while the other conformer with the central metal ion in the porphyrin plane does emit S/sub 2/ fluorescence. Upon irradiation in the ultraviolet band around 300 nm, TPPEr(dpm) emitsmore » form both porphyrin S/sub 2/ and coordinated ..beta..-diketone T/sub 1/ (the lowest excited triplet) states.« less

  2. Probing ground-state hole transfer between equivalent, electrochemically inaccessible states in multiporphyrin arrays using time-resolved optical spectroscopy.

    PubMed

    Song, Hee-eun; Taniguchi, Masahiko; Kirmaier, Christine; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2009-01-01

    A new strategy is described and implemented for determining the rates of hole-transfer between equivalent porphyrins in multiporphyrin architectures. The approach allows access to these rates between sites that are not the most easily oxidized components of the array. The specific architectures investigated with this new strategy are triads consisting of one zinc porphyrin (Zn) and two free base porphyrins (Fb). The triads employ a diphenylethyne linker (ZnFbFbU) and a phenylene linker (ZnFbFbPhi). The zinc porphyrin is selectively oxidized to produce Zn(+)FbFb, the free base porphyrins are excited to produce the excited-state mixture Zn(+)Fb*Fb and Zn(+)FbFb*, and the subsequent dynamics are monitored by ultrafast absorption spectroscopy. The system evolves by a combination of energy- and hole-transfer processes involving (adjacent and nonadjacent) zinc and free base porphyrin constituents that are complete within 100 ps of excitation; the rate constants of many of these processes are derived from prior studies of the oxidized forms of the benchmark dyads (ZnFbU and ZnFbPhi). One of the excited-state decay channels produces the metastable state ZnFbFb(+) that decays to a second metastable state ZnFb(+)Fb by the target hole-transfer process, followed by rapid hole transfer to produce the Zn(+)FbFb thermodynamic ground state of the system. The rate constant for hole transfer between the free base porphyrins in the oxidized ZnFbFb triads is found to be (0.5 ns)(-1) and (0.6 ns)(-1) across phenylene and diphenylethyne linkers, respectively. These rate constants are comparable to those recently measured, using a related but distinct strategy, for ground-state hole transfer between zinc porphyrins in oxidized ZnZnFb triads. The two complementary strategies provide unique approaches for probing hole transfer between equivalent sites in multiporphyrin arrays, with the choice of method being guided by the particular target process and the ease of synthesis of the necessary

  3. Nanomanipulation of Single RNA Molecules by Optical Tweezers

    PubMed Central

    Stephenson, William; Wan, Gorby; Tenenbaum, Scott A.; Li, Pan T. X.

    2014-01-01

    A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed. PMID:25177917

  4. High-refractive index particles in counter-propagating optical tweezers - manipulation and forces

    NASA Astrophysics Data System (ADS)

    van der Horst, Astrid

    2006-09-01

    With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the trap. A higher refractive-index difference between a particle and the surrounding medium will increase the forces. The destabilizing scattering force, however, pushing the particle in the direction of the beam, increases more than the gradient force, directed towards the focus. As a consequence, particles with a certain refractive index cannot be trapped in a single-beam gradient trap, and a limit is set to the force that can be exerted. We developed an experimental setup with two opposing high-numerical objectives. By splitting the laser beam, we created counter-propagating tweezers in which the scattering forces were canceled in the axial direction and high-refractive index and metallic particles could also be trapped. With the use of a separate laser beam combined with a quadrant photodiode, accurate position detection on a trapped particle in the counter-propagating tweezers is possible. We used this to determine trap stiffnesses, and show, with measurements and calculations, an enhancement in trap stiffness of at least 3 times for high-index 1.1-micrometer-diameter titania particles as compared to 1.4-micrometer-diameter silica particles under the same conditions. The ability to exert higher forces with lower laser power finds application in biophysical experiments, where laser damage and heating play a role. The manipulation of high-index and metallic particles also has applications in materials and colloid science, for example to incorporate high-index defects in colloidal photonic crystals. We demonstrate the patterning of high-index particles onto a glass substrate. The sample cell was mounted on a high-accuracy piezo stage combined with a long-range stage with

  5. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    NASA Astrophysics Data System (ADS)

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-11-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications.

