Sample records for zn1-x thin films

  1. Effect of composition on SILAR deposited CdxZn1-xS thin films

    NASA Astrophysics Data System (ADS)

    Ashith V., K.; Gowrish Rao, K.

    2018-04-01

    In the group of II-VI compound semiconductor, cadmium zinc sulphide (CdxZn1-xS) thin films have broad application in photovoltaic, optoelectronic devices etc. For heterojunction aspects, CdxZn1-xS thin film can be used as heterojunction partner for CdTe as the absorber layer. In this work, CdZnS thin films prepared on glass substrates by Successive Ion Layer Adsorption and Reaction (SILAR) method by varying the composition. The XRD patterns of deposited films showed polycrystalline with the hexagonal phase. The crystallite size of the films was estimated from W-H plot. The bond length of the film varied w.r.to the composition of the CdxZn1-xS films. The urbach energy of the films was calcualted from absorbance data.

  2. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1x} thin films with tunable band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com; Shin, Seung Wook; Vanalakar, S.A.

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(Smore » + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.« less

  3. Tailoring of optical band gap by varying Zn content in Cd{sub 1-x}Zn{sub x}S thin films prepared by spray pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika

    Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.

  4. Enhanced dielectric and piezoelectric responses in Zn 1 -xMg xO thin films near the phase separation boundary

    DOE PAGES

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; ...

    2017-01-23

    Dielectric and piezoelectric properties for Zn 1-xMg xO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn 1-xMg xO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane ( d33,f) and in-plane ( e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectricmore » coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. As a result, the enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn 1-xMg xO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.« less

  5. Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Malik, Hitendra K.; Ghosh, Anima; Thangavel, R.; Asokan, K.

    2013-06-01

    We propose Mg doping in zinc oxide (ZnO) films for realizing wider optical bandgap in highly c-axis oriented Zn1-xMgxO (0 ≤ x ≤ 0.3) thin films. A remarkable enhancement of 25% in the bandgap by 30% Mg doping was achieved. The bandgap was tuned between 3.25 eV (ZnO) and 4.06 eV (Zn0.7Mg0.3O), which was further confirmed by density functional theory based wien2k simulation employing a combined generalized gradient approximation with scissor corrections. The change of stress and crystallite size in these films were found to be the causes for the observed blueshift in the bandgap.

  6. Structural and optical properties of magnetron sputtered MgxZn1-xO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Gupte, Vinay; Sreenivas, K.

    2006-04-01

    MgxZn1-xO (MZO) thin films prepared by an rf magnetron sputtering technique are reported. The films were grown at room temperature and at relatively low rf power of 50 W. MZO thin films were found to possess preferred c-axis orientation and exhibited hexagonal wurtzite structure of ZnO up to a Mg concentration of 42 mol%. A small variation in the c-axis lattice parameter of around 0.3% was observed with increasing Mg composition, showing the complete solubility of Mg in ZnO. The band gap of the MZO films in the wurtzite phase varied linearly with the Mg concentration and a maximum band gap ~4.19 eV was achieved at x = 0.42. The refractive indices of the MgO films were found to decrease with increasing Mg content. The observed optical dispersion data are in agreement with the single oscillator model. A photoluminescence study revealed a blue shift in the near band edge emission peak with increasing Mg content in the MZO films. The results show the potential of MZO films in various opto-electronic applications.

  7. Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method

    NASA Astrophysics Data System (ADS)

    AlHammad, M. S.

    2017-05-01

    We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.

  8. Some physical investigations on ZnS 1- xSe x films obtained by selenization of ZnS sprayed films using the Boubaker polynomials expansion scheme

    NASA Astrophysics Data System (ADS)

    Fridjine, S.; Touihri, S.; Boubaker, K.; Amlouk, M.

    2010-01-01

    ZnS 1- xSe x thin films have been grown by selenization process, applied to ZnS sprayed thin films deposited on Pyrex glass substrates at 550 °C. The crystal structure and surface morphology were investigated by the XRD technique and by the atomic force microscopy. This structural study shows that selenium-free ( x=0) ZnS thin films, prepared at substrate temperature TS=450 °C, were well crystallized in cubic structure and oriented preferentially along (1 1 1) direction. The thermal and mechanical properties were also investigated using a photothermal protocol along with Vickers hardness measurements. On the other hand, the analyze of the transmittance T( λ) and the reflectance R( λ), optical measurements of these films depicts a decrease in the band gap energy value Eg with an increase in Se content ( x). Indeed, Eg values vary from 3.6 to 3.1 eV.

  9. Investigations on structural and electrical parameters of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima

    2018-05-01

    This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.

  10. Efficiency enhancement using a Zn1- x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc-germanium-oxide (Zn1- x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1- x Ge x -O and Cu2O:Na. The optimal value of x in Zn1- x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  11. Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2

    NASA Astrophysics Data System (ADS)

    Wang, R.; Huang, Z. X.; Zhao, G. Q.; Yu, S.; Deng, Z.; Jin, C. Q.; Jia, Q. J.; Chen, Y.; Yang, T. Y.; Jiang, X. M.; Cao, L. X.

    2017-04-01

    Single-phased, single-oriented thin films of Mn-doped ZnAs-based diluted magnetic semiconductor (DMS) Ba1-xKx(Zn1-yMny)2As2 (x = 0.03, 0.08; y = 0.15) have been deposited on Si, SrTiO3, LaAlO3, (La,Sr)(Al,Ta)O3, and MgAl2O4 substrates, respectively. Utilizing a combined synthesis and characterization system excluding the air and further optimizing the deposition parameters, high-quality thin films could be obtained and be measured showing that they can keep inactive-in-air up to more than 90 hours characterized by electrical transport measurements. In comparison with films of x = 0.03 which possess relatively higher resistivity, weaker magnetic performances, and larger energy gap, thin films of x = 0.08 show better electrical and magnetic performances. Strong magnetic anisotropy was found in films of x = 0.08 grown on (La,Sr)(Al,Ta)O3 substrate with their magnetic polarization aligned almost solely on the film growth direction.

  12. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  13. Structural and magnetic characterization of mixed valence Co(II, III)xZn1-xO epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Negi, D. S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.

    2014-03-01

    In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III)xZn1-xO epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ~6-60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ~29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ~17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ~93 emu cm-3 and a coercive field of ~285 Oe observed for ~38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ~1019 cm-3. The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co2+ and Co3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system.

  14. Growth of ternary CdxZn1-xO thin films in oxygen ambient using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Sugandha; Saini, Basant; Kaur, Ravinder; Gupta, Vinay; Tomar, Monika; Kapoor, Avinashi

    2018-05-01

    This study reports the growth of cadmium alloyed zinc (CdxZn1-xO) oxide thin films using pulsed laser deposition. The films are deposited on Corning glass substrates at different oxygen pressures of 5, 20, and 40 mTorr. High resolution X-ray diffraction studies reveal mixed phase (hexagonal and cubic) for films deposited at 20 and 40 mTorr, while a cubic phase for film deposited at 5 mTorr pressure. Optical transmittance studies indicate red-shifting of transmission edge as oxygen pressure decreases to 5 mTorr from 20 mTorr, hinting at a possible increase in cadmium content in thin films. Minimum band gap energy is obtained at growth pressure of 5 mTorr. Resistivity measurements have been performed using Hall effect measurement set up at 298 K.

  15. CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1- x N Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh

    2017-03-01

    Cu2ZnSnSe4 (CZTSe) films for solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target, followed by two-step post-selenization at 500-600°C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. The p-type CZTSe and the n-type In x Ga1- x N films were characterized. The properties of CZTSe changed with the selenization temperature and the In x Ga1- x N with its indium content. With the CdS-free modeling for a solar cell structure, the In0.15Ga0.85N/In0.3Ga0.7N/CZTSe solar cell device had an improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. Current density of ˜48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1% are reported. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves that sputtered III-nitride films have their merits.

  16. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  17. Compositional ratio effect on the surface characteristics of CuZn thin films

    NASA Astrophysics Data System (ADS)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  18. SHI irradiation effect on pure and Mn doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Khawal, H. A.; Raskar, N. D.; Dole, B. N.

    2017-05-01

    Investigated the structural, surface, electrical and modifications induced by Swift Heavy Ions (SHI) irradiation on pure and Mn substituted ZnO thin films were observed. Thin films of Zn1-xMnxO (x = 0.00, 0.04) were synthesized using the dip coating technique. All thin films irradiated by Li3+ swift heavy ions with fluence 5 × 1013 ions/cm2. The XRD peak reveals that all the samples exhibit wurtzite structures. Surface morphology of samples was investigated by SEM, it was observed that pristine samples of ZnO thin film shows spherical shape but for 4 % Mn substituted ZnO thin film with 5 × 1013 ions/cm2 fluence, it reveals that big grain spherical morphology like structure respectively. I-V characteristics were recorded in the voltage range -5 to 5 V. All curves were passed through origin and nearly linear exhibit ohmic in nature for the films.

  19. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  20. Synthesis and annealing study of RF sputtered ZnO thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.

    2016-05-23

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less

  1. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  2. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  3. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  4. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Benyahia, K.; Benhaya, A.; Aida, M. S.

    2015-10-01

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

  5. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.

    PubMed

    Jaramillo, Thomas F; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Choi, Kyoung-Shin; Stucky, Galen D; McFarland, Eric W

    2005-01-01

    High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0 x films, with Zn0.956Co0.044O exhibiting a 4-fold improvement over pure ZnO with no external bias. Flat-band potential, bias-dependent photocurrent, and action spectra were also measured automatically with the high-throughput screening system. The 200-nm-thick films were subsequently characterized by numerous techniques, including SEM, XRD, XPS, and UV-vis, which show that the depositions are well-controlled. Zn/Co stoichiometry in the films was controlled by the ratio of the Zn and Co precursors in each deposition bath. All films exhibited the wurtzite structure typical of pure ZnO, and the Co2+ appears to substitute Zn2+, forming a single-phase solid solution. Band gaps of the solid solutions were systematically lower than the 3.2-eV band gap typical of ZnO.

  6. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  7. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  8. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  9. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  10. Surface compositions of atomic layer deposited Zn{sub 1x}Mg{sub x}O thin films studied using Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ting; Romero, Danilo; Gomez, Romel D., E-mail: rdgomez@umd.edu

    2015-09-15

    In this paper, the authors present Auger electron spectroscopy (AES) studies of Zn{sub 1x}Mg{sub x}O (ZMO) films grown via interrupted atomic-layer deposition (ALD) techniques. The ZMO films were fabricated by alternating ALD deposition of ZnO and MgO layers up to 1000 cycles. Zn{sub 1x}Mg{sub x}O films with progressively decreasing Mg/Zn ratios (Mg/Zn = 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/9, and 2/8, 3/12, 4/16, and 5/20) were fabricated for this study. The AES results exhibit an abrupt drop of Mg composition on the ZMO surface when the Mg/Zn < 1/3. Additionally, the surface composition ratios of O to Mg, O to Zn, and Mgmore » to Zn were estimated with known Auger sensitivity factors. The results indicate that Mg ions diffuse into the bulk, forming Zn{sub 1x}Mg{sub x}O alloys.« less

  11. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  12. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  13. Nanostructured GdxZn1-xO thin films by nebulizer spray pyrolysis technique: Role of doping concentration on the structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Suresh, R.; Ragavendar, M.

    2013-07-01

    Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 °C using the NSP technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 Å and c = 5.2018 Å with hexagonal structure and preferential orientation along (0 0 2) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (ɛr and ɛi) and optical conductivities (σr and σi) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

  14. [Preparation and transmissivity of ZnS nanocolumn thin films with glancing angle deposition technology].

    PubMed

    Lu, Li-Fang; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Song, Dan-Dan; Li, Jun-Ming; Wang, Yong-Sheng; Xu, Xu-Rong

    2010-02-01

    Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3 x 10(-4) Pa, and the deposition rate was fixed at 0.2 nm x s(-1). ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0 degrees, 80 degrees and 85 degrees off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystalline films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of alpha = 80 degrees and 85 degrees. The dynamics during the deposition process of the ZnS films at alpha = 0 degrees, 80 degrees and 85 degrees was analyzed. The transmitted spectra of ZnS thin films deposited on ITO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.

  15. Evolution of magnetization in epitaxial Zn1x Fe x O z thin films (0  ⩽  x  ⩽  0.66) grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Brachwitz, Kerstin; Böntgen, Tammo; Lenzner, Jörg; Ghosh, Kartik; Lorenz, Michael; Grundmann, Marius

    2018-06-01

    We demonstrate the development of phases in Zn1xFexOz thin films with 0  ⩽  x  ⩽  0.66, i.e. the end point phases are semiconducting ZnO for x  =  0, and ferrimagnetic zinc ferrite (ZnFe2O4) for x  =  0.66. With increasing x, the x-ray scattering intensity of the structural ZnO wurtzite phase decreases while that of the (111)-oriented ZnFe2O4 spinel phase increases. For x  >  0.4, single phase spinel layers are obtained. The enhanced formation of the spinel phase is supported by deviations from the usually expected stoichiometric transfer of chemical composition from target to thin film in pulsed laser deposition. We find that all mixed film samples show an excess of iron in relation to the target composition, independent of the growth pressure. The saturation magnetization of the samples increases with x for 0  ⩽  x  ⩽  0.66 and shows a ferrimagnetic behavior. The temperature dependence of magnetization points to Curie temperatures well above 400 K for x  ⩾  0.4. With that, the precise tuning of magnetic performance of the thin layers is possible, yielding a design degree of freedom for application-related requirements.

  16. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  17. Influence of Y doping concentration on the properties of nanostructured MxZn1-xO (M=Y) thin film deposited by nebulizer spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.

    2014-09-01

    Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.

  18. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  19. Seedless-grown of ZnO thin films for photoelectrochemical water splitting application

    NASA Astrophysics Data System (ADS)

    Abdullah, Aidahani; Hamid, Muhammad Azmi Abdul; Chiu, W. S.

    2018-04-01

    We developed a seedless hydrothermal method to grow a flower like ZnO nanorods. Prior to the growth, a layer of Au thin film is sputtered onto the surface of indium tin oxide (ITO) coated glass substrate. The morphological, structural and optical properties of the ZnO nanostructures were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflection measurement to understand the growth process of the working thin film. The photoelectrochemical (PEC) results suggest that the deposition of ZnO nanorods on Au nanoparticles plays an important role in enhancing the photoelectrode activity. H2 evolution from photo-splitting of water over Au-incorporated ZnO in the 0.1M NaOH liquid system was enhanced, compared to that over bare ZnO; particularly, the production of 15.5 µL of H2 gas after twenty five minutes exposure of ZnO grown on Au-coated thin film.

  20. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  1. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  2. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.

    2014-10-01

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  3. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  4. Synthesis and characterization of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  5. Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.

    2017-11-01

    We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.

  6. Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.

  7. Structural, electrical, optical and magnetic properties of NiO/ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sushmitha, V.; Maragatham, V.; Raj, P. Deepak; Sridharan, M.

    2018-02-01

    Nickel oxide/Zinc oxide (NiO/ZnO) thin films have been deposited onto thoroughly cleaned glass substrates by reactive direct current (DC) magnetron sputtering technique and subsequently annealed at 300 °C for 3 h in vacuum. The NiO/ZnO thin films were then studied for their structural, optical and electrical properties. X-ray diffraction (XRD) pattern of ZnO and NiO showed the diffraction planes corresponding to hexagonal and cubic phase respectively. The optical properties showed that with the increase in the deposition time of NiO the energy band gap varied between 3.1 to 3.24 eV. Hence, by changing the deposition time of NiO the tuning of band gap and conductivity were achieved. The magnetic studies revealed the diamagnetic nature of the NiO/ZnO thin films.

  8. Effect of external magnetic field on the crystal growth of nano-structured Zn xMn 1- x+ yZr yFe 2-2 yO 4 thin films

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.

    2011-06-01

    Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.

  9. Cd-doped ZnO nano crystalline thin films prepared at 723K by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Joishy, Sumanth; Rajendra B., V.

    2018-04-01

    Ternary Zn1-xCdxO(x=0.10, 0.40, 0.70 at.%) thin films of 0.025M precursor concentration have been successfully deposited on preheated (723K) glass substrates using spray pyrolysis route. The structure, morphology and optical properties of deposited films have been characterized by X-ray diffraction, Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry. X-ray diffraction study shows that the prepared films are polycrystalline in nature. 10% Cd doped ZnO film belongs to the hexagonal wurtzite system and 70% Cd doped ZnO film belongs to the cubic system, although mixed phases were formed for 40% Cd doped ZnO film. The optical transmittance spectra has shown red shift with increasing cadmium content. Optical energy band gap has been reduced with cadmium dopant.

  10. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  11. Growth and characterization of highly conducting Al-doped ZnO (AZO) thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sardana, Sanjay K.; Singh, Anil; Srivastava, Sanjay K.; Pandya, Dinesh K.

    2018-05-01

    A comparative study of undoped ZnO and Al-doped ZnO (AZO) thin films deposited on glass substrate by spray pyrolysis has been carried out at various aqueous molar concentration of zinc acetate. The thin films deposited on glass shows the wurtzite phase of ZnO, confirmed by X-ray diffraction. The optical study shows the high transmittance over 80% in the visible regime. The band gap of AZO thin films shows a blue shift as compared to undoped ZnO, which has been attributed to Burstein-Moss shift. Heat treatment of these samples in vacuum showed the improved conductivity in compared to as-deposited thin films. The electric study shows the minimum resistivity of 8 x 10-3 Ω-cm and carrier concentration of 6.5 × 1019 /cm3 correspond to AZO thin films.

  12. Structural and morphological study on ZnO:Al thin films grown using DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Astuti, B.; Sugianto; Mahmudah, S. N.; Zannah, R.; Putra, N. M. D.; Marwoto, P.; Aryanto, D.; Wibowo, E.

    2018-03-01

    ZnO doped Al (ZnO:Al ) thin film was deposited on corning glass substrate using DC magnetron sputtering method. Depositon process of the ZnO:Al thin films was kept constant at plasma power, deposition temperature and deposition time are 40 watt, 400°C and 2 hours, respectivelly. Furthermore, for annealing process has been done on the variation of oxygen pressure are 0, 50, and 100 mTorr. X-ray diffraction (XRD), and SEM was used to characterize ZnO:Al thin film was obtained. Based on XRD characterization results of the ZnO:Al thin film shows that deposited thin film has a hexagonal structure with the dominant diffraction peak at according to the orientation of the (002) plane and (101). Finally, the crystal structure of the ZnO:Al thin films that improves with an increasing the oxygen pressure at annealing process up to 100 mTorr and its revealed by narrow FWHM value and also with dense crystal structure.

  13. Effect of cadmium incorporation on the properties of zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.

    2018-02-01

    Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.

  14. Impact of strain on electronic defects in (Mg,Zn)O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Florian, E-mail: fschmidt@physik.uni-leipzig.de; Müller, Stefan; Wenckstern, Holger von

    2014-09-14

    We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y₂, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it ismore » shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.« less

  15. Structural and optoelectronic properties of ZnGaO thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Han, Xiaowei; Wang, Li; Li, Shufeng; Gao, Dongwen; Pan, Yong

    2018-01-01

    ZnO has attracted much attention because of its high-energy gap and exciton binding energy at room temperature. Compared to ZnO thin films, ZnGaO thin films are more resistive to oxidation and have smaller deformation of lattice. In this study, the high purity ZnSe and Ga2O3 powders were weighted at a molar ratio of 18:1. Se was oxidized to Se2O3 and separated from the mixture powders by using conventional solid state reaction method in air, and the ZnGaO ceramic target was prepared. We fabricated the ZnGaO films on silica glass by pulsed laser deposition (PLD) method under different oxygen pressure at room temperature. The as-grown films were tested by X-ray diffraction and atomic force microscope (AFM) to diagnose the crystal structure and surface morphology. Moreover, we obtained the optical transmittance of ZnGaO film and found that the electrical conductivity capacity varied with the increase of oxygen pressure.

  16. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  17. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  18. New possibility on InZnO nano thin film for green emissive optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj

    2016-04-01

    Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.

  19. Optical properties of PVA capped nanocrystalline Cd1-xZnxS thin film synthesized by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Lipika; Chaliha, Sumbit; Saikia, Prasanta Kumar

    2018-04-01

    A simple cost effective Chemical Bath Deposition (CBD) technique has been employed for the preparation of nanocrystalline Cd1-xZnxS thin films in an alkaline medium at 333K for 120 minutes in polymer matrix. Optical parameters such as transmittance, optical band gap, reflectance, refractive index and extinction coefficient of the films was made using UV-Visible spectrophotometer. UV-spectroscopy study shows a good transmittance of 80-88% in visible wavelength region for the deposited films. The direct band gap energy (Eg) for the deposited films ranged from 3.5 to 3.7 eV depending on attribution of Zn into CdS. It shows a blue shift with respect to bulk value. A increase in transmittance and band gap is found with the increase of volume of Zn content. Cd1-xZnxS thin films exhibit the least reflectance for all the wavelengths in the visible region. The refractive indices (n) of the Cd1-xZnxS films were found in the range 1.38 to 2.94 in the visible region.

  20. Spectroscopic ellipsometry studies on ZnCdO thin films with different Cd concentrations grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Li, Qingxuan; Ferguson, Ian; Lin, Tao; Wan, Lingyu; Feng, Zhe Chuan; Zhu, Liping; Ye, Zhizhen

    2017-11-01

    A set of Zn1-xCdxO thin films with different Cd concentrations was deposited on quartz substrates by Pulsed Laser Deposition (PLD). The properties of these films were investigated by variable angle and temperature dependent spectroscopic ellipsometry (SE). The experimental Zn1-xCdxO thin films showed a red shift in the absorption edge with increasing Cd contents at room temperature. For ZnCdO films with the similar Cd concentration, it has been found that the film thickness has important effects on the optical constants (n, k). The variations of optical constants (n, k) and the band gap, E0, with temperature (T) in 25 °C-600 °C for a typical Zn0.95Cd0.05O sample were obtained. The E0 vs T relationship is described by a T- quadratic equation.

  1. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  2. Properties of NiZnO Thin Films with Different Amounts of Al Doping

    NASA Astrophysics Data System (ADS)

    Kayani, Zohra N.; Fatima, Gulnaz; Zulfiqar, Bareera; Riaz, Saira; Naseem, Shahzad

    2017-10-01

    Transparent Al-doped NiZnO thin films have been fabricated by sol-gel dip coating and investigated using scanning electron microscopy, x-ray diffraction analysis, ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometry, vibrating-sample magnetometry, and Fourier-transform infrared spectroscopy. The Al-doped NiZnO films consisted of ZnO hexagonal and α-Al2O3 rhombohedral phases as the Al incorporation was gradually increased from 1 at.% up to 3 at.%. A decrease in the optical bandgap from 3.90 eV to 3.09 eV was observed for films grown with Al content of 1 at.% to 2.5 at.%, but at 3 at.% Al, the bandgap increased to 3.87 eV. Optical transmittance of 96% was achieved for these transparent oxide films. Study of their magnetic properties revealed that increasing Al percentage resulted in enhanced ferromagnetism. The saturated magnetization increased with increasing Al percentage. The ferromagnetic properties of Al-doped NiZnO are mediated by electrons. The surface of the deposited thin films consisted of nanowires, nanorods, porous surface, and grains.

  3. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  4. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    NASA Astrophysics Data System (ADS)

    Laughlin, Brian James

    C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and Zn

  5. Effect of K-doping on structural and optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Li, Xiangyin; Yuan, Jun

    2008-09-01

    In this work, K-doped ZnO thin films were prepared by a sol-gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.

  6. Thermal-induced structural and optical investigations of Agsbnd ZnO nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-07-01

    In the present paper, we have successfully synthesized Agsbnd ZnO nanocomposite thin films by RF-magnetron sputtering technique at room temperature. Systematic investigations of thermal-induced structural and optical modifications in Agsbnd ZnO thin films have been observed and described. The Agsbnd ZnO thin films were annealed at three different temperatures of 300 °C, 400 °C and 500 °C in vacuum to prevent the oxidation of Ag. The presence and formation of Ag nanoparticles were estimated by transmission electron microscopy. X-ray diffraction analysis revealed the structural information about the crystalline quality of ZnO. The crystallinity as well as the crystallite size of the films have been found to be improved with annealing temperatures. The estimated crystallite size was ∼15.8 nm for as-deposited film and 19.0 nm for the film at a higher temperature. The chemical composition and structural analysis of as-deposited film were carried out by X-ray photoelectron spectroscopy. A very sharp absorption band appeared at ∼540 nm for Ag NPs that is associated with the surface plasmon resonance band of Ag. A noticeable red shift of about ∼12 nm has been recorded for films annealed at 500 °C. Atomic force microscopy has been utilized to examine the surface morphology of the as-deposited and annealed films. The grain size was found to be increase with increasing annealing temperature, while no significant changes were observed in the roughness of Agsbnd ZnO thin films. Raman spectroscopy revealed lattice defects and disordering in the films after the thermal annealing.

  7. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  8. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  9. Field dependent magnetic anisotropy of Fe1-xZnx thin films

    NASA Astrophysics Data System (ADS)

    Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.

    2013-05-01

    Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.

  10. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon

    NASA Astrophysics Data System (ADS)

    Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J. R.

    2003-01-01

    Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH 3COO) 2 2H 2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min -1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.

  11. Ultraviolet photodetector based on Mg{sub x}Zn{sub 1-x}O films using plasma-enhanced atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Ching-Ting

    2016-01-15

    A plasma-enhanced atomic layer deposition (PE-ALD) system was used to deposit magnesium zinc oxide (Mg{sub x}Zn{sub 1x}O) films with various Mg content (x). The Mg{sub x}Zn{sub 1-x}O films were applied to metal–semiconductor–metal ultraviolet (UV) photodetectors (MSM-UPDs) as an active layer. The Mg content in the Mg{sub x}Zn{sub 1-x}O films was modulated by adjusting the ZnO–MgO cycle ratios to 15:1, 12:1, and 9:1. Correspondingly, the Mg content in the Mg{sub x}Zn{sub 1-x}O films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the Mg{sub x}Zn{sub 1-x}O films increased from 3.56 to 3.66 eV withmore » an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was also shifted from 350 to 340 nm. The UV-visible rejection ratios of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were higher than 3 orders of magnitude. In addition, excellent detectivity and noise equivalent power for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were observed at a bias voltage of 5 V. The high performance of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was achieved by PE-ALD at a low temperature.« less

  12. Role of Ni doping on transport properties of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less

  13. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less

  14. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  15. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  16. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  17. Effect of precursor on epitaxially grown of ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate by hydrothermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.

    2008-03-04

    Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less

  18. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  19. Influence of a novel co-doping (Zn + F) on the physical properties of nano structured (1 1 1) oriented CdO thin films applicable for window layer of solar cell

    NASA Astrophysics Data System (ADS)

    Anitha, M.; Saravanakumar, K.; Anitha, N.; Amalraj, L.

    2018-06-01

    Un-doped and co-doped (Zn + F) cadmium oxide (CdO) thin films were prepared by modified spray pyrolysis technique using a nebulizer on glass substrates kept at 200 °C. They were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy, Hall Effect and photoluminescence (PL) respectively. The thin films were having thickness in the range of 520-560 nm. They were well crystalline and displayed high transparency of about >70% in the visible region. It was clearly seen from the SEM photographs that co-doping causes notable changes in the surface morphology. Electrical study exhibited the resistivity of co-doped CdO thin films drastically fell to 1.43 × 10-4 Ω-cm compared with the un-doped CdO thin film. The obtained PL spectra were well corroborated with the structural and optical studies. The high transparency, wide band gap energy and enhanced electrical properties obtained infer that Zn + F co-doped CdO thin films find application in optoelectronic devices, especially in window layer of solar cells.

  20. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  1. Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films

    NASA Astrophysics Data System (ADS)

    Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang

    2017-12-01

    Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.

  2. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co 0.5(Mg 0.55Zn 0.45) 0.5O 1-v thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin

    2016-04-11

    High quality single-crystal fcc-Co x (Mg y Zn 1-y ) 1-x O 1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Co x (Mg y Zn 1-y ) 1-x O 1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed withmore » both controllable magnetic properties and tunable band-gap, Co x (Mg y Zn 1-y ) 1-x O 1-v films may have promising applications in future spintronics.« less

  3. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  4. Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films

    NASA Astrophysics Data System (ADS)

    Khalate, S. A.; Kate, R. S.; Deokate, R. J.

    2018-04-01

    Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.

  5. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  6. Synthesis and performance of Zn-Ni-P thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Ghita, M.; Constantin, V.; Miculescu, F.; Popescu, A. M.

    2015-03-01

    The electroplating of Zn-Ni-P thin film alloys from a sulfate bath containing phosphoric and phosphorous acid was investigated. The bath composition and the deposition parameters were optimized through Hull cell experiments, and the optimum experimental conditions were determined (pH = 2, temperature = 298-313 K, zinc sulfate concentration = 30 g·L-1, EDTA concentration = 15 g·L-1, and current density, = ,1.0-2.0 A·dm-2). The SEM analysis of the coating deposited from the optimum bath revealed fine-grained deposits of the alloy in the presence of EDTA. Optical microscopy analysis indicated an electrodeposited thin film with uniform thickness and good adhesion to the steel substrate. The good adherence of the coatings was also demonstrated by the scratch tests that were performed, with a maximum determined value of 25 N for the critical load. Corrosion resistance tests revealed good protection of the steel substrate by the obtained Zn-Ni-P coatings, with values up to 85.89% for samples with Ni contents higher than 76%. The surface analysis of the thin film samples before and after corrosion was performed by X-ray photoelectron spectroscopy (XPS). Project support by the Partnership Romanian Research Program (PNCDI2), CORZIFILM Project nr.72-221/2008-2011 and “EU (ERDF) and Romanian Government” that allowed for acquisition of the research infrastructure under POS-CEEO 2.2.1 project INFRANANOCHEM-Nr.19/01.03.2009.

  7. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  8. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  9. Synthesis and characterization of structural, morphological and photosensor properties of Cu0.1Zn0.9S thin film prepared by a facile chemical method

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.

  10. Optimization of high quality Cu2ZnSnS4 thin film by low cost and environment friendly sol-gel technique for thin film solar cells applications

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-05-01

    In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.

  11. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  12. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  13. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co0.5(Mg0.55Zn0.45)0.5O1-v thin films

    PubMed Central

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin; Zhu, Shimeng; Yang, Wanli; Xia, Weixing; Tian, Yufeng; Liu, Guolei; Yan, Shishen

    2016-01-01

    High quality single-crystal fcc-Cox(MgyZn1-y)1-xO1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Cox(MgyZn1-y)1-xO1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed with both controllable magnetic properties and tunable band-gap, Cox(MgyZn1-y)1-xO1-v films may have promising applications in future spintronics. PMID:27062992

  14. Synthesis and characterization of ZnO:TiO{sub 2} nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutanto, Heri, E-mail: herisutanto@undip.ac.id; Nurhasanah, Iis; Hidayanto, Eko

    In this work, (ZnO){sub x}:(TiO{sub 2}){sub 1-x} nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol–gel spray coating technique onto glass substrate. Pure TiO{sub 2} and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO{sub 2} and ZnO:TiO{sub 2} thin films at different composition have been investigated. Ultraviolet – Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employedmore » in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO{sub 2} on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.« less

  15. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  16. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  17. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  18. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  19. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  20. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOEpatents

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  1. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  2. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Department of Physics, Karnataka Government Research centre SCEM, Mangalore, 575007; Sandeep, K. M.

    2016-05-23

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnOmore » thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.« less

  3. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  4. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  5. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE PAGES

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...

    2016-09-02

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  6. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  7. Magnetic state of a Zn1 - x Cr x Se bulk crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Korolev, A. V.; Teploukhov, S. G.; Chukalkin, Yu. G.; Parkhomenko, V. D.; Gruzdev, N. B.

    2008-06-01

    The spin system of a Zn1 - x Cr x Se bulk crystal ( x = 0.045) was studied using thermal-neutron diffraction and magnetic measurements. Previously, it was reported in the literature that thin films (˜200 nm thick) of this type of semiconductors exhibit a ferromagnetic order. In this study, the ferromagnetic order is found to be absent in the bulk crystal.

  8. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  9. Synthesis and characterization of novel 4-Tetra-4-Tolylsulfonyl ZnPc thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Khalil, Salah; Tazarki, Helmi; Souli, Mehdi; Guasch, Cathy; Jamoussi, Bassem; Kamoun, Najoua

    2017-11-01

    Novel 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine and simple zinc phthalocyanine were synthesized. Our materials were grown on glass substrates by spin coating technique. Thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic micrograph (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect measurement. X-ray spectra reveal that 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine (4T4TS:ZnPc) and zinc phthalocyanine (ZnPc) thin films have a monoclinic crystalline structure in β phase. The surface properties and chemical composition were detailed using XPS measurement. SEM were used to investigate the surface morphology for 4T4TS:ZnPc and ZnPc thin films. Atomic force microscopy images have shown a decrease in surface roughness after substitution. Optical properties were investigated by measuring transmission and reflection spectra. Electrical properties were studied and the different electrical parameters was measured and compared on glass, silicon and tin dioxide substrates by Hall Effect technique. All obtained results indicate an improvement in physical properties of 4T4TS:ZnPc which allows used it in optoelectronic applications.

  10. Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.

    PubMed

    Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong

    2011-11-01

    Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.

  11. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  12. Physical Property Evaluation of ZnO Thin Film Fabricated by Low-Temperature Process for Flexible Transparent TFT.

    PubMed

    Khafe, Adie Bin Mohd; Watanabe, Hiraku; Yamauchi, Hiroshi; Kuniyoshi, Shigekazu; Iizuka, Masaaki; Sakai, Masatoshi; Kudo, Kazuhiro

    2016-04-01

    The usual silicon-based display back planes require fairly high process temperature and thus the development of a low temperature process is needed on flexible plastic substrates. A new type of flexible organic light emitting transistor (OLET) had been proposed and investigated in the previous work. By using ultraviolet/ozone (UV/O3) assisted thermal treatments on wet processed zinc oxide field effect transistor (ZnO-FET), through low-process temperature, ZnO-FETs were fabricated which succeeded to achieve target drain current value and mobility. In this study, physical property evaluation of ZnO was conducted in term of their crystallinity, the increase composition of ZnO formed inside the thin film and the decrease of the carbon impurities originated from aqueous solution of the ZnO itself. The X-ray diffraction (XRD) evaluation showed UV/03 assisted thermal treatment has no obvious effect towards crystallinity of ZnO in the range of low process temperature. Moreover, through X-ray photoelectron spectroscopy (XPS) evaluation and Fourier transform infrared (FT-IR) spectroscopy evaluation, more carbon impurities disappeared from the ZnO thin film and the increase of composition amount of ZnO, when the thin film was subjected to UV/O3 assisted thermal treatment. Therefore, UV/O3 assisted thermal treatment contributed in carbon impurities elimination and accelerate ZnO formation in ZnO thin film, which led to the improvement in the electrical property of ZnO-FET in the low-process temperature.

  13. Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Anila, E. I.

    2018-04-01

    We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.

  14. Microstructure study of ZnO thin films on Si substrate grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang

    2007-08-01

    The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.

  15. Thermoelectric Properties of Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.

    2014-06-01

    We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures ( T dep = 300-600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300-600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1 K-2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10-3 Wm-1 K-2 at 600 K, surpassing the best AZO film previously reported in the literature.

  16. Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-06-01

    Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.

  17. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  18. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  19. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  20. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    NASA Astrophysics Data System (ADS)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  1. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Ali, H. M.; Mohamed, S. H.; Abd El-Raheem, M. M.

    2006-04-01

    Thin films of Zn{1-x} Cd{x}O with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 at.% were deposited by electron-beam evaporation technique. It has been found that, for as-deposited films, both the transmittance and electrical resistivity decreased with increasing the Cd content. To improve the optical and electrical properties of these films, the effect of annealing temperature and time were taken into consideration for Zn{1-x} Cd{x}O film with x = 0.2. It was found that, the optical transmittance and the electrical conductivity were improved significantly with increasing the time of annealing. At fixed temperature of 300 °C, the transmittance increased with increasing the time of annealing and reached its maximum values of 81% in the visible region and 94% in the NIR region at annealing time of 120 min. The low electrical resistivity of 3.6 × 10-3 Ω cm was achieved at the same conditions. Other parameters named free carrier concentrations, refractive index, extinction coefficient, plasma frequency, and relaxation time were studied as a function of annealing temperature and time for 20% Cd content.

  2. High-mobility ambipolar ZnO-graphene hybrid thin film transistors

    PubMed Central

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-01-01

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629

  3. High-mobility ambipolar ZnO-graphene hybrid thin film transistors.

    PubMed

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-02-11

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.

  4. Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.

  5. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  6. Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application

    NASA Astrophysics Data System (ADS)

    Gupta, Manisha; Chowdhury, Fatema Rezwana; Barlage, Douglas; Tsui, Ying Yin

    2013-03-01

    In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017-1018/cm3 with low mobility in the range of 0.01-0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.

  7. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  8. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  9. Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing.

    PubMed

    Catto, Ariadne C; Silva, Luís F da; Bernardi, Maria Inês B; Bernardini, Sandrine; Aguir, Khalifa; Longo, Elson; Mastelaro, Valmor R

    2016-10-05

    A detailed study of the structural, surface, and gas-sensing properties of nanostructured Co x Zn 1-x O films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co 2+ ions preferentially occupied the Zn 2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.

  10. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin

    2018-06-01

    Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

  11. Effect of Annealing Temperature on Structural and Optical Properties of Sol-Gel-Derived ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun

    2018-04-01

    Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

  12. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  13. Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor

    NASA Astrophysics Data System (ADS)

    Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah

    2017-10-01

    In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.

  14. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films

    NASA Astrophysics Data System (ADS)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-03-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu1 - x Fe x O3 - δ epitaxial thin films ( x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu1 - x Fe x O3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR ( 36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies ( δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr1 - x La x )(Ru1 - x Fe x )O3. These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu1 - x Fe x O3 - δ thin films.

  15. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  16. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  17. A study on micro-structural and optical parameters of InxSe1-x thin film

    NASA Astrophysics Data System (ADS)

    Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.

    2018-04-01

    Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.

  18. Synthesis and Magnetic Properties of Ni-DOPED ZnO Thin Films: Experimental and AB INITIO Study

    NASA Astrophysics Data System (ADS)

    Rouchdi, M.; Salmani, E.; Hat, A. El; Hassanain, N.; Mzerd, A.

    Structural and magnetic properties of Zn1-xNixO thin films and diluted magnetic semiconductors have been investigated. This sample has been synthesized using a spray pyrolysis technique with a stoechiometric mixture of zinc acetate (C4H6O4Znṡ2H2O) and Nickel acetate (C4H6O4Niṡ 2H2O) on a heated glass substrate at 450∘C. The films were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometry and Hall Effect measurements. These films of ZnO crystallized in the hexagonal Wurtzite structure. The optical study showed that the band-gap energy was increased, from 3.3eV to 3.5eV, with increasing the Ni concentration. The film resistivity was affected by Ni-doping, and the best resistivity value 1.15×10-2 (Ω cm) was obtained for the film doped with 2 at.% Ni. The electronic structure and optical properties of the Wurtzite structure Zn1-xNixO were obtained by first-principles calculations using the Korringa-Kohn-Rostoker method combined with the coherent potential approximation (CPA), as well as CPA confirm our results.

  19. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  20. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO 2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Talebian, Nasrin; Nilforoushan, Mohammad Reza; Zargar, Elahe Badri

    2011-10-01

    The nano-sized coupled oxides ZnO/SnO 2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli ( E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO 2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO 2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  1. Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition

    NASA Astrophysics Data System (ADS)

    Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao

    2006-09-01

    Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.

  2. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less

  3. Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method.

    PubMed

    Pathak, Trilok K; Rajput, Jeevitesh K; Kumar, Vinod; Purohit, L P; Swart, H C; Kroon, R E

    2017-02-01

    Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300-800nm and the optical bandgap was calculated using Tauc's plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nanocrystal growth and morphology of PbTeSe-ZnSe composite thin films prepared by one-step synthesis method

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Abe, Seishi

    2016-10-01

    The microstructure of polycrystalline PbTe1-xSex-ZnSe composite thin films has been studied by scanning transmission electron microscopy and electron diffraction. The films were prepared by the one-step synthesis method using simultaneous evaporation of PbTe and ZnSe. The nanocrystals of PbTe1-xSex are formed in a ZnSe matrix. Tellurium concentration can be tuned by controlling the PbTe evaporation source temperatures between 753 K and 793 K. Binary PbSe nanocrystals were formed at 753 K, while ternary PbTe1-xSex nanocrystals were formed at 793 K. The nanocrystals grow in a granular shape at the initial stage of film growth, and the morphology changes to nanowire-shape as the film grows, irrespective of the Te concentration. The ternary PbTe1-xSex nanocrystals were composed of two phases with different Te concentration; Te-rich (Se-poor) granular crystals were formed near the bottom half parts of the film and Te-poor (Se-rich) nanowires were formed at the upper half parts of the film. Columnar ZnSe crystals contain high-density {111} stacking faults due to the low stacking fault energy of ZnSe. A balance of deposition and re-evaporation on the substrate during the film growth will be responsible for the resultant nanocrystal morphology.

  5. Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.

    PubMed

    Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana

    2013-01-01

    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Effect of concentration and irradiation on the optical and structural properties of ZnO thin films deposited by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Adeoye Victor, Babalola

    2017-12-01

    This study involves the preparation of ZnO thin films by spray pyrolysis and to investigate the effect of concentration of the film and irradiation on ZnO thin film deposited by spray pyrolysis method deposited at 350 ± 5 °C. The precursor for zinc oxide was produced from zinc acetate (Zn(CH3COO))2. The samples were annealed at 500 °C for 6 h and irradiated using 137Cs 90.998 mCi radiation. They were then characterised using ultra violet-visible spectrophotometry, X-ray Diffractometry (XRD) with Cu-Kα radiation to determine the structure of the film, Four-point probe for electrical properties and Rutherford Backscattering Spectrometry (RBS) were used for the composition of the film. XRD diffraction peaks observed for 0.05 M ZnO were (1 0 0), (0 0 2), (1 0 1) and (1 1 0) planes for the annealed and irradiated annealed ZnO films with no preferential orientation. The as-deposited films have low peaks belonging to (1 0 0), (0 0 2), (1 0 1), (1 1 0) plane and other peaks such as (1 1 2), (2 0 0) and (2 0 1). The results are explained with regard to the irradiation damage introduced to the samples. The as-deposited, annealed and irradiated-annealed films are highly transparent in the visible range of the electromagnetic spectrum with an average percent transmittance values of 85% and present a sharp ultraviolet cut-off at approximately 380 nm for the ZnO thin film.

  7. [Preparation of large area Al-ZnO thin film by DC magnetron sputtering].

    PubMed

    Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen

    2009-03-01

    Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low

  8. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    NASA Astrophysics Data System (ADS)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  9. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  10. Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.

    2017-07-01

    Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.

  11. Optical properties of ordered ZnO/Ag thin films on polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Li, Xiu; Chen, Xiuyan; Xin, Zhiqing; Li, Luhai; Xu, Yanfang

    2017-08-01

    A thorough research of the optical properties of ZnO/Ag structures sputtered by RF on PS colloidal crystal molds with different diameters is reported. The influences of the period of the substrates on the performance of ZnO thin films were studied. The results of scanning electron microscopic, X-ray diffraction patterns and UV-vis absorption spectroscopy indicated that the ZnO/Ag thin films were well-covering on PS colloidal crystal molds. The diameter of the polystyrene particles significantly influenced the PL spectrum intensity of ZnO/Ag by affecting the interferences of light. After adding PS colloidal crystal molds with different diameters, all the samples show two luminescent regions, namely a strong, narrow UV emission peak and a wide, weak visible emission band. However, the signal of UV emission increases more significantly. In particular, the maximum enhancement occurs when the diameter is 300 nm. This work proposes an effective way to improve ZnO light emission based on a simple, rapid and cost effective method to fabricate ordered periodic substrates by preparing single layer polystyrene microspheres masks.

  12. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    NASA Astrophysics Data System (ADS)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  13. Effect of Al doping on performance of ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi

    2018-03-01

    In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.

  14. Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications

    NASA Astrophysics Data System (ADS)

    Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.

    2016-05-01

    V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.

  15. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  16. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  17. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  18. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    PubMed

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  19. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhoumi, A., E-mail: amira-barhoumi@yahoo.fr; Guermazi, S.; Leroy, G.

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements.more » The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.« less

  20. Synthesis and characteristics of PbTe1-xSex thin films formed via electrodeposition

    NASA Astrophysics Data System (ADS)

    Bae, Sangwoo; Lee, Sangwon; Sohn, Ho-Sang; Lee, Ho Seong

    2017-09-01

    PbTe1-xSex films were grown using electrodeposition and their microstructural and electrical properties were investigated. The Se content incorporated in the PbTe1-xSex films increased with the Se content in the electrolyte. X-ray diffraction peaks of the PbTe1-xSex films shifted to higher angles according to Vegard's law. For the sample with a small Se content, the PbTe1-xSex films showed a characteristic feather-like dendrite, while PbTe1-xSex films with a higher Se content showed faceted particles. Transmission electron microscopy results showed that the feather-like dendritic PbTe1-xSex grew like a single crystal and a growing twinning was formed in some dendrites. With an increase in the Se content in the PbTe1-xSex thin films, the carrier concentrations increased but the mobility reduced. Electrical conductivity of the PbTe1-xSex thin films increased and then slightly decreased with increasing Se content.

  1. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  2. Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettumperumal, R.; Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in; Santoshkumar, B.

    Highlights: • Comparison of group-I elements doped ZnO nanoparticles and thin films. • Calculation of electron–phonon coupling and phonon lifetime from Raman spectroscopy. • Estimation of interband states from Urbach energy. - Abstract: Group-I (Li, Na, K & Cs) elements doped ZnO nanoparticles (NPs) and thin films were prepared using sol–gel method. XRD data and TEM images confirm the absence of any other secondary phase different from wurtzite type ZnO. Spherical shapes of grains are observed from the surfaces of doped ZnO films by atomic force microscope images (AFM) and presences of dopants are confirmed from energy dispersive X-ray spectra.more » The Raman active E{sub 2} (high), E{sub 2} (low), E{sub 1} and A{sub 1} (LO) modes are observed from both ZnO NPs and thin films. First-order longitudinal optical (LO) phonon is found to have contributions from direct band transition and localized excitons. Electron–phonon coupling, phonon lifetime and deformation energy of ZnO are calculated based on the effect of dopants with respect to the multiple Raman LO phonon scattering. Presence of localized interbands states in doped ZnO NPs and thin films are found from the Urbach energy calculations.« less

  3. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  4. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  5. Structural and Optical Properties of Cd 1- x Se x Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.

    2011-10-01

    Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.

  6. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  7. Modifying Optical Properties of ZnO Films by Forming Zn[subscript 1-x] Co[subscript x]O Solid Solutions via Spray Pyrolysis

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.

    2007-01-01

    A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.

  8. An investigation on the In doping of ZnO thin films by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mahesh, Devika; Kumar, M. C. Santhosh

    2018-04-01

    Indium doped zinc oxide (IGZO)thin films are gaining much interest owing to its commercial application as transparent conductive oxide thin films. In the current study thin films indium doped ZnO thin films have been deposited on glass substrates by chemical spray pyrolysis technique with an indium concentration of 1, 2.5 and 4% in Zinc source. The films show a peak shift in the X-Ray Diffraction patterns with varying indium doping concentration. The (101) peak was enhanced for the 2.5 % indium doped films and variation in grain size with the different doping levels was studied. The as-deposited films are uniform and shown high transparency (>90%) in the visible region. Average thicknesses of films are found to be 800nm, calculated using the envelope method. The film with 2.5 % of indium content was found to be highly conducting than the rest, since for the lower and higher concentrations the conductivity was possibly halted by the limit in carrier concentration and indium segregation in the grain boundaries respectively. The enhancement of mobility and carrier concentration was clearly seen in the optimum films.