  6. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    PubMed

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  8. 22 CFR 2.4 - Designation of official guests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Designation of official guests. 2.4 Section 2.4... Protocol. The designation of a person as an official guest is final. Pursuant to section 2658 of title 22... official guests is hereby delegated to the Chief of Protocol. (22 U.S.C. 2658) [45 FR 55716, Aug. 21, 1980] ...

  9. COFS 1 Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Fontana, Anthony; Wright, Robert L.

    1986-01-01

    The process for selecting guest investigators for participation in the Control of Flexible Structures (COFS)-1 program is described. Contracts and grants will be awarded in late CY87. A straw-man list of types of experiments and a distribution of the experiments has been defined to initiate definition of an experiments package which supports development and validation of control structures interaction technology. A schedule of guest investigator participation has been developed.

  10. Overview of the SAMPL5 host–guest challenge: Are we doing better?

    PubMed Central

    Yin, Jian; Henriksen, Niel M.; Slochower, David R.; Shirts, Michael R.; Chiu, Michael W.; Mobley, David L.; Gilson, Michael K.

    2016-01-01

    The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein–ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host–guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future

  11. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.

    PubMed

    Woller, Jakob G; Hannestad, Jonas K; Albinsson, Bo

    2013-02-20

    Mimicking green plants' and bacteria's extraordinary ability to absorb a vast number of photons and harness their energy is a longstanding goal in artificial photosynthesis. Resonance energy transfer among donor dyes has been shown to play a crucial role on the overall transfer of energy in the natural systems. Here, we present artificial, self-assembled, light-harvesting complexes consisting of DNA scaffolds, intercalated YO-PRO-1 (YO) donor dyes and a porphyrin acceptor anchored to a lipid bilayer, conceptually mimicking the natural light-harvesting systems. A model system consisting of 39-mer duplex DNA in a linear wire configuration with the porphyrin attached in the middle of the wire is primarily investigated. Utilizing intercalated donor fluorophores to sensitize the excitation of the porphyrin acceptor, we obtain an effective absorption coefficient 12 times larger than for direct excitation of the porphyrin. On the basis of steady-state and time-resolved emission measurements and Markov chain simulations, we show that YO-to-YO resonance energy transfer substantially contributes to the overall flow of energy to the porphyrin. This increase is explained through energy migration along the wire allowing the excited state energy to transfer to positions closer to the porphyrin. The versatility of DNA as a structural material is demonstrated through the construction of a more complex, hexagonal, light-harvesting scaffold yielding further increase in the effective absorption coefficient. Our results show that, by using DNA as a scaffold, we are able to arrange chromophores on a nanometer scale and in this way facilitate the assembly of efficient light-harvesting systems.

  12. Porphyrin Induced Laser Deactivation of Trypsinogen-Trypsin Conversion

    NASA Astrophysics Data System (ADS)

    Perido, Joanna; Brancaleon, Lorenzo

    2015-03-01

    Pancreatitis is caused by the inflammation of the pancreas, where the digestive enzyme trypsin is activated from the precursor enzyme trypsinogen while still in the pancreas. The presence of trypsin in the pancreas causes auto-activation of trypsinogen, resulting in greater inflammation and auto-digestion of the pancreas. In severe cases, this cascade effect can lead to organ failure, diabetes, and pancreatic cancer. Our hypothesis is that if trypsinogen is prevented from auto-activating into trypsin, then this cascade can be stopped. We propose to do this by inducing conformational changes in trypsinogen when bound to a photoactive porphyrin dye. Porphyrins are comprised of four linked heterocyclic groups forming a flat ring, and bind well with proteins such as trypsinogen. In this study we used spectroscopic techniques to probe the binding of meso-tetrakis (4-sulfonatephenyl) porphyrin (TSPP) to trypsinogen in vitro, as a preliminary step to then prompt and characterize conformational changes of trypsinogen through irradiation. If conformational changes are detected the trypsinogen will be tested for trypsin inactivation. This investigation may provide promising initial results to the possible use of porphyrins as an inhibitor of the self-activation of trypsinogen into trypsin, and a potential inhibitor of pancreatitis. MARC*U-STAR.