  9. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    NASA Astrophysics Data System (ADS)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  10. Fabrication and electrical properties of low temperature-processed thin-film-transistors with chemical-bath deposited ZnO layer.

    PubMed

    Ahn, Joo-Seob; Kwon, Ji-Hye; Yang, Heesun

    2013-06-01

    ZnO film was grown on ZnO quantum dot seed layer-coated substrate by a low-temperature chemical bath deposition, where sodium citrate serves as a complexing agent for Zn2+ ion. The ZnO film deposited under the optimal condition exhibited a highly uniform surface morphology with a thickness of approimately 30 nm. For the fabrication of thin-film-transistor with a bottom-gate structure, ZnO film was chemically deposited on the transparent substrate of a seed layer-coated SiN(x)/ITO (indium tin oxide)/glass. As-deposited ZnO channel was baked at low temperatures of 60-200 degrees C to investigate the effect of baking temperature on electrical performances. Compared to the device with 60 degrees C-baked ZnO channel, the TFT performances of one with 200 degrees C-baked channel were substantially improved, exhibiting an on-off current ratio of 3.6 x 10(6) and a saturated field-effect mobility of 0.27 cm2/V x s.

  11. Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er

    NASA Astrophysics Data System (ADS)

    Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.

    2017-02-01

    Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.

  12. Chemical bath deposition of II-VI compound thin films

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah Olatunde

    form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.

  13. Structural and optical studies on spin coated ZnO-graphene conjugated thin films

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Angadi, Basavaraj; Son, D. I.; Choi, W. K.

    2018-05-01

    ZnO-Graphene conjugated thin films were prepared using spin coating technique for different spin rates. Prior to the deposition, ZnO-Graphene nanoparticles were synthesized and their particle size and conjugation was studied through Transmission electron microscope (TEM). The deposited films were characterized using grazing incidence x-ray diffractometer (GIXRD), atomic force microscope (AFM) and UV-Visible spectrometer for their crystallinity, surface topographic features and optical properties. GIXRD patterns confirms the presence of both ZnO and Graphene related crystalline peaks supports the TEM results, which shows the quasi core-shell type conjugation of ZnO-Graphene particles. The crystallinity as well as thickness of the films found to decrease with increase of spin rate. AFM results reveal the uniform, smooth and homogeneity of films and also good adhesivity of ZnO-Graphene with glass substrates. No significant change in the transmittance and absorption with spin rate is observed, while the band gap energy found to decrease due to the reduction in the thickness of the films and conjugation of ZnO-Graphene. All films exhibit˜90 % transmittance in the visible wavelength region, could be potential candidates for optoelectronics and transparent conducting oxide (TCO) applications.

  14. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  15. Optical transmission larger than 1 (T>1) through ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Xiao, Mufei

    2006-09-01

    Optical transmission through flat media should be smaller than 1. However, we have observed optical transmission up to T =1.18. The samples were ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films on glass substrate. The supertransmission could only be observed in the near field. We attribute the supertransmission to the lateral propagation relayed by the laser activated and decomposed Ag nanoparticles.

  16. Phase change studies in Se85In15-xZnx chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-03-01

    This research work describes the phase change studies in Se85In15-xZnx thin films at various annealing temperatures. Glassy samples of Se85In15-xZnx were synthesized by the melt quenching method and thin films of thickness 400 nm were prepared by the vacuum evaporation technique on a glass/Si wafer substrate. The glass transition temperature (Tg) and the on-set crystallization temperature (Tc) of the prepared alloys were evaluated by non-isothermal differential scanning calorimetry studies. Thin films were annealed at three temperatures 330 K, 340 K, and 350 K (which are in between Tg and Tc of the synthesized samples) in a vacuum furnace for 2 h. High resolution X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature whereas the annealed films are of crystalline/polycrystalline in nature. Field emission scanning electron microscopy studies of thin films (as-deposited and crystallized) confirm the phase transformation in Se85In15-xZnx thin films. Optical band gaps were calculated from the Tauc's extrapolation procedure and were found to be enhanced with the Zn concentration and decrease with the increasing annealing temperature. Various optical parameters were evaluated for as-prepared and annealed Se85In15-xZnx thin films. The changes in optical parameters with annealing temperature were described on the basis of structural relaxation as well as changes in defect states and density of localized states during amorphous to crystalline phase transformation in Se85In15-xZnx thin films.

  17. Structural, Electrical and Optical Properties of Cd Doped ZnO Thin Films by Reactive dc Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.

    2015-04-01

    Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.

  18. Topological characters in Fe (Te1 -xSex ) thin films

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Qin, Shengshan; Liang, Yi; Fan, Heng; Hu, Jiangping

    2016-03-01

    We investigate topological properties in the Fe(Te,Se) thin films. We find that the single layer FeTe1 -xSex has nontrivial Z2 topological invariance which originates from the parity exchange at the Γ point of the Brillouin zone. The nontrivial topology is mainly controlled by the Te(Se) height. Adjusting the anion height, which can be realized as the function of lattice constants and x in FeTe1 -xSex , can drive a topological phase transition. In a bulk material, the two-dimensional Z2 topology invariance is extended to a strong three-dimensional one. In a thin film, we predict that the topological invariance oscillates with the number of layers. The results can also be applied to iron pnictides. Our research establishes FeTe1 -xSex as a unique system to integrate high-Tc superconductivity and topological properties in a single electronic structure.

  19. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical

  20. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  1. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    DOE PAGES

    Mbamara, U. S.; Olofinjana, B.; Ajayi, O. O.; ...

    2016-02-01

    Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD). The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-facemore » surfaces were examined to assess the wear dimension and failure mechanism. In conclusion, both friction behavior and wear (in the ball counter-face) were observed to be dependent on the crystallinity and thickness of the thin film coatings.« less

  2. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  3. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  4. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less

  5. The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability

    PubMed Central

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-01

    A thin-film transistor (TFT) having an organic–inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology. PMID:25608214

  6. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.

    PubMed

    Tai, Huiling; Li, Xian; Jiang, Yadong; Xie, Guangzhong; Du, Xiaosong

    2015-01-19

    A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) gas sensor. The effects of ZnO nanoparticles on morphological and compositional features, electronic and HCHO-sensing properties of P3HT-ZnO thin film were systematically investigated. The results showed that P3HT-ZnO hybrid thin film sensor exhibited considerable improvement of sensing response (more than two times) and reversibility compared to the pristine P3HT film sensor. An accumulation p-n heterojunction mechanism model was developed to understand the mechanism of enhanced sensing properties by incorporation of ZnO nanoparticles. X-ray photoelectron spectroscope (XPS) and atomic force microscopy (AFM) characterizations were used to investigate the stability of the sensor in-depth, which reveals the performance deterioration was due to the changes of element composition and the chemical state of hybrid thin film surface induced by light and oxygen. Our study demonstrated that P3HT-ZnO hybrid thin film TFT sensor is beneficial in the advancement of novel room temperature HCHO sensing technology.

  7. Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films

    NASA Astrophysics Data System (ADS)

    Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria

    2018-02-01

    The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.

  8. Preparation and characterization of double layer thin films ZnO/ZnO:Ag for methylene blue photodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id

    2016-02-08

    Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.

  9. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  10. Stability of Cd 1xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE PAGES

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; ...

    2017-02-08

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  11. Stability of Cd 1xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  12. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films

    NASA Astrophysics Data System (ADS)

    Yang, A. L.; Song, H. P.; Liang, D. C.; Wei, H. Y.; Liu, X. L.; Jin, P.; Qin, X. B.; Yang, S. Y.; Zhu, Q. S.; Wang, Z. G.

    2010-04-01

    Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li et al. [Appl. Phys. Lett. 91, 232115 (2007)].

  13. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  14. Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films

    NASA Astrophysics Data System (ADS)

    Li, D. Y.; Zeng, Y. J.; Pereira, L. M. C.; Batuk, D.; Hadermann, J.; Zhang, Y. Z.; Ye, Z. Z.; Temst, K.; Vantomme, A.; Van Bael, M. J.; Van Haesendonck, C.

    2013-07-01

    Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5 K and the negative MR survives up to 250 K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport.

  15. Manipulation of ZnO composition affecting electrical properties of MEH-PPV: ZnO nanocomposite thin film via spin coating for OLEDs application

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. Morphology, optical and electrical of nanocomposites thin films based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanotetrapods with various ZnO composition (0 wt% to 0.4 wt%) have been investigated. The MEH-PPV: ZnO nanocomposite thin film was deposited using spin-coating method. Surface morphology was characterized using field emission scanning electron microscopy and shows the uniform dispersion of MEH-PPV and ZnO phases for sample deposited at 0.2 wt%. The photoluminescence (PL) spectra shows the visible emission intensities increased when the ZnO composition increased. The current-voltage (I-V) measurement shows the highest conductivity of nanocomposite thin film deposited at 0.2 wt% of ZnO is 7.40 × 10-1 S. cm-1. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  16. Cu2SixSn1-xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang

    2011-10-01

    We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.

  17. Thouless length and valley degeneracy factor of ZnMnO thin films with anisotropic, highly conductive surface layers

    NASA Astrophysics Data System (ADS)

    Vegesna, Sahitya V.; Bürger, Danilo; Patra, Rajkumar; Abendroth, Barbara; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie

    2017-06-01

    Isothermal magnetoresistance (MR) of n-type conducting Zn1-xMnxO thin films on a sapphire substrate with a Mn content of 5 at. % has been studied in in-plane and out-of-plane magnetic fields up to 6 T in the temperature range of 5 K to 300 K. During pulsed laser deposition of the ZnMnO thin films, we controlled the thickness and roughness of a highly conductive ZnMnO surface layer. The measured MR has been modeled with constant s-d exchange (0.2 eV in ZnMnO) and electron spin (S = 5/2 for Mn2+) for samples with a single two dimensional (2D) ZnMnO layer, a single three dimensional (3D) ZnMnO layer, or a 2D and 3D (2D + 3D) ZnMnO layer in parallel. The temperature dependence of modeled Thouless length LTh (LTh ˜ T-0.5) is in good agreement with the theory [Andrearczyk et al., Phys. Rev. B 72, 121309(R) (2005)]. The superimposed positive and negative MR model for ZnCoO thin films [Xu et al., Phys. Rev. B 76, 134417 (2007)] has been extended in order to account for the increase in the density of states close to the Fermi level of n-ZnMnO due to substitutional Mn2+ ions and their effect on the negative MR in ZnMnO.

  18. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less

  19. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    PubMed

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  20. The influence of sequence of precursor films on CZTSe thin films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping

    2017-02-01

    The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).

  1. Surface-emitting stimulated emission in high-quality ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Suemune, Ikuo; Kumano, H.; Wang, J.; Huang, S. H.

    2004-10-01

    High-quality ZnO thin films were grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Three excitonic transitions associated with the valence bands A, B, and C were clearly revealed in the reflectance spectrum measured at 33K. This result indicates that the ZnO thin films have the wurtzite crystalline structure. The emission spectra were measured with backscattering geometry at room temperature. When the excitation exceeded a certain value, linewidth narrowing, nonlinear rise of emission intensity, and the shortening of the carrier lifetime were clearly observed and these demonstrate the onset of stimulated emission. Together with the ZnO thickness dependence, we conclude that the observation of a stimulated emission in a direction perpendicular to the film surface is predominantly due to scattering of the in-plane stimulated emission by slightly remaining surface undulations in the ZnO films.

  2. Effects of thermal treatment on the Mg{sub x}Zn{sub 1x}O films and fabrication of visible-blind and solar-blind ultraviolet photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunguang; Jiang, Dayong, E-mail: dayongjiangcust@126.com; Tan, Zhendong

    Highlights: • Single-phase wurtzite/cubic Mg{sub x}Zn{sub 1x}O films were grown by RF magnetron sputtering technique. • We focus on the red-shift caused by annealing the Mg{sub x}Zn{sub 1x}O films. • MSM-structured visible-blind and solar-blind UV photodetectors were fabricated. - Abstract: A series of single-phase Mg{sub x}Zn{sub 1x}O films with different Mg contents were prepared on quartz substrates by RF magnetron sputtering technique using different MgZnO targets, and annealed under the atmospheric environment. The absorption edges of Mg{sub x}Zn{sub 1x}O films can cover the whole near ultraviolet and even the whole solar-blind spectra range, and the solar-blind wurtzite/cubic Mg{sub x}Zn{sub 1x}Omore » films have been realized successfully by the same method. In addition, the absorption edges of annealed films shift to a long wavelength, which is caused by the diffusion of Zn atoms gathering at the surface during the thermal treatment process. Finally, the truly solar-blind metal-semiconductor-metal structured photodetectors based on wurtzite Mg{sub 0.445}Zn{sub 0.555}O and cubic Mg{sub 0.728}Zn{sub 0.272}O films were fabricated. The corresponding peak responsivities are 17 mA/W at 275 nm and 0.53 mA/W at 250 nm under a 120 V bias, respectively.« less

  3. Effect of stress, strain and optical properties in vacuum and normal annealed ZnO thin films using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Purvaja, K.; Harinee, N.; Venkateswaran, C.

    2018-05-01

    Zinc oxide thin films have been deposited on quartz substrate using RF magnetron sputtering. The deposited films were subjected to different annealing atmosphere at a fixed temperature of 500 °C for 5h. The X-ray diffraction (XRD) patterns reveals the shift in the peak of both normal annealed and vacuum annealed thin films when compared to as-deposited ZnO film. The crystallite size, intrinsic stress and other parameters were calculated from XRD data. The surface morphology of the obtained films were studied using Atomic force microscopy (AFM). From Uv-Visible spectroscopy, the peak at 374 nm of all the films is characteristics of ZnO. The structural, thermal stability and optical properties of the annealed ZnO films are discussed in detail.

  4. Optical and structural properties of Al-doped ZnO thin films by sol gel process.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2013-05-01

    Transparent conducting oxide (TCO) materials with high transmittance and good electrical conductivity have been attracted much attention due to the development of electronic display and devices such as organic light emitting diodes (OLEDs), and dye-sensitized solar cells (DSSCs). Aluminum doped zinc oxide thin films (AZO) have been well known for their use as TCO materials due to its stability, cost-effectiveness, good optical transmittance and electrical properties. Especially, AZO thin film, which have low resistivity of 2-4 x 10(-4) omega x cm which is similar to that of ITO films with wide band gap semiconductors. The AZO thin films were deposited on glass substrates by sol-gel spin-coating process. As a starting material, zinc acetate dihydrate (Zn(CH3COO)2 x 2H2O) and aluminum chloride hexahydrate (AlCl3 6H2O) were used. 2-methoxyethanol and monoethanolamine (MEA) were used as solvent and stabilizer, respectively. After deposited, the films were preheated at 300 degrees C on a hotplate and post-heated at 650 degrees C for 1.5 hrs in the furnace. We have studied the structural and optical properties as a function of Al concentration (0-2.5 mol.%).

  5. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-06-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.

  6. Effects of Na Doping on Structural, Optical, and Electronic Properties of ZnO Thin Films Fabricated by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Fan, Heliang; Yao, Zhen; Xu, Cheng; Wang, Xinqiang; Yu, Zhichao

    2018-04-01

    Undoped and Na-doped ZnO thin films were fabricated by sol-gel technique on quartz glass substrates and annealed at 500°C for 1 h. The structural properties of the films were characterized using x-ray diffraction analysis, which revealed hexagonal wurtzite structure with no peaks corresponding to Na2O or other Na phases being found. Surface morphology observations by scanning electron microscopy revealed that the crystallite size and topographical properties of the ZnO films were influenced by the Na doping concentration. X-ray photoelectron spectra revealed presence of Na+ in ZnO regime. The transmittance spectra indicated that the average transmittance of Na-doped ZnO film was above 80% in the visible range, superior to that of the undoped film. There was a blue-shift in the ultraviolet absorption edge with increase of the Na content. Photoluminescence spectra illustrated two peaks, corresponding to ultraviolet near-band-edge and visible emission.

  7. Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.

    PubMed

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2013-03-05

    Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Role of defects in ferromagnetism in Zn1-xCoxO : A hybrid density-functional study

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2006-10-01

    Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p - or n -type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin-film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin-film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO . The mechanism of exchange coupling induced by defect states is considered and compared to a model for ferromagnetism in dilute magnetic semiconductors [T. Dietl , Science 287, 1019 (2000)]. The electronic structures of Co substituted for Zn in ZnO, Zn, and O vacancies, substituted N, and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34eV for bulk ZnO, close to the experimental value of 3.47eV . Occupied minority-spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction-band minimum. Majority-spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy defect level is predicted to lie deep in the band gap, and interstitial Zn is predicted to be a deep donor. The Zn vacancy is a deep acceptor, and the acceptor level for substituted N is at midgap. The possibility that p - or n -type dopants promote exchange coupling of Co ions was investigated by computing the total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N, or interstitial Zn in various charge states. The neutral N defect and the singly positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range. Total energy calculations on supercells containing two O vacancies and one Zn vacancy clearly show that pairs of singly

  9. Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor.

    PubMed

    Tong, Chong; Yun, Juhyung; Chen, Yen-Jen; Ji, Dengxin; Gan, Qiaoqiang; Anderson, Wayne A

    2016-02-17

    Here, we report an approach to realize highly transparent low resistance Al-doped ZnO (AZO) films for broadband transparent conductors. Thin Al films are deposited on ZnO surfaces, followed by thermal diffusion processes, introducing the Al doping into ZnO thin films. By utilizing the interdiffusion of Al, Zn, and O, the chemical state of Al on the surfaces can be converted to a fully oxidized state, resulting in a low sheet resistance of 6.2 Ω/sq and an excellent transparency (i.e., 96.5% at 550 nm and higher than 85% up to 2500 nm), which is superior compared with some previously reported values for indium tin oxide, solution processed AZO, and many transparent conducting materials using novel nanostructures. Such AZO films are also applied as transparent conducting layers for AZO/Si heterojunction solar cells, demonstrating their applications in optoelectronic devices.

  10. Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.

    PubMed

    Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2018-05-30

    Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.

  11. Quaternary schematics for property engineering of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.

    2017-12-01

    The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.

  12. Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal

    2018-05-01

    Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.

  13. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  14. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  15. Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Salem, G. F.; Iqbal, Javed; Yakuphanoglu, F.

    2017-04-01

    Here, we report the doping effect of zinc (Zn) on the physical properties of cadmium oxide (CdO) at various concentrations (1, 2, 3 and 4 wt% of Zn). The studied samples were prepared using sol-gel in addition with sol gel spin coating technique. The structural, optical and dispersive properties were compared with the already reported work in the literature. The structural properties were observed by using atomic force microscopy (AFM). The AFM images show that the grain size decreases with increasing the concentration of Zn. The highest value of average cluster size (78. 71 nm) was found at 1% and the lowest (60.23 nm) when the doping concentration of Zn was 4%. Similar trend was observed in the roughness of the doped thin film when the Zn concentration was increased. The optical properties were examined using Shimadzu UV-Vis-NIR spectrophotometer and we found that the optical band gap of the un-doped CdO and the Zn-doped CdO thin films increases from 2.54 to 2.62 eV as the Zn concentration is increased from 1% to 4%. Also, the optical dispersion parameters (Eo, Ed, n2∞, λ0 and So) were calculated and discussed. We observed that the refractive index dispersion of undoped CdO and the Zn-doped CdO thin films follow the single oscillator model. Finally, spectroscopic method has been exploited to analyze the 3rd order non-linear optical susceptibility χ (3) and nonlinear refractive index n (2).

  16. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  17. Pulsed laser deposited BexZn1-xO1-ySy quaternary alloy films: structure, composition, and band gap bowing

    NASA Astrophysics Data System (ADS)

    Zhang, Wuzhong; Xu, Maji; Zhang, Mi; Cheng, Hailing; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Chen, Changqing; He, Yunbin

    2018-03-01

    In this work, c-axis preferentially oriented BexZn1-xO1-ySy (BeZnOS) quaternary alloy films were prepared successfully on c-plane sapphire by pulsed laser deposition for the first time. By appropriate adjustment of O2 pressure during the deposition, the grown films exhibited a single-phase hexagonal structure and good crystalline quality. The solid solubility of S in BexZn1-xO1-ySy quaternary alloy was significantly expanded (y ≤ 0.17 or y ≥ 0.35) as a result of simultaneous substitution of cation Zn2+ by smaller Be2+ and anion O2- by bigger S2-. Besides, due to the introduction of BeO with a wide band gap, BeZnOS quaternary films exhibited wider band gaps than the ternary ZnOS films with similar S contents. As the O2 pressure increased from 0.05 Pa to 6 Pa, the band gap of BeZnOS displayed an interesting bowing behavior. The variation range of the band gap was between 3.55 eV and 3.10 eV. The BeZnOS films with a wide band gap show potential applications in fabricating optoelectronic devices such as UV-detectors.

  18. Contrastive Study on the Structure and the Ultraviolet Absorption Property of Multiple-Doped and Element-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Xu, Yunyun; Zhang, Tao; Lin, Zhenrong; Tian, Yanfeng; Zhou, Shandan

    Sb2O3- and CeO2-doped ZnO thin films were prepared by RF magnetron sputtering technique. The influence of Sb2O3 and CeO2 on the structure and ultraviolet (UV) absorption properties was studied by X-ray diffraction and UV-Vis spectrophotometry. Results show that multiple doping of films had a prominent effect on the development of crystal grains and the UV absorption property. Ce and Sb exist in many forms in the ZnO film. The multiple-doped films also show enhanced UVA absorption, and the UV absorption peak widens and the absorption intensity increases. Sb plays a dominant role on the structure and UV absorption of ZnO thin films, which are enhanced by Ce.

  19. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The resultsmore » of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.« less

  20. Three dimensional-stacked complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors.

    PubMed

    Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying

    2018-03-05

    The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.

  1. Franz-Keldysh effect in epitaxial ZnO thin films

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Villafuerte, M.; Ferreyra, J. M.; Guimpel, J.; Nieva, G.; Figueroa, C. A.; Straube, B.; Heluani, S. P.

    2018-02-01

    Photoconductance spectroscopy has been studied in epitaxial ZnO thin films with different thicknesses that range between 136 and 21 nm. We report a systematic decrease in photoconductivity and a red shift in band edge photoconductance spectra when the thickness is reduced. For thinner films, it is found that the effective energy gap value diminishes. By time dependent photoconductivity measurements, we found an enhanced contribution of the slow relaxation times for thicker films. These effects are interpreted in terms of a band-bending contribution where the Franz-Keldysh effect and the polarization of ZnO play a major role in thinner films.

  2. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  3. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  4. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang

    2016-03-01

    The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

  6. Effects of sulfurization on the optical properties of Cu2ZnxFe1-xSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Hannachi, A.; Oueslati, H.; Khemiri, N.; Kanzari, M.

    2017-10-01

    In order to prepare thin films of novel semiconductor materials that contain only earth abundant, low cost and nontoxic elements, Cu2ZnxFe1-xSnS4 ingots were successfully synthesized by direct fusion method. Crushed powders of these ingots were used as raw materials for the thermal evaporation. Cu2ZnxFe1-xSnS4 (with x = 0, 0.25, 0.5, 0.75 and 1) thin films were deposited on non-heated glass substrates by vacuum evaporation method. The as deposited films were sulfurized for 30 min at sulfurization temperature Ts = 400 °C. The effects of the sulfurization on the structural and optical properties of CZFTS films were realized by X-ray diffraction (XRD) and UV-Vis spectroscopy. XRD patterns show that all sulfurized CZFTS films were polycrystalline in nature with a preferential orientation along the (112) plane. CFTS films exhibit a stannite structure while CZTS films had a kesterite structure. Optical measurements showed that CZFTS films sulfurized at 400 °C exhibited an optical transmittance between 60 and 80% and all materials had relatively high absorption coefficients in the range of 104-105 cm-1. The band gap energies of sulfurized CZFTS films decreased from 1.71 to 1.50 eV with the increase of the Zn content. The dispersion of the refractive index was discussed in terms of the single oscillator model proposed by Wemple and DiDomenico and the optical parameters such as refractive index, extinction coefficient, oscillator energy and dispersion energy were calculated. The electrical free carrier susceptibility and the carrier concentration on the effective mass ratio were evaluated according to the model of Spitzer and Fan. The hot probe analysis showed that all sulfurized CZFTS films are p-type conductivity.

  7. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal

    2017-06-01

    Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).

  8. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    NASA Astrophysics Data System (ADS)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  9. Effect of temperature on NH3 sensing by ZnO: Mg thin film grown by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gopalakrishnan, N.

    2018-04-01

    Undoped and Mg doped (at l0 mol %) ZnO thin films have been grown on glass substrates by using the RF magnetron sputtering. The structural properties of the fabricated thin films were studied by X-ray diffraction analysis and it was found hexagonal wurtzite phase and preferential orientation along (002) of both films. Green Band Emission peaks in the Photoluminescence spectra confirm the structural defects such as oxygen vacancies (Vo) in the films. Uniform distribution of spherical shape morphology of grains observed in the both films by FESEM. However, the growth of grains was found in the Mg doped thin film. The temperature dependent ammonia sensing is done by the indigenously made gas sensing setup. The gas response of the both films was increased as the temperature increases, attains maximum at 75° C and then decreases. Response and recovery time measurementswere donefor boththe films and it shows the fast response time and quick recovery for doped thin film compared to the pure ZnO thin film.

  10. Growth of nanocrystalline Cu2ZnSnS4 thin films using the spray pyrolysis technique and their characterization

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla

    2018-05-01

    Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.

  11. Effects of deposition temperatures on structure and physical properties of Cd 1-xZn xTe films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge

    2010-02-01

    Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.

  12. Structural, optical and NO2 gas sensing properties of ZnMgO thin films prepared by the sol gel method

    NASA Astrophysics Data System (ADS)

    Chebil, W.; Boukadhaba, M. A.; Madhi, I.; Fouzri, A.; Lusson, A.; Vilar, C.; Sallet, V.

    2017-01-01

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO2 for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  13. Microstructure of ZnO Thin Films Deposited by High Power Impulse Magnetron Sputtering (Postprint)

    DTIC Science & Technology

    2015-03-01

    AFRL-RX-WP-JA-2015-0185 MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON SPUTTERING (POSTPRINT) A. N. Reed...COVERED (From – To) 29 January 2013 – 16 February 2015 4. TITLE AND SUBTITLE MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON...ABSTRACT High power impulse magnetron sputtering was used to deposit thin (~100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates

  14. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  15. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    PubMed

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  16. Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating

    NASA Astrophysics Data System (ADS)

    Gareso, P. L.; Musfitasari; Juarlin, Eko

    2018-03-01

    Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.

  17. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  18. Ti-doped ZnO Thin Films Prepared at Different Ambient Conditions: Electronic Structures and Magnetic Properties

    PubMed Central

    Yong, Zhihua; Liu, Tao; Uruga, Tomoya; Tanida, Hajime; Qi, Dongchen; Rusydi, Andrivo; Wee, Andrew T. S.

    2010-01-01

    We present a comprehensive study on Ti-doped ZnO thin films using X-ray Absorption Fine Structure (XAFS) spectroscopy. Ti K edge XAFS spectra were measured to study the electronic and chemical properties of Ti ions in the thin films grown under different ambient atmospheres. A strong dependence of Ti speciation, composition, and local structures upon the ambient conditions was observed. The XAFS results suggest a major tetrahedral coordination and a 4+ valence state. The sample grown in a mixture of 80% Ar and 20% O2 shows a portion of precipitates with higher coordination. A large distortion was observed by the Ti substitution in the ZnO lattice. Interestingly, the film prepared in 80% Ar, 20% O2 shows the largest saturation magnetic moment of 0.827 ± 0.013 µB/Ti.

  19. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors.

    PubMed

    Zhang, Xue; Lee, Hyeonju; Kwon, Jung-Hyok; Kim, Eui-Jik; Park, Jaehoon

    2017-07-31

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  20. CdTe1-x S x (x  ⩽  0.05) thin films synthesized by aqueous solution deposition and annealing

    NASA Astrophysics Data System (ADS)

    Pruzan, Dennis S.; Hahn, Carina E.; Misra, Sudhajit; Scarpulla, Michael A.

    2017-11-01

    While CdS thin films are commonly deposited from aqueous solutions, CdTe thin films are extremely difficult to deposit directly from aqueous solution. In this work, we report on polycrystalline CdTe1-x S x thin films synthesized via deposition from aqueous precursor solutions followed by annealing treatments and on their physical properties. The deposition method uses spin-coating of alternating Cd2+ and Te2- aqueous solutions and rinse steps to allow formation of the films but to shear off excess reactants and poorly-bonded solids. Films are then annealed in the presence of CdCl2 as is commonly done for CdTe photovoltaic absorber layers deposited by any means. Scanning electron microscopy (SEM) reveals low void fractions and grain sizes up to 4 µm and x-ray diffraction (XRD) shows that the films are primarily cubic CdTe1-x S x (x  ⩽  0.05) with random crystallographic orientation. Optical transmission yields bandgap absorption consistent with a CdTe1-x S x dilute alloy and low-temperature photoluminescence (PL) consists of an emission band centered at 1.35 eV consistent with donor-acceptor pair (DAP) transitions in CdTe1-x S x . Together, the crystalline quality and PL yield from films produced by this method represent an important step towards electroless, ligand-free solution processed CdTe and related alloy thin films suitable for optoelectronic device applications such as thin film heterojunction or nanodipole-based photovoltaics.

  1. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    NASA Astrophysics Data System (ADS)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  2. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less

  3. Growth of transparent Zn1 - xSrxO (0.0 ≤ x ≤ 0.08) films by facile wet chemical method: Effect of Sr doping on the structural, optical and sensing properties

    NASA Astrophysics Data System (ADS)

    Rana, Amit Kumar; Das, Rajasree; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam M.

    2016-08-01

    Zn1 - xSrxO (0.0 ≤ x ≤ 0.08) nano-rods thin films are prepared using simple wet chemical technique on transparent flexible substrate. Effect of Sr-doping on structural and optical properties of ZnO is systematically investigated. SEM and TEM confirm the nano-rods like morphology with single crystalline nature of all the samples. Rietveld refinement of XRD shows the samples belongs to P63mc space group, furthermore, a gradual increment in lattice parameters and change in Zn/oxygen occupancy ratio is observed with Sr doping. SIMS and XPS confirm the doping of Sr in the ZnO nanostructures. XPS measurements shows that increase in Sr doping creates more oxygen associated defects, which is further supported by the photoluminescence spectra indicating the gradual change in Zn vacancy (Vzn) and oxygen interstitial (Oin) point defect intensities in the films. Near band edge emission peak shows to shift toward higher wavelength in the doped films. Pure ZnO film shows Raman peaks around 99 (E2low), 333 (E2high - E2low) , 382 (A1 (TO)), 438 (E2high) and 582 (A1 (LO) +E1 (TO)) cm-1, whereas two additional defect driven vibrational modes (at 277 and 663 cm-1) are appeared in the Sr-doped films. The sensing property of the ZnO is enhanced by Sr doping and replicates as a promising material for future toxic and flammable gas sensor applications as well as for opto-electronic devices.

  4. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  5. Fabrication of ZnO Thin Films by Sol-Gel Spin Coating and Their UV and White-Light Emission Properties

    NASA Astrophysics Data System (ADS)

    Kumar, Mirgender; Dubey, Sarvesh; Rajendar, Vanga; Park, Si-Hyun

    2017-10-01

    ZnO thin films have been fabricated by the sol-gel spin-coating technique and annealed under different conditions, and their ultraviolet (UV) and white-light emission properties investigated. Different ambient conditions including oxygen, nitrogen, zinc-rich nitrogen, and vacuum were used to tune the main properties of the ZnO thin films. The resistivity varied from the conductive to semi-insulating regime, and the luminescence emission from fairly intense UV to polychromatic. The emission intensity was also found to be a function of the annealing conditions. Possible routes to compensate the loss of emission characteristics are discussed. X-ray photoelectron spectroscopy (XPS) analysis was carried out to detect the chemical states of the zinc/oxygen species. The changes in the electrical and emission properties are explained based on annihilation/formation of inherent donor/acceptor-type defects. Such ZnO thin films could have potential applications in solid-state lighting.

  6. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    PubMed

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  7. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films.

    PubMed

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-12-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu 1 - x Fe x O 3 - δ epitaxial thin films (x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu 1 - x Fe x O 3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR (~36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies (δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr 1 - x La x )(Ru 1 - x Fe x )O 3 . These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu 1 - x Fe x O 3 - δ thin films.

  8. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  9. Synthesis and photosensor study of as-grown CuZnO thin film by facile chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    We have successfully deposited CuZnO thin film on a glass substrate by facile chemical bath deposition method at 85 °C for 1 hr. Structural, topographical, Optical and Electrical properties of the prepared Thin Films were investigated by XRD, Raman spectrum, AFM, UV-Visible Spectrophotometer and I-V Measurement System respectively. The X-ray diffraction (XRD) pattern confirmed the formation of the CuZnO composition when compared with standard JCPDS card (JCPDF # 75-0576 & # 36-1451). The Raman analysis shows a major peak at 458 cm-1 with E2 (High) vibrational mode. AFM images revealed uniform deposition over an entire glass substrate with 66.2 nm average roughness of the film. From the optical absorption spectrum, clear band edge around ˜407 nm was observed which results in a wide energy band gap of ˜3.04 eV. The electrical properties were measured at room temperature in the voltage range ±5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜99.9 % for 260 W.

  10. Effect of angle of deposition on the Fractal properties of ZnO thin film surface

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.

    2017-09-01

    Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.

  11. Strain Relaxation in Si{sub 1-x}Ge{sub x} Thin Films on Si(100) Substrates: Modeling and Comparisons with Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolluri, K; Zepeda-Ruiz, L A; Murthy, C S

    2005-03-22

    Strained semiconductor thin films grown epitaxially on semiconductor substrates of different composition, such as Si{sub 1-x}Ge{sub x}/Si, are becoming increasingly important in modern microelectronic technologies. In this paper, we report a hierarchical computational approach for analysis of dislocation formation, glide motion, multiplication, and annihilation in Si{sub 1-x}Ge{sub x} epitaxial thin films on Si substrates. Specifically, a condition is developed for determining the critical film thickness with respect to misfit dislocation generation as a function of overall film composition, film compositional grading, and (compliant) substrate thickness. In addition, the kinetics of strain relaxation in the epitaxial film during growth or thermalmore » annealing (including post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field theoretical model, which describes plastic deformation dynamics due to threading dislocation propagation. The theoretical results for Si{sub 1-x}Ge{sub x} epitaxial thin films grown on Si (100) substrates are compared with experimental measurements and are used to discuss film growth and thermal processing protocols toward optimizing the mechanical response of the epitaxial film.« less

  12. Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.

    PubMed

    Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young

    2018-09-01

    The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.

  13. Improvement for the performance of solar-blind photodetector based on β-Ga2O3 thin films by doping Zn

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaolong; Wu, Zhenping; Zhi, Yusong; An, Yuehua; Cui, Wei; Li, Linghong; Tang, Weihua

    2017-03-01

    Highly oriented (\\bar{2} 0 1 ) Ga2-x Zn x O3 thin films with different doping concentrations were grown on (0 0 0 1) sapphire substrates by laser molecular beam epitaxy technology. The expansion of lattice and the shrinkage of band gap with increasing doping level confirms the chemical substitution of Zn2+ ions into the Ga2O3 crystal lattice. The emission intensity of blue-violet emission bands enhanced with the increase of (ZnGa)‧ under 254 nm ultraviolet excitation, and the maximum was obtained at x  =  0.8. A metal-semiconductor-metal structured solar-blind photodetector based on Ga2-x Zn x O3 (x  =  0, 0.8) was made, the increasing responsivity and diminishing relaxation time constants for β-Ga2-x Zn x O3 (x  =  0.8) photodetector were observed with 254 nm ultraviolet illumination.

  14. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  15. Control of conduction type in ferromagnetic (Zn,Sn,Mn)As2 thin films by changing Mn content and effect of annealing on thin films with n-type conduction

    NASA Astrophysics Data System (ADS)

    Minamizawa, Yuto; Kitazawa, Tomohiro; Hidaka, Shiro; Toyota, Hideyuki; Nakamura, Shin-ichi; Uchitomi, Naotaka

    2018-04-01

    The conduction type in (Zn,Sn,Mn)As2 thin films grown by molecular beam epitaxy (MBE) on InP substrates was found to be controllable from p-type to n-type as a function of Mn content. n-type (Zn,Sn,Mn)As2 thin films were obtained by Mn doping of more than approximately 11 cat.%. It is likely that Mn interstitials (MnI) incorporated by excess Mn doping are located at tetrahedral hollow spaces surrounded by Zn and Sn cation atoms and four As atoms, which are expected to act as donors in (Zn,Sn,Mn)As2, resulting in n-type conduction. The effect of annealing on the structural, electrical and magnetic properties of n-type (Zn,Sn,Mn)As2 thin films was investigated as functions of annealing temperature and time. It was revealed that even if the annealing temperature is considerably higher than the growth temperature of 320 °C, the magnetic properties of the thin films remain stable. This suggests that a MnI complex surrounded by Zn and Sn atoms is thermally stable during high-temperature annealing. The n-type (Zn,Sn,Mn)As2 thin films may be suitable for application as n-type spin-polarized injectors.

  16. Resonant Raman scattering study of BexZn1-xO thin films grown on sapphire by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Chao; Su, Long-Xing; Zhao, Yu; Liu, Jian-Feng; Shen, Zheng-Chuan; Feng, Yu-Hua; Wu, Tian-Zhun; Tang, Zi-Kang

    2017-07-01

    Resonance Raman spectra of BexZn1-xO alloy materials were studied using 325 nm Laser. The research showed that the Raman spectra of BexZn1-xO alloys presents a dual-mode vibration. Compare BexZn1-xO alloy with ZnO single crystal, the A1 (LO) phonon vibration mode of BexZn1-xO alloy moved to the larger wave number direction. The position of A1 (LO) phonon vibration modes of Be0.08Zn0.92O and Be0.12Zn0.88O was 580 cm-1 and 582 cm-1, respectively. In addition, the temperature-dependent Raman spectroscopy was employed for Be0.12Zn0.88O, and the phonon mode frequency shift with temperature was studied in detail. Finally, the stability of the polar and nonpolar BexZn1-xO alloy materials was studied using resonance Raman spectroscopy. The results showed that the A1 (LO) phonon mode frequency of polar BexZn1-xO alloy remained in the same position, while the nonpolar BexZn1-xO alloys moved nearly 3.5 cm-1 to larger direction after being placed in the air for two years. The reason may be that the stability of the nonpolar BexZn1-xO alloy is relatively poor upon interaction with molecule such as H2O, O2 in the air.

  17. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  18. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  19. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the influence of low-concentration indium (In) doping on the chemical and structural properties of solution-processed zinc oxide (ZnO) films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs). The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance. PMID:28773242

  20. Surface half-metallicity of CrS thin films and perfect spin filtering and spin diode effects of CrS/ZnSe heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Yao, K. L., E-mail: klyao@mail.hust.edu.cn

    2014-11-03

    Recently, ferromagnetic zinc-blende Mn{sub 1x}Cr{sub x}S thin films (above x = 0.5) were fabricated experimentally on ZnSe substrate, which confirmed the previous theoretical prediction of half-metallic ferromagnetism in zinc-blende CrS. Here, we theoretically reveal that both Cr- and S-terminated (001) surfaces of the CrS thin films retain the half-metallicity. The CrS/ZnSe(001) heterogeneous junction exhibits excellent spin filtering and spin diode effects, which are explained by the calculated band structure and transmission spectra. The perfect spin transport properties indicate the potential applications of half-metallic CrS in spintronic devices. All computational results are obtained by using the density functional theory combined with nonequilibrium Green'smore » function.« less

  1. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    PubMed

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  2. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency.

    PubMed

    Qi, Yafang; Tian, Qingwen; Meng, Yuena; Kou, Dongxing; Zhou, Zhengji; Zhou, Wenhui; Wu, Sixin

    2017-06-28

    The partial substitution of Cu + with Ag + into the host lattice of Cu 2 ZnSn(S,Se) 4 thin films can reduce the open-circuit voltage deficit (V oc,deficit ) of Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH 2 ) and 1,2-ethylenediamine (en) and used for the formation of (Cu 1-x Ag x ) 2 ZnSn(S,Se) 4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the V oc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.

  3. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  4. Development of Room Temperature Excitonic Lasing From ZnO and MgZnO Thin Film Based Metal-Semiconductor-Metal Devices

    NASA Astrophysics Data System (ADS)

    Suja, Mohammad Zahir Uddin

    Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum

  5. Effect of polyvinyl alcohol on electrochemically deposited ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2017-05-01

    Nanostructures of zinc oxide (ZnO) thin film are electrochemically deposited in the absence and presence of polyvinyl alcohol (PVA) on fluorine doped tin oxide (FTO) substrate. X-ray diffraction (XRD) patterns and Raman spectroscopy confirmed the formation of hexagonal structure of ZnO. The film prepared in the presence of PVA showed a better crystallinity and its crystalline growth along the (002) plane orientation. Field emission scanning electron microscope (FE-SEM) images display nanowire arrays (NWAs) and sponge like morphology for films prepared in the absence and presence of PVA, respectively. Photoluminescence (PL) spectra depict the film prepared in the presence PVA having less atomic defects with good crystal quality compared with other film. Dye sensitized solar cell (DSSC) is constructed using low cost eosin yellow dye and current-voltage (J-V) curve is recorded for optimized sponge like morphology based solar cell.

  6. Structural and optical characterization of terbium doped ZnGa{sub 2}O{sub 4} thin films deposited by RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaram, K.; Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi-642001; Girija, K. G., E-mail: kgirija@barc.gov.in

    2016-05-23

    Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa{sub 2}O{sub 4} host emission band along with a strong terbium emission and the thin films showedmore » only broad host emission band and there was no terbium ion emission.« less

  7. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  8. Studies on RF sputtered (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} thin films for smart window applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakshi, M.; Perumal, P.; Sivakumar, R.

    2016-05-23

    V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.

  9. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  10. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    PubMed

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10 -4 Ω·cm, the carrier concentration is high up to 2.2 × 10 21 cm -3 . optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al 2 O 3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and I on /I off ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  11. Optical Properties of ZnCdS:I Orange and ZnSTe:I White Thin Film Phosphor for High Ra White LED

    NASA Astrophysics Data System (ADS)

    Fujii, Satoshi; Tasaki, Norio; Shinomura, Naohiko; Kurai, Satoshi; Yamada, Yoichi; Taguchi, Tsunemasa

    In order to develop visible thin film phosphors, we have for the first time prepared ZnCdS and ZnSTe doped with Iodine (I) using low-pressure MOCVD method. ZnCdS:I, of which Cd composition was calibrated to match the lattice constant to that of substrate and the band gap to absorption peak, showed a orange broad emission consist of yellow near band edge emission and red SA emission. Isoelectronic Te in ZnS indicates strong blue-green emissions, whilst I donor impurity in ZnS shows strong red SA emissions. A typical ZnSTe:I thin film shows two broad emission bands locating at around 500 and 680 nm, respectively, indicating Ra˜90. It was shown that high Ra thin film phosphor can be realized by single material (ZnSTe:I), and that MOCVD method is capable for controlling the thickness and doping profile to obtain uniform white emission pattern.

  12. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  13. Role of vacancy defects in Al doped ZnO thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Mazel, Y.; Brochen, S.; Valla, A.; Pautrat, A.; Licitra, C.; Rochat, N.; Sabbione, C.; Rodriguez, G.; Nolot, E.

    2017-12-01

    We report on the electrical, optical and photoluminescence properties of industry-ready Al doped ZnO thin films grown by physical vapor deposition, and their evolution after annealing under vacuum. Doping ZnO with Al atoms increases the carrier density but also favors the formation of Zn vacancies, thereby inducing a saturation of the conductivity mechanism at high aluminum content. The electrical and optical properties of these thin layered materials are both improved by annealing process which creates oxygen vacancies that releases charge carriers thus improving the conductivity. This study underlines the effect of the formation of extrinsic and intrinsic defects in Al doped ZnO compound during the fabrication process. The quality and the optoelectronic response of the produced films are increased (up to 1.52 mΩ \\cdotcm and 3.73 eV) and consistent with the industrial device requirements.

  14. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  15. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  16. Metastable phase equilibria in co-deposited Ni(1-x)Zr(x) thin films

    NASA Astrophysics Data System (ADS)

    Rubin, J. B.; Schwarz, R. B.

    We determine the glass forming range (GFR) of co-deposited Ni(1-x)Zr(x) (0 less than x less than 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 less than x less than 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 10(exp 12) K/s, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower effective cooling rate during the condensation of the films.

  17. Ultrahigh-Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin-Film Lithium-Ion Battery: Comparison with SnO2.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-21

    To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.

  18. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  19. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  20. Effects of Starting Precursor Ratio on Optoelectrical Properties and Blue Emission of Nanostructured C-ZnS Thin Films Prepared by Spin Coating

    NASA Astrophysics Data System (ADS)

    Rahimzadeh, N.; Ghodsi, F. E.; Mazloom, J.

    2018-02-01

    Nanocrystalline cubic zinc sulfide (C-ZnS) thin films have been elaborated by sol-gel spin-coating of Zn(Ac)/thiourea starting precursors at different molar ratios, and their structural, morphological, compositional, optical, electrical, and photoluminescence properties comprehensively investigated. x-ray diffraction results showed that the samples had dominant cubic structure and their crystallinity improved with increasing S content. Morphological characterization of the C-ZnS thin films was carried out by field-emission scanning electron microscopy (FESEM), revealing that the films were smooth with spherical grains included in clusters. Energy-dispersive x-ray and Fourier-transform infrared spectra of ZnS compounds did not show any evidence of impurities. Optical characterization revealed increases of the average optical transmittance and bandgap (from 3.2 eV to 3.56 eV) with increasing S content. The refractive index in the visible region increased with the S content, while the extinction coefficient decreased. The compositional dependence of the optical dispersion parameters (oscillator and dispersion energy), dielectric constant, and surface energy loss function of the films was evaluated. Electrical characterization of the films was carried out using Hall-effect measurements. The ZnS thin films exhibited n-type conductivity, and the electrical resistivity decreased with increasing carrier concentration and mobility due to enhanced crystallite size and reduced structural disorder. Photoluminescence (PL) measurements indicated a blue-shift of the near-band-edge emission. The blue emission peaks centered at about 438 nm and 487 nm were enhanced due to transitions involving interstitial S atoms, surface states, and zinc vacancies.

  1. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ < 0.08) and leakage current (J ∼ 4.6 ×10-5 A/cm2), a high recoverable energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  2. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  3. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  4. Photoluminescence of ZnS-SiO2:Ce Thin Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Mizuno, Masao

    2011-12-01

    Photoluminescent emissions of zinc sulfide-silica-cerium thin films deposited by magnetron sputtering were observed. The films consisted of ZnS nanocrystals embedded in amorphous SiO2 matrices. ZnS-SiO2:Ce films exhibited photoluminescence even without postannealing. Their emission spectra showed broad patterns in the visible range; the emitted colors depended on film composition.

  5. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  6. Deep-Ultraviolet Luminescence of Rocksalt-Structured Mg x Zn1-x O (x > 0.5) Films on MgO Substrates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Tsumura, Keiichi; Ishii, Kyohei; Onuma, Takayoshi; Honda, Tohru; Fujita, Shizuo

    2018-04-01

    Rocksalt-structured Mg x Zn1-x O films with Mg composition x of 0.47, 0.57, and 0.64 were grown on (100)-oriented MgO substrates using mist chemical vapor deposition. Cathodoluminescence measurements showed deep ultraviolet (DUV) emission peaking at 4.88 eV (254 nm), 5.15 eV (241 nm), and 5.21 eV (238 nm), respectively, at 12 K. The peak energies were lower than the band gap energies by ca. 1 eV, suggesting that the deep ultraviolet (DUV) emission may be recognized as near band edge luminescence but is associated with impurities, defects, or band fluctuations. The use of carbon-free precursors in the growth is suggested to eliminate carbon impurities and to improve the optical properties of Mg x Zn1-x O.