  13. Lithologic and structural controls of limestone-hosted Pb-Zn-Ag mineralization in Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofquist, D.J.; Ruiz, J.

    1985-01-01

    The state of Chihuahua contains some of the most important limestone-hosted ore deposits in Mexico. The best example are Santa Eulalia and Naica which together have produced 53 million tons or ore averaging 7.7% Pb, 6.4% Zn, and 280 g/ton Ag. These deposits occur as mantos and chimneys often accompanied by calc-silicates. Among the most critical questions in this type of deposit is the control that the limestone-host exerts on the mineralizing process. Here the authors present the first detailed data on the stratigraphic and lithologic character of the limestone-hosts at Naica and Santa Eulalia. All ore at Naica andmore » Santa Eulalia is hosted by micrites, biomicrites and biosparites indicative of generally quiet marine deposition. The authors work suggests that the western edge of the this trough might be a low angle, east dipping ramp which extends below the Sierra Madre Occidental. The primary permeability of the limestone that hosts Naica and Santa Eulalia is in the micro to nanodarcy range. The effective permeability has been augmented by 3 or 4 stages of micro-fracturing. Most of the ore is controlled by these fractures and by felsic dikes, which in cases are mostly endoskarn. Stylolites also appear to have exerted a control on the mineralizing process. Numerous instances of alteration and recrystallization confined to one side of a horizontal stylolite have been noted. At Santa Eulalia, horizontal stylolites have controlled the emplacement of massive sulfide mantos, suggesting that the mineralizing process was rather passive.« less

  14. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  15. The metaphor of nurse as guest with ethical implications for nursing and healthcare.

    PubMed

    Milton, Constance L

    2005-10-01

    Current healthcare advertising and customer relations terminology acknowledge that healthcare providers, including nurses, are to act as hosts for persons who enter into healthcare agencies and institutions. Indeed, much has been written aligning nursing and other healthcare services with consumer-oriented roles of the hospitality service industry commonly associated with hotels and restaurants. From a human becoming perspective, this article discusses possible ethical, administrative, and practice implications of nurses acting as guests entering into the lives of those we serve.

  16. Synthetic Porphyrins and Metalloporphyrins

    DTIC Science & Technology

    1976-12-10

    disease syndromes , drug metabolism and cancer. Porphyrins and metalloporphyrins such as tetraphenylporphine sulfonate and hema- toporphyrin have been found...267(1941). 34. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff , J. Org. Chem., 32, 476(1967). 35. H. W

  17. Neural Network for Image-to-Image Control of Optical Tweezers

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  18. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-{beta}-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with {sup 18}O{sub 2} were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a{sub 5} incorporated with {sup 18}O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactionsmore » will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD{sub 3}, 10-CD{sub 2} iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin.« less

  19. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives.

    PubMed

    Cormick, M Paula; Alvarez, M Gabriela; Rovera, Marisa; Durantini, Edgardo N

    2009-04-01

    The photodynamic action of 5-(4-trifluorophenyl)-10,15,20-tris(4-trimethylammoniumphenyl)porphyrin iodide (TFAP(3+)) and 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP(4+)) has been studied in vitro on Candida albicans. The results of these cationic porphyrins were compared with those of 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)), which characterizes an anionic sensitizer. In vitro investigations show that these cationic porphyrins are rapidly bound to C. albicans cells, reaching a value of approximately 1.4 nmol/10(6) cells, when the cellular suspensions were incubated with 5 microM sensitizer for 30 min. In contrast, TPPS(4-) is poorly uptaken by yeast cells. The fluorescence spectra of these sensitizers into the cells confirm this behaviour. The amount of porphyrin binds to cells is dependent on both sensitizer concentrations (1-5 microM) and cells densities (10(6)-10(8) cells/mL). Photosensitized inactivation of C. albicans cellular suspensions increases with sensitizer concentration, causing a approximately 5 log decrease of cell survival, when the cultures are treated with 5 microM of cationic porphyrin and irradiated for 30 min. However, the photocytotoxicity decreases with an increase in the cell density, according to its low binding to cells. Under these conditions, the photodynamic activity of TFAP(3+) is quite similar to that produced by TMAP(4+), whereas no important inactivation effect was found for TPPS(4)(-). The high photodynamic activity of cationic porphyrins was confirmed by growth delay experiments. Thus, C. albicans cell growth was not detected in the presence of 5 microM TFAP(3+). Photodynamic inactivation capacities of these sensitizers were also evaluated on C. albicans cells growing in colonies on agar surfaces. Cationic porphyrins produce a growth delay of C. albicans colonies and viability of cells was not observed after 3 h irradiation, indicating a complete inactivation of yeast cells

  20. Cofacial porphyrin-ferrocene dyads and a new class of conjugated porphyrin.

    PubMed

    Cammidge, Andrew N; Scaife, Peter J; Berber, Gûlen; Hughes, David L

    2005-08-04

    A porphyrin-ferrocene dyad has been synthesized in which there is close face-to-face contact between the two aromatic systems, providing a model for heterobimetallic polymers based on the same repeating unit. Attempts to synthesize the 2:1 adduct instead led to a remarkable intramolecular Heck-type cyclization which planarizes the system and extends the conjugation. [structure: see text

  1. Quantitative modeling and optimization of magnetic tweezers.

    PubMed

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H

    2009-06-17

    Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply > or = 40 pN stretching forces on approximately 1-microm tethered beads.

  2. Quantitative Modeling and Optimization of Magnetic Tweezers

    PubMed Central

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.

    2009-01-01

    Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664

  3. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    PubMed

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  4. Stabilization of higher-valent states of iron porphyrin by hydroxide and methoxide ligands: electrochemical generation of iron(IV)-oxo porphyrins.

    PubMed Central

    Lee, W A; Calderwood, T S; Bruice, T C

    1985-01-01

    An electrochemical study of hydroxide- and methoxide-ligated iron(III) tetraphenylporphyrins possessing ortho-phenyl substituents that block mu-oxo dimer formation has been carried out. Ligation by these strongly basic oxyanions promotes the formation of iron(IV)-oxo porphyrins upon one-electron oxidation. Further one-electron oxidation of the latter provides the iron(IV)-oxo porphyrin pi-cation radical. These results are discussed in terms of chemical model studies and the enzymatic intermediate compounds I and II of the peroxidases. PMID:3859865

  5. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    PubMed

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  6. Dehalogenation of chloroalkanes by nickel(i) porphyrin derivatives, a computational study.

    PubMed

    Szatkowski, L; Hall, M B

    2016-11-14

    The nickel(i) octaethylisobacteriochlorin anion ([OEiBCh-Ni (I) ] - ) is commonly used as a synthetic model of cofactor F 430 from Methyl-Coenzyme M Reductase. In this regard, experimental studies show that [OEiBCh-Ni (I) ] - can catalyze dehalogenation of aliphatic halides in DMF solution by a highly efficient S N 2 reaction. To better understand this process, we constructed theoretical models of the dehalogenation of chloromethane by a simple nickel(i) isobacteriochlorin anion and compared its reactivity with that of similar Ni (I) complexes with other porphyrin-derived ligands: porphyrin, chlorin, bactreriochlorin, hexahydroporphyrin and octahydroporphyrin. Our calculations predict that all of the porphyrin derivative's model reactions proceed through low-spin complexes. Relative to the energy of the separate reactants the theoretical activation energies (free-energy barriers with solvation corrections) for the dehalogenation of chloromethane are similar for all of the porphyrin derivatives and range for the different functionals from 10-15 kcal mol -1 for B3LYP to 5-10 kcal mol -1 for M06-L and to 13-18 kcal mol -1 for ωB97X-D. The relative free energies of the products of the dehalogenation step, L-Ni-Me adducts, have a range from -5 to -40 kcal mol -1 for all functionals; generally becoming more negative with increasing saturation of the porphyrin ligand. Moreover, no significant differences in the theoretical chlorine kinetic isotope effect were discernable with change of porphyrin ligand.