  7. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  8. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  9. Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, C.S.; Kushwaha, Ajay; Sahay, P.P., E-mail: dr_ppsahay@rediffmail.com

    2013-07-15

    Graphical abstract: All the films are found to be polycrystalline ZnO possessing hexagonal wurtzite structure. The intensities of all the peaks are diminished strongly in the Fe-doped films, indicating their lower crystallinity as compared to the undoped ZnO film. The average crystallite size decreases from 35.21 nm (undoped sample) to 15.43 nm (1 at% Fe-doped sample). - Highlights: • Fe-doped ZnO films show smaller crystallinity with crystallite size: 15–26 nm. • Optical band gap in ZnO films decreases on Fe doping. • Fe-doped films exhibit the normal dispersion for the wavelength range 450–600 nm. • PL spectra of the Fe-dopedmore » films show quenching of the broad green-orange emission. • Acetone response of the Fe-doped films increases considerably at 300 °C. - Abstract: The ZnO thin films (undoped and Fe-doped) deposited by chemical spray pyrolysis technique have been analyzed by X-ray powder diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results show that all the films possess hexagonal wurtzite structure of zinc oxide having crystallite sizes in the range 15–36 nm. On 1 at% Fe doping, the surface roughness of the film increases which favors the adsorption of atmospheric oxygen on the film surface and thereby increase in the gas response. Optical studies reveal that the band gap decreases due to creation of some defect energy states below the conduction band edge, arising out of the lattice disorder in the doped films. The refractive index of the films decreases on Fe doping and follows the Cauchy relation of normal dispersion. Among all the films examined, the 1 at% Fe-doped film exhibits the maximum response (∼72%) at 300 °C for 100 ppm concentration of acetone in air.« less

  10. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    PubMed

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  11. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less

  12. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  13. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method.

    PubMed

    Khokhra, Richa; Bharti, Bandna; Lee, Heung-No; Kumar, Rajesh

    2017-11-08

    This study demonstrates significant visible light photo-detection capability of pristine ZnO nanostructure thin films possessing substantially high percentage of oxygen vacancies [Formula: see text] and zinc interstitials [Formula: see text], introduced by simple tuning of economical solution method. The demonstrated visible light photo-detection capability, in addition to the inherent UV light detection ability of ZnO, shows great dependency of [Formula: see text] and [Formula: see text] with the nanostructure morphology. The dependency was evaluated by analyzing the presence/percentage of [Formula: see text] and [Formula: see text] using photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) measurements. Morphologies of ZnO viz. nanoparticles (NPs), nanosheets (NSs) and nanoflowers (NFs), as a result of tuning of synthesis method contended different concentrations of defects, demonstrated different photo-detection capabilities in the form of a thin film photodetector. The photo-detection capability was investigated under different light excitations (UV; 380~420 nm, white ; λ > 420 nm and green; 490~570 nm). The as fabricated NSs photodetector possessing comparatively intermediate percentage of [Formula: see text] ~ 47.7% and [Formula: see text] ~ 13.8% exhibited superior performance than that of NPs and NFs photodetectors, and ever reported photodetectors fabricated by using pristine ZnO nanostructures in thin film architecture. The adopted low cost and simplest approach makes the pristine ZnO-NSs applicable for wide-wavelength applications in optoelectronic devices.

  14. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    PubMed

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  15. Temperature-dependent phosphorous dopant activation in ZnO thin film deposited using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    High band gap (3.34 eV) and large exciton binding energy (60 meV) at room temperature facilitates ZnO as a useful candidate for optoelectronics devices. Presence of zinc interstitial and oxygen vacancies results in n-type ZnO film. Phosphorus implantation was carried out using plasma immersion ion implantation technique (2kV, 900W) for constant duration (50 s) on RF sputtered ZnO thin films (Sample A). For dopant activation, sample A was subjected to Rapid Thermal Annealing (RTA) at 700, 800, 900 and 1000°C for 10 s in Oxygen ambient (Sample B, C, D, E). Low temperature (18 K) photoluminescence measurement demonstrated strong donor bound exciton peak for sample A. Dominant donor to acceptor pair peak (DAP) was observed for sample D at around 3.22 eV with linewidth of 131.3 meV. High resolution x-ray diffraction measurement demonstrated (001) and (002) peaks for sample A. (002) peak with high intensity was observed from all annealed samples. Incorporation of phosphorus in ZnO films leads to peak shift towards higher 2θ angle indicate tensile strain in implanted samples. Scanning electron microscopy images reveals improvement in grain size distribution along with reduction of implantation related defects. Raman spectra measured A1(LO) peak at around 576 cm-1 for sample A. Low intensity E2 (high) peak was observed for sample D indicating formation of (PZn+2VZn) complexes. From room temperature Hall measurement, sample D measured 1.17 x 1018 cm -3 carrier concentration with low resistivity of 0.464 Ω.

  16. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  17. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  18. Preparation and evaluation of Mn3GaN1-x thin films with controlled N compositions

    NASA Astrophysics Data System (ADS)

    Ishino, Sunao; So, Jongmin; Goto, Hirotaka; Hajiri, Tetsuya; Asano, Hidefumi

    2018-05-01

    Thin films of antiperovskite Mn3GaN1-x were grown on MgO (001) substrates by reactive magnetron sputtering, and their structural, magnetic, and magneto-optical properties were systematically investigated. It was found that the combination of the deposition rate and the N2 gas partial pressure could produce epitaxial films with a wide range of N composition (N-deficiency) and resulting c/a values (0.93 - 1.0). While the films with c/a = 0.992 - 1.0 were antiferromagnetic, the films with c/a = 0.93 - 0.989 showed perpendicular magnetic anisotropy (PMA) with the maximum PMA energy up to 1.5×106 erg/cm3. Systematic dependences of the energy spectra of the polar Kerr signals on the c/a ratio were observed, and the Kerr ellipticity was as large as 2.4 deg. at 1.9 eV for perpendicularly magnetized ferromagnetic thin films with c/a = 0.975. These results highlight that the tetragonal distortion plays an important role in magnetic and magneto-optical properties of Mn3GaN1-x thin films.

  19. Compositional Dependence of Optical and Structural Properties of Nanogranular Mixed ZrO2/ZnO/SnO2 Thin Film

    NASA Astrophysics Data System (ADS)

    Salari, S.; Ghodsi, F. E.

    2018-06-01

    A study on the optical properties and photoluminescence (PL) spectra of ternary oxide nanogranular thin films comprising Zr, Zn, and Sn revealed that the change in component ratio could direct the roadmap to improve characteristics of the films. Grazing angle X-ray diffraction analysis showed that incorporation of Sn atoms into the tetragonal structure of Zn/Zr thin film resulted in an amorphous structure. The band gap of film was tunable by precisely controlling the concentration of components. The widening of band gap could correlate to the quantum confinement effect. PL spectra of the composite thin films under excitation at 365 nm showed a sharp red emission with relatively Gaussian line shape, which was intensified in the optimum percentage ratio of 50/30/20. This nearly red emission is attributed to the radiative emission of electrons captured at low-energy traps located near the valence band. An optimum red emission is strongly desirable for use in white LEDs. The comparative study on FTIR spectra of unary, binary, and ternary thin films confirmed successful composition of three different metal oxides in ternary thin films. Detailed investigation on FTIR spectra of ternary compounds revealed that the quenching in PL emission at higher percentage of Sn was originally due to the hydroxyl group.

  20. The effect of nitrogen on the cycling performance in thin-film Si{sub 1-x}N{sub x} anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Donggi; Kim, Chunjoong; Lee, Joon-Gon

    2008-09-15

    The effects of nitrogen on the electrochemical properties of silicon-nitrogen (Si{sub 1-x}N{sub x}) thin films were examined in terms of their initial capacities and cycling properties. In particular, Si{sub 0.76}N{sub 0.24} thin films showed negligible initial capacity but an abrupt capacity increase to {approx}2300 mA h/g after {approx}650 cycles. The capacity of pure Si thin films was deteriorated to {approx}20% of the initial level after 200 cycles between 0.02 and 1.2 V at 0.5 C (1 C=4200 mA/g), whereas the Si{sub 0.76}N{sub 0.24} thin films exhibited excellent cycle-life performance after {approx}650 cycles. In addition, the Si{sub 0.76}N{sub 0.24} thin filmsmore » at 50 deg. C showed an abrupt capacity increase at an earlier stage of only {approx}30 cycles. The abnormal electrochemical behaviors in the Si{sub 0.76}N{sub 0.24} thin films were demonstrated to be correlated with the formation of Li{sub 3}N and Si{sub 3}N{sub 4}. - Graphical abstract: The Si{sub 0.76}N{sub 0.24} thin films showed negligible initial capacity, but an abrupt capacity increase to {approx}2300 mA h/g after {approx}650 cycles, followed by excellent cycle-life performance. This abnormal electrochemical behavior was demonstrated to be correlated with the formation of Li{sub 3}N and Si{sub 3}N{sub 4}.« less

  1. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  2. High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.

    2015-11-01

    Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.

  3. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    NASA Astrophysics Data System (ADS)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  4. Formation of homologous In{sub 2}O{sub 3}(ZnO){sub m} thin films and its thermoelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    Homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films were produced on a synthetic quartz glass substrate by thermal annealing of magnetron sputtered In{sub 2}O{sub 3}-ZnO compound films. When the annealing temperature was increased to 700 °C, the sputtered In{sub 2}O{sub 3}-ZnO film with In{sub 2}O{sub 3} microcrystalline changed to a c-oriented homologous In{sub 2}O{sub 3}(ZnO){sub 5} structure, for which the crystallization is suggested to begin from the surface and proceed along with the film thickness. The annealing temperature of 700 °C to form the In{sub 2}O{sub 3}(ZnO){sub 5} structure was substantially lower than temperatures of conventional solid state synthesis from In{sub 2}O{sub 3}more » and ZnO powders, which is attributed to the rapid diffusional transport of In and Zn due to the mixing of In{sub 2}O{sub 3} and ZnO in the atomic level for sputtered In{sub 2}O{sub 3}-ZnO compound films. The homologous structure collapsed at temperatures above 900 °C, which is attributed to (1) zinc vaporization from the surface and (2) a gradual increase of zinc silicate phase at the interface. This c-oriented layer structure of homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films along the film thickness allowed the thin film to reach a power factor of 1.3 × 10{sup −4} W/m K{sup 2} at 670 °C, which is comparable with the reported maximum value for the textured In{sub 2}O{sub 3}(ZnO){sub 5} powder (about 1.6 × 10{sup −4} W/m K{sup 2} at 650 °C).« less

  5. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  6. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  7. The investigation of optimal Silicon/Silicon(1-x)Germanium(x) thin-film solar cells with quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ehsan, Md Amimul

    Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much

  8. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  9. The Effect of Thickness of ZnO Thin Films on Hydrophobic Self-Cleaning Properties

    NASA Astrophysics Data System (ADS)

    Mufti, N.; Arista, D.; Diantoro, M.; Fuad, A.; Taufiq, A.; Sunaryono

    2017-05-01

    Glass coating can be conducted by using ZnO-photocatalyst based semiconductor material since it is preeminent in decomposing organics compound and dangerous bacteria which often contaminates the environment. If there are dirt containing organics compound on the glass, the ZnO photocatalyst coat can be applied as self-cleaning, usually called self-cleaning glass. It depends on the coating thickness which can be controlled by setting the speed of spin coating. In this research, the various rotating speeds of spin coating were conducted at 2000 rpm, 3000 rpm, and 4000 rpm to control the thickness. The raw materials used in this research were Zn(CH3COOH)2.2H2O (PA 99,5%), Ethylene glycol, Diethanolamine (PA 99%), Isopropanol Alkohol, Glycerol, and Ashton. Synthesis methods used were sol-gel prior to spin coating technic were applied. The results of the film were characterized by using SEM, XRD, and UV-Spectrophotometer. The crystal structure was analyzed by using Highscore plus and GSAS software, the size crystal was calculated by using Scherrer equation, a contact angle with ImageJ software. It was shown that ZnO thin film had been successfully synthesized with the crystal size around 21 nm up to 26 nm. The absorption value is higher due to the increasing of coat thickness with bandgap ± 3.2 eV. The test result of hydrophobic and hydrophilic characteristics show that all samples of ZnO thin film with the thickness ± 1.050 μm, ± 0.450 μm, ± 0.250 μm can be applied as self-cleaning glass. The best result was gained with the thickness of thin film ± 1.050 μm.

  10. Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests

    NASA Astrophysics Data System (ADS)

    Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah

    2018-06-01

    Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.

  11. Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-05-01

    Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.

  12. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less

  13. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  14. The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner

    2018-02-01

    Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.

  15. Synthesis of zinc oxide thin films prepared by sol-gel for specific bioactivity

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Basri, B.; Dhahi, Th. S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    Zinc oxide (ZnO) thin films this device to used for many application like chemical sensor, biosensor, solar energy, etc but my project to use for bioactivity(biosensor). Zinc oxide (ZnO) thin films have been grown using sol-gel technique. Characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray(EDX) and Electrical Measurement(I-V). ZnO thin film was successfully synthesized using low cost sol-gel spin coating method. The coupling of DNA probe to ZnO thin film supports modified with carboxylic acid (COOH) is certainly the best practical method to make DNA immobilization and it does not require any coupling agent which could be a source of variability during the spotting with an automatic device. So, selected this coupling procedure for further experiments. The sensor was tested with initial trial with low concentrated DNA and able to detect detection of the disease effectively. Silicon-on-insulator (SOI) wafer device with ZnO can detect at different concentration in order to valid the device capabilities for detecting development. The lowest concentration 1 µM HPV DNA probe can detect is 0.1 nM HPV target DNA.

  16. Structural and optical properties of MgxAl1-xHy gradient thin films: a combinatorial approach

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Borgschulte, A.; Chacon, C.; van Mechelen, J. L. M.; Schreuders, H.; Züttel, A.; Hjörvarsson, B.; Dam, B.; Griessen, R.

    2006-07-01

    The structural, optical and dc electrical properties of MgxAl1-x (0.2≤x≤0.9) gradient thin films covered with Pd/Mg are investigated before and after exposure to hydrogen. We use hydrogenography, a novel high-throughput optical technique, to map simultaneously all the hydride forming compositions and the kinetics thereof in the gradient thin film. Metallic Mg in the MgxAl1-x layer undergoes a metal-to-semiconductor transition and MgH2 is formed for all Mg fractions x investigated. The presence of an amorphous Mg-Al phase in the thin film phase diagram enhances strongly the kinetics of hydrogenation. In the Al-rich part of the film, a complex H-induced segregation of MgH2 and Al occurs. This uncommon large-scale segregation is evidenced by metal and hydrogen profiling using Rutherford backscattering spectrometry and resonant nuclear analysis based on the reaction 1H(15N,αγ)12C. Besides MgH2, an additional semiconducting phase is found by electrical conductivity measurements around an atomic [Al]/[Mg] ratio of 2 (x=0.33). This suggests that the film is partially transformed into Mg(AlH4)2 at around this composition.

  17. Structural and magnetic properties of non-stoichiometric Fe1-xO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-04-01

    The Fe1-xO thin films of various iron deficiencies (x) have been grown at ambient temperature by reactive dc magnetron sputtering technique and their structural and magnetic properties are studied. The structural study shows that the films are polycrystalline. As the iron content (1-x) varies from 0.924 to 0.855 a clear consistent change in the preferential orientation of the grains from [111] to the [200] direction is observed. The magnetization measurements show the possible existence of small superparamagnetic defect clusters at 300 K and large spinel-type defect clusters below the Neel temperature.

  18. Synthesis of non-hydrazine solution processed Cu2(ZnSn)S4 thin films for solar cells applications

    NASA Astrophysics Data System (ADS)

    Gupta, Indu; Gupta, Preeti; Mohanty, Bhaskar Chandra

    2017-05-01

    Solution processing provides a versatile and inexpensive means to prepare Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications. Differently with the reported growth of CZTS films from hydrazine based toxic solutions, we demonstrate a simple non-toxic ethanol based solution approach to synthesize the films. Using the chemical bath deposition (CBD) method, the CZTS thin films were grown from metal salts (copper chloride, zinc chloride, and tin chloride) in ethanol and monoethanol amine (MEA) and thioacetamide in ethanol as sulfur source in a single dip followed by sulfurization. The structure, composition, morphology and optical properties of the CZTS film were studied by X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy. The results revealed that a post-deposition sulfurization is necessary to the phase formation and among all, sulfurization at 450°C for 60 min yielded phase pure CZTS films having kesterite structure, relatively compact morphology and an optical band gap of ˜1.52 eV indicating its suitability for solar cell applications. The results clearly validate the CBD method as a potential scalable route of preparation of CZTS thin films.

  19. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  20. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method

    NASA Astrophysics Data System (ADS)

    Lee, Wookbin; Leem, Jae-Young

    2018-03-01

    We report the structural, morphological, optical, and ultraviolet (UV) photoresponse properties of Al-doped ZnO (AZO) thin films prepared on silicon substrates with different Al doping concentrations by using the sol-gel spin-coating method. An analysis of the X-ray diffraction patterns of the AZO thin films revealed that the average grain size decreased and the c-axis lattice constant increased with Al content. The field-emission scanning electron microscopy images showed that with Al doping, the grain size decreased, but the film density increased with increasing Al doping concentration from 0% to 3%. These results indicate that the surface area of the film increased with increasing Al doping. The absorbance spectra revealed that the UV absorbance of the AZO thin films increased with increasing Al doping concentration and that the absorption onset shifted towards lower energies. The photoluminescence spectra revealed that with increasing Al doping, the intensity of the visible emission greatly decreased and the visible emission peak shifted forward lower energy (a red shift). The UV sensor based on the AZO thin films exhibited a higher responsivity than that based on the undoped ZnO thin film. Therefore, this study provides a facile method for improving the photoresponsivity of UV sensors.

  1. Effects of SF6 plasma treatment on the properties of InGaZnO thin films

    NASA Astrophysics Data System (ADS)

    Choi, Jinsung; Bae, Byung Seong; Yun, Eui-Jung

    2018-03-01

    The effects of sulfur hexafluoride (SF6) plasma on the properties of amorphous InGaZnO (a-IGZO) thin films were examined. The properties of the a-IGZO thin films were characterized by Hall effect measurement, dynamic secondary ion mass spectroscopy (SIMS), and X-ray photoelectron spectroscopy (XPS). The IGZO thin films treated with SF6 plasma before annealing had a very high resistance mainly owing to the inclusion of S into the film surface, as evidenced by SIMS profiles. On the other hand, the samples treated with SF6 plasma after annealing showed better electrical properties with a Hall mobility of 10 cm2/(V·s) than the untreated samples or the samples SF6 plasma-treated before annealing. This was attributed to the increase in the number of oxygen vacancy defects in the a-IGZO thin films owing to the enhanced out-diffusion of O to the ambient and the increase in the number of F-related donor defects originating from the incorporation of a much larger amount of F than of S into the film surface, which were confirmed by XPS and SIMS.

  2. Zn doped CdO thin films with enhanced linear and third order nonlinear optical properties for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya

    2018-04-01

    Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.

  3. The influence of doping element on structural and luminescent characteristics of ZnS thin films

    NASA Astrophysics Data System (ADS)

    Kryshtab, T.; Khomchenko, V. S.; Andraca-Adame, J. A.; Rodionov, V. E.; Khachatryan, V. B.; Tzyrkunov, Yu. A.

    2006-10-01

    For the fabrication of green and blue emitting ZnS structures the elements of I, III, and VII groups (Cu, Al, Ga, Cl) are used as dopants. The influence of type of impurity, doping technique, and type of substrate on crystalline structure and surface morphology together with luminescent properties was investigated. The doping of thin films was realized during the growth process and/or post-deposition thermal treatment. ZnS thin films were deposited by physical (EBE) and chemical (MOCVD) methods onto glass or ceramic (BaTiO 3) substrates. Closed spaced evaporation and thermodiffusion methods were used for the post-deposition doping of ZnS films. X-ray diffraction (XRD) techniques, atomic force microscopy (AFM), and measurements of photoluminescent (PL) spectra were used for the investigations. It was shown that the doping by the elements of I (Cu) and III (Al, Ga) groups does not change the crystal structure during the thermal treatment up to 1000 ∘C, whereas simultaneous use of the elements of I (Cu) and VII (Cl) groups leads to decrease of the phase transition temperature to 800 ∘C. The presence of impurities in the growth process leads to a grain size increase. At post-deposition treatment Ga and Cl act as activators of recrystallization process. The transition of ZnS sphalerite lattice to wurtzite one leads to the displacement of the blue emission band position towards the short-wavelength range by 10 nm.

  4. Tuning the Magnetic and Electronic Properties of Iron(x )Silicon(1-x) Thin Films for Spintronics

    NASA Astrophysics Data System (ADS)

    Karel, Julie Elizabeth

    This dissertation investigated the magnetic and electronic properties of a potentially better alternative: off-stoichimetry, bcc-like FexSi 1-x thin films (0.43<x<0.77). Stoichiometric Fe3Si, a Heusler alloy, has already been studied as a potential spin-injector due to a high Curie temperature, well above room temperature (>800 K) and theoretically predicted high spin polarization (100%). However, little work has been done on off-stoichiometry FexSi1-x thin films (0.43<x<0.77), where it may be possible to further enhance the properties, including the spin-polarization. In addition to being a potential spin-injector, the FE xSi1-x system is unique in that thin film growth techniques allow access to varying degrees of both chemical and structural order over a wide composition range. In the crystalline system, three different bcc-like structures (D03, B2, A2), each with a different degree of chemical order, are possible. The A2 structure is a chemically disordered random bcc solid solution, and the B2 structure is a partially ordered CsCl structure with Fe on the cube corner sites and Fe/Si randomly arranged on the body center sites. Finally, the D03 structure is chemically ordered with Fe on the cube corners and Fe and Si alternating in the body centers. Amorphous FexSi1-x thin films can also be fabricated, allowing for a comprehensive and direct comparison of the magnetic properties. This work probed the effects of chemical and structural disorder on the magnetic and electronic properties of FexSi1-x thin films. The magnetism was found to strongly depend on the chemical order for both the crystalline and amorphous structures. The chemically disordered A2 structure has more Fe-Fe pairs than the chemically ordered B2 or D0 3 structures, leading to a larger predicted moment. The magnetic moments for the B2 and D03 structures are not significantly different. They should, in fact, be essentially the same since the first nearest neighbor environments are the same; on

  5. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering

    PubMed Central

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-01-01

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on–off current ratio of 105, subthreshold swing of 0.8 V/decade, and mobility of 5 cm2/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of −5 V under 290 nm illumination. PMID:28772487

  6. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering.

    PubMed

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-02-04

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on-off current ratio of 10⁵, subthreshold swing of 0.8 V/decade, and mobility of 5 cm²/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 10⁵ at a gate bias of -5 V under 290 nm illumination.

  7. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  8. Deposition of undoped and Al doped ZnO thin films using RF magnetron sputtering and study of their structural, optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna

    2017-05-01

    Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.

  9. Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah

    2018-04-01

    The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.

  10. Growth and magnetic properties of multiferroic LaxBi1-xMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Bibes, M.; Wyczisk, F.; Varela, M.; Fontcuberta, J.; Barthélémy, A.