  7. Real-time porphyrin detection in plaque and caries: a case study

    NASA Astrophysics Data System (ADS)

    Timoshchuk, Mari-Alina I.; Ridge, Jeremy S.; Rugg, Amanda L.; Nelson, Leonard Y.; Kim, Amy S.; Seibel, Eric J.

    2015-02-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used in a case study to locate plaque and caries. The imaging system incorporated software mitigation of background auto-fluorescence (AF). In conventional fluorescence imaging, varying AF across a tooth surface can mask low-level porphyrin signals. Laser-induced auto-fluorescence signals of dental tissue excited using a 405-nm laser typically produce fluorescence over a wavelength range extending from 440-nm to 750-nm. Anaerobic bacterial metabolism produces various porphyrin species (eg. protoporphyrin IX) that are located in carious enamel, dentin, gingivitis sites, and plaque. In our case study, these porphyrin deposits remained as long as one day after prophylaxis. Imaging the tooth surface using 405-nm excitation and subtracting the natural AF enhances the image contrast of low-level porphyrin deposits, which would otherwise be masked by the high background AF. In a case study, healthy tissues as well as sites of early and advanced caries formations were scanned for visual and quantitative signs of red fluorescence associated with porphyrin species using a background mitigation algorithm. Initial findings show increasing amplitudes of red fluorescence as caries severity increases from early to late stages. Sites of plaque accumulation also displayed red fluorescence similar to that found in carious dental tissue. The use of real-time background mitigation of natural dental AF can enhance the detection of low porphyrin concentrations that are indicators of early stage caries formation.

  8. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins.

    PubMed

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2013-12-20

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.

  9. Effect of Molecular Characteristics on Cellular Uptake, Subcellular Localization, and Phototoxicity of Zn(II) N-Alkylpyridylporphyrins*

    PubMed Central

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D.; Batinic-Haberle, Ines; Benov, Ludmil T.

    2013-01-01

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs. PMID:24214973

  10. Development of Ion Chemosensors Based on Porphyrin Analogues.

    PubMed

    Ding, Yubin; Zhu, Wei-Hong; Xie, Yongshu

    2017-02-22

    Sensing of metal ions and anions is of great importance because of their widespread distribution in environmental systems and biological processes. Colorimetric and fluorescent chemosensors based on organic molecular species have been demonstrated to be effective for the detection of various ions and possess the significant advantages of low cost, high sensitivity, and convenient implementation. Of the available classes of organic molecules, porphyrin analogues possess inherently many advantageous features, making them suitable for the design of ion chemosensors, with the targeted sensing behavior achieved and easily modulated based on their following characteristics: (1) NH moieties properly disposed for binding of anions through cooperative hydrogen-bonding interactions; (2) multiple pyrrolic N atoms or other heteroatoms for selectively chelating metal ions; (3) variability of macrocycle size and peripheral substitution for modulation of ion selectivity and sensitivity; and (4) tunable near-infrared emission and good biocompatibility. In this Review, design strategies, sensing mechanisms, and sensing performance of ion chemosensors based on porphyrin analogues are described by use of extensive examples. Ion chemosensors based on normal porphyrins and linear oligopyrroles are also briefly described. This Review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing high-performance ion chemosensors based on porphyrin analogues and other relevant compounds.

  11. Antigen detection at atomolar concentration using optical tweezers

    NASA Astrophysics Data System (ADS)

    Laliberté, Mathieu; Bordeleau, François; Marceau, Normand; Sheng, Yunlong

    2009-06-01

    Methods that avoid intermediate amplification steps to detect protein markers of pathological disturbances would be of wide interest in the clinical environment. This is particularly the case in cancer diagnosis, where protein fragments are released into the blood by the emerging cancer cells. These fragments generate an antigen-antibody reaction, and the concentration of the antigen is known to modulate this interaction. Here we report on the development of a novel optical tweezers-based procedure to measure minute amount of antigen in a biological fluid. The force was applied on a 3μm polystyrene bead coated with Bovine Serum Albumin (BSA) attached on a 1.5 μm diameter borosilicate rod tip coated with anti-BSA antibody. First, we verified that the binding strength was dependent on the protein concentration on the bead. We then assessed the sensitivity range by finding the minimal BSA concentration in solution that can still interfere with the bead-rod linkage. On the whole, the results demonstrated that proteinous antigen present in a biological fluid could possibly be detectable at atomolar concentration through the use of an optical tweezers.

  12. Use of optical tweezers to probe epithelial mechanosensation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    2010-01-01

    Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the ``ciliary hypothesis'' has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.

  13. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compoundmore » FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.« less

  14. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng

    2016-12-02

    A series of porous twofold interpenetrated In-Co III(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent Co III(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-Co III(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated Co III(porphyrin) centers, thus highlightingmore » the potential application of MOFs in cooperative catalysis.« less

  15. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings.

    PubMed

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori

    2016-04-18

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  16. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

    NASA Astrophysics Data System (ADS)

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori

    2016-04-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  17. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  18. Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

    NASA Astrophysics Data System (ADS)

    Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.

    2018-05-01

    Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.

  19. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher

    PubMed Central

    2015-01-01

    1H NMR and isothermal titration calorimetry (ITC) experiments were employed to obtain reliable thermodynamic data for the formation of the 1:1 inclusion complexes of fullerenes C60 and C70 with the buckycatcher (C60H28). NMR measurements were done in toluene-d8 and chlorobenzene-d5 at 288, 298, and 308 K, while the ITC titrations were performed in toluene, chlorobenzene, o-dichlorobenzene, anisole, and 1,1,2,2-tetrachloroethane at temperatures from 278 to 323 K. The association constants, Ka, obtained with both techniques are in very good agreement. The thermodynamic data obtained by ITC indicate that generally the host–guest association is enthalpy-driven. Interestingly, the entropy contributions are, with rare exceptions, slightly stabilizing or close to zero. Neither ΔH nor ΔS is constant over the temperature range studied, and these thermodynamic functions exhibit classical enthalpy/entropy compensation. The ΔCp values calculated from the temperature dependence of the calorimetric ΔH values are negative for the association of both fullerenes with the buckycatcher in toluene. The negative ΔCp values are consistent with some desolvation of the host-cavity and the guest in the inclusion complexes, C60@C60H28 and C70@C60H28. PMID:25248285

  20. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    NASA Astrophysics Data System (ADS)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  1. Guest Speakers in School-Based Sexuality Education

    ERIC Educational Resources Information Center

    McRee, Annie-Laurie; Madsen, Nikki; Eisenberg, Marla E.

    2014-01-01

    This study, using data from a statewide survey (n = 332), examined teachers' practices regarding the inclusion of guest speakers to cover sexuality content. More than half of teachers (58%) included guest speakers. In multivariate analyses, teachers who taught high school, had professional preparation in health education, or who received…

  2. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic

  3. J-aggregation in porphyrin nanoparticles induced by diphenylalanine

    NASA Astrophysics Data System (ADS)

    Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin

    2017-08-01

    In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.

  4. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  5. Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef

    2006-08-01

    Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.

  6. Dis-aggregation of an insoluble porphyrin in a calixarene matrix: characterization of aggregate modes by extended dipole model.