    2007-05-01

    A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

  11. Efficient optical activation of Eu3+ ions doped in ZnGa2O4 thin films: Correlation between crystalline phase and photoluminescence

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Shinojima, Hiroyuki

    2018-06-01

    The physicochemical properties of Eu-doped zinc gallate (ZnGaxO1+1.5x:Eu) (1 < x < 6) thin films were investigated by means of photoluminescence (PL) triggered by band-to-band transitions of the host crystal at λ = 325 nm. Close correspondence between PL spectra and crystalline phases was verified by performing combinatorial measurements over four-inch substrates on which there was a spread of Ga/Zn composition ratios. The phase formation kinetics for deposition with H2O as an oxygen source gas followed by post annealing were similar to those of hydrothermal synthesis. ZnGa2O4 preferentially formed for a wide range of compositions between 1 < x < 4 and post annealing temperatures between 400 and 800 °C; intense emissions from Eu3+ ions were observed from the films. In contrast, the phase formation kinetics for deposition with O2 gas followed by post annealing were similar to those of solid-state reactions. Vacuum annealing above 500 °C caused preferential losses of Ga atoms and precipitation of Zn2Ga2O5 crystallites at x < 4, whereas ZnGa2O4 formed when a large amount of Ga (x > 6) was initially contained in the as-deposited state. The resulting PL spectra from Zn2Ga2O5 exhibited only a broad emission band from 450 to 700 nm, which was ascribed to defects in the poorly crystallized Zn:Ga = 1:1 phase. When the films deposited with O2 were post annealed in an O2 ambient, Zn atoms were lost, producing β-Ga2O3 as the primary phase accompanied with ZnGa2O4. The resulting Eu3+ emission was very weak, possibly because the Eu3+ ions attached to Ga2O3 domains were not emission-active and/or could not be efficiently excited due to wide bandgap (5 eV). When ZnGa2O4:Eu films were crystallized during deposition at elevated temperatures, weak emissions only from Eu3+ ions were observed. Taken together, these experimental results indicate that Eu3+ ions attached to ZnGa2O4 are highly emission-active; i.e., ZnGa2O4 is a particularly good host crystal with which to secure

  12. Pulsed laser deposited hexagonal wurzite ZnO thin-film nanostructures/nanotextures for nanophotonics applications

    NASA Astrophysics Data System (ADS)

    John Chelliah, Cyril Robinson Azariah; Swaminathan, Rajesh

    2018-01-01

    The high-quality and transparent thin-film zinc oxide (ZnO) nanostructures/nanotextures deposited on glass and silicon substrates using pulsed laser deposition (PLD) technique are reported. A solid-state, Nd-YAG laser was used for the PLD process. The films were deposited (i) at room temperature of 25°C (as deposited), (ii) at 150°C, (iii) at 300°C, (iv) at 450°C, and (v) at 600°C and annealed in the vacuum chamber. The depositions were also carried out at different laser repetition rates such as 10 and 5 Hz. UV spectroscopy and photoluminescence (PL) spectroscopy were carried out for optical studies. X-ray diffraction studies were carried out for all samples and analyzed the effects of the laser repetition rate, deposition, and annealing temperatures on the structural properties. Field-emission scanning electron microscope images are recorded for the best-structured samples. The electrical parameters were calibrated using the Hall effect measurement system and the IV characterization was performed using a CHI Electrochemical workstation. The deposition temperature has a significant effect on the microstrain and dislocation density of the ZnO thin film and optical phenomena with various electrical parameters, including the electron mobility, conductivity, and magnetoresistance. These promising results are suitable conditions for nanophotonics applications.

  13. ZnO-based transparent conductive thin films via sonicated-assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Mohamed, R.; Rusop, M.

    2018-05-01

    We report on the growth of Al-doped ZnO (AZO) thin films onto Corning 7740 glass substrates via sonicated-assisted sol-gel technique. The influence of Al dopant on crystallisation behavior, optical and electrical properties of AZO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction <002>. All films exhibit a transmittance above than 80-90 % along the visible range up to 800 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO.

  14. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  15. Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar

    2018-05-01

    Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.

  16. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin filmmore » solar cells.« less

  17. Structural and electrical properties of CZTS thin films by electrodeposition

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  18. Study of metal/ZnO based thin film ultraviolet photodetectors: The effect of induced charges on the dynamics of photoconductivity relaxation

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-02-01

    Ultraviolet photoconductivity relaxation in ZnO thin films deposited by rf magnetron sputtering are investigated. Effect of oxygen partial pressure in the reactive gas mixture and film thickness on the photoconductivity transients is studied. A different photodetector configuration comprising ZnO thin film with an ultrathin overlayer of metals like Cu, Al, Sn, Au, Cr, and Te was designed and tested. Photoresponse signal were found to be stronger (four to seven times) in these configurations than the pure ZnO thin films. Sn(30 nm)/ZnO sample exhibits highest responsivity of ˜8.57 kV/W whereas Te(20 nm)/ZnO structure presents highest sensitivity of ˜31.3×103 compared to unloaded ZnO thin film. Enhancement in the photoresponse of ZnO thin films is attributed to the change in surface conductivity due to induced charge carriers at the interface because of the difference in work function and oxygen affinity values of metal overlayer with the underlying semiconducting layer. Charge carrier transfer from the metal layer to ZnO creates a surplus of electrons at the interface; a fraction of which are captured by the defect centers (traps) at the surface whereas the remaining one represents free carriers in the conduction band and are responsible for the enhanced photoconductivity.

  19. Interpretation of transport measurements in ZnO-thin films

    NASA Astrophysics Data System (ADS)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas

    2011-01-01

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.

  20. Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ozutok, Fatma; Karaduman, Irmak; Demiri, Sani; Acar, Selim

    2018-02-01

    Herein we report Al-doped ZnO films (AZO) deposited on the ZnO seed layer by chemical bath deposition method. Al powder, Al oxide and Al chloride were used as sources for the deposition process and investigated for their different effects on the NH3 gas-sensing performance. The morphological and microstructural properties were investigated by employing x-ray powder diffraction, scanning electron microscopy analysis and energy-dispersive x-ray spectroscopy. The characterization studies showed that the AZO thin films are crystalline and exhibit a hexagonal wurtzite structure. Ammonia (NH3) gas-sensing measurements of AZO films were performed at different concentration levels and different operation temperatures from 50°C to 210°C. The sample based on powder-Al source showed a higher response, selectivity and short response/recovery time than the remaining samples. The powder Al sample exhibited 33% response to 10-ppm ammonia gas at 190°C, confirming a strong dependence on the dopant source type.

  1. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1xFex)O3−δ Thin Films

    PubMed Central

    Wang, Yi-Guang; Liu, Qiu-Xiang; Jiang, Yan-Ping; Jiang, Li-Li

    2017-01-01

    Sr(Ti1xFex)O3−δ (0 ≤ x ≤ 0.2) thin films were grown on Si(100) substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1xFex)O3−δ thin films, were investigated by using the X-ray diffractometer (XRD), atomic force microscopy (AFM), the ferroelectric test system, and the vibrating sample magnetometer (VSM). After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr) of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1xFex)O3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1xFex)O3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1)O3−δ thin films were also discussed in detail. PMID:28885579

  2. Synthesis of Mn-doped ZnS thin films by chemical bath deposition: Optical properties in the visible region

    NASA Astrophysics Data System (ADS)

    Erken, Ozge; Gunes, Mustafa; Gumus, Cebrail

    2017-04-01

    Transparent ZnS:Mn thin films were produced by chemical bath deposition (CBD) technique at 80 °C for 4h, 6h and 8h durations. The optical properties such as optical transmittance (T %), reflectance (R %), extinction coefficient (k) and refractive index (n) were deeply investigated in terms of contribution ratio, wavelength and film thickness. The optical properties of ZnS:Mn thin films were determined by UV/vis spectrophotometer transmittance measurements in the range of λ=300-1100 nm. Optical transmittances of the films were found from 12% to 92% in the visible region. The refractive index (n) values for visible region were calculated as 1.34-5.09. However, film thicknesses were calculated between 50 and 901 nm by gravimetric analysis.

  3. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  4. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  5. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  6. Bottom electrodes dependence of microstructures and dielectric properties of compositionally graded (Ba{sub 1-x}Sr{sub x})TiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Tianjin; Wang Jinzhao; Zhang Baishun

    2008-03-04

    Compositionally graded (Ba{sub 1-x}Sr{sub x})TiO{sub 3} (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO{sub 2}/Si and Ru/SiO{sub 2}/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO{sub 2} is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. Themore » enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO{sub 2} that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode.« less

  7. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    NASA Astrophysics Data System (ADS)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  8. Structural, morphological and optical studies of ripple-structured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Navin, Kumar; Kurchania, Rajnish

    2015-11-01

    Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

  9. The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films

    NASA Astrophysics Data System (ADS)

    Al-Hossainy, A. Farouk; Ibrahim, A.

    2017-11-01

    The dependence of structural properties and optical constants on annealing temperature of a 2-((1,2-bis (diphenylphosphino)ethyl)amino) acetic acid-methyl red-monochloro zinc dihydride (DPEA-MR-Zn) as a novel organic semiconductor thin film was studied. The DPEA-MR-Zn thin film was deposited on silicon substrates using the spin coating technique. The as-deposited film was annealed in air for 1 h at 150, 175 and 205 °C. The XRD study of DPEA-MR-Zn in its powder form showed that this complex is mere a triclinic crystal structure with a space group P-1. In addition, the XRD patterns showed that the as-deposited thin films were crystallized according to the preferential orientation [(214), (121), (0 2 bar 6), (3 bar 02), (122) and (11 4 bar)]. Moreover, two additional peaks (2 bar 2 bar 1 and 2 4 bar 7) were shown at 2θ nearly 30°, and 69°, where, the more annealing temperature, the more the intensity of the two peaks. In addition, it was noticed that the grain size had a remarkable change with an annealing temperature of the DPEA-MR-Zn thin films. The optical measurements showed that the thin film has a relatively high absorption region where the photon energy ranges from 2 to 3.25 eV. Both of Wemple-DiDomenico and single Sellmeier oscillator models were applied on the DPEA-MR-Zn to analyze the dispersion of the refractive index and the optical and dielectric constants. The outcome of the study of the structural and optical properties reported here of the DPEA-MR-Zn organic semiconductor crystalline nanostructure thin film had shown various applications in many advanced technologies such as photovoltaic solar cells.

  10. Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films

    NASA Astrophysics Data System (ADS)

    Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo

    2012-08-01

    Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.

  11. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  12. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  13. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    New technologies motivate the development of new semiconducting materials, for which structural, electrical and chemical properties are not well understood. In addition to new materials systems, there are huge opportunities for new applications, especially in solar energy conversion. In this dissertation I explore the role of band structure engineering of semiconducting oxides for solar energy. Due to the abundance and electrochemical stability of oxides, the appropriate modification could make them appealing for applications in both photovoltaics and photoelectrochemical hydrogen production. This dissertation describes the design, synthesis and evaluation of the alloy ZnO1-xSe x for these purposes. I review several methods of band structure engineering including strain, quantum confinement and alloying. A detailed description of the band anticrossing (BAC) model for highly mismatched alloys is provided, including the derivation of the BAC model as well as recent work and potential applications. Thin film ZnOxSe1-x samples are grown by pulsed laser deposition (PLD). I describe in detail the effect of growth conditions (temperature, pressure and laser fluence) on the chemistry, structure and optoelectronic properties of ZnOxSe1-x. The films are grown using different combinations of PLD conditions and characterized with a variety of techniques. Phase pure films with low roughness and high crystallinity were obtained at temperatures below 450¢ªC, pressures less than 10-4 Torr and laser fluences on the order of 1.5 J/cm 2. Electrical conduction was still observed despite heavy concentrations of grain boundaries. The band structure of ZnO1-xSex is then examined in detail. The bulk electron affinity of a ZnO thin film was measured to be 4.5 eV by pinning the Fermi level with native defects. This is explained in the framework of the amphoteric defect model. A shift in the ZnO1-xSe x valence band edge with x is observed using synchrotron x-ray absorption and emission

  14. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  15. Synthesis, Fabrication and Characterization of ZnO-Based Thin Films Prepared by Sol-Gel Process and H2 Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar

    2018-03-01

    In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.

  16. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-01

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885

  17. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere.

    PubMed

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-29

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.

  18. ZnO thin films and nanostructures for emerging optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Teherani, F. H.; Sandana, V. E.; Razeghi, M.

    2010-02-01

    ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO.

  19. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  20. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  1. Effect of substrate on thermoelectric properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Hagino, H.; Ichinose, A.

    2013-06-01

    We have prepared 2% Al doped ZnO (AZO) thin films on SrTiO3 (STO) and Al2O3 substrates by Pulsed Laser Deposition technique at various deposition temperatures (Tdep = 300 °C-600 °C). Transport and thermoelectric properties of AZO thin films were studied in low temperature range (300 K-600 K). AZO/STO films present superior performance respect to AZO/Al2O3 films deposited at the same temperature, except for films deposited at 400 °C. Best film is the fully c-axis oriented AZO/STO deposited at 300 °C, which epitaxial strain and dislocation density are the lowest: electrical conductivity 310 S/cm, Seebeck coefficient -65 μV/K, and power factor 0.13 × 10-3 W m-1 K-2 at 300 K. Its performance increases with temperature. For instance, power factor is enhanced up to 0.55 × 10-3 W m-1 K-2 at 600 K, surpassing the best AZO film previously reported in literature.

  2. Thickness and annealing effects on thermally evaporated InZnO thin films for gas sensors and blue, green and yellow emissive optical devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Sivaraj, Manoj

    2016-08-01

    Indium zinc oxide (InZnO) thin films with thicknesses of 100 nm and 200 nm were deposited on glass plate by thermal evaporation technique. Fourier transform infrared spectra showed a strong metal-oxide bond. X-ray diffraction patterns revealed amorphous nature for as-deposited film whereas polycrystalline structure for annealed films. Scanning electron microscope images showed a uniform distribution of spherical shape grains. Grain size was found to be higher for 200 nm film than 100 nm film. The presence of elements (In, Zn and O) was confirmed from energy dispersive X-ray analysis. Photoluminescence study of 200 nm film showed a blue, blue-green and blue-yellow emission whereas 100 nm film showed a broad green and green-yellow emissions. Both 100 nm and 200 nm films showed good oxygen sensitivity from room temperature to 400 °C. The observed optical and sensor results indicated that the prepared InZnO films are highly potential for room temperature gas sensor and blue, green and yellow emissive opto-electronic devices.

  3. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. F.; Chua, S. J.; Hu, G. X.

    2007-10-15

    X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate whilemore » a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)« less

  4. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  5. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  6. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  7. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    PubMed

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  8. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    PubMed

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  9. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors.

    PubMed

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-10-19

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  10. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  11. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  12. Development of High Resistive and High Magnetization Soft Thin Film and Fabrication of Thin Film Inductors

    DTIC Science & Technology

    2004-11-01

    properties of Co- doped ZnO nanocluster films", .J. of Appl. Phys. in press, 2005 2. Presentations (contributed): Conference Contributions: 1) Y. Qiang...gigahertz band applications. The effects of substrates bias, sputter parameters, and seed-layer have thoroughly been investigated. The magnetic...Adequate properties of soft magnetic thin film were evaluated by an analytical calculation [1] to meet the requirement for gigahertz band thin-film

  13. A photochemical proposal for the preparation of ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films from β-diketonate complex precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabello, G., E-mail: gerardocabelloguzman@hotmail.com; Lillo, L.; Caro, C.

    2016-05-15

    Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperaturemore » using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.« less

  14. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    PubMed Central

    Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu

    2016-01-01

    In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216

  15. Composition spread studies of Nd1-xLaxNiO3 combinatorial thin films

    NASA Astrophysics Data System (ADS)

    Suchoski, Richard; Jin, Kui; Yasui, Shintaro; Greene, Richard; Takeuchi, Ichiro

    2013-03-01

    Rare earth nickelates have attracted a great deal of attention in recent years due to a host of interesting features, one being a transition from paramagnetic metal to antiferromagnetic insulator through distortions from the ideal perovskite unit cell. This metal-to-insulator transition (MIT) can be manipulated by modifying variables such as temperature, rare earth ion size, oxygen content, or stress from lattice-mismatched epitaxial thin film growth. Research on this family has been extensive, though there still exists an absence of thin film studies focusing on intermediate compositions. We have fabricated epitaxial thin film composition spreads of Nd1-xLaxNiO3 grown via combinatorial PLD to investigate these transitional compositions. While our films exhibit a smooth composition progression, we observe a composition threshold where orthorhombic NdNiO3 transforms to rhombohedral LaNiO3, correlating with disappearance of the MIT, and displays a non-Vegard evolution of the film's in-plane lattice constant in HRXRD and Raman scattering data of the A1g rotational mode. This work was performed at the Center for Nanophysics and Advanced Materials (CNAM) at UMD, and supported by AFO SR MURI Grant #FA95500910603.

  16. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima

    2017-04-01

    In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height

  17. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Vladimir L.; Vai, Alex T.; Edwards, Peter P., E-mail: peter.edwards@chem.ox.ac.uk

    2015-12-07

    Highly conducting (ρ = 3.9 × 10{sup −4} Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO){sub 1x}(SiO{sub 2}){sub x} (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grainmore » boundary and electron-phonon scattering in samples with different nominal silicon concentrations.« less

  18. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  19. The Chemical Vapor Deposition of Thin Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Laurie, Angus Buchanan

    1990-01-01

    Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

  20. Growth and optoelectronic characteristic of n-Si/p-CuIn(S 1-xSe x) 2 thin-film solar cell by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-07-01

    The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.

  1. Influence of Post-Heat Treatment of ZnO:Al Transparent Electrode for Copper Indium Gallium Selenide Thin Film Solar Cell.

    PubMed

    Eom, Taewoo; Park, Jeong Eun; Park, Sang Yong; Park, Jeong Hoon; Bweupe, Jackson; Lim, Donggun

    2018-09-01

    Copper indium gallium selenide (CIGS) thin film solar cells have been regarded as a candidate for energy conversion devices owing to their high absorption coefficient, high temperature stability, and low cost. ZnO:Al thin film is commonly used in CIGS solar cells as a window layer. In this study, ZnO:Al films were deposited on glass under various post-heat temperature using RF sputtering to observe the characteristics of ZnO:Al films such as Hall mobility, carrier concentration, and resistivity; subsequently, the ZnO:Al films were applied to a CIGS solar cell as a window. CIGS solar cells fabricated with various ZnO:Al films were analyzed in order to investigate their influence. The test results showed that the improvement of ZnO:Al characteristics affects Jsc and Voc in the solar cell through reduced recombination and increase of optical property.

  2. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  3. Design of Semiconducting Tetrahedral Mn 1-xZn xO Alloys and Their Application to Solar Water Splitting

    DOE PAGES

    Peng, Haowei; Ndione, Paul F.; Ginley, David S.; ...

    2015-03-18

    Transition metal oxides play important roles as contact and electrode materials, but their use as active layers in solar energy conversion requires achieving semiconducting properties akin to those of conventional semiconductors like Si or GaAs. In particular, efficient bipolar carrier transport is a challenge in these materials. Based on the prediction that a tetrahedral polymorph of MnO should have such desirable semiconducting properties, and the possibility to overcome thermodynamic solubility limits by nonequilibrium thin-film growth, we exploit both structure-property and composition-structure relationships to design and realize novel wurtzite-structure Mn 1xZn xO alloys. At Zn compositions above x≈0.3, thin films ofmore » these alloys assume the tetrahedral wurtzite structure instead of the octahedral rocksalt structure of MnO, thereby enabling semiconductor properties that are unique among transition metal oxides, i.e., a band gap within the visible spectrum, a band-transport mechanism for both electron and hole carriers, electron doping, and a band lineup suitable for solar hydrogen generation. In conclusion, a proof of principle is provided by initial photo-electrocatalytic device measurements, corroborating, in particular, the predicted favorable hole-transport properties of these alloys.« less

  4. Low-temperature sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N thin film alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haider, Ali, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Ozgit-Akgun, Cagla

    In this work, the authors have performed sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N alloys at a growth temperature of 450 °C. Triethylboron, triethylgallium, trimethylindium, and N{sub 2} or N{sub 2}/H{sub 2} plasma have been utilized as boron, gallium, indium, and nitrogen precursors, respectively. The authors have studied the compositional dependence of structural, optical, and morphological properties of B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N ternary thin film alloys. Grazing incidence X-ray diffraction measurements showed that boron incorporation in wurtzite lattice of GaN and InN diminishes the crystallinity of B{sub x}Ga{sub 1-x}N and B{submore » x}In{sub 1-x}N sample. Refractive index decreased from 2.24 to 1.65 as the B concentration of B{sub x}Ga{sub 1-x}N increased from 35% to 88%. Similarly, refractive index of B{sub x}In{sub 1-x}N changed from 1.98 to 1.74 for increase in B concentration value from 32% to 87%, respectively. Optical transmission band edge values of the B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N films shifted to lower wavelengths with increasing boron content, indicating the tunability of energy band gap with alloy composition. Atomic force microscopy measurements revealed an increase in surface roughness with boron concentration of B{sub x}Ga{sub 1-x}N, while an opposite trend was observed for B{sub x}In{sub 1-x}N thin films.« less

  5. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  6. Characterization of thin films of the solid electrolyte Li(x)Mg(1-2x)Al(2+x)O4 (x = 0, 0.05, 0.15, 0.25).

    PubMed

    Put, Brecht; Vereecken, Philippe M; Mees, Maarten J; Rosciano, Fabio; Radu, Iuliana P; Stesmans, Andre

    2015-11-21

    RF-sputtered thin films of spinel Li(x)Mg(1-2x)Al(2+x)O4 were investigated for use as solid electrolyte. The usage of this material can enable the fabrication of a lattice matched battery stack, which is predicted to lead to superior battery performance. Spinel Li(x)Mg(1-2x)Al(2+x)O4 thin films, with stoichiometry (x) ranging between 0 and 0.25, were formed after a crystallization anneal as shown by X-ray diffraction and transmission electron microscopy. The stoichiometry of the films was evaluated by elastic recoil detection and Rutherford backscattering and found to be slightly aluminum rich. The excellent electronic insulation properties were confirmed by both current-voltage measurements as well as by copper plating tests. The electrochemical stability window of the material was probed using cyclic voltammetry. Lithium plating and stripping was observed together with the formation of a Li-Pt alloy, indicating that Li-ions passed through the film. This observation contradicted with impedance measurements at open circuit potential, which showed no apparent Li-ion conductivity of the film. Impedance spectroscopy as a function of potential showed the occurrence of Li-ion intercalation into the Li(x)Mg(1-2x)Al(2+x)O4 layers. When incorporating Li-ions in the material the ionic conductivity can be increased by 3 orders of magnitude. Therefore it is anticipated that the response of Li(x)Mg(1-2x)Al(2+x)O4 is more adequate for a buffer layer than as the solid electrolyte.

  7. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    NASA Astrophysics Data System (ADS)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  8. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  9. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  10. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  11. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  12. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  13. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    PubMed Central

    Lee, Hyeonju; Zhang, Xue; Hwang, Jaeeun; Park, Jaehoon

    2016-01-01

    We report on the morphological influence of solution-processed zinc oxide (ZnO) semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs). Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites. PMID:28773973

  14. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi

    2017-11-22

    In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and

  15. Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay

    2017-06-01

    Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.

  16. Properties of WO3-x Electrochromic Thin Film Prepared by Reactive Sputtering with Various Post Annealing Temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Min Hong; Choi, Hyung Wook; Kim, Kyung Hwan

    2013-11-01

    The WO3-x thin films were prepared on indium tin oxide (ITO) coated glass at 0.7 oxygen flow ratio [O2/(Ar+O2)] using the facing targets sputtering (FTS) system at room temperature. In order to obtain the annealing effect, as-deposited thin films were annealed at temperatures of 100, 200, 300, 400, and 500 °C for 1 h in open air. The structural properties of the WO3-x thin film were measured using an X-ray diffractometer. The WO3-x thin films annealed at up to 300 °C indicated amorphous properties, while those annealed above 400 °C indicated crystalline properties. The electrochemical and optical properties of WO3-x thin films were measured using cyclic voltammetry and a UV/vis spectrometer. The maximum value of coloration efficiency obtained was 34.09 cm2/C for thin film annealed at 200 °C. The WO3-x thin film annealed at 200 °C showed superior electrochromic properties.