    PubMed

    de Miguel, Gustavo; Martín-Romero, María T; Pedrosa, José M; Muñoz, Eulogia; Pérez-Morales, Marta; Richardson, Tim H; Camacho, Luis

    2008-03-21

    In this paper, the different aggregation modes of a water-insoluble porphyrin (EHO) mixed with an amphiphilic calix[8]arene (C8A), at the air-water interface and in Langmuir-Blodgett (LB) film form, are analyzed as a function of the mixed composition. The strategy used to control the EHO aggregation has consisted of preparing mixed thin films containing EHO and C8A, in different ratios, at the air-water interface. Therefore, the increase of the C8A molar ratio in the mixed film diminishes the aggregation of the EHO molecules, although such an effect must be exclusively related to the dilution of the porphyrin. The reflection spectra of the mixed C8A-EHO films registered at the air-water interface, show a complex Soret band exhibiting splitting, hypochromicity and broadening features. Also, during the transfer process at high surface pressure, it has been shown that the EHO molecules are ejected from the C8A monolayer and only a fraction of porphyrin is transferred to the solid support, in spite of a complete transfer for the C8A matrix. The complex structure of the reflection spectra at the air-water interface, as well as the polarization dependence of the absorption spectra for the mixed LB films, indicate the existence of four different arrangements for the EHO hosted in the C8A matrix. The aggregate formation is governed by two factors: the attraction between the porphyrin rings which minimizes their separation, and the alkyl chain interactions, that is, hydrophobic effect and/or steric hindrance which determine and restrict the possible aggregation structures. By using the extended dipole model, the assignment of the spectral peaks observed to different EHO aggregates is shown.

  7. Ferryl Protonation in Oxoiron(IV) Porphyrins and Its Role in Oxygen Transfer

    DOE PAGES

    Boaz, Nicholas C.; Bell, Seth R.; Groves, John T.

    2015-02-04

    Ferryl porphyrins, P–Fe IVmore » $=$O, are central reactive intermediates in the catalytic cycles of numerous heme proteins and a variety of model systems. There has been considerable interest in elucidating factors, such as terminal oxo basicity, that may control ferryl reactivity. Here in this study, the sulfonated, water-soluble ferryl porphyrin complexes tetramesitylporphyrin, oxoFe IVTMPS (FeTMPS-II), its 2,6-dichlorophenyl analogue, oxoFe IVTDClPS (FeTDClPS-II), and two other analogues are shown to be protonated under turnover conditions to produce the corresponding bis-aqua-iron(III) porphyrin cation radicals. The results reveal a novel internal electromeric equilibrium, P–Fe IV$=$O $$\\leftrightarrows$$ P +–Fe III(OH 2) 2. Reversible pKa values in the range of 4–6.3 have been measured for this process by pH-jump, UV–vis spectroscopy. Ferryl protonation has important ramifications for C–H bond cleavage reactions mediated by oxoiron(IV) porphyrin cation radicals in protic media. Both solvent O–H and substrate C–H deuterium kinetic isotope effects are observed for these reactions, indicating that hydrocarbon oxidation by these oxoiron(IV) porphyrin cation radicals occurs via a solvent proton-coupled hydrogen atom transfer from the substrate that has not been previously described. The effective FeO–H bond dissociation energies for FeTMPS-II and FeTDClPS-II were estimated from similar kinetic reactivities of the corresponding oxoFe IVTMPS + and oxoFe IVTDClPS + species to be ~92–94 kcal/mol. Similar values were calculated from the two-proton P +–Fe III(OH 2) 2 pK a obs and the porphyrin oxidation potentials, despite a 230 mV range for the iron porphyrins examined. Thus, the iron porphyrin with the lower ring oxidation potential has a compensating higher basicity of the ferryl oxygen. The solvent-derived proton adds significantly to the driving force for C–H bond scission.« less

  8. Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin

    NASA Astrophysics Data System (ADS)

    Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon

    1999-02-01

    We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.

  9. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  10. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  11. A Rotaxane Scaffold for the Construction of Multiporphyrinic Light-Harvesting Devices.