  17. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  18. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less

  19. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  20. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima

    2016-05-06

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less

  1. Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Daniel A.A., E-mail: danielandrade.ufs@gmail.com; Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260; Zeng, Hao

    2015-06-15

    Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using amore » shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.« less

  2. Growth and Characterization of Large Scale (Sb1-xBix)2 Te3 Thin Films on Mica

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Jiles, David

    2015-03-01

    Topological insulators (TIs) attract attentions for both fundamental science and potential applications because of their bulk band inversion arising from the strong spin orbital coupling. However, it is necessary to tune the Fermi level and Dirac cone in 3D TI (Sb1-xBix)2 Te3 to make an ideal system for TI applications. In this work, we report high quality (Sb1-xBix)2 Te3 thin films grown on mica substrate by molecular beam epitaxy. The surface roughness of the thin film can reach as low as 0.7 nm in a large area by van der Waals epitaxy. (Sb1-xBix)2 Te3 thin film with x = 0.04 shows a local maxima in the room temperature sheet resistance, which indicates a minimization of the carrier density due to band structure engineering. Moreover, for higher Bi concentration, due to an increase of the surface roughness and corresponding reduction of electron mobility, the sheet resistance increases. Our results on the feasibility of depositing (Sb1-xBix)2 Te3 in wide Bi range on mica substrate will helpful for the application of TI at room temperature and flexible electronics. Authors would like to thank the financial support from the U.S. National Science Foundation under the Award No. 1201883.

  3. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO

  4. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less

  5. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  6. The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Rudisch, Katharina; Davydova, Alexandra; Platzer-Björkman, Charlotte; Scragg, Jonathan

    2018-04-01

    Cu-Zn disorder in Cu2ZnSnS4 (CZTS) may be responsible for the large open circuit voltage deficit in CZTS based solar cells. In this study, it was investigated how composition-dependent defect complexes influence the order-disorder transition. A combinatorial CZTS thin film sample was produced with a cation composition gradient across the sample area. The graded sample was exposed to various temperature treatments and the degree of order was analyzed with resonant Raman spectroscopy for various compositions ranging from E- and A-type to B-, F-, and C-type CZTS. We observe that the composition has no influence on the critical temperature of the order-disorder transition, but strongly affects the activation energy. Reduced activation energy is achieved with compositions with Cu/Sn > 2 or Cu/Sn < 1.8 suggesting an acceleration of the cation ordering in the presence of vacancies or interstitials. This is rationalized with reference to the effect of point defects on exchange mechanisms. The implications for reducing disorder in CZTS thin films are discussed in light of the new findings.

  7. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  8. Superconducting properties of Ba(Fe1-xNix)2As2 thin films in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Richter, Stefan; Kurth, Fritz; Iida, Kazumasa; Pervakov, Kirill; Pukenas, Aurimas; Tarantini, Chiara; Jaroszynski, Jan; Hänisch, Jens; Grinenko, Vadim; Skrotzki, Werner; Nielsch, Kornelius; Hühne, Ruben

    2017-01-01

    We report on the electrical transport properties of epitaxial Ba(Fe1-xNix)2As2 thin films grown by pulsed laser deposition in static magnetic fields up to 35 T. The thin film shows a critical temperature of 17.2 K and a critical current density of 5.7 × 105 A/cm2 in self field at 4.2 K, while the pinning is dominated by elastic pinning at two-dimensional nonmagnetic defects. Compared to the single-crystal data, we find a higher slope of the upper critical field for the thin film at a similar doping level and a small anisotropy. Also, an unusual small vortex liquid phase was observed at low temperatures, which is a striking difference to Co-doped BaFe2As2 thin films.

  9. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    NASA Astrophysics Data System (ADS)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  10. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-01

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm2/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6 × 10 6 and the maximum interface state density at the ZnO/SiO2 interface is ˜ 6.5 × 10 12 cm-2.

  11. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    NASA Astrophysics Data System (ADS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Mankad, Ravin; Haight, Richard; Mitzi, David B.; Gunawan, Oki; Gordon, Roy G.

    2014-11-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm-3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm-3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  12. Properties of thin silver films with different thickness

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan

    2009-01-01

    In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.

  13. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  14. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application

    PubMed Central

    Chao, Chung-Hua; Wei, Da-Hua

    2015-01-01

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561

  15. Enhanced electrical properties in solution-processed InGaZnO thin-film transistors by viable hydroxyl group transfer process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk

    2018-05-01

    We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).

  16. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film

    NASA Astrophysics Data System (ADS)

    Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.

    2018-03-01

    In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.

  17. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-04-01

    ZnO thin films doped with Ce at different concentration were deposited on glass substrates by spray pyrolysis technique. XRD analysis revealed the phase purity and polycrystalline nature of the films with hexagonal wurtzite geometry and the composition analysis confirmed the incorporation of Ce in the ZnO lattice in the case of doped films. Crystalline quality and optical transmittance diminished while electrical conductivity enhanced with Ce doping. Ce doping resulted in a red-shift of optical energy gap due to the downshift of the conduction band minimum after merging with Ce related impurity bands formed below the conduction band in the forbidden gap. In the room temperature photoluminescence spectra, UV emission intensity of the doped films decreased while the intensity of the visible emission band increased drastically implying the degradation in crystallinity as well as the incorporation of defect levels capable of luminescence downshifting. Ce doping showed improvement in photocatalytic efficiency by effectively trapping the free carriers and then transferring for dye degradation. Thus Ce doped ZnO thin films are capable of acting as luminescent downshifters as well as efficient photocatalysts.

  18. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  19. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports.

    PubMed

    V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra

    2017-01-01

    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10 15 cm -2 for AZO and -6×10 14 cm -2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg -1 ) compared to AZO (0.032Umg -1 ), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM -1 cm -2 towards glucose for GOx/AZO and 2.2μAmM -1 cm -2 for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of addition of Ta and Y ions to InZnO thin film transistors by sol-gel process.

    PubMed

    Son, Dae-Ho; Kim, Dae-Hwan; Kim, Jung-Hye; Park, Si-Nae; Sung, Shi-Joon; Kang, Jin-Kyu

    2013-06-01

    We have investigated the effects of the addition of tantalum (Ta) and yttrium (Y) ions to InZnO thin film transistors (TFTs) using the sol-gel process. TaInZnO and YInZnO TFTs had significantly lower off current and higher on-to-off current ratio than InZnO TFTs. Ta and Y ions have strong affinity to oxygen and so suppress the formation of free electron carriers in thin films; they play an important role in enhancing the electrical characteristic due to their high oxygen bonding ability. The optimized TaInZnO and YInZnO TFTs showed high on/off ratio and low subthreshold swing.

  1. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K. V.; Kabashin, A. V.; Belova, L.

    2018-02-01

    We report the manufacturing of thin zinc oxide films by reactive magnetron sputtering at room temperature, and examine their structural and optical properties. We show that the partial oxygen pressure in DC mode can have dramatic effect on absorption and refractive index (RI) of the films in a broad spectral range. In particular, the change of the oxygen pressure from 7% to 5% can lead to either conventional crystalline ZnO films having low absorption and characteristic descending dependence of RI from 2.4-2.7 RIU in the visible to 1.8-2 RIU in the near-infrared (1600 nm) range, or to untypical films, composed of ZnO nano-crystals embedded into amorphous matrix, exhibiting unexpectedly high absorption in the visible-infrared region and ascending dependence of RI with values varying from 1.5 RIU in the visible to 4 RIU in the IR (1600 nm), respectively. Untypical optical characteristics in the second case are explained by defects in ZnO structure arising due to under-oxidation of ZnO crystals. We also show that the observed defect-related film structure remains stable even after annealing of films under relatively high temperatures (30 min under 450 °C). We assume that both types of films can be of importance for photovoltaic (as contact or active layers, respectively), as well as for chemical or biological sensing, optoelectronics etc.

  2. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.

    2016-12-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

  3. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  4. Study of structural and optical properties of ZnS zigzag nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein

    2015-11-01

    Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.

  5. Investigation of post-thermal annealing on material properties of Cu-In-Zn-Se thin films

    NASA Astrophysics Data System (ADS)

    Güllü, H. H.; Parlak, M.

    2017-12-01

    The Cu-In-Zn-Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn. The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu-In-Zn-Se compound. They were in the polycrystalline nature without any post-thermal process, and the main orientation was found to be in the (112) direction with tetragonal crystalline structure. With increasing annealing temperature, the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm. The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2. However, EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film. According to the optical analysis, the transmittance values of the films increased with the annealing temperature. The absorption coefficient of the films was calculated as around 105 cm-1 in the visible region. Moreover, optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature. The temperature-dependent dark- and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.

  6. Nanostructured hybrid ZnO thin films for energy conversion

    PubMed Central

    2011-01-01

    We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled. PMID:21711909

  7. Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications

    PubMed Central

    Haarindraprasad, R.; Hashim, U.; Gopinath, Subash C. B.; Kashif, Mohd; Veeradasan, P.; Balakrishnan, S. R.; Foo, K. L.; Poopalan, P.

    2015-01-01

    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH. PMID:26167853

  8. Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki

    2018-05-01

    The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.

  9. The investigation of Ga-doped ZnO as an interlayer for ohmic contact to Cd1-xZnxTe films

    NASA Astrophysics Data System (ADS)

    Shen, Yibin; Huang, Jian; Gu, Qingmiao; Meng, Hua; Tang, Ke; Shen, Yue; Zhang, Jijun; Wang, Linjun; Lu, Yicheng

    2017-12-01

    In this work, high quality Cd1-xZnxTe films were prepared on fluorine doped tin oxide (FTO) glass substrates by close-spaced sublimation (CSS) method. A low resistivity sputtered Ga-doped ZnO (GZO) film was used as an interlayer between Au electrodes and Cd1-xZnxTe films try to reduce the contact resistance and contribute to bring about a better Ohmic contact. Circular transmission line model (CTLM) was adopted to investigate the effects of GZO intermediate layer on the contact properties of Au/GZO/Cd1-xZnxTe structure. The results show a low contact resistivity of 0.37 Ω cm2 for Au/GZO contacts on Cd1-xZnxTe films. Cd1-xZnxTe film radiation detectors were also fabricated using Au/GZO contacts and an energy resolution of about 28% was obtained from a 60 KeV 241Am γ-ray source for the first time.

  10. Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating

    NASA Astrophysics Data System (ADS)

    Gao, Pengzhao; Rebrov, Evgeny V.; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Kozlowski, Gregory; Cetnar, John; Turgut, Zafer; Subramanyam, Guru

    2010-02-01

    Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

  11. Structure-property relations in sputter deposited epitaxial (1-x)Pb(Mg1/3Nb2/3)O3- xPbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Frederick, Joshua C.

    Lead-based ferroelectric materials are of significant technological importance for sensing and actuation due to their high piezoelectric performance (i.e., the ability to convert an electrical signal to mechanical displacement, and vice versa). Traditionally, bulk ceramic or single crystals materials have filled these roles; however, emerging technologies stand to benefit by incorporating thin films to achieve miniaturization while maintaining high efficiency and sensitivity. Currently, chemical systems that have been well characterized in bulk form (e.g. Pb(Mg1/3Nb2/3)O3- xPbTiO3, or PMN-xPT) require further study to optimize both the chemistry and structure for deployment in thin film devices. Furthermore, the effect of internal electric fields is more significant at the length scales of thin films, resulting in self biases that require compensation to reveal their intrinsic dielectric response. To this end, the structure-property relations of epitaxial PMN-xPT films sputter deposited on a variety of substrates were investigated. Attention was paid to how the structure (i.e., strain state, crystal structure, domain configuration, and defects) gave rise to the ferroelectric, dielectric, and piezoelectric response. Three-dimensional visualization of the dielectric response as a simultaneous function of electric field and temperature revealed the true phase transition of the films, which was found to correspond to the strain state and defect concentration. A lead-buffered anneal process was implemented to enhance the ferroelectric and dielectric response of the films without altering their stoichiometry. It was discovered that PMN- xPT films could be domain-engineered to exhibit a mixed domain state through chemistry and substrate choice. Such films exhibited a monoclinic distortion similar to that of the bulk compositions near the morphotropic phase boundary. Finally, it was revealed that the piezoelectric response could be greatly enhanced by declamping the film

  12. Structural and optical properties of electron-beam-evaporated ZnSe 1- x Te x Ternary compounds with various Te contents

    NASA Astrophysics Data System (ADS)

    Suthagar, J.; Suthan Kissinger, N. J.; Sharli Nath, G. M.; Perumal, K.

    2014-01-01

    ZnSe1- x Te x films with different tellurium (Te) contents were deposited by using an electron beam (EB) evaporation technique onto glass substrates for applications to optoelectronic devices. The structural and the optical properties of the ZnSe1- x Te x films were studied in the present work. The host material ZnSe1- x Te x , were prepared by using the physical vapor deposition method of the electron beam evaporation technique (PVD: EBE) under a pressure of 1 × 10-5 mbar. The X-ray diffractogram indicated that these alloy films had cubic structure with a strong preferential orientation of the crystallites along the (1 1 1) direction. The optical properties showed that the band gap (E g ) values varied from 2.73 to 2.41 eV as the tellurium content varied from 0.2 to 0.8. Thus the material properties can be altered and excellently controlled by controlling the system composition x.

  13. Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO: Ga thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Jin, Yuhua; Chao, Feng; Irfan, Muhammad; Jiang, Yijian

    2018-04-01

    Theoretically and experimentally evaluated optoelectronic properties of GZO (Ga-doped zinc oxide) were correlated in the present article. Density functional theory and Hubbard U (DFT + Ud + Up) first-principle calculations were used for the theoretical study. The pulsed laser deposition technique was used to fabricate GZO thin films on p-GaN, Al2O3, and p-Si substrates. X-ray diffraction graphs show single crystal growth of GZO thin films with (002) preferred crystallographic orientation. The chemical composition was studied via energy dispersive X-ray spectroscopy, and no other unwanted impurity-related peaks were found, which indicated the impurity-free thin film growth of GZO. Field emission scanning electron microscopic micrographs revealed noodle-, seed-, and granular-like structures of GZO/GaN, GZO/Al2O3, and GZO/Si, respectively. Uniform growth of GZO/GaN was found due to fewer mismatches between ZnO and GaN (0.09%). Hall effect measurements in the van der Pauw configuration were used to check electrical properties. The highest mobility (53 cm2/Vs) with a high carrier concentration was found with low laser shots (1800). A 5-fold photoluminescence enhancement in the noodle-like structure of GZO/GaN compared with GZO/Al2O3 and GZO/Si was detected. This points toward shape-driven optical properties because the noodle-like structure is more favorable for optical enhancements in GZO thin films. Theoretical (3.539 eV) and experimental (3.54 eV) values of the band-gap were also found to be comparable. Moreover, the lowest resistivity (3.5 × 10-4 Ωcm) with 80% transmittance is evidence that GZO is a successful alternate of ITO.

  14. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    NASA Astrophysics Data System (ADS)

    Rajanikant, Ray Jayminkumar

    pressure of 10-5 mbar. The thickness of the film was kept 1 mum for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure. Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a "buffer" layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then 20 x 109 Ocm, which are the essential characteristics of buffer layer. The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of iZnO and Al-ZnO is of the order of 1012 Ocm and 10-4 Ocm, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers. The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further

  15. Studies on morphology, electrical and optical characteristics of Al-doped ZnO thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan

    2018-03-01

    Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).

  16. Ultraviolet electroluminescence from hetero p-n junction between a single ZnO microsphere and p-GaN thin film.

    PubMed

    Tetsuyama, Norihiro; Fusazaki, Koshi; Mizokami, Yasuaki; Shimogaki, Tetsuya; Higashihata, Mitsuhiro; Nakamura, Daisuke; Okada, Tatsuo

    2014-04-21

    We report ultraviolet electroluminescence from a hetero p-n junction between a single ZnO microsphere and p-GaN thin film. ZnO microspheres, which have high crystalline quality, have been synthesized by ablating a ZnO sintered target. It was found that synthesized ZnO microspheres had a high-optical property and exhibit the laser action in the whispering gallery mode under pulsed optical pumping. A hetero p-n junction was formed between the single ZnO microsphere/ p-GaN thin film, and a good rectifying property with a turn-on voltage of approximately 6 V was observed in I-V characteristic across the junction. Ultraviolet and visible electroluminescence were observed under forward bias.

  17. Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Tuyaerts, Romain; Poncelet, Olivier; Raskin, Jean-Pierre; Proost, Joris

    2017-10-01

    In this article, we propose ZnO thin films as a suitable material for piezoresistors in transparent and flexible electronics. ZnO thin films have been deposited by DC reactive magnetron sputtering at room temperature at various oxygen partial pressures. All the films have a wurtzite structure with a strong (0002) texture measured by XRD and are almost stoichiometric as measured by inductively coupled plasma optical emission spectroscopy. The effect of oxygen concentration on grain growth has been studied by in-situ multi-beam optical stress sensor, showing internal stress going from 350 MPa to -1.1 GPa. The transition between tensile and compressive stress corresponds to the transition between metallic and oxidized mode of reactive sputtering. This transition also induces a large variation in optical properties—from absorbent to transparent, and in the resistivity—from 4 × 10 - 2 Ω .cm to insulating. Finally, the piezoresistance of the thin film has been studied and showed a gauge factor (ΔR/R)/ɛ comprised between -5.8 and -8.5.

  18. Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.

    2016-05-06

    Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  19. Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films

    DOE PAGES

    Baranowski, Lauryn L.; Christensen, Steven; Welch, Adam W.; ...

    2017-02-13

    In recent years, the number of novel photovoltaic absorber materials under exploration has rapidly increased. However, to reap the most benefit from these new absorbers, alternative device structures and components must also be considered. In particular, the choice of a heterojunction partner, or contact layer, is critical to device optimization. In this work, we explore alternative n-type contact layer candidates that could be widely applicable to a variety of new absorbers. We use theory to calculate the band edge tuning provided by a variety of II-VI alloy systems, and select the (Cd,Zn)S system as one that affords a wide rangemore » of conduction band tuning. The synthesis of (Cd,Zn)S alloys is explored using atomic layer deposition, which afforded precise compositional control and produced crystalline thin films. The predicted tuning of the band gap and conduction band minimum is confirmed through X-ray photoelectron spectroscopy and optical absorption measurements. In addition, we investigated Ga-doping in Cd 0.6Zn 0.4S films to decrease their series resistance when used as contact layers in photovoltaic devices. In conclusion, this study provides a framework for exploring and optimizing alternative contact layer materials, which will prove critical to the success of new PV absorbers.« less

  20. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  1. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Ajith R.

    The motivations of this research were to produce increased efficiency and low-cost solar cells. The production efficiency of Si solar cells has almost reached their theoretical limit, and reducing the manufacturing cost of Si solar cells is difficult to achieve due to the high-energy usage in material purifying and processing stages. Due to the low usage of materials and input energy, thin film solar cells have the potential to reduce the costs. CdS/CdTe thin film solar cells are already the cheapest on $/W basis. The cost of CdTe solar cells can be further reduced if all the semiconducting layers are fabricated using the electrodeposition (ED) method. ED method is scalable, low in the usage of energy and raw materials. These benefits lead to the cost effective production of semiconductors. The conventional method of fabricating CdS layers produces Cd containing waste solutions routinely, which adds to the cost of solar cells.ZnS, CdS and CdS(i-X)Sex buffer and window layers and CdTe absorber layers have been successfully electrodeposited and explored under this research investigation. These layers were fully characterised using complementary techniques to evaluate the material properties. Photoelectrochemical (PEC) studies, optical absorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and Raman spectroscopy were utilised to evaluate the material properties of these solid thin film layers. ZnS and CdS thin film layers were electrodeposited from Na-free chemical precursors to avoid the group I element (Na) to reduce deterioration of CdTe devices. Deposition parameters such as, growth substrates, temperature, pH, growth cathodic voltage, stirring rate, time and chemical concentrations were identified to fabricate the above semiconductors. To further optimise these layers, a heat treatment process specific to the material was developed. In addition

  2. Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Negash, Bethlehem G.

    Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as

  3. Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness.

    PubMed

    Kast, Matthew G; Cochran, Elizabeth A; Enman, Lisa J; Mitchson, Gavin; Ditto, Jeffrey; Siefe, Chris; Plassmeyer, Paul N; Greenaway, Ann L; Johnson, David C; Page, Catherine J; Boettcher, Shannon W

    2016-12-28

    Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al 2 O 3 and transition metal oxides (TMO x ) including VO x , CrO x , MnO x , Fe 2 O 3 , CoO x , NiO, CuO x , and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO 3 ) x at low temperature along with precondensed oligomeric Al(OH) x (NO 3 ) 3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (R rms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V 0.1 Cr 0.1 Mn 0.1 Fe 0.1 Zn 0.1 Al 0.5 O x and V 0.2 Cr 0.2 Fe 0.2 Al 0.4 O x with R rms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.

  4. Growth temperature modulated phase evolution and functional characteristics of high quality Pb1-x Lax (Zr0.9Ti0.1)O3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder

    2018-05-01

    In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).

  5. Fabrication of solution-processed InSnZnO/ZrO2 thin film transistors.

    PubMed

    Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Lim, Jun Hyung; Joo, Jinho

    2013-11-01

    We fabricated InSnZnO (ITZO) thin-film transistors (TFTs) with a high-permittivity (K) ZrO2 gate insulator using a solution process and explored the microstructure and electrical properties. ZrO2 and ITZO (In:Sn:Zn = 2:1:1) precursor solutions were deposited using consecutive spin-coating and drying steps on highly doped p-type Si substrate, followed by annealing at 700 degrees C in ambient air. The ITZO/ZrO2 TFT device showed n-channel depletion mode characteristics, and it possessed a high saturation mobility of approximately 9.8 cm2/V x s, a small subthreshold voltage swing of approximately 2.3 V/decade, and a negative V(TH) of approximately 1.5 V, but a relatively low on/off current ratio of approximately 10(-3). These results were thought to be due to the use of the high-kappa crystallized ZrO2 dielectric (kappa approximately 21.8) as the gate insulator, which could permit low-voltage operation of the solution-processed ITZO TFT devices for applications to high-throughput, low-cost, flexible and transparent electronics.

  6. Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman

    2018-07-01

    Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.

  7. Grain Growth in Cu2ZnSnS4 Thin Films Using Sn Vapor Transport for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Konishi, Takafumi; Seo, Yuichi; Tsuji, Ryotaro; Terai, Kengo; Nakashima, Yuto; Okamoto, Hiroaki; Tsutsumi, Yasuo

    2013-07-01

    Cu2ZnSnS4 thin films containing grains grown using Sn vapor transport (TVT) were investigated. Structural characterization revealed that the grain sizes were equal to or larger than the film thickness (1-4 µm) and significantly larger than those in the case of growth without TVT (60 nm). Furthermore, no phase separation was detected. Photothermal diffraction spectroscopy revealed that the optical absorption coefficient was very low in the subgap region, 7×101 cm-1, suggesting the suppression of defect formation. Finally, a TVT-processed thin film was used as an absorber in a solar cell, and a conversion efficiency of 6.9% was achieved.

  8. [Preparation and spectral characterization of CdS(y)Te(1-y) thin films].

    PubMed

    Li, Wei; Feng, Liang-Huan; Wu, Li-Li; Zhang, Jing-Quan; Li, Bing; Lei, Zhi; Cai, Ya-Ping; Zheng, Jia-Gui; Cai, Wei; Zhang, Dong-Min

    2008-03-01

    CdS(y)Te(1-y) (0 < or = y < or = 1) polycrystalline thin films were prepared on glass substrates by co-evaporation of powders of CdTe and CdS. For the characterization of the structure and composition of the CdS(y)Te(1-y) thin films the X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) were used. The results indicate that the values of sulfur content y detected and controlled by the quartz wafer detector show good agreement with the EDS results. The films were found to be cubic for x < 0. 3, and hexagonal for x > or = 0.3. The 20-50 nm of grain sizes for CdS(y)Te(1-y) thin films were calculated using a method of XRD analysis. Finally, the optical properties of CdS(y)Te(1-y) thin films were characterized by UV-Vis-NIR spectroscopy alone. According to a method from Swanepoel, together with the first-order Sellmeier model, the thickness, of d-535 nm, energy gap of E(g)-1.41 eV, absorption coefficient, alpha(lambda) and refractive index, n(lambda) of CdS(0.22) Te(0.78) thin films were determined from the transmittance at normal incidence of light in the wavelength range 300-2 500 nm. The results also indicate that the CdS(y)Te(1-y) thin films with any composition (0 < or = y < or = 1) can be prepared by co-evaporation, and the method to characterize the optical properties of CdS(y)Te(1-y) thin films can be implemented for other semiconductor thin films.