    PubMed

    Delavaux-Nicot, Béatrice; Ben Aziza, Haifa; Nierengarten, Iwona; Minh Nguyet Trinh, Thi; Meichsner, Eric; Chessé, Matthieu; Holler, Michel; Abidi, Rym; Maisonhaute, Emmanuel; Nierengarten, Jean-François

    2018-01-02

    A sophisticated photoactive molecular device has been prepared by combining recent concepts for the preparation of multifunctional nanomolecules (click chemistry on multifunctional scaffolds) with supramolecular chemistry (self-assembly to prepare rotaxanes). Specifically, a clickable [2]rotaxane scaffold incorporating a free-base porphyrin stopper has been prepared and functionalized with ten peripheral Zn(II)-porphyrin moieties. Electrochemical investigations of the final compound revealed a peculiar behavior resulting from the intramolecular coordination of the Zn(II) porphyrin moieties to 1,2,3-triazole units. Finally, steady state investigations of the compound combining Zn(II) and free-base porphyrin moieties have shown that this compound is a light-harvesting device capable of channeling the light energy from the peripheral Zn(II)-porphyrin subunits to the core by singlet-singlet energy transfer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy <+/- 0.05%). Active control of the relative positions of pairs of particles can allow studies of the coalescence of particles, providing a unique opportunity to investigate the bulk and surface properties that govern the hydrodynamic relaxation in particle shape. In particular, we will show how the viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  13. Polarization response of clathrate hydrates capsulated with guest molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads tomore » the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.« less

  14. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    PubMed Central

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-01-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA–protein conjugation still limit true emulation of natural host–guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA–protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host–guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging. PMID:28205515

  15. Comparison of spectrofluorometric and HPLC methods for the characterization of fecal porphyrins in river otters.

    PubMed

    Taylor, C; Duffy, L K; Plumley, F G; Bowyer, R T

    2000-09-01

    A spectrofluorometric method (B. Grandchamp et al., 1980, Biochem. Biophys. Acta 629, 577-586) developed for the determination of amounts of uroporphyrin I (Uro I), coproporphyrin III (Copro III), and protoporphyrin IX (Proto IX) in skin fibroblasts was compared with a high-performance liquid chromatography (HPLC) method for the analysis of porphyrins in fecal samples of river otters (Lutra canadensis). Heptacarboxylate porphyrin I and coproporphyrin I, two porphyrins determined to be critical in defining the porphyrin profile in fecal samples of river otters with the HPLC method, contributed substantially to the calculation of the concentrations of Uro I and Copro III, respectively, in standard solutions of porphyrins with the spectrofluorometric method. Fluorescent components of the fecal matrix complicated the determination of the concentrations of Uro I, Copro III, and Proto IX with the spectrofluorometric method and resulted in erroneous values for the concentrations of these porphyrins compared with values determined with the HPLC method. These results indicate that the complexity of the sample, particularly with regard to the potential presence of interfering fluorescent compounds, as well as porphyrins additional to Uro I, Copro III, and Proto IX, should be considered prior to the application of the spectrofluorometric method. An alternative HPLC method developed for the rapid characterization of porphyrin profiles in fecal samples of river otters is described. Copyright 2000 Academic Press.

  16. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the

  17. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  18. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    PubMed

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  19. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    PubMed

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  20. Three-dimensional image and spatial spectrum analysis of behavior of small animal erythrocytes in optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Hui Chi; Shen, Wen-Tai; Kong, Yu-Han; Chuang, Chun-Hao

    2008-02-01

    Because of the softness of membrane, erythrocytes (red blood cell, RBC) have different shapes while being immersed in buffer with different osmotic pressure. While affecting by different viruses and illnesses, RBC may change its shape, or its membrane may become rigid. Moreover, RBC will ford and stretch when it is trapped by optical tweezers. Therefore, the behaviors of RBC in optical tweezers raise more discussion. In this report, we set up an optical tweezers to trap RBC of small animals like feline and canine. By adding a long working distance objective to collect the side-viewing image, a 3-D image system was constructed to detect the motion of trapped RBC. To improve the image quality for side-view, an aperture and narrow glass plate were used. From the video of these images and their spatial spectrum, the shape of trapped RBC was studied.