  9. ZnO thin film transistor immunosensor with high sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum

    2011-04-01

    A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.

  10. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    NASA Astrophysics Data System (ADS)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  11. Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.

    2004-06-01

    Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.

  12. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  13. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −11]{sub ST}.« less

  14. Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system

    NASA Astrophysics Data System (ADS)

    Ataev, B. M.; Bagamadova, A. M.; Mamedov, V. V.; Omaev, A. K.; Rabadanov, M. R.

    1999-03-01

    Sucessful preparation of ZnO : M epitaxial thin films (ETF) in situ doped with donor impurity M=Ga, Sn by chemical vapor despsition in a low-pressure system is reported. Highly conductive (up to 10 -4 Ω cm) and transparent ( T>85%) ZnO : M ETF have been successfully produced on single crystal (1012) sapphire substrates. Electrical properties of the films as well as their excition luminescence were studied.

  15. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less

  16. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  17. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  18. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-03-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10-13A, I on/ I off ratio of 1.4 × 107, subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  19. Stabilization of scandium rich spinel ferrite CoFe{sub 2−x}Sc{sub x}O{sub 4} (x≤1) in thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefevre, Christophe, E-mail: christophe.lefevre@ipcms.unistra.fr; Roulland, François; Thomasson, Alexandre

    2015-12-15

    Scandium rich cobalt ferrites Co{sub y}Fe{sub 3−x−y}Sc{sub x}O{sub 4} with y~1 never obtained in bulk could be stabilized in pulsed laser deposited thin films. Scandium contents of up to x=1 are reached. The cell parameter increases versus x as awaited when considering the size of scandium. It is equal to 0.8620 nm for x=1, significantly higher than that of CoFe{sub 2}O{sub 4} (0.8396 nm). The lattice mismatch between the MgO (100) substrate and the scandium-containing spinel leads to an increased roughness. Cobalt is displaced from the octahedral site by Sc and mainly occupies the tetrahedral sites for high x values.more » - Graphical abstract: Magnification of the XRD patterns recorded on thin films of CoFe{sub 2-x}Sc{sub x}O{sub 4} for x=0, 0.45, 1 and 1.2, the arrows denote the (004) and (008) diffraction lines of the spinel phase.« less

  20. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    NASA Astrophysics Data System (ADS)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  1. Lattice instability and elastic response of metastable Mo1-xSix thin films

    NASA Astrophysics Data System (ADS)

    Fillon, A.; Jaouen, C.; Michel, A.; Abadias, G.; Tromas, C.; Belliard, L.; Perrin, B.; Djemia, Ph.

    2013-11-01

    We present a detailed experimental study on Mo1-xSix thin films, an archetypal alloy system combining metallic and semiconductor materials. The correlations between structure and elastic response are comprehensively investigated. We focus on assessing trends for understanding the evolution of elastic properties upon Si alloying in relation to the structural state (crystalline vs amorphous), bonding character (metallic vs covalent), and local atomic environment. By combining picosecond ultrasonics and Brillouin light scattering techniques, a complete set of effective elastic constants and mechanical moduli (B, G, E) is provided in the whole compositional range, covering bcc solid solutions (x < 0.20) and the amorphous phase (0.20 < x < 1.0). A softening of the shear and Young moduli and a concomitant decrease of the Debye temperature is revealed for crystalline alloys, with a significant drop being observed at x ˜ 0.2 corresponding to the limit of crystal lattice stability. Amorphous alloys exhibit a more complex elastic response, related to variations in coordination number, atomic volume, and bonding state, depending on Si content. Finally, distinct evolutions of the G/B ratio as a function of Cauchy pressure are reported for crystalline and amorphous alloys, enabling us to identify signatures of ductility vs brittleness in the features of the local atomic environment. This work paves the way to design materials with improved mechanical properties by appropriate chemical substitution or impurity incorporation during thin-film growth.

  2. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  3. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  4. Fabrication of high-performance InGaZnOx thin film transistors based on control of oxidation using a low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Endo, Masashi; Uchida, Giichiro; Setsuhara, Yuichi

    2018-04-01

    This work demonstrated the low-temperature control of the oxidation of Amorphous InGaZnOx (a-IGZO) films using inductively coupled plasma as a means of precisely tuning the properties of thin film transistors (TFTs) and as an alternative to post-deposition annealing at high temperatures. The effects of the plasma treatment of the as-deposited a-IGZO films were investigated by assessing the electrical properties of TFTs incorporating these films. A TFT fabricated using an a-IGZO film exposed to an Ar-H2-O2 plasma at substrate temperatures as low as 300 °C exhibited the best performance, with a field effect mobility as high as 42.2 cm2 V-1 s-1, a subthreshold gate voltage swing of 1.2 V decade-1, and a threshold voltage of 2.8 V. The improved transfer characteristics of TFTs fabricated with a-IGZO thin films treated using an Ar-H2-O2 plasma are attributed to the termination of oxygen vacancies around Ga and Zn atoms by OH radicals in the gas phase.

  5. A tri-layer thin film containing graphene oxide to protect zinc substrates from wear

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gu, Zhengpeng; Yuan, Ningyi; Chu, Fuqiang; Cheng, Guanggui; Ding, Jianning

    2018-06-01

    Due to its excellent properties, Zn alloy is widely used in daily life. However, the poor wear-resisting properties of Zn alloys limits their application. In this paper, a tri-layer thin film consisting of 3-aminopropyltriethoxysilane (APS), graphene oxide (GO) and perfluoropolyethers (PFPE) were successfully prepared on the surface of Zn alloy to improve the wear-resisting properties. The as-prepared tri-layer thin films were characterized by atomic force microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. In addition, the tribological properties of the as-prepared tri-layer thin films were studied on a ball-on-plate tribometer and the morphologies of worn surfaces were observed using 3D noncontact interferometric microscope. Compared with the control samples, the tri-layer thin films showed excellent friction-reducing and wear-resisting properties, which was attributed to the synergistic effect of the GO as the load-carrying layer and the PFPE as the lubricating layer.

  6. Phonon Drag in Thin Films, Cases of Bi2Te3 and ZnTe

    NASA Astrophysics Data System (ADS)

    Chi, Hang; Uher, Ctirad

    2014-03-01

    At low temperatures, in (semi-)conductors subjected to a thermal gradient, charge carriers (electrons and holes) are swept (dragged) by out-of-equilibrium phonons due to strong electron-phonon interaction, giving rise to a large contribution to the Seebeck coefficient called the phonon-drag effect. Such phenomenon was surprisingly observed in our recent transport study of highly mismatched alloys as potential thermoelectric materials: a significant phonon-drag thermopower reaching 1.5-2.5 mV/K was recorded for the first time in nitrogen-doped ZnTe epitaxial layers on GaAs (100). In thin films of Bi2Te3, we demonstrate a spectacular influence of substrate phonons on charge carriers. We show that one can control and tune the position and magnitude of the phonon-drag peak over a wide range of temperatures by depositing thin films on substrates with vastly different Debye temperatures. Our experiments also provide a way to study the nature of the phonon spectrum in thin films, which is rarely probed but clearly important for a complete understanding of thin film properties and the interplay of the substrate and films. This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957.

  7. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  8. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Ong, H. C.; Chang, R. P. H.

    2001-11-01

    The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.

  9. Core-Shell Zn x Cd1- x Se/Zn y Cd1- y Se Quantum Dots for Nonvolatile Memory and Electroluminescent Device Applications

    NASA Astrophysics Data System (ADS)

    Al-Amoody, Fuad; Suarez, Ernesto; Rodriguez, Angel; Heller, E.; Huang, Wenli; Jain, F.

    2011-08-01

    This paper presents a floating quantum dot (QD) gate nonvolatile memory device using high-energy-gap Zn y Cd1- y Se-cladded Zn x Cd1- x Se quantum dots ( y > x) with tunneling layers comprising nearly lattice-matched semiconductors (e.g., ZnS/ZnMgS) on Si channels. Also presented is the fabrication of an electroluminescent (EL) device with embedded cladded ZnCdSe quantum dots. These ZnCdSe quantum dots were embedded between indium tin oxide (ITO) on glass and a top Schottky metal electrode deposited on a thin CsF barrier. These QDs, which were nucleated in a photo-assisted microwave plasma (PMP) metalorganic chemical vapor deposition (MOCVD) reactor, were grown between the source and drain regions on a p-type silicon substrate of the nonvolatile memory device. The composition of QD cladding, which relates to the value of y in Zn y Cd1- y Se, was engineered by the intensity of ultraviolet light, which controlled the incorporation of zinc in ZnCdSe. The QD quality is comparable to those deposited by other methods. Characteristics and modeling of the II-VI quantum dots as well as two diverse types of devices are presented in this paper.

  10. Defect-induced magnetic order in pure ZnO films

    NASA Astrophysics Data System (ADS)

    Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.

    2009-07-01

    We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.

  11. Investigation of microstructural and electrical properties of composition dependent co-sputtered Hf1-x Ta x O2 thin films

    NASA Astrophysics Data System (ADS)

    Das, K. C.; Tripathy, N.; Ghosh, S. P.; Mohanta, S. K.; Nakamura, A.; Kar, J. P.

    2017-11-01

    Tantalum doped HfO2 gate dielectric thin films were deposited on silicon substrates using RF reactive co-sputtering by varying RF power of Ta target from 15 W to 90 W. The morphological, compositional and electrical properties of Hf1-x Ta x O2 films were systematically investigated. The Ta content was found to be increased up to 21% for a Ta target power of 90 W. The evolution of monoclinic phase of Hf1-x Ta x O2 was seen from XRD study upto RF power of 60 W and afterwards, the amorphous like behaviour is appeared. The featureless smooth surface with the decrease in granular morphology has been observed from FESEM micrographs of the doped films at higher RF powers of Ta. The flatband voltage is found to be shifted towards negative voltage in the capacitance-voltage plot, which was attributed to the enhancement in positive oxide charge density with rise in RF power. The interface charge density has a minimum value of 7.85  ×  1011 eV-1 cm-2 for the film deposited at Ta RF power of 75 W. The Hf1-x Ta x O2 films deposited at Ta target RF power of 90 W has shown lower leakage current. The high on/off ratio of the current during the set process in Hf1-x Ta x O2 based memristors is found suitable for bipolar resistive switching memory device applications.

  12. Thin-film transistors with a graphene oxide nanocomposite channel.

    PubMed

    Jilani, S Mahaboob; Gamot, Tanesh D; Banerji, P

    2012-12-04

    Graphene oxide (GO) and graphene oxide-zinc oxide nanocomposites (GO-ZnO) were used as channel materials on SiO(2)/Si to fabricate thin-film transistors (TFT) with an aluminum source and drain. Pure GO-based TFT showed poor field-effect characteristics. However, GO-ZnO-nanocomposite-based TFT showed better field-effect performance because of the anchoring of ZnO nanostructures in the GO matrix, which causes a partial reduction in GO as is found from X-ray photoelectron spectroscopic data. The field-effect mobility of charge carriers at a drain voltage of 1 V was found to be 1.94 cm(2)/(V s). The transport of charge carriers in GO-ZnO was explained by a fluctuation-induced tunneling mechanism.

  13. Structural and magnetic properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si Heusler alloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.

    2011-09-01

    We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less

  14. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    NASA Astrophysics Data System (ADS)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  15. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    PubMed Central

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  16. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Li, Min; Wang, Jian-Zhong; Shi, Li-Qun

    2013-02-01

    We prepare p-type ZnO:N films by annealing Zn3N2 films in oxygen over a range of temperatures. The prepared films are characterized by various techniques, such as Rutherford backscattering spectroscopy, x-ray diffraction, x-ray photoemission spectroscopy, the Hall effect and photoluminescence spectra. The results show that the Zn3N2 films start to transform to ZnO at 300°C and the N content decreases with an increase in annealing temperature. N has two local chemical states: zinc oxynitride (ZnO1-xNx) and substitutional NO in O-rich local environments (α -NO). The conduction type changes from n-type to p-type upon oxidation at 400-600°C, indicating that N is an effective acceptor in the ZnO film. The photoluminescence spectra show the UV emission and defect-related emissions of ZnO:N films. The mechanism and efficiency of p-type doping are briefly discussed.

  17. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  18. Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Manríquez Zepeda, J. L.

    2015-03-01

    Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.

  19. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  20. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  1. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  2. Synthesis, structure, vapour pressure and deposition of ZnO thin film by plasma assisted MOCVD technique using a novel precursor bis[(pentylnitrilomethylidine) (pentylnitrilomethylidine-μ-phenalato)]dizinc(II)

    NASA Astrophysics Data System (ADS)

    Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.

    2017-02-01

    A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.

  3. Piezoelectric response and electrical properties of Pb(Zr1-xTix)O3 thin films: The role of imprint and composition

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.

    2017-10-01

    The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.

  4. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  5. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  6. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    PubMed

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  7. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    PubMed

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O 2 at 300 °C exhibit a low leakage current of 2.5 × 10 -13 A, I on /I off ratio of 1.4 × 10 7 , subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  8. Dilute electrodeposition of TiO2 and ZnO thin film memristors on Cu substrate

    NASA Astrophysics Data System (ADS)

    Fauzi, F. B.; Ani, M. H.; Herman, S. H.; Mohamed, M. A.

    2018-03-01

    Memristor has become one of the alternatives to replace the current memory technologies. Fabrication of titanium dioxide, TiO2 memristor has been extensively studied by using various deposition methods. However, recently more researches have been done to explore the compatibility of other transition metal oxide, TMO such as zinc oxide, ZnO to be used as the active layer of the memristor. This paper highlights the simple and easy-control electrodeposition to deposit titanium, Ti and zinc, Zn thin film at room temperature and subsequent thermal oxidation at 600 °C. Gold, Au was then sputtered as top electrode to create metal-insulator-metal, MIM sandwich of Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors. The structural, morphological and memristive properties were characterized using Field Emission Scanning Electron Microscopy, FESEM, X-Ray Diffraction, XRD and current-voltage, I-V measurement. Both Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristivity were identified by the pinched hysteresis loop with resistive ratio of 1.2 and 1.08 respectively. Empirical study on diffusivity of Ti4+, Zn2+ and O2‑ ions in both metal oxides show that the metal vacancies were formed, thus giving rise to its memristivity. The electrodeposited Au/TiO2-Cu2O-CuO/Cu and Au/ZnO-Cu2O-CuO/Cu memristors demonstrate comparable performances to previous studies using other methods.

  9. Combinatorial investigation of the effects of sodium on Cu 2ZnSnSe4 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Gibbs, Alex Hilton

    Cu2ZnSnSe4 (CZTSe) possess highly suitable optical and electronic properties for use as an absorber layer in thin film solar cells. CZTSe also has potential to achieve terawatt level solar energy production due to its inexpensive and abundant material constituents. Currently, fabricating CZTSe devices with the expected theoretical performance has not been achieved, making the growth and formation of CZTSe an interesting topic of research. In this work, a two-step vacuum fabrication process consisting of RF co-sputtering followed by reactive annealing was explored as a viable technique for synthesizing CZTSe thin films. Furthermore, the enhancement of the fabrication process by the incorporation of sodium during annealing was studied using a combinatorial approach. Film composition was analyzed using electron dispersive spectroscopy. Structure, phase morphology, and formation were determined using scanning electron microscopy, x-ray diffraction, atomic force microscopy and raman spectroscopy. Optical and electronic properties were characterized using UV-Vis and Voc were measurements under a one sun solar simulator. RF co-sputtering CuSe, ZnSe, and SnSe precursors produced films with good thickness uniformity, adhesion and stoichiometry control over 3 x 3 in 2 substrates. Composition measurements showed that the precursor films maintained stability during an annealing process of 580° C for 20 minutes producing near stoichiometric CZTSe. However, grain size was small with an average diameter of 350 nm. The CZTSe film produced by this process exhibited a suitable absorption coefficient of > 104 cm-1 and aband gap near 1.0 eV. The film also produced an XRD pattern consistent with tetragonal CZTSe with no secondary phase formation with the exception of approximately 12.5 nm of interfacial MoSe2 formation at the back contact. The combinatorial investigation of the influence of sodium on CZTSe growth and morphology was achieved using a custom built constant withdraw

  10. Electrical properties of a novel 1,3-bis-(p-iminobenzoic acid) indane Langmuir-Blodgett films containing ZnS nanoparticles.

    PubMed

    Sari, H; Uzunoglu, T; Capan, R; Serin, N; Serin, T; Tarimci, C; Hassan, A K; Namli, H; Turhan, O

    2007-08-01

    ZnS nanoparticles have been formed in a newly synthesized 1,3-bis-(p-iminobenzoic acid) indane (IBI) by exposing Zn2+ doped multilayered Langmuir-Blodgett (LB) film to H2S gas after the growth. The formation of ZnS nanoparticles in the LB film structure was verified by measuring UV-Visible absorption spectra. DC electrical measurements were carried out for thin films of IBI prepared in a metal/LB films/metal sandwich structure with and without ZnS nanoparticles. It was observed that ZnS nanoparticles in the LB films cause a blue-shift in the absorption spectra as well as a decrease in both capacitance and conductivity values. By analysing I-V curves and assuming a Schottky conduction mechanism the barrier height was found to be about 1.13 eV and 1.21 eV for IBI LB films without and with ZnS nanoparticles, respectively. It is thought that the presence of ZnS nanoparticles influences the barrier height at the metal-organic film interface and causes a change in electrical conduction properties of LB films.

  11. Mobility enhancement in crystalline In-Ga-Zn-oxide with In-rich compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Kazuhiro; Matsubayashi, Daisuke; Ishihara, Noritaka

    The electron mobility of In-Ga-Zn-oxide (IGZO) is known to be enhanced by higher In content. We theoretically investigated the mobility-enhancement mechanism by proposing an In-Ga-Zn-disorder scattering model for an In-rich crystalline IGZO (In{sub 1+x}Ga{sub 1x}O{sub 3}(ZnO){sub m} (0 < x < 1, m > 0)) thin film. The obtained theoretical mobility was found to be in agreement with experimental Hall mobility for a crystalline In{sub 1.5}Ga{sub 0.5}O{sub 3}(ZnO) (or In{sub 3}GaZn{sub 2}O{sub 8}) thin film. The mechanism specific to In-rich crystalline IGZO thin films is based on three types of Coulomb scattering potentials that originate from effective valence differences. In this study, the In-Ga-Zn-disorder scattering modelmore » indicates that the effective valence of the In{sup 3+} ions in In-rich crystalline IGZO thin films significantly affects their electron mobility.« less

  12. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  13. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  14. Structural and morphological studies on Bi{sub 1-x}Ca{sub x}MnO{sub 3} thin films grown by RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugazhvadivu, K. S.; Santhiya, M.; Tamilarasan, K., E-mail: dr.k.tamilarasan@gmail.com

    2016-05-23

    Bi{sub 1-x}Ca{sub x}MnO{sub 3} (0 ≤ X ≤ 0.4) thin films are deposited on n–type Si (100) substrate at 800 °C by RF magnetron sputtering. X-ray diffraction pattern shows that the films are crystallized in monoclinic structure with C2 space group. The crystallite size and induced strain in the prepared films are measured by W-H plot. The cell parameters and texture coefficient of the films are calculated. The surface morphology of the films is examined by atomic force microscope. The study confirms the optimum level of calcium doping is 20 at. % in Bi site of BiMnO{sub 3} film, thesemore » findings pave the way for further research in the Ca modified BiMnO{sub 3} films towards device fabrication.« less

  15. Flexible thin-film transistors on plastic substrate at room temperature.

    PubMed

    Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong

    2013-07-01

    We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.

  16. Structural Characterization Studies on Semiconducting ZnSnN 2 Films using Synchrotron X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Senabulya, Nancy

    This work is motivated by the need for new visible frequency direct bandgap semiconductor materials that are earth abundant and low-cost to meet the increasing demand for optoelectronic device applications such as solid state lighting and photovoltaics. Zinc-Tin-Nitride (ZnSnN2), a member of the II-IV nitride semiconductor family has been proposed as an alternative to the more common III-nitride semiconductors for use in optoelectronic devices. This material has been synthesized under optimized conditions using plasma assisted molecular beam epitaxy. Though a lot of research has recently been done computationally to predict the electronic and structural properties of ZnSnN2, experimental verification of these theories in single crystal thin films is lacking and warrants investigation because the accurate determination of the crystal structure of ZnSnN2 is a fundamental prerequisite for controlling and optimizing optoelectronic properties. In this synchrotron x-ray diffraction study, we present experimental validation, through unit cell refinement and 3d reciprocal space maps, of the crystal structure of single domain ZnSnN2 films deposited on (111) Yttria stabilized zirconia (YSZ) and (001) Lithium gallate (LGO) substrates. We find that ZnSnN2 films grown on (111) YSZ can attain both the theoretically predicted disordered wurtzite and ordered orthorhombic Pna21 structures under carefully controlled MBE growth conditions, while films grown on (001) LGO have the ordered Pn21a orthorhombic crystal structure. Through a systematic annealing study, a temperature induced first order structural phase transition from the wurtzite to orthorhombic phase is realized, characterized by the appearance of superstructure reflections in.

  17. Improvement of the photovoltaic performance of Cu2ZnSn(S x Se1-x )4 solar cells by adding polymer in the precursor solution

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Li, Yong-Feng; Yao, Bin; Ding, Zhan-Hui; Deng, Rui; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong

    2018-03-01

    Kesterite Cu2ZnSn(S x Se1-x )4 (CZTSSe) thin films and related solar cells were successfully fabricated by a facile sol-gel method and selenization process. The influence of Polyvinylpyrrolidone (PVP) additive on the properties of the CZTSSe films and the power conversion efficiency (PCE) of the solar cells were investigated. The results reveal that the qualities of CZTSSe films can be manipulated by incorporating a small amount of PVP. With addition of 1 wt% of PVP, the smoothness and grain size of the CZTSSe films were greatly improved. The contact at the CZTSSe/Mo interface was also improved. As a result, the optimized PCE of solar cells improved from 2.24% to 4.34% after the addition of 1 wt% PVP due to the decrease of recombination at the interfaces. These results suggest that polymer addition in the precursor solution is a promising method for obtaining high quality of CZTSSe films and high-performance solar cells.

  18. Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Faÿ, S.; Shah, A.

    Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2-4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.

  19. Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Dhiman, Pooja; Singh, M.

    2017-05-01

    Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.

  20. Influence of annealing to the defect of inkjet-printed ZnO thin film

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Zhan, Zhaoyao; Du, Hejun

    2018-03-01

    The advantages of additive manufacturing for electronic devices have led to the demand of printing functional material in search of a replacement for the conventional subtractive fabrication process. Zinc oxide (ZnO), thanks to its interesting properties for the electronic and photonic applications, has gathered many attentions in the effort to fabricate functional devices additively. Although many potential methods have been proposed, most of them focus on the lowtemperature processing of the printed material to be compatible with the polymer substrate. These low-temperature fabrication processes could establish a high concentration of defects in printed ZnO which significantly affect the performance of the device. In this study, ZnO thin film for UV photodetector application was prepared by inkjet printing of zinc acetate dihydrate solution following by different heat treatment schemes. The effects of annealing to the intrinsic defect of printed ZnO and photoresponse characteristics under UV illumination were investigated. A longer response/decay time and higher photocurrent were observed after the annealing at 350°C for 30 minutes. X-ray photoelectron spectroscopy (XPS) analysis suggests that the reducing of defect concentration, such as oxygen vacancy, and excess oxygen species in printed ZnO is the main mechanism for the variation in photoresponse. The result provides a better understanding on the defect of inkjet-printed ZnO and could be applied in engineering the properties of the printed oxide-based semiconductor.